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Abstract. Functional data objects that are derived from high-frequency financial data often

exhibit volatility clustering characteristic of conditionally heteroscedastic time series. Versions

of functional generalized autoregressive conditionally heteroscedastic (FGARCH) models have

recently been proposed to describe such data, but so far basic diagnostic tests for these models are

not available. We propose two portmanteau type tests to measure conditional heteroscedasticity

in the squares of financial asset return curves. A complete asymptotic theory is provided for

each test, and we further show how they can be applied to model residuals in order to evaluate

the adequacy, and aid in order selection of FGARCH models. Simulation results show that

both tests have good size and power to detect conditional heteroscedasticity and model mis-

specification in finite samples. In an application, the proposed tests reveal that intra-day asset

return curves exhibit conditional heteroscedasticity. Additionally, we found that this conditional

heteroscedasticity cannot be explained by the magnitude of inter-daily returns alone, but that it

can be adequately modeled by an FGARCH(1,1) model.
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1. Introduction

Since the seminal work of Engle (1982) and Bollerslev (1986), generalized autoregressive con-

ditionally heteroscedastic (GARCH) models and their numerous generalizations have become

a cornerstone of financial time series modeling, and are frequently used as a model for the

volatility of financial asset returns. As the name suggests, the main feature that these models

account for is conditional heteroscedasticity, which for an uncorrelated financial time series can

be detected by checking for the presence of serial correlation in the series of squared returns of

the asset. This basic observation leads to several ways of testing for the presence of conditional

heteroscedasticity in a given time series or series of model residuals by applying portmanteau

tests to the squared series. Such tests have been developed by McLeod and Li (1983) and Li and

Mak (1994) to test for conditional heteroscedasticity and perform model selection for GARCH

models as well as autoregressive moving average models with GARCH errors. Diagnostic tests

of this type are summarized in the monograph by Li (2003), and with a special focus on GARCH

models in Francq and Zakoïan (2010). Many of these methods have also been extended to mul-

tivariate time series of a relatively small dimension; see also Francq and Zakoïan (2010), Tse

and Tsui (1999), Tse (2002), Duchesne and Lalancette (2003), Kroner and Ng (1998), Bauwens

et al. (2006), and Catani et al. (2017).

In many applications, dense intra-day price data of financial assets are available in addition to

the daily asset returns. One way to view such data is as daily observations of high dimensional

vectors (consisting of hundreds or thousands of coordinates) that may be thought of as discrete

observations of an underlying noisy intra-day price curve or function. We illustrate with the data

that motivate our work and will be further studied below. On consecutive days i ∈ {1, . . . , N},

observations of the price of an asset, for instance the index of Standard & Poor’s 500, are available

at intra-day times u, measured at a 1-minute (or finer) resolution. These data may then be

represented by a sequence of discretely observed functions {Pi(u) : 1 ≤ i ≤ T, u ∈ [0, S]}, with

S denoting the length of the trading day. Transformations of these functions towards stationarity

that are of interest include the horizon h log returns, Ri(u) = logPi(u)− logPi(u− h), where

h is some given length of time, such as five minutes. For a fixed h, on any given trading day

i, we thus observe a high-dimensional multivariate vector that can be viewed as a curve. The

collection of these curves can therefore be studied as a functional time series. We refer the reader
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to Bosq (2000), Ramsay and Silverman (2006), and Horváth and Kokoszka (2012) for a review

of functional data analysis and linear functional time series. Studying such data through the

lens of a functional data analysis has received considerable attention in recent years. The basic

idea of viewing transformations of densely observed asset price data as sequentially observed

stochastic processes appears in studies such as Barndorff-Nielson and Shepard (2004), Müller

et al. (2011) and Kokoszka and Reimherr (2013), among others.

Curves produced as described above exhibit a non-linear dependence structure and volatility

clustering reminiscent of GARCH-type time series. Recently functional GARCH (FGARCH)

models have been put forward as a model for curves derived from the dense intra-day price

data, beginning with Hörmann et al. (2013), who proposed an FARCH(1) model, which was

generalized to FGARCH(1,1) and FGARCH(p, q) models by Aue et al., (2017), and Cerovecki

et al. (2019), respectively. An important determination an investigator may wish to make

before she employs such a model is whether or not the observed functional time series exhibits

substantial evidence of conditional heteroscedasticity. To the best of our knowledge, there is

no formal statistical test available to measure conditional heteroscedasticity in intra-day return

curves or generally for sequentially observed functional data. Additionally, if an FGARCH

model is employed, it is desirable to know how well it fits the data, and whether or not the

orders p and q selected for the model should be adjusted. This can be addressed by testing for

remaining conditional heteroscedasticity in the model residuals of fitted models.

In this paper, we develop functional portmanteau tests for the purpose of identifying conditional

heteroscedasticity in functional time series. Additionally, we consider applications of the pro-

posed tests to the model residuals from a fitted FGARCH model that can be used to evaluate

the model’s adequacy and aid in the order selection. The development of this later application

entails deriving joint asymptotic results between the autocovariance of the FGARCH innova-

tions and the model parameter estimators that are of independent interest. Simulation studies

presented in this paper confirm that the proposed tests have good size and are effective in iden-

tifying functional conditional heteroscedasticity as well as mis-specification of FGARCH-type

models. In an application to intra-day return curves derived from dense stock price data, our

tests suggest that the FGARCH models are adequate for modeling the observed conditional

heteroscedasticity across curves.
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This work builds upon a number of recent contributions related to portmanteau and goodness-

of-fit tests for functional data. Gabrys and Kokoszka (2007) were the first to consider white noise

tests for functional time series, and their initial approach was based on portmanteau statistics

applied to finite-dimensional projections of functional observations. Horváth et al. (2013)

developed a general strong white noise test based on the squared norms of the autocovariance

operators for an increasing number of lags. General weak white noise tests that are robust

to potential conditional heteroscedasticity were developed in Zhang (2016) and Kokoszka et

al. (2017). Zhang (2016), Gabrys et al. (2010) and Chiou and Müller (2007) also consider

goodness-of-fit tests based on model residuals, with the first two being in the context of modeling

functional time series.

The remainder of the paper is organized as follows. In Section 2 we frame testing for condi-

tional heteroscedasticity as a hypothesis testing problem, and introduce test statistics for this

purpose. We further present the asymptotic properties of the proposed statistics, and show

how to apply them to the model residuals of the FGARCH models for the purpose of model

validation/selection. Some details regarding the practical implementation of the proposed tests

and a simulation study evaluating their performance in finite samples are given in Section 4.

An application to intra-day return curves is detailed in Section 5, and concluding remarks are

made in Section 6. Proofs of the asymptotic results are collected in appendices following these

main sections.

We use the following notation below. We let L2[0, 1]d denote the space of real valued square

integrable functions defined on unit hypercube [0, 1]d with norm ‖·‖ induced by the inner product

〈x, y〉 =
∫ 1

0
· · ·
∫ 1

0
x(t1, ..., td)y(t1, ..., td)dt1 . . . dtd for x, y ∈ L2[0, 1]d, the dimension of the

domain being clear based on the input function. Henceforth we write
∫

instead of
∫ 1

0
. We

often consider kernel integral operators of the form g(x)(t) =
∫

g(t, s)x(s)ds for x ∈ L2[0, 1],

where the kernel function g is an element of L2[0, 1]2. We use g(k)(x)(t) to denote the k-fold

convolution of the operator g. The filtration Fi is used to denote the sigma algebra generated

by the random elements {Xj, j ≤ i}. We let C[0, 1] denote the space of continuous real valued

functions on [0, 1], with norm defined for x ∈ C[0, 1] as ‖x‖∞ = supy∈[0,1] |x(y)|. We let χ2
K

denote a chi-square random variable withK degrees of freedom, and use χ2
K,q to denote its q’th
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quantile. ‖ · ‖E denotes the standard Euclidean norm of a vector in R
d. We use {xi} to denote

the sequence {xi}i∈N, or {xi}i∈Z, with the specific usage of which being clear in context.

2. Tests for functional conditional heteroscedasticity

Consider a stretch of a functional time series of length N , X1(t), ..., XN(t), which is assumed

to have been observed from a strictly stationary sequence {Xi(t), i ∈ Z, t ∈ [0, 1]} of

stochastic processes with sample paths in L2[0, 1]. For instance, below Xi(t) denotes the

intra-day log returns derived from densely observed stock prices on day i at intraday time t

where t is normalized to be in the unit interval. In this paper, we are generally concerned

with developing tests that differentiate such series of curves, or model residuals, exhibiting

conditional heteroscedasticity from those that are strong functional white noises.

As emphasized by Engle (1982), conditional heteroscedasticity is generally characterized by

dependence of the conditional variance of an observed scalar time series on the magnitude of

its past values, which manifests itself in serial correlation in the squares of the series. This

leads one to consider the following definition of conditional heteroscedasticity for functional

observations:

Definition 2.1. [Functional Conditional Heteroscedasticity] We say that a sequence {Xi} is

conditionally heteroscedastic in L2[0, 1] if it is strictly stationary, E[Xi(t)|Fi−1] = 0, and

cov(X2
i (t), X

2
i+h(s)) 6= 0,

for some h ≥ 1, where the equality above is understood to be in the L2[0, 1]2 sense.

Recently, several models have been proposed in order to model series of curves exhibiting

conditional heteroscedasticity. Notably, the functional ARCH(1) and GARCH(1,1) processes

were put forward by Hörmann et al. (2013) and Aue et al. (2017), respectively, and take the

form

Xi(t) = σi(t)εi(t), Eε2i (t) = 1, t ∈ [0, 1],(2.1)

where

(2.2) FARCH(1) : σ2
i (t) = ω(t) +α(X2

i−1)(t) = ω(t) +

∫

α(t, s)X2
i−1(s)ds,
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or FGARCH(1, 1):

σ2
i (t) = ω(t) +α(X2

i−1)(t) +β(σ2
i−1)(t) = ω(t) +

∫

α(t, s)X2
i−1(s)ds+

∫

β(t, s)σ2
i−1(s)ds,

respectively. Here ω(t) is a non-negative intercept function, and α(t, s) and β(t, s) are non-

negative kernel functions. General FGARCH(p, q) models are discussed in Cerovecki et al.

(2019), in which they also provide natural conditions under which these models admit strictly

stationary and non-anticipative solutions.

We frame testing for conditional heteroscedasticity as a hypothesis testing problem of

H0: The sequence {Xi(t)} is independent, and identically distributed, versus

HA: The sequence of {Xi(t)} is conditionally heteroscedastic given in Definition 2.1.

Clearly it is not the case in general that rejecting H0 would directly lead us to HA, becauseXi(t)

might instead be dependent or corrleated in the first moment. This concern can be alleviated

though if we test serial correlation in the sequence of squared curves as described in Definition

2.1.

In particular, we might then test H0 versus HA by measuring the serial correlation in the

time series ‖X1‖2,...,‖XN‖2, or in the sequence of curves X2
1 (t),...,X

2
N(t). Testing for serial

correlation in the time series ‖Xi‖2 can be viewed as measuring to what extent large in magnitude

curves increase/decrease the likelihood of subsequent curves being large in magnitude, whereas

testing for serial correlation in the curvesX2
i (t) aims to more directly evaluate whether the data

follow Definition 2.1. For some positive integer K, we then consider portmanteau statistics of

the form

(2.3) VN,K = N
K
∑

h=1

ρ̂2h, and MN,K = N
K
∑

h=1

‖γ̂h‖2 ,

where ρ̂h is the sample autocorrelation of the time series ‖X1‖2,...,‖XN‖2, and γ̂h(t, s) ∈
L2[0, 1]2 is the estimated autocovariance kernel of the functional time series X2

i (t) at lag h ,

defined as

γ̂h(t, s) =
1

N

N−h
∑

i=1

(X2
i (t)− X̄(2)(t))(X2

i+h(s)− X̄(2)(s)),

with X̄(2)(t)) = (1/N)
∑N

i=1X
2
i (t). The test statistic VN,K is essentially the Box-Ljung-Pierce

test statistic (Ljung and Box, 1978) derived from the scalar time series of squared norms,
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whereas the test statistic MN,K is the same as the portmanteau statistic defined in Kokoszka et

al. (2017) applied to the squared functions.

UnderHA, we expect the statistics VN,K andMN,K to be large, and hence a consistent test can be

obtained by rejecting H0 whenever they exceed a threshold calibrated according to their limiting

distributions under the null hypothesis. In order to establish the asymptotic distributions of each

portmanteau statistic under H0, we impose the following moment condition.

Assumption 2.1. E ‖Xi‖8 <∞, i ∈ Z.

Under this assumption, the asymptotic distribution ofMN,K depends on the eigenvalues λi, i ≥
1 of the kernel integral operator with kernel cov(X2

i (t), X
2
i (s)), namely

λiϕi(t) =

∫

cov(X2
i (t), X

2
i (s))ϕi(s)ds,(2.4)

where {ϕi} is an orthonormal sequence of eigenfunctions inL2[0, 1]. Assumption 2.1 guarantees

that the eigenvalues {λi} satisfy the condition that
∑∞

i=1 λi <∞.

Theorem 2.1. If H0 and Assumption 2.1 are satisfied, then we have

VN,K
D→ χ2

K , as N → ∞,(2.5)

and

MN,K
D→

K
∑

h=1

∞
∑

l,k=1

λlλkχ
2
1(h, ℓ, k), as N → ∞,(2.6)

where {χ2
1(h, ℓ, k), 1 ≤ h ≤ K, 1 ≤ ℓ, k < ∞} are independent and identically distributed

χ2
1 random variables.

Theorem 2.1 shows that an approximate test of H0 of size q is to reject if VN,K > χ2
K,1−q or if

MN,K exceeds the q’th quantile of the distribution on the right hand side of (2.6). The latter

can be approximated in several ways, and in Section 4 below we describe a Welch-Satterthwaite

style χ2 approximation to achieve this.
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2.1. Consistency of the proposed tests. We now turn to studying consistency of each test

under HA. In particular, we consider the asymptotic behavior of VN,K and MN,K for sequences

{Xi} such that either: (a) they form a general weakly dependent sequences in L2[0, 1] that are

conditionally heteroscedastic as described by Definition 2.1, or (b) they follow a FARCH(1)

model as described in (2.2). We use the notion of Lp-m-approximability defined in Hörmann

and Kokoszka (2010) in order to describe general weakly dependent sequences, which covers

strictly stationary functional GARCH type processes under suitable moment conditions; see

Cerovecki et al. (2019).

Theorem 2.2. If {Xi} is L8-m-approximable and HA holds where h in Definition 2.1 satisfies

1 ≤ h ≤ K, then

MN,K
p→ ∞, N → ∞.(2.7)

If in addition
∫∫

cov(X2
i (t), X

2
i+h(s))dtds 6= 0, then

VN,K
p→ ∞, N → ∞.(2.8)

Remark 2.1. In typical financial applications we expect that the sequence of squared returns

are positively correlated, which may be interpreted in this setting as cov(X2
i (t), X

2
i+h(s)) ≥ 0,

for all t, s ∈ [0, 1], i.e. the covariance surface of the squared process at lag h ofX2
i (t) is strictly

positive. Under this additional requirement the conditions for consistency of MN,K and VN,K

in Theorem 2.2 become equivalent.

Under the FARCH(1) model we can develop more precise results on the rate of divergence

of VN,K and MN,K . The following assumption ensures that a stationary and causal sequence

satisfying (2.1) and (2.2) exists in L2[0, 1]:

Assumption 2.2. The sequence {εi} in (2.1) is independent and identically distributed, and the

kernel α(t, s) in (2.2) is non-negative, ‖α‖ < 1 , and satisfies that there exists a constant τ > 0

so that

E

(
∫∫

α2(t, s)ε20(s)dtds

)τ/2

< 1.
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Theorem 2.3. Suppose that {Xi} is the strictly stationary solution to the FARCH(1) equations

under Assumption 2.2 so that Assumption 2.1 holds, and let Vi(t) = X2
i (t)− σ2

i (t). Then Vi(t)

is a mean zero weak white noise in L2[0, 1] (see pg. 72 Bosq (2000)),

VN,K

N

p→
K
∑

h=1

(

∫∫
∑∞

j=0Eα
(j)(Vj)(t)α

(j+h)(Vj)(s)dtds
)2

(

∫∫
∑∞

j=0Eα
(j)(Vj)(t)α(j)(Vj)(s)dtds

)2 ,(2.9)

and

MN,K

N

p→
K
∑

h=1

∥

∥

∥

∥

∥

∞
∑

j=0

Eα(j)(Vj)(t)α
(j+h)(Vj)(s)

∥

∥

∥

∥

∥

2

.(2.10)

The right hand side of (2.10) is guaranteed to be strictly positive if
∫∫

α(t, s)Eω(t)(ε20(t) −
1)ω(s)(ε20(s)− 1)dtds 6= 0.

Remark 2.2. Theorem 2.3 shows that under an FARCH(1) model, the rate of divergence of

VN,K and MN,K depend essentially on the size of the function α(t, s) as well as how this kernel

projects onto the intercept term in the conditional variance ω(t) and the covariance of the

squared error ε20(t). If for example
∫∫

α(t, s)E(ε20(t)− 1)(ε20(t)− 1)dtds = 0, then we do not

expect the tests to be consistent.

3. Diagnostic Checking for Functional GARCH Models

The conditional heteroscedasticity tests proposed above can also be used to test for the adequacy

of the estimated functional ARCH and GARCH models, and can aid in the order selection

of these models. We introduce this approach in the context of testing the adequacy of the

FGARCH(1,1) model, although one could more generally consider the same procedure applied

to the FGARCH(p, q) models using the estimation procedures in Cerovecki et al. (2019). To

this end, suppose that Xi(t), 1 ≤ i ≤ N follows an FGARCH(1,1) model. To estimate ω(t),

and the kernel functions α(t, s) and β(t, s), following Aue et al. (2017) and Cerovecki et al.

(2019), we suppose that they have finite L-dimensional representations determined by a set of

basis functions ΦL = {φ1, φ2, . . . , φL} in L2[0, 1] so that
9



ω(t) =
L
∑

j=1

djφj(t), α(t, s) =
L
∑

j,j′=1

aj,j′φj(t)φj′(s), β(t, s) =
L
∑

j,j′=1

bj,j′φj(t)φj′(s).(3.1)

Under this assumption, estimating these functions amounts to estimating the coefficients in

their finite dimensional representations, which can be achieved by using, for example, Quasi-

Maximum Likelihood estimation (QMLE) or Least Squares estimation, as is typically employed

in multivariate GARCH models. To see this, under (3.1) we can re-express the FGARCH(1,1)

model in terms of the coefficients as

(3.2) s
2
i = D + Ax2

i−1 +Bs
2
i−1

where x
2
i = [〈X2

i (t), φ1(t)〉 , . . . , 〈X2
i (t), φL(t)〉]⊤, s2i = [〈σ2

i (t), φ1(t)〉 , . . . , 〈σ2
i (t), φL(t)〉]⊤,

the coefficient vector D = [d1, . . . , dL]
⊤ ∈ R

L, and the coefficient matrices A and B are

R
L×L with (j, j′) entries by aj,j′ and bj,j′ , respectively. To estimate the vector of parameters

θ0 = (D⊤, vec(A)⊤, vec(B)⊤)⊤, Aue et al. (2017) propose a Least Squares type estimator

satisfying

θ̂N = argmin
θ∈Θ

{

N
∑

i=2

(x2
i − s

2
i (θ))

⊤(x2
i − s

2
i (θ))

}

,

where Θ is a compact subset of RL+2L2

. Under certain regularity conditions, detailed at the

beginning of Appendix B, it can be shown that θ̂N is a consistent estimator of θ0, and in fact
√
N(θ̂N − θ0) satisfies the central limit theorem. This yields estimated functions given by

ω̂(t) =
L
∑

j=1

d̂jφj(t), α̂(t, s) =
L
∑

j,j′=1

âj,j′φj(t)φj′(s), β̂(t, s) =
L
∑

jj′=1

b̂j,j′φj(t)φj′(s).

The functions φj can be chosen in a number of ways, including using a deterministic basis

system such as polynomials, b-splines, or the Fourier basis, as well as using a functional

principal component basis; see e.g. Chapter 6 of Ramsay and Silverman (2006). Cerovecki et

al. (2019) and Aue et al. (2017) suggest using the principal component basis determined by

the squared processes X2
i (t), which we also consider below. Given these function estimates,

we can estimate recursively σ̂2
i (t), see (B.4) in Appendix B for specific details.
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To test the adequacy of the FGARCH(1,1) model, we utilize the fact that if the model is well

specified then the sequence of model residuals εi(t), 1 ≤ i ≤ N , should be approximately

independent and identically distributed, where

(3.3) ε̂i(t) =
Xi(t)

σ̂i(t)
.

This suggests that we consider the portmanteau statistics constructed from the residuals

VN,K,ε = N
K
∑

h=1

ρ̂ε,h, and MN,K,ε = N
K
∑

h=1

‖γ̂ε,h‖2 ,

where ρ̂ε,h is the sample autocorrelation of the scalar time series ‖ε̂1‖2, ..., ‖ε̂N‖2, and

γ̂ε,h(t, s) =
1

N

N−h
∑

i=1

(

ε̂2i (t)− 1
) (

ε̂2i+h(s)− 1
)

.(3.4)

A test of model adequacy of size q is to reject if VN,K,ε > χ2
K,1−q or ifMN,K,ε exceeds the 1−q’th

quantile of the distribution on the right hand side of (2.6), where again this distribution must

be estimated from the squared residuals ε̂2i (t). We abbreviate these tests below as being based

on V heuristic
N,K,ε and Mheuristic

N,K,ε , since even under the assumption that that the model is correctly

specified the residuals ε̂i are evidently not independent and identically distributed due to their

common dependence on the estimated parameters θ̂N .

3.1. Accounting for the effect of parameter estimation. The approximate goodness-of-fit

tests proposed above provide a heuristic method to evaluate the model fit of a specified functional

GARCH type model, however we now aim at more precisely describing how the asymptotic

distribution of MN,K,ε based on the model residuals ε̂i(t) depends on the joint asymptotics of

the innovation process and the estimated parameters θ̂N . In this subsection, we focus only on

quantifying this effect for the fully functional statistic MN,K,ε. Further, we assume that the

parameter estimate θ̂N is obtained by the Least Squares method proposed in Aue et al. (2017),

although this could easily be adapted to the QMLE parameter estimate as well.

Given the regularity conditions stated Appendix B, it follows that

(3.5)
√
N(θ̂N − θ0)

d→ NL+2L2(0, Q−1
0 H⊤

0 J0H0Q
−1
0 ),
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where Np(0,Σ) denotes a p dimensional normal random vector with mean zero and covariance

matrix Σ. We use the notation σ2
i (t, θ) and s

2
i (θ) to indicate how each of these terms depends

on the vector of parameters defined in (3.1). The terms J0, H0, and Q0 are respectively defined

as

J0 = E{[x2
0 − s

2
0][x

2
0 − s

2
0]

⊤}, H0 = E

{

∂s̃20(θ)

∂θ

}

, Q0 = E

{

[

∂s̃20(θ)

∂θ

]⊤ [
∂s̃20(θ)

∂θ

]

}

.

Let Gh : [0, 1]2 → R
L+2L2

be defined by

Gh(t, s) = −E
{

1

σ2
i+h(s, θ0)

× ∂σ2
i+h(s, θ0)

∂θ
× (ε2i (t, θ0)− 1)

}

.(3.6)

We further define the covariance kernels

Cε(t, s, u, v) = E{(ε2i (t)− 1)(ε2i (s)− 1)}E{(ε2i (u)− 1)(ε2i (v)− 1)},

and

Cε,θ
h,g(t, s, u, v) = E

{

(ε2−h(t)− 1)(ε20(s)− 1)G⊤
g (u, v)Q

−1
0 (

∂s20(θ0)

∂θ
)⊤(x2

0 − s
2
0)

}

.

Theorem 3.1. Suppose that {Xi} follows an FGARCH(1,1) model. Under the assumptions

detailed in Appendix B, there exists a sequence of non-negative coefficients {ξ(ε,θ)i,K , i ≥ 1}
such that

MN,K,ε
D→

∞
∑

i=1

ξ
(ε,θ)
i,K χ2

1(i),(3.7)

where χ2
1(i), i ≥ 1 are independent and identically distributed χ2 random variables with one

degree of freedom. The coefficients ξ
(ε,θ)
i,K are the eigenvalues of a covariance operator Ψ

(ε,θ)
K ,

defined in (B.1) below, that is constructed from kernels of the form

ψ
(ε,θ)
K,h,g(t, s,u, v) = Cε(t, s, u, v) + Cε,θ

h,g(t, s, u, v)(3.8)

+ Cε,θ
g,h(u, v, t, s) +G⊤

h (t, s)Q
−1
0 H⊤

0 J0H0Q
−1
0 Gg(u, v), 1 ≤ h, g ≤ K.

Theorem 3.1 more precisely details the asymptotics for MN,K,ε, which in this case depend

jointly on the autocovariance of the FGARCH innovations as well as the parameter estimates. A

12



rigorous statement of this result is given in Appendix B along with the necessary assumptions

on the FGARCH model, which basically are taken to be strong enough to imply (3.5), and

that the solution {Xi} of the FGARCH equations exists in C[0, 1] with sufficient moments.

These results may be easily generalized to FGARCH models of other orders, for instance, the

FARCH(1) model, which we study in the simulation section below.

4. Implementation of the tests and a simulation study

This section gives details on implementation of the proposed tests and evaluates the performance

of the proposed tests in finite samples. Several synthetic data examples are considered for this

purpose. A simulation study on diagnostic checking for the FGARCH model is also provided

in the last subsection.

4.1. Computation of test statistics and asymptotic critical values. In practice we only ob-

serve each functional data object Xi(t) at a discrete collection of time points. Often in fi-

nancial applications these time points can be taken to be regularly spaced and represented as

TJ = {tj = j/J, j = 1, . . . , J} ⊂ (0, 1]. Given the observations of the function Xi(tj),

tj ∈ Tj , we can estimate, e.g. the squared norm ‖Xi‖2 by a simple Riemann sum,

‖Xi‖2 =
1

J

J
∑

j=1

X2
i (tj).

Other norms arising in the definitions of VN,K and MN,K can be approximated similarly. For

data observed at different frequencies, such as tick-by-tick, the norms and inner-products can

be estimated with Riemann sums or alternate integration methods as the data allows. In all of

the simulations below we generate functional observations on J = 50 equally spaced points in

the interval [0, 1].

The critical values of the null limiting distribution of VN,K can easily be obtained, but esti-

mating the limiting null distribution of MN,K defined in (2.6) requires a further elaboration.

One option is to directly estimate the eigenvalues of the kernel integral operator with kernel

cov(X2
i (t), X

2
i (s)) via estimates of the kernel. Here, for the sake of computational efficiency,

we propose a Welch-Satterthwaite style approximation of the limiting distribution; see e.g.

Zhang (2013) and Kokoszka et al. (2017). The basic idea of this method is to approximate the

limiting distribution in (2.6) by a random variable RK ∼ βχ2
ν , where β and ν are estimated so

13



that the distribution of RK has the same first two moments as the limiting distribution on the

right hand side of (2.6). If MK denotes the random variable on the right hand side of (2.6),

µK = E(MK), and σ2
K = var(MK), then in order that the first two moments ofRK match those

of MK we take

β =
σ2
K

2µK

and ν =
2µ2

K

σ2
K

.(4.1)

We verify below that

µK = K

(
∫

cov(X2
0 (t), X

2
0 (t))dt

)2

,

σ2
K = 2K

(
∫∫

cov(X2
0 (t), X

2
0 (s))dtds

)2

.

(4.2)

These can be consistently estimated by

µ̂K = K

(

∫

1

N

N
∑

i=1

(X2
i (t)− X̄(2)(t))2dt

)2

, and

σ̂2
K = 2K

(

∫

1

N

N
∑

i=1

(X2
i (t)− X̄(2)(t))(X2

i (s)− X̄(2)(s))dtds

)2

,

where X̄(2)(t) = (1/N)
∑N

i=1X
2
i (t). A test of H0 with an approximate size of q is to reject if

MN,K exceeds the 1− q quantile of the distribution of RK ∼ β̂χ2
ν̂ .

Similarly, in order to estimate the asymptotic critical values of MN,K,ε under the FGARCH

model adequacy described in Theorem 3.1, we obtain the parameters β and ν of approximated

distribution by estimating,

µK = Trace(Ψ
(ε,θ)
K ),

σ2
K = 2Trace([Ψ

(ε,θ)
K ]2).

(4.3)

We can consistently estimate these terms using estimators of the form,

µ̂K =
K
∑

h=1

∫∫

ψ̂
(ε,θ)
K,h,h(t, s, t, s)dtds, and

σ̂2
K =

K
∑

h,g=1

2

∫∫∫∫

[ψ̂
(ε,θ)
K,h,g(t, s, u, v)]

2dvdudsdt,

14



where ψ̂
(ε,θ)
K,h,g are consistent estimators of the kernelsψ

(ε,θ)
K,h,g, which we define in the last subsection

of Appendix B.

Calculating and storing such kernels, which can be thought of as 4-dimensional tensors, is

computationally intractable if J is large, which is commonly the case when considering high-

frequency financial data. For example, J=390 when using 1-minute resolution US stock market

data. To solve this problem, we use a Monte Carlo integration to calculate the integrals above

based on a randomly sparsified sample, with the sparse points J∗ determined by drawing from

a uniform distribution on [0, 1]. Below we use J∗ = 20 points to estimate these integrals, which

seems to work well in practice.

4.2. Simulation study of tests for conditional heteroscedasticity. In this subsection we

present the results of a simulation study in which we evaluate the proposed tests for func-

tional conditional heteroscedasticity applied to simulated data sets. In particular, we consider

the following data generating processes (DGPs). Let {Wi(t), t ∈ [0,∞), i ∈ Z} denote

independent and identically distributed sequences of standard Brownian motions. We let

{ϕi(t), t ∈ [0, 1], i ∈ N} denote the standard Fourier basis. We then consider the following

five DGPs:

(a) IID-BM: Xi(t) = Wi(t)

(b) FARCH(1): Xi(t) satisfies the FARCH(1) specification, with

α(x)(t) =

∫

12t(1− t)s(1− s)x(s)ds,

and ω = 0.01 (a constant function), and the innovation sequence εi(t) follows an

Ornstein-Uhlenbeck process, which is also used in other FGARCH-type processes

throughout the paper:

(4.4) εi(t) = e−t/2Wi(e
t), , t ∈ [0, 1].

(c) FGARCH(1,1): Xi(t) satisfies the FGARCH(1,1) specification, with

α(x)(t) =

∫

12t(1− t)s(1− s)x(s)ds, β(x)(t) =

∫

12t(1− t)s(1− s)x(s)ds,
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ω = 0.01 (a constant function), and εi(t) follows (4.4).

(d) Pointwise (PW) GARCH(1,1): Xi(t) follows (2.1) with

σ2
i (t) = ω(t) + α(t)X2

i−1(t) + β(t)σ2
i−1(t)

where α(t) = (t− 0.5)2 + 0.1 and β(t) = (t− 0.5)2 + 0.4.

(e) FGARCH-BEKK model: Xi(t) satisfies

(4.5) Xi(t) = σi(εi)(t),

where σi(·)(t) is a linear operator with a kernel function σi(t, s), with

σi(t, s) =
2
∑

ℓ,j=1

Hi(ℓ, j)ϕℓ(t)ϕj(s),

and

εi(t) =
2
∑

ℓ=1

Zi,ℓϕℓ(t), Zi,ℓ
iid∼ N (0, 1).

The matrix Hi follows a BEKK multivariate GARCH specification

H2
i = C⊤C + Aξi−1ξ

⊤
i−1A

⊤ +BH2
i−1B

⊤,(4.6)

with

C =





1 0.3

0 1



 , A =





0.3 0.01

0.01 0.3



 , and B =





0.9 0.01

0.01 0.9



 .

The process IID-BM satisfies H0, while the remaining processes satisfy HA. The specific form

of the FARCH and FGARCH processes are inspired by Aue et al. (2017) and produce sample

paths that mimic high-frequency intraday returns. The FGARCH-BEKK process is meant to

model the situation in which the vector valued time series obtained by projecting the functional

series into a finite dimensional space satisfies a multivariate GARCH specification; see Engle

and Kroner (1995) and Francq and Zakoïan (2010). The existence of a stationary and causal

solution in L2[0, 1] to (4.5) follows if the multivariate GARCH specification in (4.6) has such a

solution, which holds with the coefficients defined in A, B, and C (see Boussama et al. 2011).
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Each sample of length N from the GARCH-type processes were produced after discarding a

burn-in sample of length 50 starting from an initial innovation. In the simulation, we consider

samples sizes of 125, 250 and 500, which roughly match the number of trading days in a quarter,

half a year, one year, and two years, respectively.

Table 4.1 displays the percentage of rejections of H0 using the two proposed test statistics VN,K

and MN,K based on 1000 independent simulations from each DGPs for several choices of K

and nominal levels of 10%, 5% and 1%. Both test statistics show reasonably good size in finite

samples that improve with increasing N , in accordance with Theorem 2.1. This also suggests

that the Welch-Sattherwaite style approximation for the limiting distribution of MN,K performs

well.

Regarding the power of each test, we noticed that in general the test based onMN,K had greater

power than the test based on VN,K for the examples considered in the simulation. Increasing

K in general reduces the power of the tests, which is expected in these examples, since the

level of serial correlation in the squared processes is decreasing at higher lags. However, this

is not always the case when these test statistics are used as a diagnostic of fitted FGARCH

models below, since in that case serial correlation in the squared process is not necessarily

monotonically decreasing with increasing lags. Additionally, in the case of PWGARCH model,

the power of VN,K test decays more slowly than the MN,K test as K increases.

4.3. Simulation study of FGARCH goodness-of-fit tests. We now turn to a simulation study

of the proposed test statistics applied to diagnostic checking of FGARCH models as described

in Section 3. In particular, we generate data from the following three DGPs: the FARCH(1),

FARCH(2), and FGARCH(1,1). The specific FARCH(2) model considered is defined as

Xi(t) = σi(t)εi(t)

where εi(t) is defined in (4.4) and,

σ2
i (t) = ω(t)+

∫

12(t · (1− t))(s · (1−s))X2
i−1(s)ds+

∫

12(t · (1− t))(s · (1−s))X2
i−2(s)ds.

For each simulated sample we then test for the model adequacy of the FARCH(1) model. When

the data follows the FARCH(1) specification, we expect the test to reject the adequacy of the

FARCH(1) model only a specified level of significance, while we expect that the adequacy of
17



Table 4.1. Empirical rejection rates of the tests for conditional heteroscedastic-

ity using VN,K and MN,K based on 1000 independent simulations at asymptotic

levels of 10%, 5%, and 1%.

DGP: IID-BM FARCH(1) FGARCH(1,1) PWGARCH(1,1) FBEKK(1,1)

Statistic: VN,K MN,K VN,K MN,K VN,K MN,K VN,K MN,K VN,K MN,K

K=1

N=125

10% 0.07 0.07 0.93 0.98 0.63 0.80 0.63 0.78 0.40 0.40

5% 0.04 0.04 0.91 0.97 0.56 0.75 0.56 0.73 0.32 0.33

1% 0.01 0.01 0.80 0.94 0.41 0.63 0.39 0.61 0.18 0.20

N=250

10% 0.07 0.07 1.00 1.00 0.89 0.97 0.90 0.96 0.70 0.71

5% 0.04 0.04 1.00 1.00 0.85 0.96 0.85 0.94 0.62 0.64

1% 0.01 0.01 0.99 1.00 0.75 0.92 0.76 0.91 0.49 0.51

N=500

10% 0.10 0.09 1.00 1.00 0.99 1.00 1.00 1.00 0.95 0.95

5% 0.05 0.05 1.00 1.00 0.99 1.00 0.99 1.00 0.92 0.92

1% 0.01 0.01 1.00 1.00 0.97 1.00 0.97 0.99 0.85 0.86

K=5

N=125

10% 0.07 0.08 0.81 0.92 0.67 0.89 0.68 0.90 0.59 0.60

5% 0.04 0.05 0.75 0.89 0.63 0.88 0.60 0.86 0.53 0.55

1% 0.01 0.02 0.60 0.83 0.52 0.81 0.50 0.79 0.41 0.44

N=250

10% 0.08 0.08 0.98 0.99 0.93 0.99 0.93 0.99 0.89 0.90

5% 0.04 0.05 0.98 0.99 0.91 0.99 0.89 0.99 0.87 0.88

1% 0.01 0.02 0.94 0.99 0.84 0.99 0.84 0.98 0.80 0.82

N=500

10% 0.09 0.09 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00

5% 0.05 0.05 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00

1% 0.01 0.02 1.00 1.00 0.99 1.00 0.99 1.00 0.98 0.99

K=10

N=125

10% 0.06 0.06 0.76 0.86 0.60 0.86 0.66 0.88 0.56 0.57

5% 0.03 0.03 0.68 0.82 0.55 0.82 0.59 0.85 0.49 0.50

1% 0.01 0.01 0.53 0.75 0.43 0.75 0.49 0.79 0.38 0.40

N=250

10% 0.08 0.08 0.97 0.99 0.90 0.99 0.90 0.99 0.91 0.92

5% 0.04 0.04 0.95 0.98 0.87 0.99 0.86 0.99 0.88 0.88

1% 0.01 0.01 0.92 0.97 0.82 0.98 0.79 0.98 0.82 0.83

N=500

10% 0.10 0.09 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

5% 0.05 0.06 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00

1% 0.01 0.02 1.00 1.00 0.99 1.00 0.98 1.00 0.99 0.99

K=20

N=125

10% 0.05 0.05 0.52 0.91 0.71 0.77 0.53 0.21 0.18 1.00

5% 0.02 0.02 0.45 0.86 0.66 0.72 0.48 0.19 0.13 0.99

1% 0.01 0.01 0.32 0.73 0.55 0.62 0.40 0.17 0.10 0.96

N=250

10% 0.07 0.07 0.90 0.99 0.96 0.94 0.85 0.42 0.29 1.00

5% 0.04 0.03 0.86 0.97 0.96 0.90 0.81 0.40 0.23 1.00

1% 0.01 0.01 0.74 0.91 0.92 0.83 0.74 0.35 0.13 1.00

N=500

10% 0.09 0.09 1.00 1.00 1.00 1.00 0.98 0.75 0.52 1.00

5% 0.05 0.05 1.00 1.00 1.00 0.99 0.98 0.72 0.32 1.00

1% 0.01 0.01 0.98 1.00 1.00 0.98 0.97 0.65 0.17 1.00

the FARCH(1) model is rejected at a high rate for data generated according to the FARCH(2)

and FGARCH(1,1) models. To estimate these models, we set L = 1 in (3.1). Table 4.2 displays

the rejection rates of each model using the test statistics V heuristic
N,K,ε , Mheuristic

N,K,ε and MN,K,ε for

each DGP and with increasing values of N and K. Both heuristic tests are shown to have a
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reasonable size for the fitted residuals, although the test based on Mheuristic
N,K,ε test was somewhat

over-sized in large samples. Both tests perform well in detecting mis-specified models, with

increasingly better performance for larger sample sizes. Similar to the results obtained in the

last subsection, the V heuristic
N,K,ε test is comparably less powerful than the Mheuristic

N,K,ε test. As a

comparison to Mheuristic
N,K,ε test, the asymptotic MN,K,ε test exhibits a improved size when K = 1

and 5 under H0, and slightly less power under HA, and this is accordance with our expectation

because the asymptotic result is sharper for the latter statistic. The tests become in accordance

with the corrected size and slightly over-sized when K = 10 and 20 and correspondingly more

powerful under HA, we attribute this to the increased error from the number of performed

Monte Carlo integration.

Another observation worthy of a remark is that the rejection rates of the adequacy of the

FARCH(1) model tend to be low for all DGP when K = 1. This is because fitting a FARCH(1)

model tends to remove serial correlation from the squared process at lag one. Hence it is

advisable when using this test for the purpose of model diagnostic checking to incorporate

several lags beyond the order of the applied model.

One avenue that we investigate further is whether or not the size inflation of each test could

be explained by the sampling variability of the estimates of the principal components of the

squared process. In order to evaluate this, we perform the same simulation as described above,

but with the first principal component φ̂1(t) being replaced by the “oracle" basis function

φ1(t) = t(1− t)/ ‖t(1− t)‖ .

Using this function in the basis to reduce the dimension of the operators to be estimated is ideal

since for the processes that we consider the operators defining them are rank one with a range

spanned by φ1. The rejection rates of the adequacy of each model with this modification to

the tests are displayed in Table 4.3, which shows that both the size and the power of the test in

general are somewhat improved for all tests. This simulation result suggests that we can improve

the estimation of the FGARCH models by changing the basis used for dimension reduction,

although it is in general not clear how to improve upon the FPCA method; doing so is beyond

the scope of the current paper.
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Table 4.2. Rejection rates from 1000 independent simulations of the model

adequacy of the FARCH(1) model when applied to FARCH(1), FARCH(2), and

FGARCH(1,1) data.

DGP: FARCH(1) FARCH(2) FGARCH(1,1)

Statistics: V
heuristic
N,K,ε M

heuristic
N,K,ε MN,K,ε V

heuristic
N,K,ε M

heuristic
N,K,ε MN,K,ε V

heuristic
N,K,ε M

heuristic
N,K,ε MN,K,ε

K=1

10% 0.06 0.06 0.07 0.07 0.07 0.08 0.07 0.07 0.09

N=125 5% 0.03 0.03 0.03 0.04 0.05 0.06 0.04 0.04 0.06

1% 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02

10% 0.10 0.09 0.10 0.09 0.08 0.11 0.11 0.11 0.12

N=250 5% 0.05 0.06 0.05 0.05 0.07 0.08 0.05 0.07 0.09

1% 0.02 0.02 0.01 0.02 0.03 0.04 0.02 0.04 0.04

10% 0.15 0.17 0.14 0.16 0.15 0.14 0.17 0.16 0.16

N=500 5% 0.10 0.11 0.08 0.11 0.10 0.09 0.11 0.11 0.10

1% 0.03 0.05 0.03 0.05 0.06 0.04 0.05 0.05 0.03

K=5

10% 0.07 0.07 0.07 0.64 0.67 0.60 0.39 0.44 0.44

N=125 5% 0.03 0.04 0.04 0.55 0.60 0.50 0.30 0.35 0.34

1% 0.01 0.01 0.01 0.42 0.48 0.32 0.19 0.24 0.22

10% 0.08 0.08 0.07 0.89 0.90 0.87 0.71 0.73 0.74

N=250 5% 0.04 0.05 0.04 0.84 0.86 0.82 0.64 0.67 0.65

1% 0.02 0.03 0.01 0.73 0.77 0.68 0.48 0.55 0.49

10% 0.13 0.12 0.12 0.99 1.00 0.98 0.92 0.93 0.94

N=500 5% 0.08 0.08 0.06 0.99 0.99 0.97 0.89 0.90 0.89

1% 0.02 0.03 0.01 0.97 0.98 0.93 0.80 0.84 0.79

K=10

10% 0.05 0.06 0.09 0.51 0.52 0.53 0.33 0.37 0.40

N=125 5% 0.03 0.03 0.05 0.41 0.45 0.44 0.27 0.31 0.28

1% 0.01 0.01 0.02 0.29 0.34 0.30 0.18 0.22 0.17

10% 0.08 0.08 0.11 0.82 0.84 0.81 0.63 0.65 0.68

N=250 5% 0.04 0.06 0.06 0.76 0.79 0.72 0.54 0.57 0.57

1% 0.01 0.02 0.01 0.63 0.68 0.58 0.40 0.46 0.39

10% 0.11 0.12 0.17 0.98 0.98 0.98 0.89 0.89 0.91

N=500 5% 0.06 0.07 0.08 0.98 0.98 0.97 0.87 0.88 0.87

1% 0.02 0.03 0.03 0.95 0.96 0.94 0.72 0.77 0.76

K=20

10% 0.03 0.03 0.12 0.41 0.39 0.42 0.23 0.24 0.31

N=125 5% 0.02 0.02 0.06 0.35 0.33 0.34 0.18 0.18 0.21

1% 0.01 0.01 0.02 0.22 0.23 0.20 0.11 0.12 0.12

10% 0.07 0.06 0.15 0.75 0.73 0.79 0.49 0.51 0.57

N=250 5% 0.04 0.03 0.08 0.66 0.66 0.70 0.43 0.44 0.45

1% 0.01 0.01 0.02 0.51 0.54 0.53 0.30 0.33 0.32

10% 0.10 0.10 0.16 0.96 0.96 0.95 0.81 0.82 0.85

N=500 5% 0.05 0.06 0.08 0.94 0.94 0.93 0.76 0.78 0.75

1% 0.02 0.02 0.02 0.88 0.89 0.85 0.63 0.66 0.61

5. Application to dense intra-day asset price data

A natural example of functional financial time series data are those derived from densely

recorded asset price data, such as intraday stock price data. Recently there has been a great deal

of research focusing on analyzing the information contained in the curves constructed from such

data. Price curves associated with popular companies are routinely displayed for public review.

The objectives of this section are to 1) test whether functional financial time series derived
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Table 4.3. Rejection rates from 1000 independent simulations of the model

adequacy of the FARCH(1) model when applied to FARCH(1), FARCH(2), and

FGARCH(1,1) data when the first basis function used for dimension reduction

is φ1.

DGP: FARCH(1) FARCH(2) FGARCH(1,1)

Statistics: V
heuristic
N,K,ε M

heuristic
N,K,ε MN,K,ε V

heuristic
N,K,ε M

heuristic
N,K,ε MN,K,ε V

heuristic
N,K,ε M

heuristic
N,K,ε MN,K,ε

K=1

10% 0.06 0.07 0.07 0.05 0.06 0.06 0.06 0.06 0.08

N=125 5% 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.04

1% 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01

10% 0.10 0.11 0.10 0.08 0.08 0.09 0.11 0.10 0.10

N=250 5% 0.06 0.07 0.04 0.05 0.05 0.05 0.06 0.07 0.05

1% 0.02 0.03 0.01 0.02 0.02 0.02 0.02 0.03 0.01

10% 0.16 0.16 0.13 0.15 0.13 0.15 0.15 0.15 0.14

N=500 5% 0.10 0.11 0.06 0.10 0.10 0.09 0.10 0.10 0.08

1% 0.04 0.05 0.02 0.05 0.06 0.03 0.04 0.05 0.03

K=5

10% 0.06 0.08 0.09 0.59 0.62 0.65 0.42 0.47 0.44

N=125 5% 0.04 0.04 0.04 0.52 0.56 0.56 0.33 0.37 0.33

1% 0.01 0.02 0.01 0.36 0.42 0.37 0.19 0.25 0.20

10% 0.11 0.12 0.10 0.90 0.91 0.87 0.68 0.72 0.71

N=250 5% 0.07 0.08 0.05 0.86 0.87 0.81 0.59 0.65 0.62

1% 0.02 0.03 0.01 0.75 0.78 0.65 0.45 0.50 0.44

10% 0.14 0.14 0.13 0.99 1.00 0.99 0.92 0.93 0.93

N=500 5% 0.08 0.09 0.07 0.99 0.99 0.98 0.87 0.89 0.87

1% 0.02 0.04 0.01 0.96 0.97 0.95 0.78 0.78 0.77

K=10

10% 0.06 0.06 0.09 0.51 0.53 0.55 0.35 0.38 0.41

N=125 5% 0.04 0.04 0.04 0.43 0.45 0.45 0.27 0.32 0.31

1% 0.01 0.01 0.01 0.29 0.35 0.30 0.17 0.22 0.18

10% 0.08 0.08 0.11 0.83 0.84 0.82 0.66 0.69 0.70

N=250 5% 0.04 0.06 0.06 0.78 0.80 0.74 0.56 0.61 0.59

1% 0.01 0.01 0.01 0.66 0.71 0.59 0.41 0.48 0.41

10% 0.11 0.13 0.15 0.99 0.99 0.98 0.89 0.90 0.91

N=500 5% 0.07 0.08 0.07 0.98 0.98 0.97 0.85 0.87 0.87

1% 0.03 0.04 0.02 0.95 0.96 0.92 0.73 0.79 0.75

K=20

10% 0.06 0.05 0.11 0.42 0.39 0.43 0.26 0.26 0.31

N=125 5% 0.03 0.03 0.06 0.34 0.33 0.35 0.19 0.20 0.24

1% 0.01 0.01 0.02 0.23 0.24 0.19 0.13 0.14 0.12

10% 0.07 0.06 0.14 0.78 0.77 0.79 0.51 0.52 0.57

N=250 5% 0.04 0.04 0.07 0.71 0.72 0.72 0.44 0.46 0.46

1% 0.02 0.01 0.02 0.58 0.62 0.55 0.32 0.36 0.31

10% 0.10 0.09 0.16 0.97 0.97 0.96 0.82 0.83 0.86

N=500 5% 0.06 0.06 0.08 0.94 0.94 0.93 0.75 0.76 0.75

1% 0.02 0.02 0.02 0.88 0.89 0.86 0.63 0.65 0.62

from the dense intraday price data exhibit conditional heteroscedasticity, and 2) evaluate the

adequacy of FGARCH models for such series.

The specific data that we consider consists of 5 minute resolution closing prices of Standard

& Poor’s 500 market index, so that there are J = 78 observations of the closing price each

day. For the purpose of applying a Monte Carlo integration to the asymptotic diagnostic test

MN,K,ε, we employ a sparse grid of J∗ = 39 out of the 78 points. Then, we let Pi(t) denote

the price of either asset on day i at intraday time t, where t is normalized to the unit interval.
21



We consider time series of curves from these data of length N = 502 taken from the dates

between 31/December/2015 to 02/January/2018. There are several ways to define curves that

are approximately stationary based on the raw price curves Pi(t). We consider the following

three cases:

(1) Overnight cumulative intra-day log returns (OCIDRs)

Xi(t) = logPi(t)− logPi−1(1)

(2) Cumulative intra-day log returns (CIDRs)

Xi(t) = logPi(t)− logPi(0)

(3) Intra-day log returns (IDRs)

Xi(t) = logPi(t)− logPi(t− w)

The later two functions have been studied in the literature, and the first function measures the

trajectory of cumulative price changes between the current intra-day price and the closing price

from the previous day. A similar overnight return has been used in Koopman et al. (2005). To

obtain the IDRs, we use w = 1 to produce the 5-min intra-day log returns. Figure 5.1 shows

these three types of intra-day curves across seven days. The stationarity of all three return

curves is examined by using the stationary tests proposed by Horváth et al. (2014). The results

suggest that all intra-day return series are stationary.

We begin by testing for functional conditional heteroscedasticity for each curve type. The

results of these tests are given in Table 5.1, which suggest that each sample of curves exhibit

strong conditional heteroscedasticity.

A natural next step is to posit and evaluate models to capture this conditional heteroscedasticity.

For this we consider two models: standard scalar GARCH models and FGARCH models. The

motivation for considering standard scalar GARCH models for this purpose is that we might

at first expect that the volatility in each of these curves can be adequately accounted for by

scaling each curve by the conditional standard deviation through the fitting of a GARCH model

to the end-of-day returns, i.e. a large magnitude of the return on the previous day spells high

volatility for the entire intraday price on the following day. We compute the daily log returns
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Figure 5.1. Seven days of Intra-day return curves from S&P 500
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as xi = log(Pi(1)) − log(Pi−1(1)), 1 ≤ i ≤ 500, to which we fit a scalar GARCH(p,q) model

by using a quasi maximum likelihood estimation approach. The orders {p, q} are selected as

the minimum orders for which the estimated residuals ε̂i = xi/σ̂i are plausibly a strong white

noise as measured by the Li-Mak test; see Li and Mak (1994), resulting in the selection of a

GARCH(1,1) model, as shown in Panel A in Table 5.2.

We then apply the proposed tests for conditional heteroscedasticity to the fitted residuals func-

tions of intra-day returns

ε̃i(t) = Xi(t)/σ̂i.

The results of these tests are given in Panel B in Table 5.2, which show that these curves still

exhibit a substantial amount of conditional heteroscedasticity.

Next, we consider the FARCH(1) and FGARCH(1,1) models for these curves. We fit each

model with L = 1 in (3.1) in order to be consistent with the simulation section, and evaluate the

adequacy of each model as proposed above. Figure 5.2 shows plots ofw(t) and wire-frame plots

of the kernels α(t, s) and β(t, s) for the FGARCH(1,1) model for each type of intra-day return

curve. We then estimate σ̂i(t) recursively with the initial values of ŵ(t), and the de-volatized

intra-day return ε̂i(t) is fitted per Equation (3.3). Figure 5.3 exhibits the de-volatized intra-day

returns over seven days by using the FGARCH(1,1) model.

Table 5.3 reports the p-values from the diagnostic checks of the FGARCH(1,1) and FARCH(1)

models applied to de-volatized intra-day returns. All of the three diagnostic tests show broadly
23



consistent results at specified significance levels. The FARCH(1) model is generally deemed to

be inadequate for each curve type, although this model performs as we expected to adequately

model conditional heteroscedasticity at lag 1. By contrast, the P values in Panel B of Table

5.3 suggest that the FGARCH(1,1) model is generally acceptable for modelling the conditional

heteroscedasticity of all three curve types. In conjunction with the above results showing that

these curves cannot be adequately de-volatized simply by scaling with the conditional standard

deviation estimates from GARCH models for the scalar returns, we draw the following tentative

conclusions from this analysis: 1) the magnitude of the return cannot fully explain the volatility

of intraday prices observed on subsequent days; instead we should consider the entire path

of the price curve on previous days in order to adequately model future intra-day conditional

heteroscedasticity, and 2) the FGARCH class of models seems to be effective for modeling

intra-day conditional heteroscedasticity.

Table 5.1. Heteroscedasticity tests on the intra-day returns of S&P 500

K=1 K=5 K=10 K=20

Stats P value Stats P value Stats P value Stats P value

OCIDRs
VN,K 6.94 0.01 52.69 0.00 73.70 0.00 76.20 0.00

MN,K 1.19 0.00 8.44 0.00 12.08 0.00 12.82 0.00

CIDRs
VN,K 8.73 0.00 36.11 0.00 37.76 0.00 49.35 0.00

MN,K 0.06 0.00 0.26 0.00 0.29 0.00 0.42 0.00

IDRs
VN,K 189.87 0.00 437.99 0.00 461.05 0.00 481.15 0.00

MN,K 4.73e-08 0.00 1.25e-07 0.00 1.55e-07 0.00 2.30e-07 0.00

Table 5.2. Heteroscedasticity tests of de-volatized return curves ε̃i(t) using a

GARCH(p,q) model

Panel A: Li-Mak Test on ε̂i

K=1 K=5 K=10 K=20

Model Stats P value Stats P value Stats P value Stats P value

GARCH(1,1) 0.07 0.79 2.50 0.77 10.91 0.36 26.94 0.13

Panel B: VN,K and MN,K Test on ε̃i(t)
OCIDRs

VN,K 4.82 0.03 38.26 0.00 72.89 0.00 75.18 0.00

MN,K 2.5e+17 0.01 1.7e+18 0.00 3.5e+18 0.00 4.3e+18 0.00

CIDRs

VN,K 5.99 0.01 25.86 0.00 28.78 0.00 38.28 0.01

MN,K 1.51e+16 0.01 7.59e+16 0.00 1.01e+17 0.00 1.71e+17 0.00

IDRs

VN,K 165.27 0.00 348.15 0.00 377.97 0.00 410.44 0.00

MN,K 9.09e+09 0.00 2.70e+10 0.00 3.90e+10 0.00 6.21e+10 0.00
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Figure 5.2. Plots of the estimated kernels for the FGARCH(1,1) model for the

S&P 500 intra-day return curves
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6. Conclusion

We proposed two portmanteau-type conditional heteroscedasticity tests for functional time

series. By applying the test statistics to model residuals from the fitted functional GARCH

models, our tests also provide two heuristic and one asymptotically valid goodness-of-fit test for

such models. Simulation results presented in this paper show that both tests have good size and

power to detect conditional heteroscedasticity in functional financial time series and assess the

goodness-of-fit of the FGARCH models in finite samples. In an application to the dense intraday

price data, we investigated the conditional heteroscedasticity of three types of the intra-day return

curves, including the overnight cumulative intra-day returns, the cumulative intra-day returns

and the intra-day log returns from two assets. Our results suggested that these curves exhibit

substantial evidence of conditional heteroscedasticity that cannot be accounted for simply by

rescaling the curves by using measurements of the conditional standard deviation based on the

magnitude of the scalar returns. However, the functional conditional volatility models often
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Figure 5.3. Plots of de-volatized S&P 500 intra-day return curves based on an

FGARCH(1,1) Model
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appeared to be adequate for modeling this observed functional conditional heteroscedasticity in

financial data.

Appendix A. Proofs of results in Sections 2

Proofs of Theorem 2.1. First we show (2.5). UnderH0 and Assumption 2.1 the random variables

Y1,i = ‖Xi‖2 are independent and identically distributed, and satisfy EY 4
1,i < ∞. (2.5) now

follows Theorem 7.2.1 and problem 2.19 of Brockwell and Davis (1991).

In order to show (2.6), we recall some notation and the statement of Lemma 5 in Kokoszka et

al. (2017). Let K be a positive integer as in the definition of MN,K . Consider the space G1
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Table 5.3. Diagnostic tests of FGARCH(1,1) and FARCH(1) models applied to

the S&P 500 return curves.

Panel A: FARCH(1)

Stats P value Stats P value Stats P value Stats P value

OCIDRs

V
heuristic
N,K,ε 0.26 0.61 33.94 0.00 50.07 0.00 52.53 0.00

M
heuristic
N,K,ε 5.86 0.52 216.08 0.00 324.45 0.00 358.37 0.00

MN,K,ε 5.86 0.43 216.08 0.00 324.45 0.00 358.37 0.00

CIDRs

V
heuristic
N,K,ε 2.40 0.12 33.11 0.00 36.59 0.00 52.32 0.00

M
heuristic
N,K,ε 66.07 0.05 586.09 0.00 737.63 0.00 1264.67 0.00

MN,K,ε 66.07 0.14 586.09 0.00 737.63 0.00 1264.67 0.00

IDRs

V
heuristic
N,K,ε 1.16 0.28 20.84 0.00 26.02 0.00 45.91 0.00

M
heuristic
N,K,ε 120.50 1.00 2942.47 0.34 4299.53 0.97 9407.58 0.96

MN,K,ε 120.50 0.98 2942.47 0.00 4299.53 0.00 9407.58 0.00

Panel B: FGARCH(1,1)

K=1 K=5 K=10 K=20

Stats P value Stats P value Stats P value Stats P value

OCIDRs

V
heuristic
N,K,ε 0.11 0.74 2.15 0.83 5.80 0.83 8.88 0.98

M
heuristic
N,K,ε 5.11 0.59 27.36 0.84 65.30 0.85 106.47 0.99

MN,K,ε 5.11 1.00 27.36 1.00 65.30 1.00 106.47 1.00

CIDRs

V
heuristic
N,K,ε 0.17 0.68 4.00 0.55 8.55 0.58 18.40 0.56

M
heuristic
N,K,ε 25.01 0.87 232.20 0.59 469.33 0.61 923.36 0.72

MN,K,ε 25.01 1.00 232.20 1.00 469.33 1.00 923.36 1.00

IDRs

V
heuristic
N,K,ε 3.95 0.05 11.54 0.04 16.77 0.08 33.25 0.03

M
heuristic
N,K,ε 301.90 1.00 3912.94 1.00 7170.58 1.00 17859.05 1.00

MN,K,ε 301.90 0.99 3912.94 0.63 7170.58 0.91 17859.05 0.16

of functions f : [0, 1]2 → R
K , mapping the unit square to the space of K-dimensional column

vectors with real entries, satisfying

∫∫

{f(t, s)}⊤ f(t, s)dtds <∞.

This space is a separable Hilbert space when equipped with the inner product

〈f, g〉G,1 =
∫∫

{f(t, s)}⊤ g(t, s)dtds.

Let ‖·‖G,1 denote the norm induced by this inner product. Let 〈·, ·〉F denote the matrix Frobenius

inner product, and let ‖ · ‖F denote the corresponding norm; see Chapter 5 of Meyer (2000).

Further let G2 denote the space of functions f : [0, 1]4 → R
K×K , equipped with the inner

product

〈f, g〉G,2 =
∫∫∫∫

〈f(t, s, u, v), g(t, s, u, v)〉Fdtdsdudv.
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for which 〈f, f〉G,2 < ∞. G2 is also a separable Hilbert space when equipped with this inner

product.

Let ψK : [0, 1]4 → R
K×K be a matrix valued kernel where the 1 ≤ i, j ≤ K component is

denoted by ψK,i,j(t, s, u, v). We then define ψK by

(A.1) ψK,i,j(t, s, u, v) =















cov(X2
0 (t), X

2
0 (u))cov(X2

0 (s), X
2
0 (v)), 1 ≤ i = j ≤ K.

0 1 ≤ i 6= j ≤ K.

The kernel ψK defines a linear operator ΨK : G1 → G1 by

ΨK(f)(t, s) =

∫∫

ψK(t, s, u, v)f(u, v)dudv,(A.2)

where the integration is carried out coordinate-wise. Following the preamble to the proof of

Lemma 5 of Kokoszka et al. (2017), it follows that the operator ΨK is compact, symmetric,

and positive definite. Due to these three properties, we have by the spectral theorem for positive

definite, self-adjoint, compact operators, e.g. Chapter 6.2 of Riesz and Nagy (1990), that ΨK

defines a nonnegative and decreasing sequence of eigenvalues and a corresponding orthonormal

basis of eigenfunctions ϕi,K(t, s), 1 ≤ i <∞, satisfying

ΨK(ϕi,K)(t, s) = ξi,Kϕi,K(t, s), with

∞
∑

i=1

ξi,K <∞.(A.3)

With this notation, we now define

Γ̂N,K(t, s) =
√
N {γ̂1(t, s), . . . , γ̂K(t, s)}⊤ ∈ G1.

Under H0 and Assumption 2.1, the sequence {X2
i (t)} satisfies the conditions of Lemma 5

of Kokoszka et al. (2017), which implies that Γ̂N,K(t, s)
D(G1)→ ΓK(t, s), where ΓK(t, s) is a

Gaussian process with covariance operator ΨK , and
D(G1)→ denotes weak convergence in G1. It

now follows from the Karhunen-Loéve representation and continuous mapping theorem that

MN,K = ‖Γ̂N,K‖2 D→ ‖ΓK‖2 D
=

∞
∑

i=1

ξi,Kχ
2
1(i).
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A simple calculation based on (A.1) shows that the eigenvalues of ΨK are products of the

eigenvalues defined by (2.4), {λiλj, 1 ≤ i, j < ∞}, with each eigenvalue having multiplicity

K, giving the form of the limit distribution in (2.6).

�

Justification of (4.2). Using proposition 5.10.16 of Bogachev (1998), we have that

E(‖ΓK‖2H,1) = tr(ΨK) = K

(
∫

cov(X2
0 (t), X

2
0 (t))dt

)2

,

and

var(‖ΓK‖2H,1) = 2 tr(Ψ2
K) = 2K

(
∫∫

cov(X2
0 (t), X

2
0 (s))dtds

)2

.

Proof of Theorem 2.2. We only show (2.7) as (2.8) follows similarly from it. Let Ch(t, s) =

cov(X2
i (t), X

2
i+h(s)) 6= 0. It follows from the assumed L8-m-approximability of Xi that X2

i is

L4-m-approximable, from which we can show that

‖γ̂h(t, s)− Ch(t, s)‖ = OP (1/
√
N).

Now MN,K ≥ N‖γ̂h(t, s)‖2, and ‖γ̂h(t, s)‖2 = ‖γ̂h − Ch‖2 + 2〈γ̂h − Ch, Ch〉 + ‖Ch‖2. It

follows that N [‖γ̂h − Ch‖2 + 2〈γ̂h − Ch, Ch〉] = OP (
√
N), and N‖Ch‖2 diverges to positive

infinity at rate N , yielding the desired result. �

Proof of Theorem 2.3. Again we only prove (2.10) as (2.9) follows from it by a similar argument.

By squaring both sides of of (2.1) and iterating (2.2), we obtain that

X2
i (t) = ωα(t) +

∞
∑

ℓ=0

α(ℓ)(Vi−ℓ)(t),

where the series on the right hand side of the above equation converges in L2[0, 1] with proba-

bility one, and

ωα(t) =
∞
∑

ℓ=0

α(ℓ)(ω)(t).

Therefore,X2
i (t) is a linear process inL2[0, 1]with meanωα(t) generated by the weak functional

white noise innovations Vi as defined in Bosq (2000). It now follows from Assumption 2.1 and
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the ergodic theorem that

∥

∥

∥

∥

∥

γ̂h(t, s)−
∞
∑

j=0

Eα(j)(Vj)(t)α
(j+h)(Vj)(s)

∥

∥

∥

∥

∥

= oP (1).

It follows from this and the reverse triangle inequality that

MN,K

N
=

K
∑

h=1

‖γ̂h‖2 p→
K
∑

h=1

∥

∥

∥

∥

∥

∞
∑

j=0

Eα(j)(Vj)(t)α
(j+h)(Vj)(s)

∥

∥

∥

∥

∥

2

,

as desired.

�

Appendix B. Proof of Theorem 3.1 and estimation of parameters/kernels

in Section 3.1

We first develop some notation and detail the assumptions that we use to establish Theorem 3.1.

Recall from equation (3.2) that the FGARCH equations along with (3.1) imply that

s
2
i = D + Ax2

i−1 +Bs
2
i−1

where x
2
i = [〈X2

i (t), φ1(t)〉 , . . . , 〈X2
i (t), φL(t)〉]⊤, s2i = [〈σ2

i (t), φ1(t)〉 , . . . , 〈σ2
i (t), φL(t)〉]⊤,

the coefficient vector D = [d1, . . . , dL]
⊤ ∈ R

L, and the coefficient matrices A and B are R
L×L

with (j, j′) entries by aj,j′ and bj,j′ , respectively. Let Γ0(t, s) = α(t, s)ε20(s)+β(t, s). We make

the following assumptions:

Assumption B.1. E
∥

∥

∫

Γ0(·, s)ds
∥

∥

2

∞
< 1, and ω ∈ C[0, 1].

Assumption B.2. Q0 is nonsingular.

Assumption B.3. x2
0 is not measurable with respect to F0.

Assumption B.4. infθ∈Θ |det(A)| > 0 and supθ∈Θ ‖B‖op < 1, where ‖ · ‖op is the matrix

operator norm of B.

Assumption B.5. E‖ε40‖∞ <∞

Assumption B.6. There exists a constant δ so that infθ∈Θ inft∈[0,1] ω(t) ≥ δ > 0.
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Assumptions B.1–B.4 come directly from Aue et al. (2017), and imply both that there exists

a strictly stationary and causal solution to the FGARCH equations in C[0, 1], and that θ̂N is a

strongly consistent estimator of θ0 that also satisfies the central limit theorem. Assumption B.5

appears in Cerovecki et al. (2019), and is a somewhat stronger assumption than that of Theorem

3.2 of Aue et al (2018). It is used in the proofs below mainly to establish uniform integrability

of terms of the form ‖Xi/σi‖∞. Assumption B.6 is implied by the conditions of Cerovecki et

al. (2019) that the functions φi are strictly positive and that D ∈ ΘD ⊂ (0,∞)L, where ΘD is

compact, but also may hold under more general conditions.

Theorem B.1 (Precise statement of Theorem 3.1:). Let Γ
(ε,θ)
N,K = (

√
Nγ̂ε,1, ...,

√
Nγ̂ε,K)

⊤ ∈ G1.

Then under Assumption B.1–B.6,

Γ
(ε,θ)
N,K

D(G1)→ Γε,θ,

where Γε,θ is a mean zero Gaussian process in G1 with covariance operators Ψ
(ε,θ)
K defined by

Ψ
(ε,θ)
K (f)(t, s) =

∫∫

ψ
(ε,θ)
K (t, s, u, v)f(u, v)dudv,(B.1)

where ψ
(ε,θ)
K (t, s, u, v) is a matrix valued kernel defined by (3.8). In addition,

MN,K,ε
D→

∞
∑

i=1

ξi,Kχ
2
1(i),

where ξi,K i ≥ 1 are the eigenvalues of Ψ
(ε,θ)
K .

Before proving this result, we introduce further notation. We write σ2
i (t, θ) to indicate the

dependence of σ2
i (t) on the vector of parameters θ, and similarly write

s
2
i (θ) = [〈σ2

i (t, θ), φ1(t)〉 , . . . , 〈σ2
i (t, θ), φL(t)〉]⊤. It follows that withΦ(t) = (φ1(t), ..., φL(t))

⊤,

σ2
i (t, θ) = s

2
i (θ)

⊤
Φ(t).

Iterating (3.2), we see using Assumption (B.4) that
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σ2
i (t, θ) =

(

∞
∑

ℓ=0

Bℓξi−ℓ

)⊤

Φ(t), where ξi−ℓ = D + Ax2
i−1−ℓ.(B.2)

We define

σ̃2
i (t, θ) =

(

i−1
∑

ℓ=0

Bℓξℓ

)⊤

Φ(t),(B.3)

which allows us to define

σ̂2
i (t) = σ̃2

i (t, θ̂N).(B.4)

In addition to γ̂ε,h defined in (3.4), we also define

γ̃ε,h(t, s, θ) =
1

N

N−h
∑

i=1

(

X2
i (t)

σ̃2
i (t, θ)

− 1

)(

X2
i+h(s)

σ̃2
i+h(s, θ)

− 1

)

.(B.5)

and

γ⋆ε,h(t, s, θ) =
1

N

N−h
∑

i=1

(

X2
i (t)

σ2
i (t, θ)

− 1

)(

X2
i+h(s)

σ2
i+h(s, θ)

− 1

)

,(B.6)

so that γ̂ε,h(t, s) = γ̃ε,h(t, s, θ̂N). Below we let θ(j) denote the j′th coordinate of θ.

Lemma B.1. Under Assumptions B.1–B.6, for all h such that 1 ≤ h ≤ K,

sup
θ∈Θ

√
N‖γ̃ε,h(·, ·, θ)− γ⋆ε,h(·, ·, θ)‖ = oP (1),(B.7)

and

max
j∈{1,...,L+2L2}

sup
θ∈Θ

∥

∥

∥

∥

∂γ̃ε,h(·, ·, θ)
∂θ(j)

−
∂γ⋆ε,h(·, ·, θ)

∂θ(j)

∥

∥

∥

∥

= oP (1).(B.8)
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Proof. It follows from equation 2.4 of Aue et al. (2017) that there exists a constant c1 > 0 so

that almost surely

sup
θ∈Θ

‖σ2
i (·, θ)− σ̃2(·, θ)‖∞ ≤ c1ρ

i, and sup
θ∈Θ

‖σ2
i (·, θ)− σ̃2(·, θ)‖ ≤ c1ρ

i,(B.9)

for some 0 < ρ < 1. We then have by adding and subtracting

(

X2
i (t)

σ̃2
i (t, θ)

− 1

)(

X2
i+h(s)

σ2
i+h(s, θ)

− 1

)

in the summands defining the difference γ̃ε,h − γ⋆ε,h that

γ̃ε,h(t, s, θ)− γ⋆ε,h(t, s, θ) = R1,N(t, s, θ) +R2,N(t, s, θ),

where

R1,N(t, s, θ) =
1

n

n−h
∑

i=1

(

X2
i (t)

σ̃2
i (t, θ)

− 1

)(

X2
i+h(s)

σ̃2
i+h(s, θ)

− 1

)

−
(

X2
i (t)

σ̃2
i (t, θ)

− 1

)(

X2
i+h(s)

σ2
i+h(s, θ)

− 1

)

and

R2,N(t, s, θ) =
1

n

n−h
∑

i=1

(

X2
i (t)

σ̃2
i (t, θ)

− 1

)(

X2
i+h(s)

σ2
i+h(s, θ)

− 1

)

−
(

X2
i (t)

σ2
i (t, θ)

− 1

)(

X2
i+h(s)

σ2
i+h(s, θ)

− 1

)

.

We note that Assumption B.6 implies that σ̃2
i (t, θ) > δ and σ2

i (t, θ) > δ uniformly in t and

θ ∈ Θ, hence with this, the triangle inequality, and simple arithmetic yields that

|R1,N(t, s, θ)| ≤
1

n

n−h
∑

i=1

∣

∣

∣

∣

X2
i (t)

σ̃2
i (t, θ)

− 1

∣

∣

∣

∣

|X2
i+h(s)|

∣

∣

∣

∣

σ̃2
i+h(s, θ)− σ2

i+h(s, θ)

σ̃2
i+h(s, θ)σ

2
i+h(s, θ)

∣

∣

∣

∣

≤ 1

n

n−h
∑

i=1

∣

∣

∣

∣

(

X2
i (t)

σ̃2
i (t, θ)

− 1

)

X2
i+h(s)

∣

∣

∣

∣

∣

∣

∣

∣

σ̃2
i+h(s, θ)− σ2

i+h(s, θ)

σ̃2
i+h(s, θ)σ

2
i+h(s, θ)

∣

∣

∣

∣

≤ 1

n

n−h
∑

i=1

∣

∣

∣

∣

X2
i (t)X

2
i+h(s)

δ
−X2

i+h(s)

∣

∣

∣

∣

∣

∣

∣

∣

σ̃2
i+h(s, θ)− σ2

i+h(s, θ)

δ2

∣

∣

∣

∣

≤ 1

n

n−h
∑

i=1

∣

∣

∣

∣

X2
i (t)X

2
i+h(s)

δ
−X2

i+h(s)

∣

∣

∣

∣

‖σ̃2
i+h(·, θ)− σ2

i+h(·, θ)‖∞
δ2

≤ 1

n

n−h
∑

i=1

∣

∣

∣

∣

X2
i (t)X

2
i+h(s)

δ
−X2

i+h(s)

∣

∣

∣

∣

c1ρ
i+h

δ2
, a.s..
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It follows from Assumption B.1 and the proof of Theorem 2.1 in Aue et al. (2017) that

E‖σ2
i (·, θ0)‖2 <∞. Now using the Cauchy-Schwarz inequality, the stationarity of the solution

Xi, the fact that σ2
i is measurable with respect to Fi−1, and Assumption B.5, we have that

E‖X2
i (·)X2

i+h(·)‖ = E‖X2
i ‖‖X2

i+h‖ ≤ E‖X2
i ‖2 = E

∫

σ4
i (t)ε

4
i (t)dt ≤ E‖ε40‖∞E‖σ2

i ‖2 <∞.

From this it follows that E‖X2
i (·)X2

i+h(·)/δ − X2
i+h(·)‖ < c2, for a positive constant c2, and

hence

sup
θ∈Θ

√
NE‖R1,N(·, ·, θ)‖ ≤ 1√

N

n−h
∑

i=1

c1c2
δ3

ρi+h = o(1).

We therefore have by Markov’s inequality that supθ∈Θ

√
N‖R1,N(·, ·, θ)‖ = oP (1). It follows

similarly that supθ∈Θ

√
N‖R2,N(·, ·, θ)‖ = oP (1), which establishes (B.7). In order to show

(B.8), we first note that by simply differentiating (B.2) that with 1(j) denoting an L vector of

zeros with a single 1 in the j′th position, and 1(j,k) being a L×Lmatrix of zeroes with a single

1 in the (j, ℓ)′th position, that for 1 ≤ j, k ≤ L,

∂σ2
i (t, θ)

dj
=

(

∞
∑

ℓ=0

Bℓ
1
(j)

)⊤

Φ(t),
∂σ2

i (t, θ)

aj,k
=

(

∞
∑

ℓ=0

Bℓ
1
(j,k)

xi−1−ℓ

)⊤

Φ(t),

and

∂σ2
i (t, θ)

bj,k
=

(

∞
∑

ℓ=0

{

ℓ
∑

r=1

Br−1
1
(j,k)Bℓ−r

}

ξi

)⊤

Φ(t).

Similarly

∂σ̃2
i (t, θ)

dj
=

(

i−1
∑

ℓ=0

Bℓ
1
(j)

)⊤

Φ(t),
∂σ̃2

i (t, θ)

aj,k
=

(

i−1
∑

ℓ=0

Bℓ
1
(j,k)

xi−1−ℓ

)⊤

Φ(t),(B.10)

and

∂σ̃2
i (t, θ)

bj,k
=

(

i−1
∑

ℓ=0

{

ℓ
∑

r=1

Br−1
1
(j,k)Bℓ−r

}

ξi

)⊤

Φ(t).(B.11)

By Assumption B.4 it follows similarly as (B.9) that
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max
j∈{1,...,L+2L2}

sup
θ∈Θ

∥

∥

∥

∥

∂σ̃2
i (·, θ)
∂θ(j)

− ∂σ2
i(·, θ)

∂θ(j)

∥

∥

∥

∥

∞

≤ c4ρ
i,

for a 0 < ρ < 1. From this (B.8) follows similarly as (B.7), and so we omit the details. �

Proof of Theorem 3.1. The proof of Theorem 3.1, is inspired by the proof of Theorem 8.2 in

Francq and Zakoïan, (2010). Noting that γ̂ε,h(t, s) = γ̃ε,h(t, s, θ̂N), we get by applying a one

term Taylor’s expansion centered at θ0 that for all t, s ∈ [0, 1] and 1 ≤ h ≤ K,

√
Nγ̂ε,h(t, s) =

√
Nγ̃ε,h(t, s, θ0) +

∂γ̃ε,h(t, s, θ
∗)

∂θ

√
N(θ̂N − θ0),(B.12)

where θ∗ is L + 2L2 dimensional rectangle between θ0 and θ̂N . By Lemma B.1, there exists a

function R3,N(t, s) satisfying that ‖R3,N(·, ·)‖ = oP (1), and

√
Nγ̃ε,h(t, s, θ0) +

∂γ̃ε,h(t, s, θ
∗)

∂θ

√
N(θ̂N − θ0) =

√
Nγ⋆ε,h(t, s, θ0)+

∂γ⋆ε,h(t, s, θ
∗)

∂θ

√
N(θ̂N − θ0)

+R3,N(t, s).

Let

ĜN,h(t, s, θ) =
∂γ⋆ε,h(t, s, θ)

∂θ
,

so for each fixed θ, Ĝn,h : [0, 1]2 → R
L+2L2

. Calculating the derivative for each t, s ∈ [0, 1]

yields that

ĜN,h(t, s, θ) = − 1

N

N−h
∑

i=1

(

X2
i (t)

σ4
i (t, θ)

∂σ2
i (t, θ)

∂θ

)(

X2
i+h(s)

σ2
i+h(s, θ)

− 1

)

(B.13)

− 1

N

N−h
∑

i=1

(

X2
i (t)

σ2
i (t, θ)

− 1

)(

X2
i+h(s)

σ4
i (s, θ)

∂σ2
i+h(s, θ)

∂θ

)

.

Applying another Taylor’s expansion to ĜN,h centered at θ0 gives that

ĜN,h(t, s, θ
∗) = ĜN,h(t, s, θ0) +

∂ĜN,h(t, s, θ
∗∗)

∂θ
(θ∗ − θ0),
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where θ∗∗ is between θ∗ and θ0. It follows as in the proof of Lemma B.1 that

max
j∈{1,...,L+2L2}

sup
θ∈Θ

E

∥

∥

∥

∥

∥

∂ĜN,h(·, ·, θ)
∂θ(j)

∥

∥

∥

∥

∥

<∞,

and hence using the strong consistency of θ̂N we obtain that

‖ĜN,h(t, s, θ
∗)− ĜN,h(t, s, θ0)‖ = oP (1).

From (B.13), we see that

ĜN,h(t, s, θ0) = − 1

N

N−h
∑

i=1

(

ε2i (t)

σ2
i (t, θ)

∂σ2
i (t, θ)

∂θ

)

(

ε2i+h(s)− 1
)

− 1

N

N−h
∑

i=1

(

ε2i (t)− 1
)

(

ε2i+h(s)

σ2
i (s, θ)

∂σ2
i+h(s, θ)

∂θ

)

.

Since σ2
i is Fi−1 measurable and Eε2i+h(s) = 1, the expectation of the first term is zero so that,

EĜN,h(t, s, θ0) =
N − h

N
Gh(t, s),

Further, since σ2
i is ergodic, we have by the ergodic theorem in Hilbert space see Bosq (2000)

that

max
j∈{1,...,L+2L2}

‖Ĝ(j)
N,h(·, ·, θ0)−G

(j)
h ‖ = oP (1).

Combining these results with (B.12), we see that

√
Nγ̂ε,h(t, s) =

√
Nγ⋆ε,h(t, s, θ0) +Gh(t, s)

√
N(θ̂N − θ0) +R4,N(t, s),(B.14)

where ‖R4,N‖ = oP (1). We note that

√
Nγ⋆ε,h(t, s, θ0) =

1√
N

N−h
∑

i=1

(ε2i (t)− 1)(ε2i+h(s)− 1),
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depends solely on the error process: in particular it is
√
N times the estimated autocovariance

of the squared error processes that was considered in Appendix A. Let

Γ
(ε)
N,K = (

√
Nγ⋆ε,h(·, ·, θ0), ...,

√
Nγ⋆ε,K(·, ·, θ0))⊤ and

Γ
(θ)
N,K = (G1(·, ·)

√
N(θ̂N − θ0), ..., Gh(·, ·)

√
N(θ̂N − θ0))

⊤. It follows then from (B.14) that

‖Γ(ε,θ)
N,K − (Γ

(ε)
N,K + Γ

(θ)
N,K)‖G,1 = oP (1).

We now aim at establishing the weak limit of Γ
(ε)
N,K + Γ

(θ)
N,K in G1. Γ

(ε)
N,K is tight in G1 as was

established in Appendix A, and Γ
(θ)
N,K is tight in G1 since R

L+2L2

is sigma-compact, hence

Γ
(ε)
N,K +Γ

(θ)
N,K is tight in G1. According to the proof of Theorem 4 on pg 19 of Aue et al. (2017),

in particular their equations 5.15–5.22, we have under Assumptions B.1–B.6 that

∥

∥

∥

∥

∥

√
N(θ̂N − θ0)−

Q−1
0√
N

N
∑

i=1

∂s2i (θ0)
⊤

∂θ
[x2

i − s
2
i (θ0)]

∥

∥

∥

∥

∥

E

= oP (1).

Therefore if z ∈ G1,

〈Γ(ε)
N,K + Γ

(θ)
N,K , z〉G,1 =

1√
N

{

N
∑

i=1

[

K
∑

h=1

(

〈(ε2i (·)− 1)⊗ (ε2i+h(·)− 1), z(h)〉(B.15)

+ 〈Gh, z
(h)〉∗Q−1

0

∂s2i (θ0)
⊤

∂θ
[x2

i − s
2
i (θ0)]

)]}

=:
1√
N

N
∑

i=1

νi(z),

where 〈Gh, z
(h)〉∗ is used to denote that the inner-product is carried out coordinate-wise, so that

〈Gh, z
(h)〉∗ ∈ R

L+2L2

. Noting that 1) s2i is Fi−1 measurable, and 2) E[xi − si(θ0)|Fi−1] = 0,

we see that νi(z) form a martingale difference sequence. Moreover, νi(z), i ∈ Z is a stationary

sequence since (ε2i , s
2
i ,x

2
i ) is stationary. Using the Cauchy Schwarz inequality, it follows readily

that for a positive constant c5

Eν2i (z) ≤ c5

{

‖z‖G,1E‖ε2i ‖2 + max
1≤h≤K

E

(

〈Gh, z〉∗Q−1
0

∂s2i (θ0)
⊤

∂θ
[x2

i − s
2
i (θ0)]

)2
}

<∞,
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using Assumption B.5. Hence by the martingale central limit theorem, see for example Corrol-

lary A.1 in Francq and Zakoïan (2010),

〈Γ(ε)
N,K + Γ

(θ)
N,K , z〉G,1

D→ N(0,Var(ν0(z))).

Straightforward calculation shows that

Var(ν0(z)) = 〈ΨK,ε,θ(z), z〉G,1,

which establishes the first half of the Theorem. The asymptotic distribution of theMN,K,ε follows

immediately from the continuous mapping theorem and the Karhunen-Loéve representation.

�

B.1. Estimation of Ψ
(ε,θ)
K,h,g. Estimating the covariance kernel Ψ

(ε,θ)
K,h,g for 1 ≤ h ≤ K, 1 ≤ g ≤

K is nontrivial given its dimensionality and its complicated composition. We describe here

how to numerically estimate the key components in Ψ̂
(ε,θ)
K,h,g.

Recall from (3.8), we focus on the estimation of last three terms because Cε(t, s, u, v) can be

estimated straightforwardly. In particular, it is not hard to see that to estimate Cε,θ
h,g(t, s, u, v)

and G⊤
h (t, s)Q

−1
0 H⊤

0 J0H0Q
−1
0 Gg(u, v), we need to estimate Gh(t, s) and

∂s2
0
(θ0)

θ
. Note that

Ĉε,θ
g,h(u, v, t, s) does not need to be estimated but is simply obtained by transposing of Ĉε,θ

h,g(t, s, u, v).

In order to estimate Gh(t, s), we consider the partial derivative

∂σ̂2
i+h(s, θ̂N)

∂θ
=
∂
∑L

j ŝ
2
i+h,j(θ̂N)φ̂j(s)

∂θ
= [

∂ŝ2i+h(θ̂N)

∂d1
φ̂1(s), . . . ,

∂ŝ2i+h(θ̂N)

∂dL
φ̂L(s),

∂ŝ2i+h(θ̂N)

∂a1,1
φ̂1(s)φ̂1(t)

. . . ,
∂ŝ2i+h(θ̂N)

∂aL,L
φ̂L(s)φ̂L(t),

∂ŝ2i+h(θ̂N)

∂b1,1
φ̂1(s)φ̂1(t), . . . ,

∂ŝ2i+h(θ̂N)

∂bL,L
φ̂L(s)φ̂L(t) ]

⊤ .

where φ̂1, . . . , φ̂L are the estimated principal components. Considering that Equation (3.2) can

be written as s2i =
∑∞

l=0B
l(D + Ax2

i−l−1), we use (B.10) and (B.11) to obtain,

∂ŝ2i (θ̂N)

∂dj
=

∞
∑

ℓ=0

B̂ℓ
1
(j),

∂ŝ2i (θ̂N)

∂aj,k
=

∞
∑

ℓ=0

B̂ℓ
1
(j,k)

x̂
2
i−ℓ−1,

∂ŝ2i (θ̂N)

∂bj,k
=

∞
∑

ℓ=1

[
ℓ
∑

i=1

B̂i−1ℓ(j,k)B̂ℓ−i](D̂ + Âx̂2
i−ℓ−1), 1 ≤ j ≤ L, 1 ≤ k ≤ L.

(B.16)
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We choose the initial value of x0 = D̂. As B̂ℓ decays geometrically at a fast rate under the

condition of stationarity, we only consider 0 ≤ ℓ ≤ 5 in the implementation for computational

efficiency, and further lags beyond 5 are ignored. Since
∂σ̂2

i
(s,θ̂N )

∂θ
is a (L+ 2L2)× 1 vector, we

consider the column sums on each individual partial derivative.

Similarly to Equation (B.16), we are able to estimate
∂s2

0
(θ0)

θ
, which is a critical component in

estimating H0 and Q0. Note that
∂s2

0
(θ0)

θ
is a (L + 2L2) × L matrix, so that we do not need to

consider the column sums. Thus, H0 and Q0 can be estimated by taking their sample means.

Lastly, we show how to adapt the above estimations into a FARCH(1) model in the simulation

section. The number of parameters in the FARCH(1) model is L + L2 because the GARCH

coefficient matrix B vanishes in this case. Thus, we have s2i = D + Ax2
i−1, and the derivatives

in (B.16) only act on coefficients D and A and depends on previous values at lag 1.
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