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Abstract

This paper draws quantitative implications for some historical coinage issues
from an existing formulation of a theory that explains the society’s demand
for multiple denominations. The model is parameterized to match some key
monetary characteristics in late medieval England. Inconvenience for an agent
due to a shortage of a type of coin is measured by the difference between his
welfare given the shortage and his welfare in a hypothetical scenario that the
mint suddenly eliminates the shortage. A small coin has a more prominent
role than small change. Because of this role, a shortage of small coins is highly
inconvenient for poor people and, the inconvenience may extend to all people
when commerce advances. A debasement may effectively supply substitutes to
small coins in shortage. Large increase in the minting volume, cocirculation
of old and new coins, and circulation by weight, critical facts constituting the
debasement puzzle, emerge in the equilibrium path that follows the debasement.

JEL Classification Number: E40; E42; N13
Key Words: The debasement puzzle; Gresham’s Law; Medieval coinage;

Commodity money; Coinage; Shortages of small coins

∗School of Finance, Central University of Finance and Economics. Email: paddyjin@gmail.com
†Department of Economics, Hong Kong University of Science and Technology. Email:

taozhu@ust.hk. The author acknowledges the support by RGC, Hong Kong under the grant
GRF647911.

1



1 Introduction

Debasements of coins were not rare in medieval Europe. When a type of coin was
debased, i.e., the precious-metal content in the coin was reduced, a person could take
bullion or old coins of the type to a mint in exchange for new coins. Rolnick, Velde,
and Weber [16] find that a debasement tended to induce unusually large minting
volumes and, at least some of the time following the debasement, old and new coins
cocirculated by weight; they refer to the finding as the debasement puzzle because
people did not receive any additional inducement to bring old coins to the mint
in exchange for new coins (people actually paid some minting fees). Interestingly,
debasements were often considered and sometimes implemented following the public
complaints about inconvenience caused by shortages of small coins. Such complaints
were widely recorded, motivating a view that the small-coin provision is a big problem
for commodity money (see Cipolla [3], Redish [12], and Sargent and Velde [19]).

What may be a suitable measurement for an individual’s inconvenience due to a
shortage of some coins? Would a debasement alleviate the shortage? Is the small-
coin provision really a big problem for the historical commodity-money system? These
issues and the debasement puzzle are the focus of our paper. Our starting point is a
folk theory of the society’s demand for multiple monetary objects. The theory consists
of two ingredients: a wide range of transaction values and a burden of carrying a bulk
of monetary objects. To elaborate, suppose there is only one type of coin. If that
coin facilitates all transactions, then high-value transactions may require many coins;
but if high-value transactions only require a few coins, then even one coin may be too
big for low-value transactions.

We build our work on the formalization of the folk theory by Lee, Wallace, and
Zhu [9]. We measure the inconvenience for an agent when a type of coin is not
supplied by the mint as the change in his welfare from the scenario that the coin
is in shortage to a hypothetical scenario that the coin is suddenly supplied by the
mint; probably, a real person in history who complained about a shortage of some
coins would get his sense of inconvenience from comparing his real experience with his
experience in an analogous hypothetical scenario. The hypothetical scenario in the
model is an unanticipated shock that adds the coin in shortage into the extant coinage
structure. This treatment naturally extends to debasement: the sudden addition of
the halfpenny is equivalent to a sudden debasement of the penny by 50%.

We parameterize the model to match key monetary characteristics of England in
the fifteenth century. During this period, per capita holdings of silver in money varied
but 35 grams may be a useful reference. Pennies (1d) were the mostly used coins;
silver per penny declined over time but 1 gram is a good reference. Our baseline
coinage consists of pennies, half groats (2d), groats (4d), and shillings (12d); we leave
out halfpennies (1/2d) and farthings (1/4d) in the baseline structure as they were
targets of public complaints. With these parameters, shortages of small coins are
highly inconvenient for at least some agents for a simple reason: the supply of the
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halfpenny or farthing permits an agent to smooth his consumption by way of spreading
his purchasing power previously contained in a penny and used in one transaction
into two halfpennies or four farthings. In other words, adding coins smaller than the
penny is beneficial because these small coins have a role more prominent than small
change, conforming well to that halfpennies and farthings were quite valuable in late
medieval England.1

The great benefit from small coins (i.e., inconvenience due to their shortage)
applies to poor agents even if they spend money once a month; it applies to all agents
if monetary transactions are somewhat frequent (e.g., people spend money at least
twice a week). Remarkably, the prominent role of small coins may be consistent with
frequent usage of large coins. In the model, debasing the penny by 50% has the
similar welfare effect as adding the halfpenny; new coins draw agents to the mint and
cocirculate with old coins by weight. Debasement, however, cannot ultimately resolve
the small-coin problem as long as small coins remain full-bodied. For, as noted by
Redish [12], a precious metal is practically indivisible, i.e., there is a practical lower
bound on the precious-metal content in a full-bodied coin—a low-fineness coin is easy
to counterfeit and a high-fineness but low-content coin is too small to carry. In fact,
a coin like the farthing is largely impractical; the weight of a high-fineness farthing is
around 0.4 grams while the weight of a modern U.S. cent is 2.5 grams.

Viewing full-bodiedness as a commitment device to prevent over-issuance of money,
our study leads to the following story of the historical commodity-money system.
Commercial advancement inevitably confers a prominent role on coins like farthings
or smaller than farthings, though those small coins (if supplied) may only appear to
be small change; thus indivisibility of precious metals is not only constraining but
rather costly. The significant indivisibility-constraint cost may contribute to the ex-
perimentation with a variety of imperfect substitutes to full-bodied small coins by a
society before an alternative commitment device emerged and the final triumph of
fiat money after.2

Debasements and small coins have drawn a fair amount of attention through the
influential monograph of Sargent and Velde [19], The Big Problem of Small Change.
Sargent and Velde [19] adapt the cash-in-advance model of Lucas and Stokey [11]
by replacing cash and credit goods with penny and dollar goods: penny goods can
only be bought with pennies (small coins) while dollar goods can be bought with
dollars (large coins) and pennies; a shortage of pennies is identified with a binding

1In 1490s, a whole pig would cost 33 pennies and one penny could buy 3.73 kg of salt, 3.56 kg of
wheat, 1.20 kg of cheese, or 4.35 kg of wool; see Farmer [4, Tables 4, 7 ].

2The imperfect substitutes included billon coins, copper coins, pieces cut from coins, foreign coins
with less metal content, etc.; see Redish [12, ch 4] for problems with billon coins and copper coins.
The standard formula for the small-coin provision prescribes issuing token coins convertible to some
precious metal; see Cipolla [3]. But convertibility needs commitment. When the state commitment
was somehow in place, a society adopted presumably convertible token coins and large-denomination
notes. The presumed convertibility finally phased out but the state commitment somehow keeps
over-issuance in check.
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penny-in-advance constraint, occurring when pennies depreciate relative to dollars.3

In the Sargent-Velde model, a shortage is a demand-side problem; debasing the penny
alleviates the shortage because the assumed circulation-by-tale enhances the agent’s
incentive to hold new pennies; and if a society finances the mint’s operation, the
small-coin problem is resolved because the zero minting fees eliminate all non-steady-
state equilibria. In our model, a shortage is a supply-side problem; debasing the
penny alleviates the shortage because new and old pennies circulate by weight and
new pennies are smaller than old; and even if a society finances the mint’s operation,
the small-coin problem may not be resolved.

The rest of the paper is organized as follows. We set up the basic model in section
2. Quantitative results are presented in sections 3 and 4. We discuss the key finding
from our model and the related literature in section 5. Section 6 concludes.

2 The basic model

We begin with the physical environment and the monetary institution. Time is dis-
crete, dated as t ≥ 0. There is a unit measure of infinitely lived agents. There are
two stages per period. At the start of the first stage of period t, each agent knows his
type at the period—he becomes a buyer or a seller with equal chance. Then agents
visit a mint that produces monetary items, referred to as coins, from a durable com-
modity, called silver. Silver has a fixed stock M ; it can also be costlessly converted
into and back from a product, called jewelry. There are K types of coins and a unit
of coin k contains mk > 0 units of silver, 1 ≤ k ≤ K. A unit of jewelry contains m0

units of silver. Agents choose their wealth portfolios in silver at the mint by the way
described below. There is an exogenous upper bound B on each agent’s silver wealth.
At the second stage, agents carry coins into a decentralized market where each buyer
is randomly matched with a seller. In each pairwise meeting, the seller can produce
a perishable good that can only be consumed by the buyer. Trading histories are
private information, ruling out credits between the two agents. In the meeting, each
agent’s wealth portfolio is observed by his meeting partner and the buyer makes a
take-it-or-leave-it offer.

Let Yt =
∏K

k=0{0, 1, ..., B/mk} so y = (y0, ..., yK) ∈ Yt represents an agent’s
generic portfolio of wealth in silver at period t, meaning that the agent holds y0 units
of jewelry and yk units of coin k, k ≥ 1. Coins may exist at the start of period 0;
that is, m0π0(y0, 0, ..., 0) may be less than M , where π0 is the distribution of wealth
portfolios in silver among agents at the start of period 0. If the agent visits the mint
with y ∈ Yt, he can choose a portfolio from the set

Γt(y) = {y′ ∈ Yt : m · y′ = m · y}, (1)
where m = (m0, ...,mK). Here and below, a · b denotes the inner product of vectors
a and b. If the agent ends with y′ at stage 1 and if he consumes qb ≥ 0 (when he is a

3As noted by Wallace [27], users of the Lucas-Stokey model usually do not interpret a binding
cash-in-advance constraint as a shortage of cash.
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buyer) and produces qs ≥ 0 (when he is a seller) at stage 2, then his realized utility
at period t is

u(qb)− qs + v(m0y
′
0)− γ · y′. (2)

Here γ = (γ0, ..., γK), γ0 = 0, and γk = γC > 0 is the disutility to carry a unit of
coin k to the decentralized market; the utility functions u and v satisfy u′, v′ > 0,
u′′ < 0, v′′ ≤ 0, v(0) = u(0) = 0, and u′(0) = ∞. Each agent maximizes expected
discounted utility with discount factor β ∈ (0, 1).

There may be an unanticipated shock to the coinage structure (m1, ...,mK). The
shock is either a structure shock that adds some types of coins into the pre-shock
coinage structure or a debasement shock that reduces silver content in each of some
J ≤ K types of coins in the pre-shock coinage structure. The shock is introduced at
the start of period 0 (at that time agents only hold coins in the pre-shock coinage
structure). The debasement is represented by a one-to-one mapping j 7→ d(j) such
that if k = d(j) for some j ∈ {1, ...J}, then coin k is debased. If coin k is debased,
the pre-shock coin is called old coin k and the post-shock coin is called new coin k;
the mint does not provide old coin k any more; and old coins can be held up to period
t̂ < ∞ but must be melted at period t̂.

A few remarks on the above setup are in order. First, the separation of monetary
and non-monetary uses of silver, which is borrowed by Velde and Weber [25], implies
that the stock of money is endogenous and, in particular, depends on the coinage
structure. Second, while we assume away minting fees, the debasement puzzle is
preserved by a positive γC (it still incurs an extra cost for an agent to melt one
penny in exchange for two halfpennies). Reflecting real people’s tendency to avoid
bulky wallets, a positive γC is a key ingredient in the denomination-structure model
of Lee, Wallace and Zhu [9]. Third, a finite t̂ for old coins to exit is a simple way
to capture that in history, old coins did eventually disappear for a variety of reasons
(lost, deteriorated, etc) not considered in our model.

Next we turn to the equilibrium conditions. In the post-shock economy, let Yt, m,
Γt(y), and γ be defined the same way as in the pre-shock economy for a distinct K
following the structure shock and for a distinct (m1, ...,mK) following the debasement
shock when t ≥ t̂. Following the debasement shock when t < t̂, let mo

k denote the
amount of silver per old coin k, Yt =

∏K
k=0{0, 1, ..., B/mk} ×

∏J
j=1{0, 1, ..., B/mo

d(j)},

m = (m0, ...,mK ,m
o
d(1)...,m

o
d(J)),

Γt(y) = {y′ ∈ Yt : m · y′ = m · y, yo′d(j) ≤ yod(j)}, (3)

and γ = (γ0, ..., γK , γ
o
d(1), ..., γ

o
d(J)) with γo

d(j) = γC all j ≥ 1. The equilibrium con-
ditions are described by a same set of constructs for the pre-shock and post-shock
economies, with the understanding that the suitable Yt, m, Γt(y), and γ are applied.

For each period t, the set of constructs consists of three probability measures on
Yt, denoted πt, θ

b
t , and θst , and three value functions on Yt, denoted wt, h

b
t , and hs

t .
Here πt(y) is the fraction of and wt(y) is the value for agents holding the wealth
portfolio y before agents know their period-t types; θat (y) is the fraction of and ha

t (y)
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is the value for buyers (sellers, resp.) holding y right after visiting the mint at t when
a = b (a = s, resp.) In terms of ha

t , the portfolio-choice problem for an agent holding
y at the mint can be expressed as

g(y, ha
t ) = max

y′∈Γt(y)
ha
t (y

′) + v(m0y
′
0), a ∈ {b, s}. (4)

In terms of wt+1, the trade in a pairwise meeting between a buyer with yb and a seller
with ys solves the maximization problem

f(yb, ys, wt+1) = max
(q,ι)

u(q) + βwt+1(yb − ι) (5)

subject to −q + βwt+1(ys + ι) ≥ βwt+1(ys) and ι ∈ L(yb, ys), where

L(yb, ys) = {ι ∈ Yt : ι = ιb − ιs, ιb, ιs ∈ Yt,ιb,0 = ιs,0, (6)

and ∀k ≥ 1, ιb,k ≤ yb,k, ιs,k ≤ ys,k}

is the set of feasible coin transfers between the buyer and the seller. Given hb
t and hs

t ,
the function wt satisfies

wt(y) = 0.5g(y, hb
t) + 0.5g(y, hs

t). (7)

As implied by the maximization problem in (5), the function hs
t satisfies

hs
t(y) = βwt+1(y)− γ · y. (8)

Given wt+1 and θst , the function hb
t satisfies

hb
t(y) =

∑

y′

θst (y
′)f(y, y′, wt+1)− γ · y. (9)

Given πt, the measure θat satisfies

θat (y
′) =

∑

y

πt(y)λ
a
1(y

′; y), a ∈ {b, s}, (10)

for some λa
1(.; y) ∈ Λ1[y, h

a
t ], where Λ1[y, h

a
t ] is the set of measures that represent

all randomizations over the optimal portfolios for the maximization problem in (4).
Given θbt and θst , the measure πt+1 satisfies

πt+1(y) =
∑

(yb,ys)

θbt (yb)θ
s
t (ys)[λ2(y; yb, ys) + λ2(yb − y + ys; yb, ys)] (11)

for some λ2(.; yb, ys) ∈ Λ2[yb, ys, wt+1], where Λ2[yb, ys, wt+1] is the set of measures that
represent all randomizations over the optimal transfers of coins for the maximization
problem in (5) and λ(y) is the proportion of buyers with yb who leave with y after
meeting sellers with ys.

Definition 1 In each of the pre-shock and post-shock economies, a monetary equilib-
rium is a sequence {wt, θ

b
t , θ

s
t , πt+1}

∞
t=0 that satisfies (4)-(11) all t and

∑

{y∈Yt:yk=0,k≥1}

m0[θ
b
t (y)+θst (y)] < 2M some t for a given π0 and for the applicable (Yt,m,Γt(y), γ); a

steady state is a tuple (w, θb, θs, π) such that {wt, θ
b
t , θ

s
t , πt+1}

∞
t=0 with (wt, θ

b
t , θ

s
t , πt) =

(w, θb, θs, π) all t is a monetary equilibrium.
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For existence, let m∗ = mink≥1 mk and we maintain a simple sufficient condition

B −m∗ − 0.5M

B −m∗

u[
β(v(B)− v(B −m∗))

1− β
] > v(B) +

β

1− β
[v(B)− v(B −m∗)] + γC .

(12)
The condition in (12) says that the silver content m∗ in the smallest coin is not too
close to the upper bound B on silver wealth and that compared with some utility
from consuming produced goods (the u term), the unit cost γC to carrying coins is
not too great and the utility from jewelry (the v terms) is much limited; notice that
there is no monetary equilibrium if m∗ = B, γC is sufficiently great, or the jewelry
utility is sufficiently large.

Proposition 1 In each of the pre-shock and post-shock economies, there exists a
monetary equilibrium for a given π0 and there exists a monetary steady state.

Proof. See the appendix.

3 Quantitative results

To conduct quantitative analysis, we set M = 35 and m0 = 60 and let the baseline
coinage structure be (m1,m2,m3,m4) = (12, 4, 2, 1). These parameters are meant to
approximate the monetary characteristics of England in the fifteenth century. One
unit of silver in the model corresponds to 1 gram. As one penny contained around
1 gram of silver in the fifteenth century, coins 1 to 4 represent the shilling, groat,
half groat, and penny, respectively. And m0 = 60 is about 2 times of troy ounce
(31 grams); a regular tablespoon weighs around 60 grams. With (m0,M) = (60, 35),
agents turn out to hold most of the silver in coins so the per capita silver in money
falls in the mid of the estimated range for England in the fifteenth century (see Allen
[1, p. 607]). We set B = 3M . This upper bound on wealth in silver is not restrictive
in that it is reached by a negligible measure of agents.4

We set the annual discount factor at 0.9. (This choice is consistent with the choice
of Lee and Wallace [8] and Redish and Weber [15]; Lee and Wallace [8] motivate their
choice by the study of Kimball [7], which suggests that medieval people have a lower
discount factor than modern people.) The relatively low annual discount factor has
little influence on our results and, in particular, as is clear below, a higher value of the
annual discount factor would only imply a higher welfare cost of shortages of small
coins. When people have F rounds of pairwise meetings per year, the discount factor
is

β = 0.91/F ;

we use F = 24 as the baseline value.

4Under the baseline parameters, the measure is 4× 10−12% at the steady state.

7



We set u(x) = x1−σ/ (1− σ) and σ = 0.5. (This choice is consistent with the choice
of Lee and Wallace [8] and Redish and Weber [15], too.) We set v(x) = εx/F . The
literal interpretation of jewelry is luxury goods. While there is no obvious reference
for the marginal utility of luxury goods, it seems reasonable to be conservative by
choosing a small value. Indeed, in our model jewelry covers all silver in non-monetary
use and, in history much of silver in this use was hoarded. But if ε is too small,
the stock of money moves little following a shock to the coinage structure. We set
ε = 0.01. With this value, one unit of silver in jewelry yields a utility equivalent
to 0.04% of the steady-state per capita consumption per round and we can observe
dependence of the stock of money on the coinage structure. The main patterns of the
presented results hold when σ varies from 0.5 to 1, when ε varies from 0.001 to 0.05,
and when v has some strict curvature.

The carrying cost of coins is the dominant factor that determines the minting
volume following a debasement shock: a larger γC tends to induce a larger minting
response. As ε, there is no obvious reference for γC . But smaller values for γC seem
more preferable than larger; apparently, one exerts a tiny effort to carry a coin. We
guide our choice of γC by examining values that are sufficiently close to zero (in
both absolute and consumption-equivalent terms) and generate sufficient post-shock
minting responses. We present our result at γC = 10−5. This value is equivalent to
0.001% of the steady-state per capita consumption per round. The main patterns of
the presented results hold when γC varies from 10−4 to 10−6.

Given a shock, we compute a monetary steady state (w̃, θ̃b, θ̃s, π̃) in the pre-shock
economy, a monetary steady state (w, θb, θs, π) in the post-shock economy, and a
monetary equilibrium {wt, θ

b
t , θ

s
t , πt+1}

∞
t=0 in the post-shock economy that starts with

π0 = π̃ and converges to (w, θb, θs, π). In computation, our algorithm approximates
that property by letting wT = w for a sufficient large T (often T = 500 serves
the purpose). Details of all algorithms are given in the appendix. Two findings
in computation are worth noting. First, Proposition 1 does not tell uniqueness of
the monetary steady state in either the pre-shock or post-shock economy. But for
any given parameter values we have tested, our algorithm always converges to the
same steady state from a variety of initial conditions. Second, we cannot prove
that the post-shock steady state is locally stable and even if it is, we cannot prove
that there exists the post-shock monetary equilibrium with the desired property of
limt→∞(wt, θ

b
t , θ

s
t , πt) = (w, θb, θs, π). In fact, for some given parameter values outside

the aforementioned ranges, our algorithm fails to converge for the reason that π̃ is
too far away from π.

In presenting our computed results, we use

δp(y) ≡ w0 (y) /w̃ (y)− 1 (13)

to measure the change in an individual agent’s welfare (expected lifetime utility)
following the shock, where y is the agent’s pre-shock portfolio; if w0 (y) = w0 (y

′)
whenever the two portfolios y and y′ contain the same amount of silver, we use

δ(z (y)) = δp(y) (14)
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mk 0.25 0.5 1 2 4 6 / 8 12 60 Total

Baseline

Stock 1.000 1.182 3.942 28.80 0.075 35

Circ. 0.486 0.033 0.007 4e−12 0.527

Mint. 0.252 0.395 0.453 0.310 1.409

Adding Stock 0.419 0.936 1.019 3.924 28.70 0.001 35

halfpenny Circ. 0.059 0.442 0.038 1e−4 4e−5 0.540

Mint. 0.108 0.320 0.328 0.450 0.373 1.579

Adding Stock 0.250 0.357 0.905 0.991 4.104 28.39 0.001 35

halfpenny Circ. 0.061 0.054 0.433 0.043 0.007 4e−4 0.599

& farthing Mint. 0.065 0.126 0.323 0.342 0.432 0.318 1.607

Adding Stock 1.000 0.526 2.624 1.973 28.80 0.075 35

sixpence Circ. 0.491 0.025 0.009 0.009 4e−12 0.536

Mint. 0.253 0.262 0.708 0.689 0.310 2.221

Adding Stock 1.000 1.182 0.017 7.827 24.90 0.075 35

eightpence Circ. 0.489 0.031 0.002 6e−6 2e−11 0.522

Mint. 0.252 0.395 0.010 0.974 1.063 2.694

Table 1: Pre-shock and post-shock steady states.

to measure the individual welfare change, where z(y) is the amount of silver in the
portfolio y. If the shock is a structure shock, these statistics measure the inconve-
nience for an individual agent when the coins added by shock are in complete shortage.
If the shock is a debasement shock, these statistics measure the improvement for an
individual agent due to the debasement. For comparison, we use

∆ ≡ π · w/π̃ · w̃ − 1 (15)

to measure the change in the aggregate welfare.5 To emphasize, (m1,m2,m3,m4) =
(12, 4, 2, 1) is the pre-shock coinage structure and F = 24 in an exercise below unless
indicated otherwise.

Structure shocks

Here we organize our results around four structure shocks, the halfpenny, halfpenny-
farthing, eightpence, and sixpence shocks that add the halfpenny, halfpenny and far-
thing, eightpence, and sixpence, respectively, to the coinage structure. The eight-
pence, sixpence, halfpenny, and farthing are coins with 8, 6, 0.5, and 0.25 units of
silver, respectively.

Table 1 provides an overview of the stocks, circulation volumes, and minting
volumes of coins measured in silver units of the pre-shock steady state and the four

5An alternative aggregate statistic is π̃ · w0/π̃ · w̃ − 1. In all our exercises, the two aggregate
statistics are in the same order of magnitude. We focus on π ·w/π̃ · w̃− 1 because π̃ · w̃ (π ·w, resp.)
is the ex-ante welfare for each agent in the pre-shock (post-shock, resp.) economy when he draws
his initial portfolio from the distribution π̃ (π, resp.).
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Figure 1: Left axis: changes in individual welfare (δ(z)) under the halfpenny structure
shock and the halfpenny-farthing structure shock. Right axis: steady-state distribu-
tion before the shocks.

post-shock steady states. A couple of remarks are in order. First, shillings and jewelry
together absorb more than 70% of silver and almost all silver in this proportion is
not used for the transactional purpose. This proportion does not vary much when
we vary m0 from 60 down to 30 but the split between shillings and jewelry may
vary substantially. Second, while coins larger than pennies facilitate less than 3% of
the total transaction values, they contribute to more than 70% of the total minting
volume; that is, a larger minting volume need not imply that the corresponding coin
is more useful in transactions.

The key statistic for each shock is the change in the individual agent’s welfare δ(z)
defined by (14). For the eightpence and sixpence shocks, these statistics are positive
for all individuals but bounded above by 0.001%. The lifetime improvement of an
agent who benefits the most from these shocks is offset by the costs to carrying 70
coins into the decentralized market once. So filling in the gap between the shilling and
groat benefits everyone but no one would be bothered much if the gap is left there.
For each of these two shocks, the change in the aggregate welfare ∆ defined by (15)
is around 0.001%, which is largely indicative of inconvenience felt by an individual
agent when the coins in concern are in shortage.

Figure 1 displays the two δ(z) curves for the halfpenny and halfpenny-farthing
shocks. The two curves share the very same patterns. The change in an agent’s welfare
is decreasing in his pre-shock wealth, agents in the poor side get great improvements,
and agents in the rich side are worse off. For the halfpenny shock, ∆ = 1.43% and δ(z)
ranges from 25.21% to −6.43%. For the halfpenny-farthing shock, ∆ = 1.71% and
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δ(z) ranges from 62.66% to −9.02%. For these two shocks, the aggregate statistics
highly underestimate inconvenience felt by poor people when coins in concern are in
shortage. The difference between the two δ(z) curves in Figure 1 gives a measurement
of the marginal effect from adding the farthing when the halfpenny is available. For
an alternative measurement, we study the alternative farthing shock that adds the
farthing to the coinage structure (m1,m2,m3,m4,m5) = (12, 4, 2, 1, 0.5). The aggre-
gate statistics is ∆ = 0.27% and the δ(z) curve is very close the difference between
the two δ(z) curves in Figure 1.

The patterns of δ(z) in Figure 1 may be explained by the consumption-smoothing
effect and a countering effect. To see the former effect, suppose an agent spends one
unit of the smallest coin when he is a buyer.6 If his present wealth is z, then his
lifetime utility can be written as

z/m∗
∑

t=1

(
0.5

1− 0.5β
)tβt−1u(ct), (16)

where ct is his consumption when his wealth is z− (t− 1)m∗ (m∗ = mink≥1 mk). One
may interpret (16) as that the agent spreads his purchasing power over z/m∗ periods.
Suppose a shock does not affect the agent’s purchasing power. But with a reduction
in m∗, the agent benefits because he can spread his consumption over more periods.
Because of discounting, a smaller z means a larger consumption-smoothing benefit.
To understand the countering effect, note that the amount of goods received by a
buyer is decreasing in his partner’s reservation value when the buyer transfers the
same amount of silver in the payment. Because consumption smoothing benefits all
agents, it tends to raise that reservation value, which, in turn, reduces the buyer’s
surplus from trade. The countering effect may be the dominant one for rich agents
as it may not vary much across agents.

The tale of two sides (due to shortages of small coins) in Figure 1 is of great
interest. But when agents meet more frequently, i.e., F and β become larger, the
consumption-smoothing effect may be strengthened to dominate the countering effect
for people in the rich side. A larger F works through two channels. First, it weakens
the influence of discounting. Secondly, as is shown in Table 1, when F is at the baseline
value, pennies play the dominant role in transactions and, adding coins smaller than
pennies has an observable but not dramatic effect on the usage of pennies. So the
consumption pattern in (16) only applies to agents in the poor side after the shock.
The larger F increases the measure of agents who spend one unit of the smallest coin
in the decentralized market after the shock. In other words, the larger F leads to
a larger proportion of agents who take full advantage of the spread of consumption
permitted by the addition of coins smaller than pennies.

For a shock to induce a positive δ(z) curve, F needs to exceed some level that
depends on the pre-shock m∗. When F = 48, the halfpenny shock yields ∆ = 28.75%

6This may happen in equilibrium if β is sufficiently close to unity when γ = 0 andm = (m0,m1) =
(∞, 1); see Camera and Corbae [2].
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Figure 2: Changes in individual welfare (δ(z)) under the halfpenny structure shock
with F = 48 (upper); and the alternative farthing structure shock with F = 96
(bottom).
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Figure 3: Minting volume responses following the halfpenny structure shock.

and the δ(z) curve in the upper row of Figure 2 that ranges from 55.06% to 10.37%;
when F = 96, the alternative farthing shock yields ∆ = 28.60% and the δ(z) curve
in the bottom row of Figure 2 that ranges from 56.76% to 10.48%. The new tale
points to a universal unhappiness. In fact, the universal unhappiness prevails even
when the farthing is available, as long as the trade is sufficiently frequent. To make
the point, we study the alternative halffarthing shock that adds m7 = 0.125 to the
coinage structure (m1,m2,m3,m4,m5,m6) = (12, 4, 2, 1, 0.5, 0.25). When F = 240,
δ(z) ranges from 66.65% to 19.97% and ∆ = 39.05%.

Structure shocks as special debasement shocks

A structure shock may be viewed as a special debasement shock; for example, the
halfpenny shock is equivalent to a shock that debases the penny by 50% while mints
the coin with 1 gram of silver as the zenny. From this perspective, we relate the
minting and usage of coins in the post-shock equilibrium to the debasement puzzle.
First, coins in the pre-shock and post-shock coinage structures cocirculate by weight
following each shock and, one can see from Table 1 cocirculation even persists in
the long run. Secondly, each shock induces large increases in the minting volume in
the post-shock equilibrium (compared to the pre-shock steady state). The increases
are presented in Figures 3 and 4 for the halfpenny and sixpence shocks, respectively.
Aside from some details, the patterns in Figure 3 apply to the halfpenny-farthing
shock and the patterns in Figure 4 apply to the eight-pence shock.

When halfpennies are added, the minting volume in the post-shock steady state
increases by 12% and halfpennies contribute to more than 80% of that increase. The
transition to the post-shock steady state is gradual. In each of the first 10 periods,
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Figure 4: Minting volume responses following the sixpence structure shock.

the minting volume increases by more than 40% and all coins contribute substantially.
This transitional process may be explained as follows. In equilibrium, a buyer holds
one or two halfpennies for the transactional purpose but a seller holds a halfpenny
only when his silver wealth is not an integer. When a buyer melts jewelry or other
coins in exchange for halfpennies at period 0, he tends to have extra silver which can
only be used to mint other coins. Because many agents need to adjust holdings of
halfpennies after period 0, the extra minting of other coins due to the extra silver
from minting halfpennies lasts for multiple periods.

When sixpences are added, the minting volume in the post-shock steady state
increases by 57% and sixpences contribute to more than 80% of that increase. The
transition to the post-shock steady state is almost instantaneous for two reasons.
First, an agent can support the period-0 minting of sixpences by half groats, groats,
and other coins that are used to mint half groats and groats in the pre-shock steady
state; that is, his minting of sixpences at period 0 may only affect the minting of half
groats and groats. Second, the agent’s choice of sixpences, groats, and half groats at
the mint is not sensitive to his type (because those coins are not frequently used in
transactions); that is, there is little need for him to adjust holdings of these coins at
period 1.
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mk 0.5 1 2 4 6 / 8 12 60 Total

Baseline

Stock 1.000 1.182 3.942 28.80 0.075 35

Circ. 0.486 0.033 0.007 4e−12 0.527

Mint. 0.252 0.395 0.453 0.310 1.409

Debasing Stock 1.317 1.056 3.924 28.70 0.001 35

penny Circ. 0.485 0.066 0.034 1e−4 0.585

(by 50%) Mint. 0.298 0.367 0.457 0.374 1.496

Debasing Stock 1.000 0.204 3.911 29.81 0.075 35

shilling Circ. 0.486 0.021 0.026 0.039 0.572

(by 50%) Mint. 0.252 0.203 0.974 1.085 2.514

Debasing Stock 1.000 1.182 2.038 30.70 0.075 35

shilling Circ. 0.487 0.033 0.005 6e−6 0.525

(by 33%) Mint. 0.252 0.395 0.351 0.376 1.374

Table 2: Steady states before and after the debasement shocks.

Debasement shocks

Compared with a structure shock that is equivalent to a special debasement shock,
a debasement shock has the feature that in the post-shock economy the mint does
not supply coins with the same silver content as some old coins. As it turns out, this
feature imposes a problem for our computation. That is, the values of old coins may
be highly sensitive to the measures of old coins in circulation and, as a result, our
algorithm may fail to converge. To deal with the problem, we need to choose a not
very large t̂ for old coins to exit. We present our results with t̂ = 50.

Our main interest is whether the indicated feature of a debasement shock may
substantially alter the welfare effects and the post-shock minting and usage of coins
that are observed from a corresponding structure shock. To this end, we study the
penny debasement shock that debases the penny in the coinage structure by 50%, and
the shilling debasement shocks that debase the shilling by 50% and 33%.

Table 2 summarizes the stocks, circulation volumes, and minting volumes of coins
measured in silver units of the pre-shock steady state and the three post-shock steady
states. A notable feature is that following the penny debasement, much of silver oc-
cupied by jewelry is released to coins even though a new penny contains a less amount
of silver than an old penny (following each shilling debasement only a tiny amount of
silver occupied by jewelry is released). In other words, the penny debasement makes
holding silver in money more attractable than holding silver in jewelry.

Regarding the post-shock equilibrium outcomes, the penny debasement shock re-
sembles the halfpenny structure shock and the two shilling debasement shocks resem-
ble the sixpence and eightpence structure shocks in the welfare effects and minting
activities. For all the debasement shocks, δp(y) ≈ δp(y

′) (see (13)) when z(y) = z(y′).
When the penny is debased, ∆ = 1.43% and δp(y) ranges from 25.21% to −6.44%.
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Figure 5: Minting volume responses following the debasement shocks. Upper row:
debasing the penny from 1 to 0.5; bottom row: debasing the shilling with from 12 to
6.

When the shilling is debased, the values of δp (y) and ∆ are all negative, with δp (y)
bounded below by −0.008% and ∆ by −0.007%; the negative (but insignificant) ef-
fects may be attributed to the fact that old shillings are a more convenient store of
value than new shillings. Figure 5 presents increases in the minting volume following
the penny debasement and following the 50% shilling debasement.

Following each debasement shock, we observe cocirculation of old and new coins
before old coins exit. An interesting finding pertains to the difference between cir-
culation of old shillings and circulation of old pennies. After the shilling is debased,
old shillings get more and more circulated because people can only get this conve-
nient store of value from the decentralized-market trade. After the penny is debased,
old pennies get less and less circulated because new pennies are good substitutes and
more and more old pennies are melted in exchange for new pennies. Figure 6 presents
the different patterns when the penny is debased and when the shilling is debased by
50%.

Small-change problem and idiosyncratic shocks

The folk theory in introduction emphasizes the small-change role of small coins. In
medieval documents, we may also see the complaints that people had to waste some
trading opportunities because of the small-change problem. An often-cited petition
to the England king in 1444 asserted that
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Figure 6: Circulations of coins following the debasement shocks. Upper row: debasing
the penny from 1 to 0.5; bottom row: debasing the shilling from 12 to 6.

people, which would buy such victuals and other small things necessary,
may not buy them, for default of half pennies and farthings not had on
the part of the buyer nor on the part of the seller. (Ruding [17, p. 275])

A structure shock that adds a small coin may be used to measure wasted trading
opportunities as follows. If two agents in a meeting do not trade in the pre-shock
steady state but they trade at period 0 in the post-shock equilibrium, then we say that
two agents waste the trading opportunity in the pre-shock steady state. We use the
mass of such meetings to measure wasted trading opportunities because of the small-
change problem. In the above exercises, measures of wasted trading opportunities
are pretty low. For example, it is 0.04% when we apply the halfpenny shock at the
baseline F . This means that for a fixed pair of agents, if the buyer does not spend a
penny in the pre-shock steady state, he tends to have no sufficient incentive to spend
a halfpenny in the post-shock equilibrium. In other words, no trade in the pre-shock
meeting is not so much because a penny is big (relative to a halfpenny).

One may naturally think that small coins would be more like small change if agents
experience some idiosyncratic preference or technology shocks in pairwise meetings.
Consider that the buyer’s utility from consuming x in a meeting is αu(x), where
α ∈ {1, ..., ᾱ} is the realization of an i.i.d. (meeting-specific) random variable at the
start of the meeting. For illustration, we experiment with the uniformly-distributed
idiosyncratic preference shock and let ᾱ = 3. Applying the halfpenny shock, we find
that the wasted trading opportunities due to the shortage of halfpennies are 24%.
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Figure 7: Changes in individual welfare(δ(z)) under the halfpenny structure shock
with idiosyncratic preference shocks. ᾱ ∈ {1, 3}.

Figure 7 displays the δ(z) curve for the halfpenny shock (the dashed line). Compared
with the version absent of idiosyncratic shocks (ᾱ = 1), the addition of the halfpenny
has a much strengthened effect.

To get a better sense of this experiment, we examine pairwise meetings in the pre-
shock steady state that agents trade when buyers are more eager to consume (α is
large) but do not when buyers are less eager (α is small). The mass of those meetings
is about 25%. In such a meeting, the buyer skips the present trading opportunity,
anticipating a higher payoff in a future meeting where he is a buyer and becomes more
eager to consume. But after the halfpenny is added, the buyer who is less eager to
consume tends to have a sufficient incentive to spend the halfpenny to buy some goods
from the seller. One may interpret that agents transact with halfpennies in meetings
when buyers are less eager to consume as that halfpennies play a small-change role
in those transactions.

4 High meeting frequency and usage of large coins

In the last section, we find that the individual inconvenience due of a shortage of
small coins increases as the meeting frequency F increases. One may interpret a rise
in F as a consequence of commercial advancement. When F increases, agents have a
strong tendency to use the smallest coins. For example, with idiosyncratic preference
shocks, we observe that buyers revert to halfpennies in most transactions and skip
trading opportunities when they are less eager to consume in the above exercise of
the halfpenny shock after F rises to 96. That is, when F increases to a certain level,
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there is little room for small coins to be small change and, in the meanwhile, there
is little room for large coins to circulate. But little circulation of large coins would
cast some doubt on the finding pertaining to the large welfare loss due to shortages
of small coins, motivating us to study the following setup of pairwise meeting.

In this setup, the seller produces in a meeting at t multiple goods by a sequential
order and subject to some random breakdown. Specifically, the meeting consists of N
phases, indexed by n ∈ {1, ..., N}. Conditional on that the two agents stay together
at the start of phase n, the sequence of events in that phase is the following. First,
both agent observe the realization of an i.i.d. separation shock; the realization takes
the value 0 with probability ρn and 1 with probability 1 − ρn. Next, each agent
chooses to stay or to voluntarily depart. If either agent voluntarily departs, then
both agents are separated (implying no production and no consumption) at phases n
to N ; otherwise, the seller can produce a good that is consumed by the buyer at the
phase. Finally, at the end of the phase, if neither agent has voluntarily departed but
the realization of the separation shock is equal to 1, then the two agents are separated
at the remaining phases of period t; otherwise, they stay together. We let ρn < 1 for
N > n ≥ 1, and ρN = 0. The buyer’s utility from consuming the bundle (c1, ..., cn),
n ≤ N , is

∑n
i=1 u(ci); the seller’s disutility from producing the bundle is

∑n
i=1 ci.

The sequential randomness in the meeting captures two scenarios of the buyer-
seller relationship with realistic relevance. In one, a period is short and goods in the
meeting are physically distinct (e.g., a helper may clean the house, farm the land,
prepare food, etc. for his employer within a day); in another, a period may be longer
and goods in the meeting are time-indexed goods (e.g., the helper may clean the
house for the employer each day in a multiple-day period); and in either scenario,
some random event may terminate the buyer-seller relationship before the end of the
period (e.g., the helper may be sick after the land farming or after the first-day house
cleaning).7

We generalize the buyer’s take-it-or-leave-it offer in the basic model as follows.
The buyer makes an offer before the phase-1 separation shock is realized and the offer
is in form of (c1, ..., cN , ι1, ..., ιN). Here, cn ≥ 0 is the seller’s production of phase-n
goods if the agents stay together at the time when the seller can produce at phase n;
and ιn ∈ L(yb, ys) (see (8)) is the buyer’s payment if the buyer and seller are separated
(voluntarily or not) after the seller has produced the consumption bundle (c1, ..., cn).
In terms of wt+1, the offer made by a buyer with yb when meeting a seller with ys
solves the optimization problem

max
(c1,...,cN ,ι1,...,ιN )

N
∑

n=1

µn

[

n
∑

i=1

u(ci) + βwt+1(yb − ιn)

]

(17)

7In the latter scenario, we may follow Shi [22] to assume that the buyer needs a consumption
device to consume and he surrenders the device to the seller at phase n as a collateral if he comes
back at phase n + 1. In a more complete version for this scenario, there may be another round of
matching in the period among agents who depart from their meetings by the end of phase n < N .
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subject to ιn ∈ L(yb, ys) and

−cn + βwt+1(ys + ιn) ≥ βwt+1(ys + ιn−1) (18)

for 1 ≤ n ≤ N , and

−cn +
N
∑

j=n+1

λn,j

[

−

j
∑

i=n+1

ci + βwt+1(ys + ιj)

]

≥ βwt+1(ys + ιn−1) (19)

for 1 ≤ n ≤ N − 1, where ι0 = 0, µn = 1 − ρn for n = 1, µn = (1 − ρn)
∏n−1

i=1 ρi
for 1 < n ≤ N − 1, µn =

∏n−1
i=1 ρi for n = N , λn,j = 1 − ρj for j = n + 1,

λn,j = (1−ρj)
∏j−1

i=n+1 ρi for n+2 ≤ j ≤ N−1, and λn,j =
∏j−1

i=n+1 ρi for j = N (when
n ≤ N − 2). The constraint (18) means that the seller does not voluntarily depart
if the realization of the separation shock of phase n is 1 (separation); the constraint
(19) means that the seller does not depart if the realization is 0 (no separation).

We make three observations about the optimization problem (17). First, one can
verify by induction that (18) implies (19), i.e., (18) effectively represents the seller’s
participation constraint.8 This simplification of the participation constraint eases
some computational burden and is the reason for us to assume that the phase-n
separation shock is realized before the seller’s phase-n production. For the second
observation, suppose the buyer’s phase-1 offer (c∗1, ..., c

∗
N , ι

∗
1, ..., ι

∗
N) solves the opti-

mization problem (17). Suppose after (c∗1, ..., c
∗
n−1) has been carried out and the

agents stay together at the start of phase n, the buyer can change the part of the
offer that has not been carried out prior to the realization of the phase-n separation
shock subject to the seller’s participation constraint. Observe that the buyer’s choice
is (c∗n, ..., c

∗
N , ι

∗
n, ..., ι

∗
N). Hence we may alternatively assume that the buyer makes

an offer (cn, ..., cN , ιn, ..., ιN) at each phase n before the phase-n separation shock is
realized. The third observation is that µn is the ex-ante probability that the buyer
consumes the bundle (c∗1, ..., c

∗
n) and pays ι∗n. As the payment ι∗n is roughly propor-

tional to n, small coins do not dominate in transactions while the small-coin problem
due to a strong consumption-smoothing effect persists.

To illustrate, we experiment with F = 72, N = 3, and ρ1 = ρ2 = 0.9; one
interpretation is that people meet once every 5 days and 10% of meetings lasts for

8First, note λN−1,N = 1 and (19) at n = N − 1 is

−cN−1 + [−cN + βwt+1(ys + ιN )] ≥ βwt+1(ys + ιN−2),

which is implied by (18) at n = N and (18) at n = N − 1. Next, notice that

N
∑

j=n

λn−1,j

[

−

j
∑

i=n

ci + βwt+1(ys + ιj)

]

= (1− ρn) [−cn + βwt+1(ys + ιn)] + ρn

N
∑

j=n+1

λn,j

[

−

j
∑

i=n+1

ci + βwt+1(ys + ιj)

]

.

Hence (19) at n− 1 is implied by (18) at n, (18) at n− 1, and (19) at n.
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δ(z): halfpenny shock

Figure 8: Changes in individual welfare (δ(z)) under the halfpenny structure shock,
with F = 72, N = 3 and ρ1 = ρ2 = 0.9.

1 day, 9% for 2.5 days, and 81% for 5 days. The steady-state nominal GDP is
around 96 pence per year;9 the circulation volumes of the penny, half groat and
groat, respectively, are 0.431, 0.599 and 0.481 units of silver in each period of trade;
and the shilling is purely a store of value. Figure 8 displays δ (z) under the halfpenny
shock. We may obtain other distributions of coins used in transactions by varying N
and {ρn} without affecting the welfare implications.

5 Discussion

Here we discuss first the main finding in our model and next the related literature.

9For the part of history in concern, the annual nominal GDP per capita in England fell in the
range from 200 to 400 pence. Likely, even commerce had advanced in a late medieval economy, a
substantial portion of GDP was not realized through the market transactions and, there was some
intrinsic heterogeneity that permitted a small class of people to procure a large proportion of GDP.
Our model may be better interpreted as the part of economy that excluded that small class of people
and excluded the non-market transactions. With this interpretation, the annual nominal GDP at
100 pence seems a reasonable target; if a household has 5 members, this means that the household
annually receives monetary incomes around 500 pence, which may be close to the historical data.
In general, our model can match any pre-set nominal GDP level. Indeed, if we double the meeting
frequency F , we double the nominal GDP.
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Our model

We follow Lee, Wallace, and Zhu [9] closely in setting up our basic model. Attrac-
tiveness of this modelling choice is that the Lee-Wallace-Zhu model itself is built on a
model not first designed for the historical coinage issues. Indeed, if we set γ = 0 (zero
carrying costs), ε = 0 (fiat money), and m = (m0,m1) = (∞, 1) (one denomination),
then the basic model turns into a version of the familiar model of Trejos and Wright
[23] and Shi [21] (general money holdings with an arbitrary upper bound and take-
it-or-leave-it offers by buyers). With some minimal departure from the plain version
of the Trejos-Shi-Wright model, our model delivers a rich set of implications for the
coinage issues in concern.

The main finding is the high individual inconvenience or welfare loss due to short-
ages of small coins. The critical parameter for this result is the silver stock M . Our
choice of M is explained above. A local change in M , say, from 35 to 40, does not
affect the relevant numbers much. We have not found a way that can efficiently redo
all the above exercises for a large change in M , say, from 35 to 100; the computa-
tional burden increases dramatically in some exercises. To give some idea of what
may happen for a larger M , we note that the alternative farthing shock above is al-
most identical to the structure shock that adds the halfpenny to the coinage structure
(m1,m2,m3,m4,m5) = (24, 8, 4, 2, 1) when M = 70, and the alternative halffarthing
shock above is almost identical to the structure shock that adds the halfpenny to the
coinage structure (m1,m2,m3,m4,m5,m6) = (48, 16, 8, 4, 2, 1) when M = 140.10

Our model likely exaggerates the welfare loss because a medieval person’s con-
sumption did not all come from monetary transactions. Suppose monetary transac-
tions only contributed to one third of the consumption. Suppose the consumption
of goods and services from monetary transactions entered into the person’s utility
function as an object distinct from the consumption of goods and services from other
means (e.g., barter, credits, and self production). Then, one may discount a welfare
number by 2/3 to get a more realistic estimation, which is still quite significant.

Our model also misses two important aspects of minting in a late-medieval Euro-
pean economy. First, medieval mints charged people to cover the labor and material
costs and collect seigniorage. The minting fees would contribute to shortages of small
coins. For, it was much more costly to produce farthings than shillings; thus, given
the minting fees permitted by kings, mints might not produce farthings as demanded
(see Redish [12, p. 113]). Second, it would be costly for medieval people to visit
mints and, hence, people would not visit mints frequently. A low frequency to visit
mints implies a low frequency to adjust portfolios, which would tend to reinforce the
inconvenience due to shortages of small coins.

Our model can be extended to accommodate these two aspects. For the minting

10Also, when M = 140, m = (m0,m1) = (∞, 1) and γ = 0, we work on the shock that reduces
m1 from 1 to 0.5; the δ(z) curves for F = 24 and F = 120 are similar to those in Figures 1 and 2,
respectively.
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fees, one may assume that each agent incurs some amount of disutility to obtain a
unit of coin and that there is an upper bound on the aggregate minting volume for
each type of coin. The bound may be exogenous but it can be endogenous as the
mint’s optimal choice; either way, a binding bound describes partial shortages of small
coins in history. For the mint-visiting cost, one may assume that each agent incurs
some amount of disutility to play a lottery at the start of a date, that the realization
of the lottery determines whether he visits the mint or not, and that the probability
to visit the mint depends on the amount of disutility.11

Although we do not see a reason for either extension to overturn the main finding,
we do anticipate new insights from these extensions. Because the state spaces increase
dramatically, these extensions are much more challenging to analyze and left for the
future work.

The related literature

In the economic literature, a few papers study shortages of coins or small coins with
matching models. Wallace and Zhou [28] study a model with a unit upper bound
on money holdings and with some agents less productive than other; they identify a
shortage of coins with the concentration of wealth in steady state. Kim and Lee [6]
compare the steady-state aggregate welfare in a model with one sort of coins in fiat
money with the steady-state aggregate welfare in a commodity money version of that
model; they identify a shortage of small commodity-money coins with a part of the
welfare difference contributed by that commodity-money coins are more valuable than
fiat-money coins. Lee and Wallace [8] compare the steady-state aggregate welfare in a
model with one sort of coins in fiat money by varying the size of the coin; they include
the cost of maintaining monetary objects in their analysis; and they conclude that
medieval Europe might set the size of the penny right (we suspect that poor agents
in their model should get great improvements if the size of the penny is reduced).

Redish and Weber [13] study a model with multiple monetary objects. They build
a bimetallic system into the model of Lee, Wallace, and Zhu [9]: gold and silver coins,
respectively, are large and small coins while quantities of gold and silver coins are fixed
because gold and silver are distinct metals and because there is no jewelry. Focusing
on steady-state comparison, Redish and Weber [13] identify a shortage of small coins
with the improvement in the steady-state aggregate welfare when small coins are
added. While their model is similar to ours, their parameterization is different. Most
importantly, they work with much higher degrees of indivisibility of money and much

11Bimetallism was typical in late medieval Europe: gold was largely used in high-value transactions
and silver was mostly used in the daily life. The carrying cost of monetary objects may play a more
significant role in bimetallism as a trade facilitated by gold may have a much higher nominal value
in silver units. To study bimetallism, we may follow Wallace and Zhou [28] by assuming that there
are two types of agents who permanently differ in productivity as sellers. Intuitively, agents with
high productivity may tend to use gold coins. The equilibrium outcomes in this extension may much
depend on the details of how two types of people interact.
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lower levels of meeting frequency: averages of coin holdings (small plus large) are no
more than 10 and the value of β is 0.9 (i.e., one meeting per year when the annual
discount factor is 0.9). While a low average of coin holdings tends to strengthen
the welfare loss due to shortages of small coins, the low meeting frequency appears
powerfully enough to prevent the effect from standing out in their exercises.12

As Kim and Lee [6], Lee and Wallace [8], and Redish and Weber [13], we aim to
draw quantitative implications of indivisibility of money for the historical commodity-
money system from similar models.13 Different from these authors, we go beyond
steady-state comparison, which is necessary to quantify an individual’s inconvenience
due to a shortage of some coins. In terms of results, our contribution lies in demon-
strating that the individual inconvenience can be strikingly strong under parameters
that do not exaggerate the degree of indivisibility; relating the inconvenience to the
consumption-smoothing role of small coins and commercial advancement; showing
that the inconvenience can persist even when large coins are substantially used in
transactions; and offering an explanation for the debasement puzzle.

Sargent and Velde [19] have ignited the recent interest to small coins in specific and
commodity money in general. We have indicated above the difference between their
work and ours. While it is not our point to argue what may be a superior approach
to modelling money,14 it seems fair to say that we are able to say things differently
because our model is better suited to accommodate indivisibility of a precious metal.

There is a small economic literature that tackles the debasement puzzle. In a cash-
in-advance model, Sargent and Smith [18] assume that new and old coins circulate
by tale. Under this assumption, agents bring all old coins into the mint in exchange
for new coins. On the empirical ground, Rolnick, Velde, and Weber [16] argue that
by-tale circulation violates facts documented in the debasement puzzle and that by-
tale circulation would have induced a much larger minting volume than observed (the
data indicates that only a portion of old coins were recoined). In matching models

12Redish and Weber [13] assume that there is a probability for a meeting to be a non-trade
meeting, i.e., the buyer may not want the good produced by the seller; they vary the trading
probability in some exercises but that variation seems not enough to offset the influence of the low
meeting frequency (the trading probability is bounded above by unity). In a related working paper,
Redish and Weber [14] study the essentially same model as we study. They again focus on steady-
state welfare comparison, consider two sorts of silver coins, and apply parameters with a low average
holdings of coins and a low frequency of meeting in their exercises. The findings in that working
paper are largely in line with findings in Redish and Weber [13].

13By setting values of some parameters to zeros, one may turn all these models into the version of
Trejos-Wright-Shi model studied by Zhu [29]. While it is proved in Zhu [29] that different degrees of
indivisibility imply different real allocations, no much further has been established analytically by
the literature.

14A reader may observe that jewelry in our model resembles bonds in some cash-in-advance model;
that is, jewelry has a higher rate of return than coins but is assumed to be illiquid. This is a valid
observation. Nonetheless, different from the Sargent-Velde model, our model does not impose a
coin-specific constraint for any sort of coin and is able to endogenously generate different degrees of
liquidity for different coins. Moreover, our main finding holds even if jewelry does not yield direct
utility (i.e., if money is fiat).
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with one unit upper bound on coin holdings, Velde, Weber, and Wright [26] and Li
[10] use side payments offered by the mint as incentives for people to bring in old
coins in exchange for new coins at a one-to-one rate. None of these three models is
suitable to study the demand for multiple monetary objects.

All three models concern Gresham’s law. Partly rooted in medieval debasements,
Gresham’s law says that bad money (new coins) drives out good money (old coins).15

The renowned law has long been known to be ambiguous at best. On the theoretical
ground, it relies on the circulation-by-tale assumption that is effectively imposed
from the outset; on the empirical ground, there are numerous counterexamples (see
Rolnick and Weber [15] and Velde [24]). In each of the three models, Gresham’s law
is not universal but good money is driven out by bad money at some parameter space
because of asymmetric information (Velde, Weber, and Wright [26]), the government
transaction policy (Li [10]), or the circulation-by-tale assumption (Sargent and Smith
[18]). In our model, some old coins are melt (i.e., some good money is driven out) but
other are kept (up to the exit period t̂) following each debasement shock we study;
the reason is in line with the aforementioned folk theory.

6 Concluding remarks

Commodity money occupies most part of the monetary history. Compared with the
prevailing fiat-money system, the historical commodity-money system is primitive
in that its monetary service seems much constrained by the physical properties of
precious metals such as scarcity, portability, divisibility, and recognizability. Conven-
tionally thought to be critical, these properties are hard to place in models that many
economists are used to and, hence, far from sufficiently explored. Through an off-
the-shelf model, our paper demonstrates that the practical indivisibility of precious
metals may imply a significant cost for the historical commodity-money system. On
the flip side, our paper suggests a reason for one to reconsider commodity money. Af-
ter all, technological progress would equip an advanced system with a money-making
commodity that is practically divisible (e.g., bitcoins) and has all other nice physical
properties. Of course, there is always an opportunity cost for a commodity-money
system (see Sargent and Wallace [20] and Velde and Weber [25]) and one should ask
whether it is worth paying the cost for the commitment to no over-issuing money.

15Fetter [5] describes how Gresham’s law was reformed in the nineteenth century from a comment
on debasements made by Gresham in 1558.
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Appendix

A Proof of Proposition 1

The proof applies the standard fixed point argument. For existence of an equilibrium
for a given π0, it is routine to (i) construct a set S that is compact in the product
topology and an element of which is a sequence {wt, θ

b
t , θ

s
t , πt+1}

∞
t=0, (ii) construct a

mapping F from S to S that is implied by the definition of equilibrium and whose
fixed points are equilibria, and (iii) verify that all conditions for the application of
Fan’s fixed-point theorem are satisfied. So there exists an equilibrium. To show that
this equilibrium is a monetary equilibrium, suppose by contradiction the opposite.
Without loss of generality, suppose that some agent holds silver wealth B at date 0
and all his wealth is in jewelry. Consider two options of this agent when he is a buyer:
minting one unit of the smallest coin and no minting any coin. For the first option,
his expected payoff is bounded below by

−γC + (1−
0.5M

B −m∗

)u[
β (v(B)− v(B −m∗))

1− β
] +

β

1− β
v(B −m∗).

Notice that 1 − 0.5M/(B − m∗) is a lower bound on the measure of sellers whose
wealth levels in silver do not exceed B − m∗ and the agent can receive at least
β (v(B)− v(B −m∗)) /(1−β) amount of the good from such a seller. For the second
option, his expected payoff is v(B)/(1−β). But then (12) implies the first option has
a higher payoff, a contradiction. Existence of a monetary steady state can be proof
by essentially the same argument.

B Numerical algorithms

B.1 Computing a steady state

To begin with, vectorize theK+1-state space into a one-dimensional state, and define
the value vectors {w, g} and distribution vectors {θ, π}, θ = (θb, θs), accordingly.
Denote the total possible number of states as S.

1. Begin with an initial guess {w0, h0, θ0, π0}, where π0 and θ0 are consistent with
the total silver stock M .

2. Given end-of-stage-1 value hi and beginning-of-stage-1 distribution πi from i-th
iteration, solve the problem (4), and use the solution to update beginning-of-
stage-1 value wi+1 and end-of-stage-1 distribution θi+1 .

3. With wi+1 and θi+1, solve the problem as described in (5). Record the terms of
trade of each relevant pairs, and update hi+1 and πi+1 accordingly.
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4. Repeat step 2-3 until the convergence criterion is satisfied: ‖wi+1 − wi‖ <
10−6, ‖hi+1 − hi‖ < 10−6 and ‖θi+1 − θi‖ < 10−8, ‖πi+1 − πi‖ < 10−8.

B.2 Computing a post-shock equilibrium

The computation for the transition path is essentially about iterations on the series
of Ψ ≡ {wt, ht, θt, πt+1}

T
t=1, ht = (hb

t , h
s
t) and θt = (θbt , θ

s
t ), where T is the number of

periods it takes for the economy to reach a new steady state. Before computing the
transition paths, we first need to compute the post-shock steady state using an algo-
rithm similar to B.1, with the change that choice of portfolios containing old coins are
eliminated at the minting stage. Denote this steady state as {wT , hT , θT , πT+1}. We
also have to translate the distribution from the pre-shock steady state, into the begin-
ning distribution in the debasement environment, denote the beginning distribution
as π1.

1. Take an initial guess Ψ0 ≡
{

w0
t , h

0
t , θ

0
t , π

0
t+1

}T

t=1
, with w0

T = wT .

2. Start from the last period T . Given wT and θiT , solve the pairwise bargaining
problem as described in (5), and get hi

T . Record the implied Markov transition
matrix as Λi

T . Use hi
T and πi

T , solve the problem of minting, and get wi
T−1

accordingly. Record the implied Markov transition matrix as Υi
T . Then use

wi
T−1 and θiT−1, repeat the previous procedure for problems in period T − 1.

Finally, we will have a new series {wi
t, h

i
t}

T
t=1. And then use {Λi

t,Υ
i
t}

T
t=1 and π1

and generate a new series of distributions
{

πi+1
t , θi+1

t

}T

t=1
.

3. Now use
{

πi+1
t , θi+1

t

}T

t=1
and wT , repeat Step 2 and get

{

πi+2
t , θi+2

t

}T

t=1
.

4. Repeat 2-3 until the convergence criterion is met: maxt
(∥

∥πi+1
t − πi

t

∥

∥

)

< 10−8 ,
maxt

(∥

∥θi+1
t − θit

∥

∥

)

< 10−8, maxt
(∥

∥wi+1
t − wi

t

∥

∥

)

< 10−6, and maxt
(∥

∥hi+1
t − hi

t

∥

∥

)

<
10−6.
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