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Abstract 

Traditionally the bias of an estimator has been reduced asymptotically to zero by enlarging 
data panel dimensions N or T or both. This research proposes a novel econometric 
modelling method to separate and measure the bias of an estimator without altering data 
panel dimensions. This is done by recursively decomposing its bias in systematic and 
nonsystematic parts. This novel method addresses the bias of an estimator as a type of 
asymptotic serial correlation problem. Once this method disentangles bias components it 
could provide consistent estimators and adequate statistic inference. This recursive bias 
approach is missed from the current bias literature. This novel method results do not cast 
doubt about the asymptotic bias approach conclusions, but made them incomplete. Monte 
Carlo simulations find consistent sample estimators asymptotic convergence with population 
estimators by enlarging the sample size. In these simulations the population estimator value 
is provided beforehand the simulation begins. The mean advantage of the alternative 
recursive estimator bias approach is that the sample estimator recursively converges with 
population estimators without enlarging sample size. Importantly this novel method avoids 
researcher bias criteria, which consist on an arbitrary a priori population estimator value 
selection. 
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Introduction 
Panel data involves two dimensions. The first dimension is N, which represents the number 
of individuals. The second dimension is T, which stands for the number of time periods. In 
the literature there are abundant papers related with panel data dynamic estimators, and their 
asymptotic properties, i.e., MacKinnon and Smith (1998); Hsiao, et al., (2002); Hsiao and 
Tahmiscioglu (2008); Abadie and Imbens (2011); Hsiao and Zhang (2015). These studies are 
concerned with measuring panel data estimators sensitivities when either N or T, or both are 
large, by means of Monte Carlo simulations and Bootstrap experiments. The idea behind the 
sample size enlargement of N or T or both is to obtain a diminishing estimator asymptotic 
bias distribution converging with a population estimator. When convergence is achieved 
between the asymptotic estimator with the population estimator, it is said that the 
asymptotic estimator is consistent.  
 
Here, for the sake of simplicity the above literature is identified with an “asymptotic bias 
approach literature.” This approach is concerned with different panel data dynamic 
asymptotic estimators properties and values. These estimators properties and values depend 
on several factors, i.e., assumptions; initial values; functional forms; sample size; endogeneity 
treatments; econometric techniques, i.e., MLE (maximum likelihood) or GMM (general 
method of moments); recursive AR(1) (autoregressive vector of order one); just to mention a 
few. Some estimators properties and values from the asymptotic bias approach literature are 
reported next: Arellano and Bond (1991) find a GMM panel consistent estimator 
asymptotically unbiased if T is fixed, and N goes to infinite. For its part, Hahn and 

Kuersteiner (2002) show that !"# (covariance estimator) is asymptotically biased of order $

%
, 

when N and T go to infinite and %
$
 goes to a constant different to zero and less than infinite 

and T grows faster than N. In a similar manner Alvarez and Arellano (2003) report a GMM 
panel estimator that is asymptotically biased of order &∗ , when lim

$→,

%

$
= &∗  when T grows 

faster or at the same rate than N, where 0 < &∗ < ∞; and the star signals an optimum. As a 
specific variation of this last result, Hsiao (2003) finds that if 123 is fixed and 42 measures the 
individual specific effects, then the maximum likelihood estimator converges to the 
covariance estimator !"#, where !"# is asymptotically normally distributed with mean 0 if N is 
fixed and T is large, implying that the only panel dimension being enlarged is T.  
 
The asymptotic bias approach properties are studied in the literature because consistent 
estimators have an important function in statistics and other sciences where optimization 
plays an important role. Under the light of this approach a consistent estimator means 
efficiency, and decreasing bias under sample size enlargement. According with Carbajal 
(2017) a consistent estimator implies information convergence and diminishing scaling 
variance. Thus efficiency could be interpreted as information convergence and decreasing 
bias could be interpreted as diminishing scaling variance, where the application of such 
concepts should be mediated by the operational context. The central limit theorem 
postulates that as the sample size enlarges, the sample estimator will converge with the 
population estimator. The asymptotic bias approach assumes that the central limit theorem 
holds, and if bias goes to zero as N or T or both go to infinite, then the estimators become 
consistent. Consistent estimators are important because they become the benchmark to set 
up confidence intervals; t-test power; significance levels; just to mention a few. Statistic 
inference refutes or validated sample estimator against consistent estimators benchmark. 
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This is why a lot of statistic tests includes p-values obtained from this asymptotic approach, 
i.e., Mackinnon p-values to accept or reject the unit root null hypothesis. 
 
This paper proposes a novel method to obtain consistent estimators, without need to 
increase panel data dimensions. Here this novel method is called an “alternative recursive 
estimator bias approach.” This method treats bias as a type of serial correlation problem. 
Also, this method provides an analytical solution to solve this type of serial correlation 
problem. This solution separates consistent estimators and their biases in a linear fashion. 
 
This paper is organized as follows: Section 2 presents the model, and the proposed novel 
method. Section 3 discusses the findings and concludes. 
 
Section 2. Model and proposed novel method 
Suppose that a dynamic panel data model has the following form: 
 
(1) 125 = 42 + !12,589 + :25 

 
where ! is assumed stationary, meaning that its roots are inside the unit circle; ; = 1,⋯ , >; ? =
1,⋯ , @. Also suppose that: 
 
Assumption 1. :25 the error term is a random variable. It has a standard normal distribution 

N(0, 1). Its moments are A :25 = 0; BCD[:25] = GH
I = 1; third and fourth moments are finite;  

 
Assumption 2. A ! 42  the expected value of ! estimator conditional to 42; its bias, and its 
movil average terms can be decomposed on systematic, and nonsystematic parts. The 
systematic part is represented by its mean. The nonsystematic part is represented as a type of 
serial correlation problem.  
 
The alternative recursive estimator bias approach provides an analytical solution to separate 
consistent estimators from their bias. In equation (1) 42  computation introduces a serial 
correlation problem. This is because the specific individual-effects are presented in both 
estimators 42  and ! . The estimator !  takes into account time effects, and also individual-
effects, because 12,589  has two panel data dimensions: ; , and ? − 1 . This leads to a 
measurement error given a specific individual-effects double accounting on 42 and !. If this 
measurement error were closed to zero, then bias would almost disappear. Thus, bias is a 
result of an estimation error when individual effects double accounting holds. The celebrated 
omitted variable formula is used to represent the expected value of ! estimator, and its bias 
for equation (1) as follows: 
 

(2)	A ! 42 = ! +
"L# MN,ON,PQR

#ST MN
:25	

 
where A ! 42  expresses the expected value of ! estimator conditional to 42; ! is a consistent 

estimator, and "L# MN,ON,PQR
#ST MN

:25 represents its bias. Assumption 2 applied to equation (2) points 

out that the systematic part is ! and the nonsystematic part is 
"L# MN,ON,PQR

#ST MN
:25 . Here, bias is a 

result of individual-effects double accounting and its interactions with the error term 
demonstrate a serial correlation problem.  
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Equation (2) is highly nonlinear in the bias component. For simplicity sake bias is treated 
with a Beverage-Nelson decomposition. This decomposition linearizes bias into two parts: 
mean and error terms. Thus, assume that bias is equal to U25 and has the following linear 
representation: 
 
(3) U25 = V2 + :25 
 

where U25 =
"L# MN,ON,PQR

#ST MR
:25; V2 represents the mean and :25 represents error terms. Assumption 2, 

applied to equation (3), points out that the systematic part is V2 , and the nonsystematic part is 

:25. Also, consider the following functional movil average form for :25: 
 
(4) :25 = W(Y)U25 
 
expanding the infinite lag polynomial W(Y) yields 
 
(5) :25 = W 1 U25 + W 2 U2,58I +⋯+ W @ U2,3 

 

where W 1  represents a movil average of order one; W 2  represents a movil average of order 

two; ⋯ ; W @  represents a movil average of order T. Plugging equation (5) into equation (3) 
gives 
 
(6) U25 = V2 + W 1 U2,589 + W 2 U2,58I +⋯+ W @ U2,3 
 
then, equation (2) can be rewritten as: 
 
(7)	A ! 42 = ! + V2 + W 1 U2,589 + W 2 U2,58I +⋯+ W @ U2,3	
 
where ! represents a consistent estimator, and bias is V2 + W 1 U25 + W 2 U2,589 +⋯+ W @ U2,3. As 
the infinite lag polynomial expands up to the term T, bias components are disentangled from 
a nonlinear representation on equation (2) to a linear fashion as demonstrated on Equation 
(7).  
 
The asymptotic bias approach applied to the bias linear decomposition would expect that as 
T goes to infinite the sum of its terms converges to zero: 
 
(8) lim

%→,
V2 + W 1 U25 + W 2 U2,589 +⋯+ W @ U2,3 = 0 

 
If equation (8) holds, then equation (7) reduces to A ! 42 = ! , where !  is a consistent 
estimator. Without loss of generality, it is fair to say that equation (8) represents the result 
that the asymptotic bias approach looks at when N or T or both are large. 
 
Theorem 1. A consistent estimator in presence of specific individual-effects correlation is 
obtained by estimating its bias components. 
 
Proof 
Plugging equation (7) into equation (1) provides: 
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(9) 125 = 42 + ! + V2 + W 1 U2,589 + W 2 U2,58I +⋯+ W @ U2,3 12,589 + :25 
 
distributing the 12,589 term gives: 
 
(10) 125 = 42 + !12,589 + V212,589 + W 1 U2,58912,589 + W 2 U2,58I12,58I +⋯+ W @ U2,312,3 + :25 
 
collecting the individual effects estimators in only one term, i.e., \2 = 42 + V212,589 yields:2 
 
(11) 125 = \2 + !12,589 + W 1 U2,58912,589 + W 2 U2,58I12,58I +⋯+ W @ U2,312,3 + :25 
 
Equation (11) represents the first recursive iteration of the proposed novel method to 
separate and quantify bias components. 
 
For the moment, consider only the term W 1 U2,58912,589. Its estimator could be decomposed in 
systematic and nonsystematic parts.  
 

(12)	A W 1 \2 = W 1 +
"L# ]N,^N,PQRON,PQR

#ST ]N
:25	

	
Assumption 2 applied to equation (12) points out that the systematic part is W 1  and the 

nonsystematic part is 
"L# ]N,^N,PQRON,PQR

#ST ]N
:25. 

 
Next, the analogs of equations (3)-(8) are presented for W 1 U2,58912,589 estimator in equations 
(13)-(18). To use a notational that facilitates comparisons between equations (3)-(8) and 
equations (13)-(18), let the W 1 U2,58912,589 components be represented with an underbar, i.e., 

ξ`a =
"L# ]N,^N,PQRON,PQR

#ST ]N
:25. 

 
(13) U25 = V2 + :25 

	
(14) :25 = W(Y)U25 

 
(15) :25 = W 1 U2,589 + W 2 U2,58I +⋯+ W @ U2,3 

 
(16) U25 = V2 + W 1 U2,589 + W 2 U2,58I +⋯+ W @ U2,3 

 
(17)	A W 1 \2 = W 1 + V2 + W 1 U2,589 + W 2 U2,58I +⋯+ W @ U2,3	

	

(18)	 lim
%→,

V2 + W 1 U2,589 + W 2 U2,58I +⋯+ W @ U2,3 = 0	

 
If equation (18) holds, then equation (17) reduces to A W 1 \2 = W 1 , where W 1  is a 
consistent estimator. By symmetry, equation (17) can be generalized for the following 
estimators W 2 ,⋯ , W @ . 
 

																																																								
2  Although 12,589  contains both data panel dimensions, V2  takes into account only mean specific individual-
effects.  
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(19)	A W 2 \2 = W 2 + V2
I
+ W 2 U2,58I + W 3 U2,58c +⋯+ W @ U2,3	

	 											⋮ 
(20)	A W @ \2 = W @ + V2

%
+ W @ U2,3	

 
plugging equations (17); (19), and (20) into equation (11) yields: 
 
(21) 125 = \2 + !12,589 + 
              W 1 + V212,589 + W 1 U2,58912,589 + W 2 U2,58I12,58I +⋯+ W @ U2,312,3 + 

              W 2 + V2
I
12,58I + W 2 U2,58I12,58I + W 3 U2,58c12,58c +⋯+ W @ U2,312,3 + 

              ⋯+ 
              W @ + V2

%
12,3 + W @ U2,312,3 + :25 

 
collecting again the individual effects terms in only one term, i.e., \2 = \2 + V212,589 + V2

I
12,58I +

⋯+ V2
%
12,3 provides: 

 
(22) 125 = \2 + !12,589 + 
              W 1 + W 1 U2,58912,589 + W 2 U2,58I12,58I +⋯+ W @ U2,312,3 + 

              W 2 + W 2 U2,58I12,58I + W 3 U2,58c12,58c +⋯+ W @ U2,312,3 + 

              ⋯+ 
              W @ + W @ U2,312,3 + :25 

 
Now collecting similar terms yields: 
 
(23) 125 = \2 + !12,589 + W 1 + W 2 + ⋯+ W @ + 
               W 1 U2,58912,589 + 2W 2 U2,58I12,58I +⋯+ @W @ U2,312,3 + :25 

 
Consider that the estimated variables for W 1 ; 	W 2 ;⋯ ;W @  are a vector of ones in each case. 
In consequence, they are the movil average means of 125 at each lag value. If panel data is 
stacked by individuals, then movil average means also gauge specific individual-effects. For 
the sake of simplicity, these movil average means could be collected together with the 
specific individual-effects means. Thus, these terms can be compiled together with \2 in only 

one term representing all individual effects in equations (23), i.e., \2
I
= \2 + 	W 1 + W 2 + ⋯+

W @ . Thus equation (23) can be rewritten as: 
 
(24) 125 = \2

I
+ !12,589 + W 1 U2,58912,589 + 2W 2 U2,58I12,58I +⋯+ @W @ U2,312,3 + :25 

 
Equation (24) represents the second iteration of the proposed novel method. With this 
recursive method, and after T interactions, the !  estimator bias components are linearly 
separated in systematic and nonsystematic parts. Thus, the estimator bias nonsystematic part 
is fully determined.  

 

Theorem 2. Consistent estimator could be computed at any panel data dimension size.  
 
Proof 
Theorem 1 provides the alternative recursive estimator bias approach to decompose ! 
estimator bias in systematic and nonsystematic parts. This method iterates recursively bias 
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systematic and nonsystematic parts until the systematic part converges to a consistent 
estimator. Thus, the following bias equality follows:  
 

(25) "L# MN,ON,PQR
#ST MR

:25 = \2
I
− 42 + W 1 U2,58912,589 + 2W 2 U2,58I12,58I +⋯+ @W @ U2,312,3  

 
where hat denotes estimates. The left hand side in equation (25) is theoretical bias. The right 
hand side displays empirical bias decomposition. This decomposition provides bias 

systematic \2
I
− 42  and nonsystematic W 1 U2,58912,589 + 2W 2 U2,58I12,58I +⋯+ @W @ U2,312,3  

components. 
 
After estimating equation (24) right hand side, it is subtracted from equation (2) as follows: 
 

(26) A ! 42 = ! +
"L# MN,ON,PQR

#ST MR
:25 − \2

I
− 42 + W 1 U2,58912,589 + 2W 2 U2,58I12,58I +⋯+ @W @ U2,312,3  

 
The right hand side two last terms on equation (26) conform equation (25). Because 
equation (25) equality, theoretical and empirical bias cancels out on equation (26). Therefore: 
 

A ! 42 = ! 
 

where ! is a consistent estimator. This is the result that the recursive bias approach looks at 
when N or T or both are not large.   
 
Section 3. Discussion and Conclusions 
The asymptotic bias approach uses Monte Carlo simulations and Bootstraps experiments to 
enlarge N or T or both. The asymptotic bias approach look at reducing estimator asymptotic 
bias distribution to zero. This is with the end of achieving convergence between sample 
enlarge size estimator with population estimator. However, Monte Carlo simulations 
introduce researcher bias criteria, which consist on an arbitrary a priori population estimator 
value selection.  
 
The theoretic literature addressing this alternative recursive estimator bias approach is not 
known by the author. On one hand, this approach is missing on the theoretical asymptotic 
bias approach, i.e., Hsiao and Zhang (2015) consider that bias is the result of using 
instruments to purge correlations between estimators and equation errors. For Makowski, et 
al., (2006) omision bias is the result of a measurement error between independet variables. 
Thus, the bias of an estimator is not econometrically modelled in the symptotic bias 
approach. In constrast, the alternative recursive estimator bias approach relies on bias 
econometric modelling. On the other hand, the alternative recursive estimator bias approach 
is also neglected by the empirical asymptotic bias approach, i.e., Arellando and Bond (1991); 
Alvarez and Arellano (2003); Anderson and Hsiao (1981); Hsiao et al., (2002), and Carbajal 
(2014).  
 
Perhaps the alternative recursive estimator bias approach is not present in the empirical  
asymptotic bias approach, because this approach is not theoretically implemented in a first 
place. As a result, consistent estimators study derived from the application of this alternative 
recursive estimator bias approach is ommitted from the current econometric modelling 
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literature. This omission does not cast doubt about the conclusions of the asymptotic bias 
approach, but made them incomplete. 
 
This alternative recursive estimator bias approach is a novel method that separates consistent 
estimators from their bias components. It seems that this novel method is filling a bias 
theoretic and empirical literature gap. This novel method relies on two assumptions. 
Assumption 1 sets a finite error process. In particular, the fourth moment finiteness is 
associated with a stationary solution in a strict-sense (Douc et al., 2014 and Spanos, 1999); 
meanwhile, Arellano and Bond (1991) consider the fourth-order moment as indicating a 
lower or quicker convergence to normality. Assumption 2 sets the conditional estimator, its 
bias, and its movil averages as decomposable in systematic, and nonsystematic parts. This 
method characterizes the nonsystematic part as a type of serial correlation problem. These 
assumptions are the base upon which the novel method econometric modelling relies on.  
 
In the alternative recursive estimator bias approach, bias is the result of individual-effects 
double accounting. This approach considers bias as an independent random process that 
could be linearly decomposed and quantifiable after a series of recursive steps. The 
alternative recursive and asymptotic bias approaches provide the same consistent estimator 
!.  
 
Importantly, the alternative recursive estimator bias approach does not need N or T or both 
being large to compute consistent estimators. Thus, panel dimensions N or T or both are 
not large. In contrast, the asymptotic bias approach obtains asymptotic convergence between 
sample and population estimators, when N or T or both are large.  
 
The alternative recursive estimator bias approach has two mean advantages with respect to 
the asymptotic bias approach.  

1. It provides the means by which a consistent estimator value does not have to be 
predetermined. This avoids researcher bias criteria, which consist on an arbitrary a priori 
population estimator value selection, which is considered by definition a consistent 
estimator; 

2. Asymptotic bias properties are not needed to compute a consistent estimator. 
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