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Abstract

We design a choice experiment where the objects are valued according to only a single
attribute with a continuous measure and we can observe the true preferences of subjects.
However, subjects have an imperfect perception of their own preferences. Subjects are
given a choice set involving several lines of various lengths and are told to select one of
them. They strive to select the longest line because they are paid an amount that is
increasing in the length of their selection. Subjects also make their choices while they are
required to remember either a 6-digit number (high cognitive load) or a 1-digit number
(low cognitive load). We find that subjects in the high load treatment make inferior line
selections and perform worse searches. When we restrict attention to the set of viewed
lines, we find evidence that subjects in the high load treatment make worse choices than
subjects in the low load treatment. Therefore the low quality searches do not fully explain
the low quality choices. Our results suggest that cognition affects choice, even in our
idealized choice setting. We also find evidence of choice overload even when the choice set
is small and the objects are simple. Further, our experimental design permits a multinomial
discrete choice analysis on choice among single-attribute objects with an objective value.
The results of our analysis suggest that the errors in our data are better described as
having a Gumbel distribution rather than a normal distribution. Finally, we observe the
effects of limited cognition, consistent with memory decay and attention.
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1 Introduction

Consider a subject making a binary choice between a bag of potato chips and a can of soda.

The choice from this relatively unhealthy set would allow the experimenter to conduct an

inference of the preferences of the subject. However, this inference is noisy and it is not

straightforward to detect a suboptimal choice.

If preferences are also elicited by a supplementary method (for example, eliciting either

willingness to pay or a ranking of the objects) the experimenter could compare the choice with

this alternate measure. However, both the choice and the supplementary elicitation are noisy.

In the case that preferences are not elicited by a different method, the experimenter would only

be able to identify that a suboptimal action was taken when intransitive choices were made.

In contrast to these two cases, we design an experiment where we have a perfect measure

of the preferences of subjects and we are therefore able to determine-without noise-whether

subjects selected a suboptimal action.

After the chips-soda choice, suppose that the subject is to make another choice from a

different set and the subject will only be given one of their two choices. This second binary

choice is between a can of orange soda and a glass of orange juice. Given an isolated choice

between these objects, the subject would prefer the orange soda. However, after the unhealthy

first choice, the subject selects the orange juice. More generally, due to the repeated nature

of a choice experiment, the attributes of items in previous decision sets might interact with

subsequent decisions in a manner that is not discernible to the observer.

We design a choice experiment where the objects in our experiment are valued according

to only a single attribute and we can observe the true preferences of the subject. Further,

since the objects only have one objective value according to a single dimension, there will not

be an undetected relationship between one of several attributes from a previous choice and

one of several attributes of a subsequent choice.

The objects of choice are lines that vary in length. Subjects attempt to select the longest

line because they are paid an amount that is increasing in the length of their selection. While

we are able to observe the true objective length of each line, it is well-known that subjects have
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imperfect perception of objectively measurable objects (Weber, 1834; Fechner, 1860; Thur-

stone, 1927a,b). In other words, even where objects have objectively measurable properties,

perception of them is imperfect.

Certain regularities regarding these imperfect perceptions have been known for some time.

Perhaps the oldest such regularity is that the larger the stimuli, the more difficult it is to detect

absolute differences between stimuli (Fechner, 1860). For instance, it is often more difficult to

determine the heaviest between a 5kg weight and a 5.5kg weight than it is to determine the

heaviest between a 1kg weight and a 1.5 kg weight. This regularity is sometimes referred to

as Weber’s Law.

Further, the imperfect perception of objective quantities has led researchers to consider

that one’s preferences might be imperfectly perceived and this has served as a justification

for random choice or random utility models. For instance, Bradley and Terry (1952), Luce

(1959a,b), Becker, DeGroot, and Marschak (1963), McFadden (1974, 1976, 1981, 2001), Yellott

(1977), and Falmagne (1978) each make explicit reference to Weber, Fechner, or Thurstone.1

However, despite this known connection between imperfect perception of objective properties

and stochastic choice, to our knowledge, we are the first to conduct an experiment where

suboptimal choices are perfectly observable because utility is represented by a static, single-

attribute physical quantity with an uncountable measure.

Subjects are given a choice set involving several lines of various lengths and are directed

to select one of them. Subjects can only view one line at a time. This design simulates

the feature that deliberation about the desirability of an object compared to another object

crucially involves the memory of the assessments of the objects. This design also allows us to

observe the search history of subjects.

Subjects make their choice when under a cognitive load. This experimental manipulation

is designed to affect the available cognitive resources of subjects, so that the relationship

1More recent papers that cite these authors include Luce (1994, 2005), Ballinger and Wilcox (1997), Loomis,
Peterson, Champ, Brown, and Lucero (1998), Butler (2000), Butler and Loomes (2007), Blavatskyy (2008,
2011), Rieskamp (2008), Caplin (2012), Lévy-Garboua, Maafi, Masclet, and Terracol (2012), Fudenberg, Iijima,
and Strzalecki (2015), Agranov and Ortoleva (2017), Argenziano and Gilboa (2017), Khaw, Li, and Woodford
(2017), Alós-Ferrer, Fehr, and Netzer (2018), Caplin, Csaba, and Leahy (2018), Navarro-Martinez, Loomes,
Isoni, Butler, and Alaoui (2018), and Olschewski, Newell, and Scheibehenne (2019).
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between cognition and behavior can be observed.2 Some choices are made when required to

remember a 6-digit number (high cognitive load) and others when required to remember a

1-digit number (low cognitive load). We have observations about the searches and the choices

of subjects in both cognitive load treatments.

We find that subjects in the high load treatment make inferior line selections. In particular,

the longest line is less likely to be selected and the difference between the length of the longest

line and length of the selected line is larger in the high load treatment. We also find that

subjects in the high load treatment conduct worse searches in that they have fewer unique line

views, fewer overall line views, and they spend less time viewing the longest line. When we

restrict attention to the set of viewed lines, we still find evidence that subjects in the high load

treatment make worse choices than subjects in the low load treatment. Our results suggest

that, even in our idealized setting, choice is affected by the availability of cognitive resources.

We also find evidence of choice overload in a setting without complicated objects (our objects

are simply line lengths) or without many objects (our largest choice set has 6 items). Further,

our design permits a multinomial discrete choice analysis (McFadden, 1974) on choice among

single-attribute objects with an objective value. The results of our analysis suggest that the

errors in our data are better described as having a Gumbel distribution rather than a normal

distribution. Finally, we observe the effects of limited cognition, consistent with memory decay

and attention.

2 Related literature

In order to make sense of choice data, researchers have advanced random utility or random

choice models. The classic efforts include Bradley and Terry (1952), Debreu (1958), Luce

(1959a,b), and Becker, DeGroot, and Marschak (1963). Numerous other random utility or

random choice experimental and theoretical papers have emerged in an effort to better un-

2For instance, see Duffy and Smith (2014) and Deck and Jahedi (2015).
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derstand choice.3 ,4 The conceptualization that utility is random has also lead to significant

advances in econometrics (McFadden, 1974, 1976, 1981, 2001).

We are not the first authors to study choice in a setting where outcomes depend on

an imperfectly perceived object. For instance, Caplin and Dean (2015) and Dutilh and

Rieskamp (2016) examine choice when the judgments involve imperfectly perceived static ob-

jects. Zeigenfuse, Pleskac, and Liu (2014) examine choice involving judgments of imperfectly

perceived dynamic objects. These papers are different from ours in many respects, perhaps

most notably because the imperfect perception in these settings could (in principle) be elimi-

nated by carefully counting the discrete and finite measures. By contrast, the measure of line

length is not countable and therefore the imperfect perception is more difficult to eliminate.

To our knowledge, there are only two instances of papers that study choice where outcomes

depend on an imperfectly perceived object with an uncountable measure. However, both differ

from our setting. Tsetsos, Moran, Moreland, Chater, Usher, and Summerfield (2016) study

choice that involves judgements of the heights of bars. Such a measure is uncountable, however

the size of the bars within each trial is dynamic: the subjects are charged with estimating the

distribution within a trial. By contrast, the size of each line in our setting is static within

each trial. Polanía, Krajbich, Grueschow, and Ruff (2014) examine choice in a setting where

outcomes are based on the area occupied by the image of various objects. Area is also an

uncountable measure. However, the images have different shapes and so the objects vary

according to several meaningful attributes. Therefore, to our knowledge, we are the first to

study choice in a setting where outcomes depend on imperfectly perceived static objects with

an uncountable measure that varies only according to a single relevant attribute.

Some of the recent choice literature has focused on consideration set effects, whereby

3A partial list of these efforts, not previously mentioned, would include Tversky (1969), Loomes, Starmer,
and Sugden (1989), Sopher and Gigliotti (1993), Loomes and Sugden (1995), Sopher and Narramore (2000),
Gul and Pesendorfer (2006), Rubinstein and Salant (2006), Tyson (2008), Caplin, Dean, and Martin (2011),
Conte, Hey, and Moffatt (2011), Wilcox (2011), Gul, Natenzon, and Pesendorfer (2014), Loomes and Pogrebna
(2014), Woodford (2014), Caplin and Dean (2015), Caplin and Martin (2015), Cubitt, Navarro-Martinez, and
Starmer (2015), Lu (2016), Apesteguia, Ballester, and Lu (2017), Dean and Neligh (2017), Ahumada and Ulku
(2018), Apesteguia and Ballester (2018), Echenique, Saito, and Tserenjigmid (2018), Koida (2018), Kovach and
Tserenjigmid (2018), Caplin, Dean, and Leahy (2019), Conte and Hey (2019), and Natenzon (2019).

4For a partial list from the psychology literature, see Regenwetter, Dana and Davis-Stober (2011), Regen-
wetter, Dana, Davis-Stober, and Guo (2011), Regenwetter and Davis-Stober (2012), Birnbaum and Schmidt
(2008, 2011), and Birnbaum (2011).
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the decision maker does not consider the entire set of objects and this is not necessarily

observable to the experimenter.5 However, with our experimental design, we can observe the

consideration set and the objective lengths of the lines. We find that the longest viewed line

is not selected in many trials and this selection is affected by available cognitive resources.

We also find evidence that subjects in the high load treatment make worse choices than

subjects in the low load treatment, even when we restrict attention to the set of viewed lines.

Our analysis therefore suggests that, while there are possibly also consideration set effects,

imperfect perception about one’s preferences is a key component to understanding stochastic

choice.

Matějka and McKay (2015) offer a rational inattention foundation for discrete choice mod-

els. Agents optimally allocate costly attention in order to better understand the true state of

nature.6 Specifically, the agents can reduce the Shannon entropy associated with the choice

setting by incurring costs associated with attention. The authors show that this implies a

random choice specification similar to Luce (1959a). In our experiment, there is a similar

process as subjects devote cognitive effort in order to select the longest line in the choice set.

Reutskaja, Nagel, Camerer, and Rangel (2011) report on a choice experiment that employs

eye tracking equipment. Subjects select items under time pressure (3 seconds) from choice

sets of 4, 9, and 16 objects. Prior to the choice, the experimenters elicit valuations of the

objects. This alternate elicitation allows the authors to judge the quality of the choices. The

authors find that the quality of choices among the set of viewed objects decreased in the size

of the choice set. The authors also find that the quality of searches decreased in the size of the

choice set. Additionally, the authors report that the spatial location of the object is related

to choice and that there is evidence that subjects exhibit memory decay of the value or the

location of the viewed object. Our experiment has a different design, as our subjects have,

for instance, 15 seconds to select among 2− 6 single-attribute objects. Most notably though,

we can objectively determine the quality of the choice since we know the exact lengths of the

lines. Despite these design differences, we find many parallel results. For instance, we find

5For instance, see Masatlioglu, Nakajima, and Ozbay (2012), Manzini and Mariotti (2014), Aguiar, Boc-
cardi, and Dean (2016), Cattaneo, Ma, Masatlioglu, and Suleymanov (2017).

6Also see Weibull, Mattsson, and Voorneveld (2007).
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that the quality of the choice decreases in the size of the choice set and we observe outcomes

consistent with memory decay.

There is a large literature that employs the cognitive load manipulation in order to affect

the available cognitive resources of subjects. Although much of this research appears in the

psychology literature, the technique is more frequently appearing in the economics literature,7

including in strategic settings.8 Most relevant to our purposes, research finds that subjects

in a high cognitive load treatment fail to process available and relevant information (Gilbert,

Pelham, and Krull, 1988; Swann, Hixon, Stein-Seroussi, and Gilbert, 1990). We also note that

subjects under a cognitive load tend to perform worse on visual judgment tasks (Morey and

Cowan, 2004; Allen, Baddeley, and Hitch, 2006; Cocchi et al., 2011; Morey and Bieler, 2013;

Zokaei, Heider, and Husain, 2014; Allred, Crawford, Duffy, and Smith, 2016).

To our knowledge, there are only two other examples of papers that employ the cognitive

load manipulation in a choice setting: Lee, Amir, and Ariely (2009) and Drichoutis and Nayga

(2018).

Lee, Amir, and Ariely (2009) study intransitive choices among pair-wise decisions made

while their subjects are under a cognitive load.9 Surprisingly, the authors find that subjects

under a high cognitive load make fewer intransitive choices than subjects under a low cognitive

load. However, these are real world objects that have attributes whose desirability is not

observable to the experimenters. Further, the repeated nature of the experiment makes it

difficult to determine if the attributes from previous choices affected subsequent choices (either

because the attributes are regarded as complements or substitutes). By contrast our subjects

make judgments on objects that have a value based on single objective attribute.

Drichoutis and Nayga (2018) find that a high cognitive load does not increase internal

inconsistency on a GARP budget allocation task. By contrast, we find that the cognitive load

manipulation negatively affects choices and searches.

7For instance, see Benjamin, Brown, and Shapiro (2013), Schulz, Fischbacher, Thöni, and Utikal (2014),
Deck and Jahedi (2015), and Hauge et al. (2016).

8See Milinski and Wedekind (1998), Roch et al. (2000), Cappelletti, Güth, and Ploner (2011), Carpenter,
Graham, and Wolf (2013), Duffy and Smith (2014), Allred, Duffy, and Smith (2016), Buckert, Oechssler, and
Schwieren (2017), and Duffy, Naddeo, Owens, and Smith (2019).

9See Experiment 4.
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Our experiment presents subjects with a decision problem with an objectively optimal

solution. However because of imperfections with the subjects, they are not able to attain

the optimal solution with certainty. This feature also appears in Gabaix et al. (2006) and

Sanjurjo (2015, 2017). There subjects are given a multi-attribute choice problem where each

attribute value is represented by a number. Since subjects cannot fully process the available

information, despite that there is an objectively optimal solution, the optimal solution is not

attained with certainty. Also similar to our setting, subjects must click on the information in

order to make it appear. In this way, similar to this multi-attribute literature, we can observe

the process of search.10

3 Experimental design

3.1 Overview

The experiment was programmed on E-Prime 2.0 software (Psychology Software Tools, Pitts-

burgh, PA). The sessions were performed on standard 23 inch (58.42 cm) Dell Optiplex 9030

AIO monitors. E-Prime imposed a resolution of 1024 pixels by 768 pixels. A total of 92

subjects participated in the experiment.

3.2 Line selection task

In each round, subjects were presented a choice set of lines that ranged in number between

2 and 6. Each of these choice set sizes occurred with probability 1

5
and were drawn with

replacement. Subjects were able to only view one line at a time. The lines were labeled in

alphabetic order at the bottom of the screen. Letters A and B always represented the first two

options, and consecutive letters were added as needed. Subjects could view a particular line

by clicking on the letter label that corresponds to that particular line. A click on a particular

letter label would reveal the corresponding line. To view another line, subjects click on its

corresponding label. This makes the new line appear and the old line disappear.

10Also see Payne, Braunstein, and Carroll (1978) and Payne, Bettman, and Johnson (1993).
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Each line appeared within a rectangular region of 400 pixels in the horizontal direction

and 150 pixels in the vertical direction. The boundaries of these regions were not visible to

the subjects. The lines were randomly offset vertically and horizontally within these regions

such that there was a minimum cushion between the line and the edge of the region. This

cushion was 20 pixels in the horizontal direction and 10 pixels in the vertical direction. The

offsetting was fixed for each line throughout each trial. The regions were non-overlapping and

arranged in 2 columns and 3 rows, with the regions for A and B in the top row, the regions

for C and D in the middle row, and the regions for E and F in the bottom row.

The length of the lines in any trial were determined by subtracting various amounts from

the longest line. There were 10 possible longest line lengths in pixels ranging in 16 pixel (0.80

cm) increments from 160 pixels (8.0 cm) to 304 pixels (15.1 cm). The lines each had a height

of 0.38 cm.

There were three line length treatments. In the difficult treatment, one line was exactly

one pixel shorter than the longest, and the other differences were drawn from a uniform on

{−1, ...,−11}. In the medium treatment, one line was exactly 12 pixels shorter than the

longest and the other differences were drawn from a uniform on {−12, ...,−39}. In the easy

treatment, one line was exactly 40 pixels shorter than the longest, and the other differences

were drawn from a uniform on {−40, ...,−100}. The difficult, medium, and easy treatments

each occurred with probability 1

3
, in random order, and are drawn with replacement. The

subjects were not informed of the existence of these treatments.

Below each letter label was a box indicating that the subject currently selected that line.

Subjects could change this selection at any time during the allotted 15 seconds. The subjects

could view the time remaining, rounded to the nearest second. See Figure 1 for a screenshot11

and Figure 2 for a characterization of the regions, which are not visible to the subjects.

11See https://osf.io/srpzh/ for the full set of screenshots.
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Figure 1: Screenshot from a trial with 5 lines in the choice set, where line C is

being viewed, line B is currently selected as the longest, and there are 4 seconds

remaining.
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Figure 2: A characterization of the regions, invisible to the subjects, which

contain the corresponding lines.

The choice within each trial was the line that was selected when the 15 seconds expired.

If the subjects did not select a line before time expired, it was assumed that the selected line

had a length of 0. Regardless of their actions in the line judgment screen, subjects would

only advance to the following screen when the 15 seconds had expired. The earnings for this

task were increasing in the length of the choice in that trial, at a rate of $1 per 240 pixels (or

$0.4167 per 100 pixels).

3.3 Cognitive load treatments

There were 50 trials where subjects were given a 6-digit number to remember, which we

refer to as high load. There were 50 trials where subjects were given a 1-digit number to

remember, which we refer to as low load. These were given in random order. Regardless of
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the load, subjects were given 5 seconds to commit the number to memory.12 Subjects would

only proceed to the following screen when the 5 seconds had expired. Each of the 10 longest

line lengths were presented 5 times in the high load treatment and 5 times in the low load

treatment, also in random order.

3.4 Unincentivized practice

Prior to the incentivized portion of the experiment, subjects had unincentivized practice re-

membering both a 1-digit and a 6-digit number. In contrast to the incentivized portion of

the experiment, here subjects were told if their response was correct. If the response did

not contain the correct number of digits then subjects were directed to repeat the practice

memorization task.

Additionally, subjects had an unincentivized practice on the line selection task. Subjects

were given this practice with a choice set of 5 lines in the medium difficulty treatment. If the

subjects did not view any lines, did not select a line that they viewed, or did not select any

lines, the subjects were informed of this and were directed to repeat the practice line selection

task.

3.5 Payment details

Subjects completed 100 line selection tasks and 100 memorization tasks. Those who correctly

completed all 100 memorization tasks were paid for 30 randomly determined line selections,

those who correctly completed 99 were paid for 29, those who correctly completed 98 were

paid for 28, and so on, until subjects who correctly completed 70 or fewer memorization tasks

were not paid for any of the line selection tasks. In addition to these payments, subjects were

also paid a $5 show-up fee. Subjects were paid in cash and amounts were rounded up to the

nearest $0.25. Subjects earned a mean of $26.00.

12The subjects could not view the time remaining in this stage, as these numbers could interact with the
memorization number.
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3.6 Discussion of the design

The goals of our incentive scheme are as follows: strongly incentivize the memorization task,

keep incentives for memorization in each period independent from incentives for the line se-

lection task in that particular period, and maintain identical line selection incentives for high

and low load memorization periods. To strive for these goals, we do not provide feedback on

the memorization task and we pay a number of randomly selected line selection outcomes that

is decreasing in the number of incorrect memorization tasks. Only 5 subjects out of 92 failed

to correctly perform at least 70 memorization tasks, suggesting that the incentive scheme was

sufficiently calibrated. In addition, as feedback was not given on the memorization task, it

is not clear whether subjects realized that they were near or below 70 correct. Finally, while

incorrectly answering a specific memorization task decreases incentives, this affects both high

and low load trials equally and we are primarily interested in the difference between these

treatments.

Subjects were given inflexible time constraints. These fixed times were given so that

subjects were not able to strategically allocate their time in the experiment. For instance, this

design would prohibit subjects in the high cognitive load treatment from spending less time

in the line judgment task so that they could proceed quickly to the memorization task stage.

The boundaries of the regions that contained the lines were not visible to these visible to

the subjects. Our concern was that any such aid would differentially benefit the judgment of

the lengths of extreme (very short or very long) lines. Regions that contained a line always

appeared in the identical spot for that trial. This was done in order to facilitate the location

of the lines.

Finally, we do not put any constraints on the nature of the search beyond the time con-

straints and the constraint that only one line could be viewed at a time.
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4 Results

4.1 Cognitive load

A larger fraction of memorization tasks were correctly completed under low load (97.6%, 4490

of 4600) than high load (85.8%, 3947 of 4600) according to a Mann-Whitney test, Z = 20.53,

p < 0.001.

As each of the 92 subjects attempt 50 high load memorization tasks and 50 low load

memorization tasks, Table 1 presents a characterization of the subject-level distribution of the

number of correct memorization tasks by cognitive load treatment and the number pooled

across treatments.

Table 1: Distribution of subjects by number of correct memorization tasks

Restricted to cognitive load treatments
46− 50 41− 45 36− 40 31− 35 26− 30 21− 25 < 21 Total

High load 50 17 11 5 4 3 2 92
Low load 88 4 0 0 0 0 0 92

Pooled across cognitive load treatments
96− 100 91− 95 86− 90 81− 85 76− 80 71− 75 < 71 Total

Pooled 40 24 13 4 5 1 5 92

The upper panel characterizes the subject-level distribution of the number of
correct memorization tasks by cognitive load treatment. The lower panel charac-
terizes the subject-level distribution of the correct memorization tasks across both
cognitive load treatments.

Table 1 shows that 77 of the 92 subjects successfully completed more than 85% of their

memorization tasks correctly. This suggests that the incentives were sufficient to elicit cogni-

tive effort on these tasks.

4.2 Quality of choices

Here we explore the optimality of choices. We define the Selected longest variable to be a 1 if

the choice was the longest available line and a 0 otherwise. Table 2 characterizes the Selected

longest variable in the cognitive load and difficulty treatments.
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Table 2: Selected longest variable by difficulty treatment

Easy Medium Difficult Pooled
High load 94.6% 73.1% 37.0% 68.9%

1497 of 1582 1124 of 1538 548 of 1480 3169 of 4600
Low load 96.8% 76.3% 38.5% 69.6%

1440 of 1487 1140 of 1495 623 of 1618 3203 of 4600
Pooled 95.7% 74.6% 37.8% 69.3%

2937 of 3069 2264 of 3033 1171 of 3089 6372 of 9200

It appears to be the case that the difficulty treatments were successful in that the longest

line is more likely to be selected in the easy treatment. Table 3 characterizes the variable by

cognitive load and number of lines treatments.

Table 3: Selected longest variable by number of lines treatment

2 Lines 3 Lines 4 Lines 5 Lines 6 Lines
High load 79.0% 74.0% 71.1% 62.3% 57.9%

710 of 899 690 of 932 674 of 948 580 of 931 515 of 890
Low load 78.0% 75.0% 68.0% 66.4% 61.1%

700 of 899 720 of 960 613 of 902 588 of 886 582 of 953
Pooled 78.4% 74.5% 69.6% 64.3% 59.5%

1410 of 1798 1410 of 1892 1287 of 1850 1168 of 1817 1097 of 1843

It also appears that the probability that the longest line is selected is decreasing in the

number of available lines. This appears to be suggestive of choice overload, even from a choice

set of only a few simple objects of choice. Table 4 characterizes the variable in the cognitive

load and longest line length treatments.

Table 4: Selected longest variable by longest line length treatment

160 176 192 208 224 240 256 272 288 304
High load 71.1% 72.0% 69.1% 70.7% 70.4% 70.4% 66.7% 71.5% 64.4% 62.6%
Low load 71.7% 73.9% 75.0% 69.8% 69.4% 68.5% 66.3% 68.0% 67.6% 66.1%
Pooled 71.4% 72.9% 72.1% 70.2% 69.9% 69.5% 66.5% 69.8% 66.0% 64.3%

The Pooled values each have 920 observations. The values restricted to a
cognitive load treatment each have 460 observations.

This suggests that the quality of choices decreases in the length of the longest line. In

Table 5 we characterize the variable according to the number of lines and the letter label of

the longest line.
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Table 5: Selected longest variable by number of lines and letter label of the longest

A B C D E F
2 Lines 77.0% 79.9% − − − −

705 of 916 705 of 882
3 Lines 72.5% 72.5% 78.7% − − −

470 of 648 457 of 630 483 of 614
4 Lines 64.8% 62.0% 71.6% 79.3% − −

289 of 446 279 of 450 351 of 490 368 of 464
5 Lines 64.1% 58.0% 62.8% 70.8% 66.0% −

236 of 368 215 of 371 219 of 349 250 of 353 248 of 376
6 Lines 50.8% 52.8% 50.0% 60.2% 64.5% 78.7%

167 of 329 161 of 305 144 of 288 197 of 327 180 of 279 248 of 315

There appear to be differences in accuracy conditional on the letter label of the longest

line. Tables 2− 5 suggest the relevant variables that should be included in the analysis of the

Selected longest line variable.

We now conduct regressions with the Selected longest variable as dependent variable. Since

the dependent variable is binary, we employ a logistic specification. We include the High load

variable, which obtains a 1 in the high load treatment, and a 0 otherwise. Further, since the

Selected longest variable appears to be affected by the difficulty treatments, the number of

lines treatments, the longest line treatments, and the letter that contained the longest line,

we include these as independent variables. For the difficulty treatments, we include dummy

variables indicating whether the treatment was Easy or whether the treatment was Difficult.

To account for the letter label of the longest line, we offer specifications where we estimate a

unique dummy variable for each of the 20 combinations of letter-number of lines as in Table 5.

However, in the analysis immediately below we do not explore the effect of the letter label on

the quality of the choice. We postpone our discussion of this issue until subsections 4.6 and

4.7. Due to the repeated nature of the observations, we also offer fixed-effects specifications

where we estimate a dummy variable for each subject. We summarize these regressions in

Table 6.
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Table 6 Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.157∗∗ −0.163∗∗ −0.162∗∗ −0.164∗∗

(0.054) (0.055) (0.056) (0.056)
Longest line normalized −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.0006) (0.0006) (0.0006) (0.0006)
Number of lines normalized −0.315∗∗∗ − −0.327∗∗∗ −

(0.020) (0.020)
Easy treatment dummy 2.068∗∗∗ 2.126∗∗∗ 2.218∗∗∗ 2.287∗∗∗

(0.099) (0.100) (0.104) (0.106)
Difficult treatment dummy −1.662∗∗∗ −1.700∗∗∗ −1.729∗∗∗ −1.767∗∗∗

(0.058) (0.059) (0.060) (0.062)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 8337.8 8180.5 8171.7 8014.6

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

In every specification, we see that the high load coefficient is negative. This implies that

choices are worse in the high cognitive load treatment. We also find that the accuracy of the

choice decreases when there is a larger number of lines (choice overload effects) and decreases

in the difficulty of the decision. Additionally, we see that the accuracy decreases in the length

of the longest line. This result could be interpreted as suggesting that subjects are worse

at judging longer lines than shorter lines. This explanation is consistent with Weber’s law.

On the other hand, it is possible that the subjects expended less effort on trials with longer

lines because the subjects knew that they would earn more on these trials than on trials with

shorter lines. These effort-wealth effects could also explain the negative coefficient estimates

for the Longest line variable.

In the appendix, we also report additional analyses that investigate the optimality of

choice. We conduct the analogous tobit regressions with the Longest line minus the selected

line as dependent variable (Table A1). Our results are not changed. Together these results

imply that the availability of cognitive resources affects the quality of the choice.
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4.3 Quality of searches

The analysis above suggests that the high cognitive load treatment implied worse choices.

Here we explore the effect of the cognitive load on the quality of the searches. We define

the View clicks variable as the number of total line view clicks during the search stage. We

conduct an analysis identical to Table 6, with the exception that the dependent variable is

View clicks and the regression is linear, not logistic. Table 7 summarizes this analysis.

Table 7 Regressions of the View clicks variable

(1) (2) (3) (4)
High load −0.339∗∗∗ −0.346∗∗∗ −0.340∗∗∗ −0.348∗∗∗

(0.049) (0.049) (0.040) (0.040)
Longest line normalized −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.001) (0.001) (0.0004) (0.0004)
Number of lines normalized 1.082∗∗∗ − 1.083∗∗∗ −

(0.017) (0.014)
Easy treatment dummy −1.459∗∗∗ −1.470∗∗∗ −1.421∗∗∗ −1.431∗∗∗

(0.060) (0.060) (0.050) (0.050)
Difficult treatment dummy 0.654∗∗∗ 0.639∗∗∗ 0.654∗∗∗ 0.643∗∗∗

(0.060) (0.059) (0.050) (0.050)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 41894.2 41815.7 38318.0 38221.7

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Here we see fewer View clicks in the high load than in the low load. This suggests that

the cognitive load manipulation is affecting the quality of the searches. We also observe that

View clicks is increasing in the number of available lines. Further, we observe that View clicks

is decreasing in the size of the longest line. This suggests that subjects expended less effort in

the searches involving longer lines. Perhaps more surprisingly, we observe more View clicks in

the Difficult treatment and fewer in the Easy treatment. Although we note that Reutskaja et

al. (2011), Krajbich, Armel, and Rangel (2010), and Krajbich and Rangel (2011) find similar

results.
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In the appendix, we also report on additional analyses that investigate the optimality of

searches. These analyses are similar to Table 7 but with dependent variables that capture

the number of unique line views (Table A2), the number of times the longest line was viewed

(Table A3), and the average of the line lengths viewed weighted by their time viewed (Table

A4). In each of these analyses, we find that the subjects in the high cognitive load treatment

perform worse searches than in the low cognitive load treatment.

4.4 Relationship between choice and search

We observe both that choices are worse in the high cognitive load treatment and that searches

are worse in the high cognitive load treatment. A natural question is whether the worse

searches are causing the worse choices. There is a literature that posits that suboptimal

choice occurs because subjects do not consider every object in the choice set, but only a subset.

Further this consideration set is not typically observable to the experimenter. However, due

to our design, we are able to observe whether subjects viewed the longest line.

Among the 9109 trials where subjects viewed the longest line, there are 6354 observations

where the longest line was not selected. However, among the 91 trials where subjects did

not view the longest line there are 73 observations where the longest line was not selected.

Therefore in our data, 98.9% of the suboptimal choices occurred in trials where the subject

viewed the longest line. This suggests that the bulk of our suboptimal choices can be explained

due to imperfect perception rather than not considering the longest line.

In Table 6 above, we explored whether subjects optimally selects the longest line by con-

ducting regressions with the Selected longest line variable. Another question to ask is whether

subjects selected the longest line, among the lines that were viewed. We define the Selected

longest line viewed variable as a 1 if the longest line among those viewed was selected, and a

0 otherwise. We conduct an analysis, similar to Table 6 but rather than using the Selected

longest line variable, we employ the Selected longest line viewed variable. We summarize these

regressions in Table 8.
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Table 8 Logistic regressions of Selected longest line viewed variable

(1) (2) (3) (4)
High load −0.142∗∗ −0.148∗∗ −0.145∗∗ −0.148∗∗

(0.054) (0.055) (0.056) (0.056)
Longest line normalized −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
Number of lines normalized −0.304∗∗∗ − −0.314∗∗∗ −

(0.020) (0.020)
Easy treatment dummy 2.122∗∗∗ 2.186∗∗∗ 2.232∗∗∗ 2.307∗∗∗

(0.102) (0.103) (0.105) (0.106)
Difficult treatment dummy −1.661∗∗∗ −1.703∗∗∗ −1.726∗∗∗ −1.769∗∗∗

(0.058) (0.059) (0.060) (0.062)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 8304.9 8133.5 8176.0 8003.9

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Even when we restrict attention to the set of viewed lines, we still find evidence that sub-

jects in the high load treatment make worse choices than in the low load treatment. Therefore,

consideration set effects cannot fully explain the relationship between cognitive load and the

Selected longest variable, as summarized in Table 6. Additionally, we note a negative rela-

tionship between the quality of choices among the lines that were viewed and the length of

the longest line. We note that while this cannot be explained by consideration set effects, we

cannot distinguish between the Weber’s law explanation and the effort-wealth effects expla-

nation. Finally, we note the negative relationship between selecting the longest line viewed

and the number of lines in the choice set. Reutskaja et al. (2011) find a similar relationship

in their data.

We also conduct an analysis, found in the appendix, that conducts the analogous analysis

by employing tobit regressions on the variable that is the length of the maximum line viewed

minus the length of the line selected (Table A5). Our results are not changed. Together our

results suggest that the consideration set effects do not fully explain the suboptimal choices.
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4.5 Multinomial discrete choice analysis and the nature of the stochastic

utility

An assumption in multinomial discrete choice analysis is that choice is stochastic because

of an unobserved stochastic component in the utility function.13 A common specification in

these random utility models (RUM) is that there is a non-stochastic component of the utility

function and an additive stochastic component. For example, option j would have utility:

Uj = Vj + εj ,

where Vj is the non-stochastic component and εj is the random component. RUMs typically

assume that agents select the item with the largest realized utility. Specifically, a choice of i

from the set K = {1, ..., k} arises when:

Vi + εi ≥ Vj + εj for every j ∈ K.

Further, the non-stochastic components to the RUMs are not typically observable. There-

fore the researcher includes a set of observable features possibly relevant to the choice j,

xj = (xj1, ..., xjn). In order to account for the effect of each of these factors, the analyst also

estimates β = (β1, ..., βn). In these settings, the non-stochastic component is Vj = β ∗ xj .

However, in our setting, the length of the line is the only relevant attribute. Therefore the

non-stochastic component of option j simplifies to:

Vj = β ∗ Lengthj ,

where β is a scalar.

We also note that there can be a range of specifications of the stochastic component. For

instance, εj might be assumed to be normally distributed. On the other hand, the stochastic

component might also be assumed to have the Gumbel distribution, e−e
−ε
. (Confusingly, this is

also referred to as the Type I extreme-value distribution, the double exponential distribution,

13See McFadden (1974, 1976, 1981, 2001).
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and the log-Weibull distribution.) In our experiment, we can perfectly observe the objective

lengths of the lines and the choices made by the subjects. We can therefore run specifications

that employ either of these assumptions of the error distribution and observe which provides

a better fit of the data, given the objective lengths of the lines in the choice set.

We run one specification where the stochastic component has the Gumbel distribution

and is identically distributed for every option. As McFadden (1974) and Yellot (1977) show,

this structure implies the Luce (1959a) stochastic choice model, whereby the probability that

option j is selected from set K is:

P (j) =
eβ∗Lengthj

∑
k∈K

eβ∗Lengthk
.

We denote this Conditional Logistic model as specification (1).

We also run a specification where the stochastic component is assumed to have a normal

distribution and is independently and identically distributed for every option. Yellot (1977)

shows that this corresponds to Case V of Thurstone (1927a). We refer to this Multinomial

Probit model as "Multi Probit 1" and denote it as specification (2).

Further, we run a specification where the stochastic component is assumed to be Gum-

bel but the options are not identically distributed. Specifically, each option has a stochastic

component distributed e−e
− ε
θi where θi varies by the option. This specification is the Het-

eroschedastic Extreme-Value (HEV) model, introduced by Bhat (1995). For identification

purposes, the final two options are assumed to be identically distributed with the unit scale:

θk = θk−1 = 1. We denote the HEV model as specification (3).

Finally, we run a specification where the stochastic component is assumed to be normally

but non-identically distributed. This Multinomial Probit specification assumes that the stan-

dard deviations of the options can be different but that they are also independently distributed.

Note that similar to the HEV model, for identification purposes, we assume that the standard

deviation of the final two choices are identical. We refer to this Multinomial Probit model as

"Multi Probit 2" and denote it as specification (4).

Note that we exclude observations where subjects did not specify a choice before time
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expired. Therefore, the numbers of trials as reported in Table 3 are different than those

reported below in this subsection.

We report the Akaike Information Criterion (AIC, Akaike, 1974) and the Bayesian Infor-

mation Criterion (BIC, Schwarz, 1978) for each model, restricted to a particular number of

lines treatment. We also report the estimate of β for each model in each setting. These analy-

ses14 are summarized in Table 9. Note that for the case of 2 Lines, the Conditional Logistic

regression is identical to the HEV specification, and the Multinomial Probit 1 is identical to

the Multinomial Probit 2 specification. Therefore, we do not report specifications (3) and (4)

for the 2 Lines treatment.

Table 9: Comparisons of different multinomial discrete choice models

Cond Logit Multi Probit 1 HEV Multi Probit 2 Trials
(1) (2) (3) (4)

2 Lines β est. 0.131 0.098 − − 1785
AIC 1417 1432
BIC 1422 1437

3 Lines β est. 0.128 0.086 0.118 0.067 1871
AIC 2088 2140 2078 2145
BIC 2094 2146 2089 2156

4 Lines β est. 0.115 0.076 0.121 0.084 1826
AIC 2718 2801 2709 2820
BIC 2723 2807 2726 2837

5 Lines β est. 0.110 0.108 0.113 0.116 1780
AIC 3181 3383 3186 3282
BIC 3186 3389 3208 3304

6 Lines β est. 0.094 0.062 0.070 0.046 1780
AIC 3775 3808 3613 3684
BIC 3780 3813 3641 3711

We provide the estimates of β, the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) for the various models restricted to treat-
ments with identical numbers of lines. Each of the estimates for β are significantly
different from 0 with p < 0.001.

For both AIC and BIC, every value for the Conditional Logit model (1) is lower than that

for the analogous Multinomial Probit 1 model (2). Additionally for both measures, every

14Each specification was executed with the MDC (multinomial discrete choice) procedure in SAS. Speci-
fication (1) was performed with the clogit option. Specification (2) was performed with the mprobit option.
Specification (3) was performed with the hev option and the Hardy integration method. Specification (4) was
performed with the mprobit option.
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value for the HEV model (3) is lower than that for the analogous Multinomial Probit 2 model

(4). We interpret these results as suggesting that the models that assume that errors have a

Gumbel distribution provide a better fit than comparable models that assume that errors have

a normal distribution. However, we note that the estimates of β vary among the models, and

this is perhaps affecting our results. In order to address this possibility, we offer an analysis,

identical to that summarized in Table 9, however we add an additional restriction that β = 0.1.

This analysis is summarized in Table 10.

Table 10: Comparisons of different restricted multinomial discrete choice models

Cond Logit Multi Probit 1 HEV Multi Probit 2 Trials
(1) (2) (3) (4)

2 Lines AIC 1435 1430 − − 1785
BIC 1435 1430

3 Lines AIC 2116 2154 2087 2154 1871
BIC 2116 2154 2093 2160

4 Lines AIC 2729 2903 2722 2810 1826
BIC 2729 2903 2733 2821

5 Lines AIC 3186 3317 3190 3241 1780
BIC 3186 3317 3207 3257

6 Lines AIC 3776 4153 3691 4097 1780
BIC 3776 4153 3713 4119

We provide the Akaike Information Criterion (AIC) and the Bayesian Informa-
tion Criterion (BIC) for the various models restricted to treatments with identical
numbers of lines. We have restricted β = 0.1 in each specification.

Similar to the analysis summarized in Table 9, with the exception of the 2 Lines treatment,

both the AIC and BIC are lower for the specifications with Gumbel errors than for normal

errors. In 17 of 18 comparisons, the AIC of the Gumbel error specification is lower than that

for the normal error specification. Likewise, in 17 of 18 comparisons, the BIC of the Gumbel

error specification is lower than that for the normal error specification. We interpret these

results as evidence that the assumption that the errors have a Gumbel distribution is a better

fit than the assumption that the errors have a normal distribution.
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4.6 Memory decay and choice

Reutskaja, Nagel, Camerer, and Rangel (2011) report that the quality of choices tend to be

diminishing in number of items viewed between the last item viewed and the best item viewed.

Here we examine whether our subjects exhibit similar behavior consistent with memory decay.

Recall Table 5, which demonstrates the relationship between the quality of choice and the

letter label of the longest line. There appears to be a relationship between the quality of the

choice and number of letters alphabetically between the letter label of the longest line and the

last letter label in the choice set. Below, we test whether there is such a relationship.

We introduce the variable Distance from last, which provides a measure of the alphabetic

distance between the letter label of the longest line and the last letter label in the choice set.

For instance, in the 2 Line treatment, if line A is the longest then the variable is 1 and if line

B is the longest then it is 0. In the 3 Line treatment, if A is the longest then the variable is

2, if B is the longest then it is 1, and if C is the longest then 0. We include Distance from the

last as an independent variable. We also include specifications with the interaction between

the High load dummy and the Distance from last variable. For identification reasons, we do

not include the Letter dummy variables. We summarize these regressions in Table 11.

Table 11 Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.163∗∗ −0.138† −0.168∗∗∗ −0.138

(0.055) (0.082) (0.056) (0.085)
Distance from last −0.245∗∗∗ −0.237∗∗∗ −0.259∗∗∗ −0.250∗∗∗

(0.023) (0.030) (0.023) (0.030)
High load * Distance from last − −0.016 − −0.019

(0.039) (0.040)
Longest line normalized −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
Number of lines normalized −0.194∗∗∗ −0.194∗∗∗ −0.199∗∗∗ −0.199∗∗∗

(0.023) (0.023) (0.023) (0.023)
Easy treatment dummy 2.113∗∗∗ 2.113∗∗∗ 2.270∗∗∗ 2.271∗∗∗

(0.100) (0.100) (0.105) (0.105)
Difficult treatment dummy −1.676∗∗∗ −1.677∗∗∗ −1.746∗∗∗ −1.746∗∗∗

(0.059) (0.059) (0.061) (0.061)
Letter dummies No No No No

Fixed effects No No Y es Y es

AIC 8220.1 8221.9 8049.6 8049.2
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We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts or the subject-specific dummies
in the fixed effects regressions. AIC refers to the Akaike information criterion
(Akaike, 1974). Each regression has 9200 observations. ∗∗∗ denotes p < 0.001, ∗∗

denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

In every specification, we observe a negative relationship between Distance from last and

the quality of the choice. This is consistent with the hypothesis suggested by Table 5. We also

note that there is not a significant interaction between the cognitive load and the Distance from

last variable. Additionally, each of the other coefficients estimates are relatively unchanged

from the analysis summarized in Table 6. The exception to this is that the estimate of the

High load dummy coefficient is not robust to the specifications that include the interaction

between cognitive load and Distance from last.

One explanation for the negative coefficient estimates for the Distance from last variable

is that subjects view the lines in alphabetical order (A then B then C etc.). However, lines

viewed in the more distant past are recalled with a lower precision: either the location of the

longest line or the length of the longest line. To explore this possibility, we define the variable

Time since longest to be the time elapsed since subjects viewed the longest line when the trial

ended. Table 12 demonstrates the relationship between the Time since longest variable and

the letter label of the longest line.

Table 12: Time since longest line by number of lines and letter label of the longest

A B C D E F
2 Lines 2.491 s 1.452 s − − − −
3 Lines 2.801 s 3.464 s 1.347 s − − −
4 Lines 3.150 s 3.335 s 3.232 s 1.810 s − −
5 Lines 3.404 s 3.472 s 3.664 s 3.125 s 2.461 s −
6 Lines 4.117 s 3.986 s 3.627 s 3.270 s 3.211 s 1.800 s

Table 12 suggests that there is a negative relationship between the Time since longest

variable and the number of letter labels alphabetically between that for the longest line and

the last letter label in the choice set. Here we test whether there is such a relationship. To

do so, we conduct an analysis similar to Table 11, however we employ the Time since longest

variable rather than the Distance from last variable. We summarize these regressions in Table
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13. We interpret these results with caution due to the possibility of endogeneity introduced

by including the Time since longest variable.

Table 13 Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.099 −0.147† −0.092 −0.124

(0.061) (0.080) (0.063) (0.084)
Time since longest −0.288∗∗∗ −0.296∗∗∗ −0.318∗∗∗ −0.323∗∗∗

(0.008) (0.012) (0.009) (0.013)
High load * Time since longest − 0.014 − 0.010

(0.015) (0.016)
Longest line normalized −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
Number of lines normalized −0.276∗∗∗ −0.275∗∗∗ −0.291∗∗∗ −0.291∗∗∗

(0.022) (0.022) (0.023) (0.023)
Easy treatment dummy 2.534∗∗∗ 2.531∗∗∗ 2.650∗∗∗ 2.648∗∗∗

(0.113) (0.113) (0.119) (0.119)
Difficult treatment dummy −1.613∗∗∗ −1.613∗∗∗ −1.684∗∗∗ −1.684∗∗∗

(0.066) (0.066) (0.069) (0.069)
Letter dummies No No No No

Fixed effects No No Y es Y es

AIC 6802.6 6803.7 6590.8 6592.5

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts or the subject-specific dummies
in the fixed effects regressions. AIC refers to the Akaike information criterion
(Akaike, 1974). Each regression has 9200 observations. ∗∗∗ denotes p < 0.001, ∗∗

denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

In every specification, there is a negative relationship between the time elapsed since the

longest line was viewed at the end of the trial and the quality of the choice. On the other hand,

we do not find evidence that this relationship is affected by the cognitive load. Further, we

observe qualitatively similar results to those found above, with the exception of the estimate

for the High load variable. In none of the specifications is the estimate significant at 0.05.

It seems that choices are worse when the longest line is more alphabetically distant from

the last letter label in the choice set and the longer the time since the longest line was viewed.

Taken together, our results are consistent with memory decay: lines viewed in the more

distant past are remembered with lower precision. We note that these results are consistent
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with limited cognition but we also note that we do not find a relationship between the memory

decay effects and the cognitive load manipulation. Finally, we note that these effects might

be exacerbated by the relatively smaller spatial distance between F region and the F box

compared with the larger spatial distance between the A region and the A box.

4.7 Attention and choice

Testing for evidence consistent with memory decay is not the only such investigation on the

effects of limited cognitive resources. Here we investigate the role of attention in choice.

Research finds that the time that a subject spends viewing (or fixated on) an object in a

choice setting is associated with a higher likelihood of selecting the object.15 Additionally, the

visual psychology literature also finds that spatial resolution of abstract objects and visual

information processing are enhanced by attention.16

One measure of attention is the total time spent viewing a line. In Table 14, we summarize

the Time viewing variable by the number of lines treatment and the letter label.

Table 14: Time viewing by number of lines and letter label

A B C D E F
2 Lines 6.338 s 6.909 s − − − −
3 Lines 4.356 s 3.675 s 5.195 s − − −
4 Lines 3.238 s 2.966 s 2.953 s 4.104 s − −
5 Lines 2.733 s 2.443 s 2.367 s 2.454 s 3.262 s −
6 Lines 2.263 s 2.080 s 1.993 s 2.005 s 1.975 s 2.938 s

In Table 15, we report the Time viewing variable but restricted to the letter label of the

longest line.

Table 15: Total time viewing longest by number of lines and letter label of the longest

A B C D E F
2 Lines 8.410 s 9.028 s − − − −
3 Lines 7.020 s 6.010 s 7.805 s − − −
4 Lines 5.622 s 5.252 s 5.074 s 6.351 s − −
5 Lines 5.047 s 4.374 s 4.351 s 4.170 s 5.040 s −
6 Lines 3.992 s 3.772 s 3.600 s 3.778 s 3.806 s 4.994 s

15See Armel, Beaumel, and Rangel (2008), Armel and Rangel (2008), Krajbich, Armel, and Rangel (2010),
and Krajbich and Rangel (2011).

16For instance, see Yeshurun and Carrasco (1998), Carrasco and McElree (2001), Carrasco, Williams, and
Yeshurun (2002), and Liu, Abrams, and Carrasco (2009).
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Comparing Tables 5 and 15, there appears to be a relationship between the time spent

viewing the longest line and the likelihood that the longest line was selected. Here we test

this conjecture. We perform an analysis similar to Tables 11 and 13 but with Time viewing

longest as an independent variable. We summarize these regressions in Table 16. Similar

to the analysis summarized in Table 13, we interpret these results with caution due to the

possibility of endogeneity introduced by including the Time viewing longest variable.

Table 16 Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.105 0.030 −0.112† 0.019

(0.065) (0.120) (0.067) (0.125)
Time viewing longest 0.536∗∗∗ 0.556∗∗∗ 0.561∗∗∗ 0.579∗∗∗

(0.014) (0.020) (0.015) (0.021)
High load * Time viewing longest − −0.035 − −0.034

(0.026) (0.027)
Longest line normalized −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
Number of lines normalized 0.121∗∗∗ 0.122∗∗∗ 0.135∗∗∗ 0.137∗∗∗

(0.025) (0.025) (0.026) (0.026)
Easy treatment dummy 2.297∗∗∗ 2.293∗∗∗ 2.396∗∗∗ 2.391∗∗∗

(0.112) (0.112) (0.120) (0.120)
Difficult treatment dummy −1.387∗∗∗ −1.387∗∗∗ −1.441∗∗∗ −1.441∗∗∗

(0.070) (0.070) (0.073) (0.073)
Letter dummies No No No No

Fixed effects No No Y es Y es

AIC 6054.4 6054.6 5974.5 5975.0

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts or the subject-specific dummies
in the fixed effects regressions. AIC refers to the Akaike information criterion
(Akaike, 1974). Each regression has 9200 observations. ∗∗∗ denotes p < 0.001, ∗∗

denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

In every specification, the quality of the choice is increasing in the time viewing the longest

line.17 A similar result is reported by Krajbich and Rangel (2011). Also in every specification,

we do not find a significant interaction between the cognitive load and the time viewing the

longest. We also find a similar relationship involving the difficulty treatments and the length

17We find similar results if we measure attention with the number of view clicks on the longest line or
whether subjects viewed the longest line 2 or more times.
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of the longest line variable. However, we observe that the Number of lines coefficient estimate

is positive. This is likely related to the apparently negative relationship between Time viewing

longest variable and the longest line variable.

Our results suggest that (endogenous) attention is related to choice. However, we do not

find that the cognitive load manipulation affects this relationship.

5 Conclusion

We observe subjects in an "idealized" choice setting where we know the true preferences of the

subjects, but subjects have an imperfect perception of their preferences. The objects of choice

are lines that vary in length and subjects are paid an amount increasing in the length of the

selected line. This feature allows us to make unambiguous conclusions about the optimality

of choices. Subjects also make their choices in different cognitive load treatments, which are

designed to manipulate their available cognitive resources.

Are there brains in choice? Our results suggest a qualified "yes." In our choice setting,

we found that differences in available cognitive resources, as manipulated by cognitive load,

implied differences in both choice and search. Further, we observe that cognitive load affects

the quality of the choice, even when we restrict attention to the set of observed lines. This

suggests that the relatively low quality searches in the high cognitive load treatment are not

the primary cause of the suboptimal choices.

Additionally, we find evidence of choice overload in our setting, where the choice set is

small and the objects are simple. We also observe limited cognition effects, consistent with

memory decay and attention. However, we note that these effects that are consistent with

memory decay and attention are not affected by the cognitive load manipulation.

Many random utility models posit that there is a non-stochastic component and an additive

stochastic component, which is also referred to as an error term. An additional advantage of

our design, where we know the true preferences of the subjects, is that we are well-positioned

to test the nature of these errors. We run specifications that assume normally distributed

errors and analogous specifications that assume errors have a Gumbel distribution. We find
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that in 17 of 18 pairwise comparisons, the Gumbel specifications provide a better fit. We

interpret this as suggesting that the assumption of Gumbel errors is more accurate than the

assumption of normal errors.

We admit that there is much work to be done on the topic. We are interested to learn the

insights gleaned from eye-tracking and neuroeconomics techniques in our setting.18 We are also

interested in whether our results on Gumbel errors extend to other stimuli with uncountable

measures, for example brightness, loudness, etc. Whereas our design entailed objects valued

on only a single attribute, we hope that future designs will study behavior in settings where

the objects are valued based on multiple attributes (Gabaix et al., 2006; Sanjurjo, 2015,

2017). Specifically, we are interested to learn if classic multiple attribute effects, such as the

decoy effect, can be replicated in this setting and if the attributes interact as compliments or

substitutes.19

Further, alternate payment schemes could yield additional insights. For instance, rather

than paying an amount that increases in the length of the selected line, consider a fixed pay-

ment if the longest line in the choice set is selected. This could help us distinguish between the

Weber’s law explanation and the effort-wealth effects explanation for the negative relationship

between the quality of choice and the length of the lines.

Finally, in our design, subjects were forced to select only a single object from the choice

set. We are interested to study behavior if subjects are not constrained to select only one,

and are able to select more than one object. Such a multiple selection could be interpreted as

indifference if the received object was randomly selected among the chosen objects. We leave

these and other interesting questions to future research.
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6 Appendix

6.1 More on the quality of choices

In order to investigate the optimality of choices, in Table 6 we summarized logistic regressions

of the Selected longest variable. Here we perform the analogous exercise but we analyze the

Longest minus selected variable, defined to be the length of the longest line minus the length

of the selected line. As this variable is bounded below by 0 we perform tobit regressions. The

regressions are otherwise identical to those in Table 6. We summarize these tobit regressions

in Table A1.

Table A1 Tobit regressions of Longest minus selected variable

(1) (2) (3) (4)
High load 6.745∗∗∗ 6.987∗∗∗ 6.641∗∗∗ 6.872∗∗∗

(1.832) (1.835) (1.784) (1.786)
Longest line normalized 0.133∗∗∗ 0.132∗∗∗ 0.131∗∗∗ 0.131∗∗∗

(0.020) (0.020) (0.019) (0.019)
Number of lines normalized 10.007∗∗∗ − 9.915∗∗∗ −

(0.664) (0.649)
Easy treatment dummy −53.686∗∗∗ −53.828∗∗∗ −56.245∗∗∗ −56.505∗∗∗

(2.967) (2.975) (2.987) (2.996)
Difficult treatment dummy 34.991∗∗∗ 34.850∗∗∗ 34.379∗∗∗ 34.180∗∗∗

(2.092) (2.096) (2.044) (2.047)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 35721 35674 35445 35398

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Similar to Table 6, the accuracy of the choice decreases when there is a larger number of

lines, decreases in the length of the longest line, and decreases in the difficulty of the decision.

Further, in every specification, we see that the high load coefficient is positive. This implies

that choices are worse in the high cognitive load treatment.
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6.2 More on the quality of searches

In order to investigate the optimality of searches, we summarized the regressions of the View

clicks variable (Table 7). Here we perform the analogous exercise but we analyze the Unique

lines viewed variable, defined to be the number of unique lines viewed during a trial. This

analysis is summarized in Table A2.

Table A2 Regressions of Unique lines viewed variable

(1) (2) (3) (4)
High load −0.027∗∗∗ −0.027∗∗∗ −0.027∗∗∗ −0.027∗∗∗

(0.008) (0.008) (0.007) (0.007)
Longest line normalized −0.0002∗ −0.0002∗ −0.0002∗ −0.0002∗

(0.0001) (0.0001) (0.0001) (0.0001)
Number of lines normalized 0.981∗∗∗ − 0.982∗∗∗ −

(0.003) (0.002)
Easy treatment dummy 0.008 0.008 0.014† 0.014

(0.010) (0.010) (0.009) (0.009)
Difficult treatment dummy −0.010 −0.010 −0.003 −0.003

(0.010) (0.010) (0.009) (0.009)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 8231.0 8322.5 6483.0 6583.5

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Similar to Table 7, we find evidence of worse searches in the high cognitive load treatment.

Also interestingly, we find that the Number of lines coefficient is close to, but smaller than, 1.

This suggests that adding another line to the choice set implies that the number of unique lines

viewed increases by less than 1. Next we investigate the optimality of searches by performing

the analogous analysis but with the View clicks on longest variable, defined to be the number

of times that the longest line was viewed during a trial. This analysis is summarized in Table

A3.
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Table A3 Regressions of View clicks on longest variable

(1) (2) (3) (4)
High load −0.128∗∗∗ −0.136∗∗∗ −0.128∗∗∗ −0.137∗∗∗

(0.020) (0.020) (0.018) (0.017)
Longest line normalized −0.0003 −0.0004† −0.0003 −0.0004∗

(0.0002) (0.0002) (0.0002) (0.0002)
Number of lines normalized −0.124∗∗∗ − −0.123∗∗∗ −

(0.007) (0.006)
Easy treatment dummy −0.406∗∗∗ −0.413∗∗∗ −0.390∗∗∗ −0.397∗∗∗

(0.025) (0.024) (0.022) (0.021)
Difficult treatment dummy −0.099∗∗∗ −0.110∗∗∗ −0.099∗∗∗ −0.109∗∗∗

(0.025) (0.024) (0.022) (0.021)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 25678.8 25304.9 23533.6 23028.9

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We find evidence that subjects in the high cognitive load treatment view the longest line a

smaller number of times than the subjects in the low cognitive load treatment. Again, similar

to Table 7 and A2, we see evidence that the high cognitive load negatively affects search.

Interestingly, the estimates for both the Easy treatment dummy and the Difficult treatment

dummy variables are negative. Perhaps this is the case because in the Easy treatment, there

is not a need to verify the longest line with an additional click. And perhaps in the Difficult

treatment, finding the longest line is excessively difficult.

We conduct another analysis of the quality of the searches, similar to the analysis above.

However, as the dependent variable we employ Line lengths weighted by time variable, defined

to be the average of the line lengths viewed weighted by the fraction of the trial in which it

was viewed. This is summarized in Table A4.
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Table A4 Regressions of Line lengths weighted by time variable

(1) (2) (3) (4)
High load −3.536∗∗∗ −3.478∗∗∗ −3.531∗∗∗ −3.465∗∗∗

(0.460) (0.459) (0.404) (0.404)
Longest line normalized 0.869∗∗∗ 0.870∗∗∗ 0.869∗∗∗ 0.870∗∗∗

(0.005) (0.005) (0.004) (0.004)
Number of lines normalized −3.148∗∗∗ − −3.180∗∗∗ −

(0.163) (0.144)
Easy treatment dummy −13.172∗∗∗ −13.190∗∗∗ −12.850∗∗∗ −12.840∗∗∗

(0.564) (0.564) (0.498) (0.498)
Difficult treatment dummy 5.496∗∗∗ 5.495∗∗∗ 5.892∗∗∗ 5.907∗∗∗

(0.563) (0.562) (0.498) (0.497)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 83013.3 82913.1 80271.3 80166.6

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

The line lengths weighted by time viewed is significantly smaller in the low cognitive load

treatment. Again, we find evidence that subjects in the high cognitive load treatment conduct

worse searches.

6.3 More on the relationship between choice and search

In order to investigate the relationship between choice and search, in Table 8 we summarized

logistic regressions of the Selected longest line viewed variable. Here we perform the analogous

exercise but we analyze the Longest viewed minus selected variable, defined to be the length

of the longest line viewed minus the length of the selected line. As this variable is bounded

below by 0 we perform tobit regressions. The analysis is otherwise identical to those in Table

8. We summarize these tobit regressions in Table A5.
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Table A5 Tobit regressions of Longest viewed minus selected variable

(1) (2) (3) (4)
High load 5.539∗∗ 5.765∗∗ 5.473∗∗ 5.694∗∗

(1.791) (1.793) (1.759) (1.761)
Longest line normalized 0.126∗∗∗ 0.125∗∗∗ 0.123∗∗∗ 0.122∗∗∗

(0.019) (0.019) (0.019) (0.019)
Number of lines normalized 9.820∗∗∗ − 9.815∗∗∗ −

(0.649) (0.641)
Easy treatment dummy −56.041∗∗∗ −56.386∗∗∗ −57.441∗∗∗ −57.892∗∗∗

(2.996) (3.010) (3.011) (3.026)
Difficult treatment dummy 34.258∗∗∗ 34.087∗∗∗ 34.196∗∗∗ 33.976∗∗∗

(2.034) (2.037) (2.010) (2.013)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 34825 34768 34697 34638

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Similar to Table 8, the accuracy of the choice decreases when there is a larger number of

lines, decreases when the longest line is longer, and decreases in the difficulty of the decision.

Further, in every specification, we see that the high load coefficient is positive. This implies

that choices are worse in the high cognitive load treatment.
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