
Munich Personal RePEc Archive

Microeconometric Dynamic Panel Data

Methods: Model Specification and

Selection Issues

Kiviet, Jan

University of Amsterdam

5 April 2019

Online at https://mpra.ub.uni-muenchen.de/93147/

MPRA Paper No. 93147, posted 08 Apr 2019 12:22 UTC



Microeconometric Dynamic Panel Data Methods:
Model Specification and Selection Issues

Jan F. Kiviet∗

Version of 5 April 2019

JEL Classifications: C18, C23, C26, C52, C81, C87, J23
Keywords: classification of explanatories; dynamic impacts; interactions;
feedback mechanisms; generalized method of moments; labor demand;

model building strategy; short panels.

Abstract

A motivated strategy is presented to find step by step an adequate model speci-
fication and a matching set of instrumental variables by applying the programming
tools provided by the Stata package Xtabond2. The aim is to implement gener-
alized method of moment techniques such that useful and reasonably accurate
inferences are extracted from an observational panel data set on a single micro-
econometric structural presumably dynamic behavioral relationship. In the sug-
gested specification search three comprehensive heavily interconnected goals are
pursued, namely: (i) to include all the relevant appropriately transformed possibly
lagged regressors, as well as any interactions between these if it is required to relax
the otherwise very strict homogeneity restrictions on the dynamic impacts of the
explanatories in standard linear panel data models; (ii) to correctly classify all re-
gressors as either endogenous, predetermined or exogenous, as well as being either
effect-stationary or effect-nonstationary, implying which internal variables could
represent valid and relatively strong instruments; (iii) to enhance the accuracy
of inference in finite samples by omitting irrelevant regressors and by profitably
reducing the space spanned by the full set of available internal instruments. For
the various tests which trigger the decisions to be made in the sequential selection
process the relevant considerations are spelled out to interpret the magnitude of
p-values. Also the complexities to establish and interpret the ultimately estab-
lished dynamic impacts are explained. Finally the developed strategy is applied
to a classic data set and is shown to yield new insights.

1. Introduction

When analyzing a panel data set covering a short time span for a relatively large number
of subjects (families, companies, etc.), and especially when one may have to deal too with
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possible joint dependence of some of the variables occurring in the structural behavioral
relationship under study, the best option seems to employ the generalized method of
moments (GMM) estimation technique. Its use in this context for single dependent
variables following a continuous distribution has been promoted especially by Arellano
and Bond (1991). Its frequent application in practice has been stimulated in particular
by the development of the Stata package Xtabond2 (StataCorp LLC, College Station,
TX, USA) by Roodman (2009a). Below we will develop a strategy for searching an
adequate specification when modeling dynamic panel data relationships using GMM.
This strategy is largely in line with the one already set forth in Bond (2002), though
here it is supplemented with various hints regarding particular additional methodological
and practical concerns and with detailed instructions for employing Xtabond2.
In what follows, the reader is supposed to be already familiar with the technicalities of

GMM for dynamic panel data models, including its one and two-step implementations
as suggested by Arellano and Bond (1991) and Blundell and Bond (1998), and also
with Sargan-Hansen tests for (subsets of) over-identification restrictions, tests for first
and second order serial correlation as developed by Arellano and Bond (1991) and the
various options to aim at improved finite sample performance, such as robustifying
1-step and correcting 2-step GMM standard errors and mitigating estimator bias by
constraining the set of internal instrumental variables in one way or another. More
details on and further useful references regarding most of these technicalities can be
found in the first part of Kiviet, Pleus and Poldermans (2017). Its second part, which
addresses major aspects of the actual performance under particular circumstances as
obtained from simulation experiments of the various available individual statistical tools,
will sometimes be referred to when discussing the vulnerability of the sequential stages
of the model specification and instrument selection strategy to be developed here.
So, the major purpose of this study is to provide clues on how to use all the available

inference tools and their various options effectively in a situation where an empirical
panel data set is available to model one particular dependent variable, but where it is yet
largely unknown which regressors should be included in an appropriate model and which
variables seem proper instruments. Section 2 discusses in various subsections general
methodological considerations regarding the confrontation of scientific aspirations and
practical limitations in the context of analyzing panel data. Special attention will be paid
to the role played by p-values, which are being substantiated in Appendix A. Section 3
discusses the consequences for dynamic reaction patterns of including in the model lags
of the dependent and of other variables as regressors. Special attention is being paid to
the complex dynamic impacts of regressors affected themselves by feedbacks, and also
to how the standard linear dynamic panel data model can be augmented by interaction
terms in order to allow for heterogeneity in dynamic impact multipliers. Next, Section 4
focuses on some further practical considerations typical when analyzing dynamic panel
models and employing Xtabond2. Also, from all foregoing considerations, it compiles a
comprehensive practical 10-stages search strategy. This aims to find from an appropriate
panel data set an adequate actual empirical model specification with a matching GMM
implementation and sensible inferences on the major characteristics of the established
relationship. Section 5 employs the developed strategy to the classic data set also used in
Arellano and Bond (1991) and Blundell and Bond (1998). Section 6 draws some general
conclusions.
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2. General methodological considerations

The econometric methodology that we will present aims at obtaining for a single struc-
tural (i.e. causal) relationship estimates of the unknown parameters which are consis-
tent and relatively efficient as well as reasonably accurate. So, the coefficient estimates
should converge fairly fast to their true values for a sample with a hypothetically in-
creasing number of independently drawn subjects, but in the actually available finite
sample they should also have moderate bias and standard deviation. To achieve this,
one should arrive, after several stages to be described below, at a parsimonious though
adequate specification of the explanatory part of the model with an effective set of in-
strumental variables. This set should contain at least as many instrumental variables
as the model has unknown coefficients to satisfy the necessary order condition for ac-
complishing identification. For consistency the instrumental variables should be valid
(uncorrelated with the unexplained idiosyncratic disturbances of the estimated model).
Efficiency is fostered by pursuing on the one hand the effectivity of the instruments
(they should have substantial correlation in a multivariate sense with the explanatory
variables of the model) and on the other hand the parsimony of the model specification
(exclude redundant explanatories). The two objectives consistency and efficiency are
asymptotic in nature and are therefore rather abstract. It is mostly taken for granted
—although below we will encounter particular contrarian regularities— that by pursuing
these abstract asymptotic goals the actual accuracy in the sample at hand will benefit
as well.
This section has six subsections. In the first we argue in general terms how to start-

up a specification search by clarifying various hazards and opportunities. In the second
subsection most of these aspects are formalized. Then, against this formal background,
the third subsection discusses how to obtain an initial general statistically adequate
model as a yet rough but precious diamond, from which through a careful sequential
grinding process the pursued valuable object should finally emerge. The fourth discusses
the major dilemmas the practitioner faces in the various stages of such a specification
search. The fifth subsection highlights the crucial role plaid by the interpretation of
p-values in the sequential decision processes to be laid out. And the sixth and final
subsection shortly addresses the major consequences of using the same sample data in
sequences of hypothesis tests.

2.1. Getting started

To foster in a practical modelling situation the goals of consistency and efficiency it
seems a good idea to start off with a model specification which does not impose too
many implicit or explicit coefficient restrictions, but does limit in a particular sense at
the same time the number of exploited moment conditions. Regarding the coefficients
this implies not starting with an overly simplistic model specification but including
in the initial specification any variables (in as far as the available data set permits)
which may possibly be relevant for the direct determination of the current dependent
variable according to the available substantive economic theory. Because most empirical
relationships are dynamic, statistical adequacy of this model specification may most
probably require (see Section 3) the inclusion of one or more lags of each individual
explanatory variable, as well as lags of the dependent variable. At the same time,

3



inclusion of sufficient lagged variables may prevent occurrence of serial correlation of
the error terms. The reason for this recommended lavishness regarding the inclusion
of (lagged) regressors is that when relevant explanatory variables would be wrongly
omitted, this has devastating consequences for the error term of the misspecified model,
which will impede finding valid instruments and realize consistency of the estimators.
Regarding the candidate instrumental variables, the strategy to adopt initially a lim-

ited number of moment conditions should imply the following: To account for the pos-
sible relevance of reverse causality initially all current (i.e. unlagged) regressors should
preferably be treated as endogenous instead of predetermined or exogenous. Regressors
should be classified immediately as exogenous only in case it is obvious that they ob-
tain their values completely outside the mechanism under study, such as time-dummies,
hours of sunshine or current age of the subject. In this way one abstains as much as
possible from using any instrumental variables and corresponding moment conditions
which could possibly be invalid.
In the present context of dynamic structural panel data models to be estimated by

GMM all instrumental variables usually stem from possibly linearly transformed lags
(or leads or current observations) of the explanatory variables. Direct feedback from
the current dependent variable —which includes the current error term— into a current
explanatory variable renders the latter endogenous. Presence of lagged feedback of the
dependent variable into an explanatory variable —in the absence of direct feedback—
renders it predetermined. Occurrence of any possibly delayed feedbacks, together with
specific assumptions on any form of serial correlation of the disturbance term, determine
the suitability of an explanatory variable (or any of its leads or lags) as a valid instru-
mental variable. In case of non-zero first- and higher-order serial correlation of the error
terms, most or even all (lagged) variables affected by feedbacks become invalid instru-
ments. To avoid this, dynamic panel relationships should preferably be specified such
that it is reasonable to assume that all dynamics has been accounted for by including
sufficiently lagged regressors in the explanatory part of the model, resulting in a remain-
ing idiosyncratic error term that —when supported by appropriate empirical evidence—
can be assumed to be serially uncorrelated.
Usually the equation which is actually estimated will be taken in first differences, in

order to eliminate unobserved time-constant heterogeneity represented by the so-called
individual effects. Then, when the errors of the level equation are serially uncorrelated
indeed, those of the first-differenced equation have negative first-order serial correlation
of moving average form, with a first-order serial correlation coefficient -0.5 and zero
second and higher-order serial correlation coefficients. In that case, the first difference
of the error term will be uncorrelated with the second and higher order lags of any
explanatory variable, irrespective of any instantaneous or lagged feedbacks from the
dependent variable in that variable. When a regressor is affected just by lagged feedback
from the dependent variable then the first lag of such a regressor must be uncorrelated
with the first difference of serially uncorrelated disturbances, whereas in case of no
feedbacks (i.e. for a strictly exogenous regressor) any lag or lead of that variable will
be a valid instrument with respect to the error term, irrespective of its transformation
or its serial correlation. Hence, from an exogenous regressor many more instruments
can be constructed than from a predetermined regressor, whereas from an endogenous
regressor fewer instruments can be constructed than from a predetermined one.
From the above informal introduction we can already distil three prominent guidelines
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which will be more formally substantiated later in this study:
(i) Limiting the number of employed orthogonality conditions in the initial stage of

the search process should be understood as that one should restrain oneself in the first
stages of the modelling process in using current and first lagged regressors as instruments
for the first-differenced equation, except when it is obvious that a regressor is strictly
exogenous.
(ii) In general one can use at least as many instruments constructed from an exoge-

nous regressor as one can use from a predetermined regressor, and similarly at least as
many from a predetermined regressor as one derives from an endogenous one. This is in
contrast with what most practitioners do these days. In dynamic panel research, often
the habit from standard static simultaneous equation estimation is followed, where each
exogenous regressor is just instrumented by itself. However, in general, lags of exogenous
regressors will establish strong and valid instruments for any non-exogenous regressors,
in particular for regressors affected by immediate or lagged feedbacks from the dependent
variable, in particular the lagged dependent regressor variables themselves.
(iii) Under the assumption of serially uncorrelated errors any second or higher order

lagged regressor should constitute a valid instrument for the first-differenced equation.
Hence, when upon testing the validity of such instruments a rejection results, the con-
clusion should not be that they are simply invalid and should be removed from the set
of instruments. On the contrary, the conclusion should be that apparently the model
is misspecified. Because, when a lagged regressor has wrongly been omitted from the
model, the implied error term of this misspecified model will usually be correlated with
that omitted variable. Self-evidently, this lagged variable and higher order lags of it
with which it is most probably autocorrelated, should then turn out to be invalid in-
struments for the misspecified model. So, although counter-intuitively at first view, the
proper reaction to such instrument invalidity of an at least twice lagged regressor should
not be to remove it form the set of instruments, but to keep it as an instrument and
use it as a regressor as well to force more appropriate disturbances. Possibly, however,
other variables that happen to be correlated with these "invalid instruments" have been
omitted from the regression. Anyhow, if at least twice lagged regressors turn out to be
invalid instruments this implies that the regression equation has not yet been specified
adequately.

2.2. Formalization of some of the principles just set forth

Following the above considerations an initial model specification should have the general
form

yi,t =
∑p0

l=1γlyi,t−l +
∑M

m=1

∑pm
l=0β

(m)
l x

(m)
i,t−l +

∑T

s=2τsd
(s)
i,t + ηi + εi,t, (2.1)

where i = 1, ..., N and t = 1, ..., T and the single dependent variable yi,t is explained by:
(i) p0 ≥ 1 lags of this dependent variable, (ii) pm ≥ 0 lags of M distinct explanatory

variables x
(m)
i,t , (iii) T − 1 time-dummies, where d

(s)
i,t = 1 for t = s and zero otherwise,

(iv) N random or fixed individual effects ηi, and (v) idiosyncratic disturbances εi,t.
This family of general linear (in its coefficients) autoregressive distributed lag panel
data models has some very specific family members, namely: (a) when pm = 0 for all
1 ≤ m ≤ M and p0 = 1 with |γ1| < 1 we have a so-called partial adjustment panel
model; (b) this specializes to a static panel model when γ1 = 0; (c) and otherwise, when
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p0 = 1 with γ1 = 0, while 0 ≤ pm � ∞ for 1 ≤ m ≤ M with some pm > 0, the model
is known as a classic finite distributed lag panel data model. In many empirical cases,
especially for annual data, the orders p0, ..., pM will probably not exceed 1 or 2.
We assume that all individual variables yi,t and x

(m)
i,t occurring in (2.1) have been

observed. And, variables prior to yi,1−p0 and x
(m)
i,1−pm

and after yi,T and x
(m)
i,T for m =

1, ...,M are not available. So, just for the sake of simplicity, we assume the panel
data set to be balanced. However, particular forms of unbalancedness can easily be
accommodated; in the illustration of Section 5 we will use an unbalanced data set.
Unobservable are the p0+

∑M

m=1(pm+1) slope coefficients, the T−1 time-effects τt, theN
individual effects ηi and the NT disturbances εi,t. The model does not include an overall
intercept, as the individual effects establish unrestricted individual specific intercepts.
The restriction τ1 = 0 has been imposed to avoid dummy-trap identification problems.
Hence, τ2, ..., τT represent time-effects in deviation from the individual intercepts. T is
supposed to be relatively small, often a one digit number. Therefore the time-effects τt
can be treated as coefficients of the fixed dummy variables d

(s)
i,t and estimated jointly with

all slope coefficients. As we assume N to be relatively large and approaching infinity in
an asymptotic analysis the individual effects will be treated differently.

2.2.1. Classification of variables

A researcher does not only have to make a decision on which explanatories x(m) should be
included in the model, but also whether the observed phenomena, including y, should
first be transformed, for instance by taking logs or not, measuring them in constant
prices or not, scaling them (by size of the population or size of the firm) etc. In this way
the linearity in its coefficients does not preclude model (2.1) to represent a relationship
which is nonlinear in its basic underlying explanatory phenomena.
Self-evidently, the regressand yi,t is endogenous, because it is determined within the

model, implying that it is directly affected by the unexplained component, the random
disturbance εi,t. The regressors of a model can be classified as being either endogenous,
predetermined or strictly exogenous with respect to εi,t. We use a classification of the

variables yi,t−l−1 and x
(m)
i,t−l for l ≥ 0, which presupposes that: (i) the M explanatories

and the lag-orders p0, ..., pM have been chosen such that the εi,t are serially uncorrelated,
i.e. E(εi,tεi,s) = 0 ∀t 6= s, and (ii) the current unobserved disturbances εi,t are in fact
innovations with respect to all variables of the model observed prior to t. This implies
E(x

(m)
i,t−lεi,t) = 0 and E(yi,t−lεi,t) = 0 for l > 0. Then the classification of the variables

with respect to εi,t is defined as follows:

— self-evidently, all variables yi,t−l for l > 0 are predetermined;

— a variable x
(m)
i,s is classified as strictly exogenous if E(x

(m)
i,s εi,t) = 0 ∀t, s;

— a variable x
(m)
i,t is predetermined if E(x

(m)
i,s εi,t) = 0 for s ≤ t and possibly

nonzero otherwise;
— a variable x

(m)
i,t is endogenous if E(x

(m)
i,t εi,t) 6= 0.

Note that if x
(m)
i,t is endogenous then x

(m)
i,t−l is predetermined for l > 0 and if x

(m)
i,t is

predetermined then x
(m)
i,t−l is predetermined too for l > 0.

Endogeneity of a regressor x
(m)
i,t , say x

(1)
i,t , may occur for various reasons. Assume that
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an appropriate model for x
(1)
i,t is

x
(1)
i,t =

∑p∗
1

l=1γ
∗
l x

(1)
i,t−l +

∑p∗
0

l=0β
∗
l yi,t−l + ...+

∑T

s=2τ
∗
s d

(s)
i,t + η∗i + ε

∗
i,t. (2.2)

If either β∗0 6= 0 or E(εi,tε
∗
i,t) 6= 0 then E(x

(1)
i,t εi,t) 6= 0 and x

(1)
i,t is endogenous with

respect to εi,t. When β0 6= 0 and β∗0 6= 0 then yi,t and x
(1)
i,t are jointly determined by

simultaneous relationships expressing two-way causality. In case model (2.1) suffers from

omitted time-varying regressors, or when x
(1)
i,t is affected by measurement errors, this

may also lead to E(x
(1)
i,t εi,t) 6= 0 and, more seriously, may also undermine the assumed

innovation assumption regarding εi,t. If β
∗
0 = 0 and E(εi,tε

∗
i,t) = 0, whereas at least one

coefficient β∗l 6= 0 (for 1 ≤ l ≤ p∗0) then x
(1)
i,t is predetermined with respect to εi,t. In

that case x
(1)
i,t is affected by lagged feedback from yi,t, whereas the feedback from yi,t (or

εi,t) is instantaneous when x
(1)
i,t is endogenous. Similar feedbacks may also occur more

indirectly, when some of the further explanatory variables of x
(1)
i,t are affected (probably

via yi,t−l) by εi,t−l for some l ≥ 0. Direct and indirect as well as instantaneous and
lagged feedbacks seem very relevant for actual economic behavioral relationships, so the
modelling strategy to be developed should be able to cope with them. However, at
the same time this strategy aims to model just the essentials of the autonomous single
structural relationship for yi,t, leaving open many aspects of relationships such as (2.2)
and the complete system in which the single relationship for yi,t operates.
Situations are rare where (dynamic) economic theory is so explicit that it straight-

forwardly implies the actual true classification of regressors x
(m)
i,t with respect to εi,t.

Therefore, as long as no convincing theory or empirical evidence points into a different
direction, the safe choice is to assume each regressor x

(m)
i,t to be endogenous, because

that requires abstaining from moment conditions which would only be valid in case x
(m)
i,t

would be predetermined or exogenous. Since it makes sense to adopt for an endogenous
regressor x

(m)
i,t the moment conditions E(x

(m)
i,t−lεi,t) = 0 for l > 0 only when the εi,t are

serially uncorrelated innovations indeed, it is of paramount importance when specifying
(2.1) to effectuate: (a) avoiding the omission of relevant regressors x

(m)
i,t ; (b) including

a sufficient number of lagged regressors x
(m)
i,t−l and yi,t−l (l > 0); and (c) choosing an

appropriate transformation for yi,t−l and all x
(m)
i,t−l (l ≥ 0) to avoid specifying a deficient

functional form.
That pure autoregressive forms of serial correlation can be avoided by choosing ap-

propriately high lag orders for all regressor variables can be shown easily as follows.
Suppose that in model (2.1) we actually have that εi,t = ρεi,t−1+ ξi,t where ξi,t is serially
uncorrelated and ρ 6= 0. Hence, E(εi,tεi,t−1) 6= 0 and therefore E(yi,t−1εi,t) 6= 0, so yi,t−1
is actually endogenous now with respect to εi,t and the latter is not an innovation. Like-

wise, if x
(m)
i,t is endogenous then under serial correlation E(x

(m)
i,t−1εi,t) 6= 0 too, so εi,t is no

longer an innovation with respect to x
(m)
i,t−1 either. In this situation of simple first-order

autoregressive disturbances it can be shown easily (see section 3.3) that by increasing
all orders p0, ..., pM by 1 a model is obtained where the disturbance is no longer given
by εi,t but by ξi,t, so that in that reparametrized model yi,t−1 and x

(m)
i,t−1 are predeter-

mined again. In case of higher-order forms of serial correlation the lag orders should
be increased by more than one. This trick will only be effective if ξi,t is an innovation
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with respect to yi,t−l and x
(m)
i,t−l for l > 0, which could be at odds with more serious

problems than pure autoregressive forms of serial correlation, like omitted regressors,
measurement errors, wrong functional form and using proxy variables.

2.2.2. Implementation of GMM

Applying GMM directly to model (2.1) requires instrumental variables which are uncor-

related with ηi+ εi,t. Since (lags of) yi,t are, and those of x
(m)
i,t will, usually be correlated

with ηi, the most common implementation of GMM using internal instruments involves
estimating the model in first differences. This transformation removes the unobserved
ηi from the equation (but not necessarily from its regressors, see stage 10 in section 4.2).
Denoting yi,t − yi,t−1 = ∆yi,t etc., it yields

∆yi,t =
∑p0

l=1γl∆yi,t−l +
∑M

m=1

∑pm
l=0β

(m)
l ∆x

(m)
i,t−l +

∑T

s=2τs∆d
(s)
i,t +∆εi,t, (2.3)

where i = 1, ..., N and t = 2, ..., T. Given the adopted classification of the variables
moment conditions for estimating (2.3) with disturbance ∆εi,t can be obtained from
particular lags and leads of the internal variables of (2.1), namely:

E(yi,s∆εi,t) = 0 for s ≤ t− 2,

E(x
(m)
i,s ∆εi,t) = 0 for s ≤ t− 2 if x

(m)
i,t is endogenous with respect to εi,t,

E(x
(m)
i,s ∆εi,t) = 0 for s ≤ t− 1 if x

(m)
i,t is predetermined with respect to εi,t,

E(x
(m)
i,s ∆εi,t) = 0 for ∀s if x

(m)
i,t is exogenous with respect to εi,t.





(2.4)

Note that, to avoid confusion, we stick to the adopted classification of regressors which
just refers to the underlying substantive behavioral model with disturbances εi,t.

1

Because we assumed below (2.1) that the dependent variable has been observed
over the range t = −p0 + 1, ..., T, the first line of (2.4) seems to imply that just p0
instrumental variables, namely yi,t−2, ..., yi,t−1−p0 (∀i, t = 2, ..., T ) can be constructed
from the dependent variable. However, due to the panel structure of the data and
the chosen asymptotic sequence, where T is finite and N → ∞, these p0 variables
can be unraveled to the instrumental variables d

(s)
i,t yi,l, for s = 2, ..., T and l = 1 −

p0, ..., s − 2 (again ∀i, t = 2, ..., T ). Hence, from lags of yi,t we can in fact extract
ΣTs=2(s − 2 + p0) = (T − 1)(T/2 + p0 − 1) moment conditions. These are valid be-

cause applying the law of large numbers yields plimN→∞N
−1T−1ΣNi=1Σ

T
t=2d

(s)
i,t yi,l∆εi,t =

T−1 plimN→∞N
−1ΣNi=1yi,l∆εi,s = T−1E(yi,l∆εi,s) = 0.

In the same vain it follows from the second line of (2.4) that for an endogenous

regressor x
(m)
i,t one can obtain ΣTs=2(s − 2 + pm) = (T − 1)(T/2 + pm − 1) unraveled

instrumental variables d
(s)
i,t x

(m)
i,l from the moment conditions E(d

(s)
i,t x

(m)
i,l ∆εi,t) = 0, for

l = 1−pm, ..., s−2. If this regressor were predetermined, T−1 extra instruments d
(t)
i,tx

(m)
i,t−1

can be obtained, corresponding to the extra moment conditions E(d
(t)
i,tx

(m)
i,t−1∆εi,t) = 0.

1To find all valid moment conditions in terms of internal variables for estimating (2.3) the classifi-
cation of the variables in (2.1) is sufficient and decisive. So, if we indicate a variable as endogenous,
predetermined or exogenous by default this will be with respect to the disturbances εit of the behav-
ioral model. That in the estimated model the regressor ∆yi,t−l can be classified as predetermined with
respect to ∆εit only for l > 1, whereas it could be called endogenous for l = 1, may be valid, but is
confusing at the same time, so is better avoided.
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Whereas, from an exogenous regressor many more than T − 1 extra valid instruments
can be generated than from a predetermined one, namely also E(d

(s)
i,t x

(m)
i,l ∆εi,t) = 0 for

s = 2, ..., T and l = s, ..., T. However, from these, the validity of the T −1 extra moment
conditions E(d

(t)
i,tx

(m)
i,t ∆εi,t) = 0 are especially crucial to distinguish an exogenous variable

from a predetermined one. Those for l > s will often yield relatively weak instruments,
because these future values will usually not establish substantial extra explanatory power
additional to that obtained from current and past variables d

(s)
i,t x

(m)
i,s for s ≤ t in the

so-called first-stage regressions for any of the explanatory variables of (2.3). Although
according to asymptotic theory any additional valid instrumental variable would improve
estimator efficiency, it is well-known that in finite samples using many instruments may
in fact aggravate estimator bias. Therefore, and because they are expected to be weak,
the instruments d

(s)
i,t x

(m)
i,l with l > s obtained from an exogenous regressor may usually

better be omitted from the employed set of instruments.
Given the abundance of available unraveled instrumental variables in a panel data

context, all given by interactions between time-dummies and current or lagged regressors,
it seems a good idea more generally to reduce their number. To that end there are
basically two strategies, namely collapsing (see Roodman, 2009b) and curtailing (see,
for instance, Bun and Kiviet, 2006). The unraveled instruments obtained from the
lagged dependent variable can, by taking particular linear combinations, be collapsed to
p0−1 plus T −1 instrumental variables. The latter are Σ

T
s=ld

(s)
i,t yi,s−l, for l = 2, ..., T, and

if p0 > 1 the former are yi,t−l−1 = Σ
T
s=2d

(s)
i,t yi,s−l−1 for l = 2, ..., p0 and again t = 2, ..., T.

The unraveled instruments for x
(m)
i,t can be collapsed similarly.

An uncomfortable aspect of collapsing seems that in the implied first-stage regression
the different time-series observations are confronted now with autoregressive specifica-
tions of different orders. When p0 = 1 then these orders are t − 1 for observations
t = 2, ..., T respectively. Hence, ∆yi2 is regressed on just yi0, whereas ∆yiT is regressed
on yi,T−2, ..., yi0, whilst the one and only coefficient in the regression for t = 2 is forced
to be equivalent to the coefficient of yi,T−2 for t = T. By curtailing one achieves that
these autoregressive specifications have a chosen maximum order, say 1 ≤ p̄ < T − 1,
and that apart from limiting the lag order no further coefficient restrictions are being
imposed in the first-stage regressions. Then the instrumental variables are d

(s)
i,t yi,l, for

s = 2, ..., T and l = max(1− p0, s− 1− p̄), ..., s− 2. When p̄ ≤ p0 their number will be
(T − 1)p̄ and when p̄ > p0 then (p̄ − p0 + 1)(p̄ − p0)/2 less. Hence, curtailing tends to
use more instruments than collapsing, but seems less strained too, because in the first-
stage regression all observations t ≥ p̄ − p0 + 2 will be fitted to the same number of p̄
regressors, namely d

(t)
i,t yi,l (for l = t− p̄−1, ..., t−2), without coefficient restrictions. The

two principles can also be combined, see Kiviet et al. (2017, p.10) for more details. Of

course, the unraveled instruments obtained from x
(m)
i,t can be curtailed and/or collapsed

similarly.
As follows directly from true relationship (2.3), for the instrumentation of ∆yi,t−l for

l ≥ 1, the inclusion in the set of instruments of (unraveled versions of) x
(m)
i,t−1 and x

(m)
i,t−2,

next to yi,t−l for l ≥ 2, seems crucial. However, practitioners seldomly stick to this. In
classic static nonpanel IV models it makes sense to instrument exogenous regressors just
by themselves, whereas the instrumentation of endogenous variables requires additional
external instrumental variables. This has wrongly induced the habit in dynamic panel
model estimation to instrument exogenous regressors just by themselves too, implying
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using just the pm + 1 orthogonality conditions E(∆x
(m)
i,t−l∆εi,t) = 0 for l = 0, ..., pm.

In case pm = 0 this simplifies to using just the instrument ∆x
(m)
i,t , whereas the very

specification of model (2.3) highlights that to instrument regressor ∆yi,t−1, in addition

to yi,t−l for 1 < l ≤ p0 + 2, also variables x
(m)
i,t−l for 1 < l < pm + 2 will be most useful.

From the above it follows that, due to the panel structure of our data, finding a huge
number of instruments seems relatively easy. Therefore, practitioners are usually not
forced to seek external instruments, which are variables uncorrelated with the current
disturbance in the estimation equation which have not been obtained by lagging or
transforming the regressors of the model. However, although relatively uncommon in
practice, nothing opposes the use of external instruments when analyzing panel data,
provided they are valid and relevant. This requires that they have nonzero coefficients
in equations like (2.2).

2.3. Adopting an initial model specification and set of moment conditions

For a great number of reasons the search for an initial acceptable general model is quite
difficult. A major handicap is that economic theory is usually not very specific regarding
all variables that are relevant for the causal explanation of yi,t, nor regarding the proper
functional form of the relationship, and certainly not with respect to the characteristics
of the dynamics. So, it is usually the task of the applied econometrician to asses most
of these issues empirically. Though, an additional difficulty is that econometric tests on
the validity of instruments and on the adequacy of a chosen specification of the model
may commit type I or type II errors (rejecting a true hypothesis or not rejecting a false
hypothesis) with possibly substantial probabilities and they may therefore frequently
misguide.
The motivation for promoting in the present context to include in the initial model

specification relatively many (lagged) regressors while using very few unlagged and first-
order lagged regressor variables as instruments in the first-differenced model, is based
on trying to avoid inconsistency of estimators.2 The stimulus for this policy stems
from the following characteristics of the statistical tools to be used. Econometric tests
are available to examine the (in)validity of a subset of instruments when added to an
already accepted set of instruments, and also to examine whether a subset of regressors
should (not) be excluded from an already accepted model specification. However, for a
proper interpretation these tests require that the already accepted model specification
is genuinely adequate and that the already accepted set of instruments is really valid for
this accepted model specification. These two test tools lead to generally uninterpretable
results when applied in a situation where the already accepted model and accepted
instrument set produce inconsistent estimates. Therefore, it is crucial to find an initial
specification of the model and set of instruments on which evidence can be produced
which provides trust in their joint adequacy. Part of this is avoiding excluding any
possibly relevant explanatories and avoiding at the same time exploiting any possibly
invalid instruments. As an unavoidable consequence, in order to achieve consistency, one
has to sacrifice some efficiency initially by unknowingly including regressors which may
actually be redundant, and by yet abstaining from using particular instruments which

2See also Hendry (1995), who pleads for a general-to-specific methodology in the context of econo-
metric time-series analysis.
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may actually be valid and effective.
This quite general initial model specification with relatively restricted set of instru-

ments, for which no evidence should have been found regarding invalidity of some of its
instruments, nor regarding possibly omitted regressors (including those that may repre-
sent a wrongly chosen functional form, and those representing non constant coefficients
due to omitted interaction terms), nor regarding detrimental serial correlation of its er-
rors (due to wrongly omitting lagged or other regressors), we will address as the general
maintained statistical model (MSM). For its results one should neglect for the moment
that many of its coefficients may not appear as significant due to the relative inefficiency
of its estimates.
In the present context we have found an acceptable MSM when a possibly not very

parsimoniously specified dynamic regression model, in which most of its current (non
lagged) regressors are treated as endogenous (i.e. possibly affected by immediate feed-
back from the dependent variable), after being estimated in first-differenced form (to
get rid of individual effects) by Arellano-Bond GMM estimation (either 1-step with het-
eroskedasticity robust standard errors, or 2-step with Windmeijer-corrected standard
errors), yields residuals which do show first-order serial correlation (due to the first dif-
ferencing) but no significant second order serial correlation, and for which the test of
the over-identification restrictions, addressed as the Hansen test in Xtabond23, has a
reasonably large p-value (what seems large in this context will be discussed in subsec-
tion 2.4). Employing at this stage GMM system estimation according to Blundell and
Bond (1998) would be unwise in general, because this would assume validity of some
additional instruments in the level equation, whereas the tool to test their validity pre-
supposes validity of the Arellano-Bond instruments, which are yet still under scrutiny.
So, first all emphasis should be on verification of the latter. Blundell-Bond estimation
and verification of its possible validity should be postponed until a later stage in the
modelling process.4

Hence, initially, GMM estimates and tests for the first-differenced model should be
used until a satisfactory MSM has been obtained, and next it could be examined whether
possibly some further effective internal instruments (obtained from first-lagged or cur-
rent regressors) can safely be adopted as well, while some weak ones may successfully be
removed (possibly by collapsing or removing long lags), together with removing from the
model specification some ostensibly redundant regressors (when they are found to pro-
duce very small t-ratios or correspondingly high p-values) or to impose other coefficient
restrictions when strongly supported by the data.

2.4. The major dilemmas faced

In trying to avoid as much as possible to impose restrictions on the model that have
not yet been tested (and thus have not yet been rejected nor confirmed) one faces
the following dilemma. When using GMM techniques to a model with some endogenous
regressors it is unavoidable to impose some untestable exclusion restrictions on the model

3Note that the test addressed as the Sargan test in Xtabond2 presupposes (conditional) homoskedas-
ticity of the disturbances, so this can only be interpreted when no evidence of heteroskedasticity has
been found.

4As long as Arellano-Bond results are unsatisfactory, applying Blundell-Bond does not make sense.
Therefore it is unfortunate that Blundell-Bond is the default technique in Xtabond2.
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in order to satisfy the order condition of identification. The reason is that we need
at least as many instrumental variables as we have regressors in the model, whereas
an endogenous regressor as such cannot be used as an instrument, because it will be
correlated with the error term due to instantaneous feedback. In fact, when estimating
the model in first-differenced form, also the first lag of an endogenous variable cannot
be used as instrument, and neither can the current level of predetermined regressors.
Therefore, particular lagged variables to be used as instruments should not occur as
regressor at the same time, because otherwise the number of instruments obtained from
lagged variables would not outnumber the regressors. Note that to formally test validity
of their exclusion from the set of regressors, one should first include them, but that
extended model can no longer be estimated (due to having fewer instruments now than
regressors), so these unavoidable exclusion restrictions do necessarily imply untestable
restrictions on the dynamic specification of the model. They would only be testable
when valid external instruments (not obtained by transformation of included regressor
variables) would be available, but then the validity of these external instruments becomes
untestable, because if one includes them for testing whether they are uncorrelated with
the model errors the resulting extended model is no longer identified (its number of
regressors exceeds the number of instruments).
There is a strong interconnection between tests for the validity of instrumental vari-

ables not included in the regression and tests about whether these instrumental vari-
ables have been wrongly omitted from the regression, see Kiviet (2017). This induces
why we can test only the over-identification restrictions, while implicitly assuming that
the untested just-identifying restrictions (equal in number to the number of unknown
coefficients of the model) are all simply valid.5 The above should make clear that one
always has to keep an open mind regarding the possibility that an accepted maintained
statistical model (MSM) may actually be false, because many of its underlying exclusion
restrictions and moment conditions have not and cannot be tested (without adopting fur-
ther untestable conditions) and thus have to be accepted simply (but possibly wrongly)
in good faith.
At first sight the concern just mentioned seems less worrying for panel data analysis

than it is for a regression analysis based purely on either cross-section data or on time-
series, because the extra dimension of microeconometric panel data enables to extract
from one regressor a multitude of instruments which suggests that over-identification is
ubiquitous.6 Including all these instruments (interactions of time-dummies with current
and lagged variables) as regressors would generalize the specification such that each ex-
planatory variable for all its lags would have for each particular time period its own
unique coefficient. In fact, this would imply incorporating into the model the interac-
tions of all time dummies with all available lagged regressors, which then would undo the
over-identification. In practice, most if not all of these interaction terms are implicitly
assumed to have equal coefficients. In the presence of endogenous regressors, adopting
restrictions on some of those interactions is simply unavoidable, and it is untestable
without adopting other untestable assumptions. So, also in a panel context adopting

5For an escape route to test just-identifying restrictions in nonpanel models, see Kiviet (2019).
6Below (2.4) it is shown that when pm = 1 and regressor x

(m)
i,t is endogenous it yields (T − 1)T/2

instruments, and T − 1 more when it is predetermined, and still more when it is exogenous. This is
not yet very impressive when T = 3 (which is the minimum required). Then each regressor produces
at least 3 instruments, but at least 6 when T = 4, and 10 when T = 5, etc.
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(explicitly or implicitly) untestable exclusion restrictions in order to achieve identifica-
tion is simply unavoidable. In fact, a similar situation occurs for pure cross-section and
time-series data. Here too one can proliferate the number of instruments, for instance by
taking their square, higher-order powers or a range of other nonlinear transformations
or their interactions with dummy variables. This only yields (most probably weak) over-
identification if one is willing to make the untestable assumption that at the same time
sufficient of these extra instrumental variables have zero coefficients in the regression.
Hence, in practice one will always be faced with making a choice between generality of

the specification and imposing some untested restrictions. This concerns the inclusion
or not of particular variables, choosing their maximum lag order and the occurrence
of (lagged) variables in general interaction terms as well (the latter are addressed in
subsection 3.4). In designing the MSM one has to trade off the risks of devastating time-
varying unobserved heterogeneity, due to omitted regressors, and of inefficient inference,
due to redundant regressors and unexploited valid over-identifying restrictions. Because
one cannot test all implicit restrictions imposed on a candidate MSM one has to keep in
mind that, although subjective elements in its design can to some degree be mitigated,
they are in fact unavoidable.
On top of all the dilemmas just mentioned there is yet another one. In contrast with

the foregoing, which pleaded to include many potential explanatories, this one urges
for not including too many potential candidate regressors for reasons which again have
to do with identification of the single structural relationship that we want to establish.
In addition to the necessary order condition (having at least as many instruments as
unknown coefficients) we have to satisfy the necessary and sufficient rank condition for
identification, and this is certainly not as easily satisfied as the necessary order con-
dition. The single structural equation that we want to analyze is one from a system
which specifies for each endogenous variable in that system their single structural equa-
tion. Although the single structural equation that we want to estimate is nested in
a comprehensive single equation model, which includes all endogenous, predetermined
and exogenous variables that occur in the full system, such a heavily overspecified equa-
tion is certainly not identified according to the rank condition, because all individual
structural equations of that system are nested in the very same comprehensive model.
Without imposing relevant coefficient restrictions it cannot be distinguished from the
other structural equations. In a panel data context it may seem possible to estimate the
comprehensive model because sufficient lagged variables interacted with time dummies
may be available to meet the necessary but insufficient order condition. However, inter-
pretation of its estimates with respect to the structural equation for the single dependent
variable that we want to model is not possible as long as the sufficient rank condition
has not been fulfilled, which requires imposing a sufficient number of the appropriate
coefficient restrictions which make the equation of our interest unique amongst the other
equations of the system.
We should highlight here a related hazard. Consider again model (2.1) and assume

β
(1)
0 6= 0. Then any specification for a model for yi,t which omits x

(1)
i,t as a regressor is

misspecified as a representation of the structural model, but it is not necessarily mis-
specified as such. When model (2.2) is substituted in (2.1) then x

(1)
i,t is eliminated and it

brings in all other variables in the structural equation for x
(1)
i,t not yet occurring in the

structural equation for yi,t. The resulting equation is something half-way the structural
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form equation and the reduced form equation for yi,t. In the latter all endogenous re-
gressors have been eliminated, and only predetermined and exogenous regressors remain.
To make sure that our specification search yields in the end the structural equation for
yi,t we should avoid including in its initial deliberately overspecified form any regressors
which occur in other structural equations of the same system but have zero coefficients in
the structural equation for yi,t. Otherwise we face the risk that, even when the adequate
specification of the structural equation of yi,t is nested in our MSM, when aiming for
parsimony, we may remove endogenous explanatories and leave in indirect determinants
of yi,t. The latter have an effect on it only via the endogenous explanatories, whereas
these endogenous regressors apparently belong to the direct explanatories. It are the
direct explanatories which constitute the autonomous structural relationship for yi,t.
So, although it seems a good idea to opt for a methodology in which one starts

off with a relatively general model specification, both regarding the dynamics and the
inclusion of further explanatory variables and allowing their endogeneity by abstaining
from using particular instruments, at the same time imposing a substantial number of
coefficient restrictions by omitting particular variables as regressors is unavoidable too.
Not only in order to have a sufficient number of instruments. It is also required in order
to keep focus on establishing the structural causal relationship for yi,t. Hence, many
nested and nonnested specifications of models for yi,t may each qualify as an appropriate
candidate MSM, because they are individually statistically acceptable; however, not all
of them may contain the structural model for yi,t as a special case. Moreover, the fewer
restrictions one imposes on the candidate MSM and the fewer instrumental variables
one exploits, the larger the coefficient standard errors will be. This will mitigate the
power of tests on the significance of coefficients but also on the validity of instruments,
whereas the information to be exploited in a successful specification search, as to be
developed below, has to come from the correct (non-)rejection of series of such tests.
So, these individual tests having substantial test power (low type II error probability),
whilst maintaining a well controlled type I error probability, is crucial.

2.5. P -values as beacons: opportunities and shortcomings

In the specification and selection search strategy to be designed in Section 4 the sequen-
tial application of various particular hypotheses test procedures will yield p-values which
will constitute the key factors on which next steps in the search process will be based.
All these separate steps will be associated with testing the (in)significance of a partic-
ular subset of parameters, where the outcome will be interpreted as either including
or excluding the variables associated to these parameters to/from either the regression
or the set of instruments. This (in)significance, indicating the (in)compatibility of the
observed data with all these tested parameters having value zero7 or at least one of them
having a nonzero value, is expressed in the p-value, a scalar between zero and one. Its
magnitude will determine whether the tested hypothesis will be rejected or not. In the
latter case the strategy yet to be developed will imply taking the decision to impose the
parametric restrictions tested, i.e. accepting the tested null hypothesis. Although in this
way the resulting chain of decisions is in serious conflict with the classic statistical theory

7Testing whether each parameter of a subset of parameters has a particular real value can easily be
converted into a test in which for a similar subset it is tested whether all its individual elements are
zero or not.
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of hypothesis testing it can nevertheless be defended using simple pragmatic arguments.
These are: (a) there is no straight-forward alternative practical strategy; (b) as shall
be indicated in the next subsection sub-strings of the chain of decisions to be made can
be embedded in a cautious theory of testing sequentially superimposed or juxtaposed
hypotheses; and (c) by being fully transparent about how all individual decisions in the
structured sequence came about, its results will allow constructive criticism and at the
same time candidly reveal both its fragility and purport. By being completely open
about its subjective and possibly impertinent aspects other researchers are facilitated to
uncover all its incongruities and come up with alternative proceedings and explanations,
which in their turn will undoubtedly be debatable too.
Given the purpose for which we will use them p-values of test statistics have two

major shortcomings. Firstly, they do not express —nor can they be converted into—
an index accurately indicating how likely it is that either the tested null hypothesis
(particular parameters having value zero) or its denial (some of those parameters being
nonzero) is true. Secondly, in the present context of dynamic panels the calculated p-
values involve asymptotic approximations, because the probability distribution by which
they have been calculated is the relevant probability distribution for the test statistic
concerned only if the sample were infinitely large in the cross-section dimension. We
will now discuss both these shortcomings and some of their consequences one by one.
In a recent editorial statement of the American Statistical Association Wasserstein

and Lazar (2016) clarify some principles regarding p-values, all the time just considering
situations in which the second shortcoming is absent. For panel data modelling of be-
havioral relationships this would require the unrealistic situation that all regressors are
strictly exogenous (so no lagged dependent variable regressors nor any further regressors
affected by feedbacks should occur in the relationship under study), whereas the distri-
bution function of the disturbances should be fully known, apart from a scale factor.
Under these very restrictive circumstances the p-value of a test statistic is the exact prob-
ability under a specified statistical model fully obeying the restrictions specified by the
null hypothesis that it is equal to or more extreme than its observed value. Hence, the
lower such a p-value is the more incompatible the observed data seem with the specified
statistical model under the null hypothesis. Then, apparently, the data may stem from
a different statistical model. This could either be the specified statistical model under
the alternative hypothesis, where the latter just allows the tested subset of parameters
to have nonzero values, or a completely different statistical model. Only when truth of
the adopted statistical model is maintained (meaning: its truth is beyond dispute) then
rejection of the null hypothesis directly implies acceptance of the alternative hypothesis
(being: not all tested parameters have value zero).
Thus, when a MSM has not yet been assessed, a low p-value as such does not nec-

essarily carry much information on how an adequately specified model should look like.
Although a high p-value indicates substantial compatibility of the specified statistical
model under the null with the actual data, it could well be that a rather differently spec-
ified statistical model is in fact much more compatible with the data. Even a p-value of
1 does not imply truth of the null hypothesis; it just means that the estimated values
of the parameters correspond to their hypothesized values, but this does not imply that
their true values correspond to the hypothesized values as well. Also a p-value of zero
does not imply truth of the narrowly interpreted alternative hypothesis; it just indicates
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that the model under the null is badly specified.8 So, choosing some fixed threshold
value between zero and one, which separates the decision to either impose or not the
zero values for the tested parameters, seems doomed to fail.
The plead to start off the search strategy by a rather uncontroversial initial model

specification with a prudent selection of instruments tries to put the sequence of tests
to be performed within a context where validity of the assumptions constituting this
initial statistical model can rather safely be adopted. If no obvious shortcomings of this
statistical model can be found by testing it against even less restrictive alternatives, then
we may adopt it as our general MSM (maintained statistical model). Then the whole
further analysis, which aims to increase efficiency, can be interpreted as being conditional
on these maintained assumptions. Then rejecting a null hypothesis implies to accept
that the parameters tested are not all zero, which constitutes the alternative hypothesis
under which estimates are still consistent under the general MSM. The decision to impose
either non rejected coefficient restrictions or non rejected orthogonality conditions leads
to tightening of the initially adopted MSM. If these imposed restrains are valid indeed
then the estimates will still be consistent and also more efficient, but when invalid
consistency will be lost in general which may lead to seriously biased estimates.
These two possible consequences (either gaining efficiency, or loosing consistency)

should determine which threshold value for the p-value should be used when deciding
to reject a null hypothesis or to accept it. Choosing for this the habitual significance
level α = 0.05 would now in most cases be weird as we shall argue. For the moment we
will disregard the complex consequences of both pretesting (the fact that a single test
may have been preceded by decisions taken on the basis of other tests calculated from
the very same sample data) and possible inaccuracies due to working with asymptotic
p-values instead of exact p-values. Just focusing on one separate test, taking 0.05 as the
borderline between reject and accept would limit the probability to incorrectly reject
the null hypothesis (commit a type I error) to 5%, with the consequences of a type
I error just being to miss out some potential efficiency gains. Whereas not rejecting
a false null (commit a type II error) will have the much more serious consequence to
accept this false null, leading to inconsistent estimates and misguided inferences. So,
avoiding type II errors seems here much more crucial than avoiding type I errors. Hence,
it seems of much more importance to limit the type II error probability to some low
threshold instead of a type I error. However, unlike the type I error probability, the
type II error probability is unknowable in practice, because it depends on the actual
yet to be modelled data generating process and its true parameter values, and not on a
hypothesized data generating process specified by the tested null hypothesis, as is the
case for the type I error probability. When we would employ the extreme threshold α = 1
we would reject any null hypothesis and just stick to the initial MSM and exclude to
use any further information extracted from the sample regarding the possible absence of
contemporaneous or lagged feedbacks and redundancy of particular included regressors.
At the same time it would exclude the risk of introducing inconsistency. So, what
threshold value seems reasonable?
To find an answer to that question let us get back to the phase of designing the

initial specification which should be so general that it seems uncontroversial, but not
so general that it establishes an unidentified parametrization of the structural equation

8A long list of popular misinterpretations of p-values is provided in Greenland et al. (2016).
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that we intend to model. Of course, we should always be aware that it may be the case
that the available data set simply lacks particular (proxies for the) variables that are
indispensable for modelling the structural equation. So there is always the possibility
that an acceptable and valid MSM, which contains the true structural data generating
process as a special case, cannot and should not be found.
However, let us suppose for the moment that we have carefully designed an initial

candidate MSM and that the p-value for the test of its over-identification restrictions is
found to be, say, 0.2. Would that be satisfactory? There is no fully comforting simple
objective answer to that question possible. Of course, at first sight we should be much
happier with a value of, say, 0.8 or even larger, although even that would not guarantee
that we are on the right track. Also, as can easily be learned by running some rather
haphazard computations on the basis of a rather arbitrary data set, a value of 0.8 or
higher can relatively easily be obtained when the sample size is not very large and when
using a huge number of candidate instruments. This will be due to the test having very
moderate power (probability to reject a false null) in such circumstances, in combination
with the second complication (the asymptotic approximative nature of p-values which
we still have to address). Though, on the other hand, supposing that the tested null is
really true, so when drawing from the actual null distribution of a test statistic, and then
obtaining a value with a tail probability of 0.2 seems not an extremely unlikely event;
it is more likely than throwing a six with a die. So, in general, finding for the standard
Hansen statistic a value of 0.2 should not automatically lead to discarding the candidate
initial model. On that score, though, the same can still be said for a value of 0.15.
Hence, an absolute fixed threshold cannot be given, but a test value just slightly above
0.05 does certainly not provide strong evidence in favor of validity of the instruments.
Moreover, whether we should be satisfied when a candidate MSM produces a value of,
say, 0.15 for the Hansen test also depends on the perceived power of the test. If the
power seems very moderate a threshold of 0.15 seems rather small, because it would
involve a substantial risk to accept inconsistent estimates.
To elaborate on this, imagine we have the choice between two different test procedures

for the same null hypothesis, where one is more powerful than the other. The more
powerful one is supposed to produce a more extreme value for its test statistic (in
relation to its null distribution) when the null is false, and thus yields a smaller p-value
more easily. Using both against the same threshold value will lead less frequently to
incorrectly accepting the null by the more powerful test. Hence, the threshold p-value
for the more powerful test could be chosen smaller to realize similar risks for both tests,
or the less powerful one should be used at a relatively large p-value threshold.
So, arguing what threshold would be reasonable becomes slightly easier in situations

where one may hope that a test has relatively good (or bad) power properties. For
instance, in a situation where one is testing a large number of over-identification restric-
tions whereas many of these may actually be valid whereas just a few may be false, it
seems self-evident that a test procedure which just tests the validity of the doubtful re-
strictions while building on the validity of the other valid over-identification restrictions
is more powerful than the overall test which tests all restrictions jointly. From this we
conclude that for difference in Hansen tests one may in principle use a threshold value
closer to (though usually still substantially larger than) 5% than for an overall Hansen
test. For the latter we conclude at this stage that a threshold of 30% or even 50% might
certainly be worth considering. However, more has to be said about this.
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First, we will discuss the consequences of the asymptotic nature of p-values in the
present dynamic panel model context (see Appendix A for more details). In the presence
of feedback variables, and when the distribution function of the disturbances is unknown
and is probably also characterized by an unknown form of heteroskedasticity the null dis-
tribution of over-identification and coefficient restriction tests is unknown too, although
in large samples it converges to a χ2 distribution (or to standard normal z when single
coefficient restrictions are being tested and one-sided alternatives can be considered).
So, when calculating the p-value, the observed test statistic is not confronted with the
true relevant null distribution, but with its χ2 (or z) asymptotic approximation, or after
degrees of freedom corrections probably with their F (or t) approximation. Focussing
on using the χ2 or F variants of the tests, in case the actual null distribution is located
more to the right (left), then the calculated p-value is systematically too small (large).
Hence, in order to realize an intended type I error probability of, say, 0.25 one should use
a larger (smaller) threshold than 0.25. Some insights in the actual location of the rele-
vant null distributions in dynamic panel analysis has been obtained from Monte Carlo
simulations (see, for instance, the second half of Kiviet et al. 2017). Its discrepancies
from the asymptotic approximation depends on many specific characteristics of the ac-
tual data generating process, but generally speaking it seems very often the case that
the p-values obtained for overall Hansen tests are too small (hence, tend to reject too
easily) and those for coefficient tests are too large (thus, tend to accept too easily).
The above text seems to suggest that p-values obtained from observed test statistics

to decide on instrument or regressor selection issues should be used by confronting them
with a threshold value which should be chosen such that the risks of loosing consistency
or miss out efficiency gains seem in some perceived balance. However, we could also try
to base these decisions on more classic model selection criteria. In standard regression
the choice between a more and a less restricted model can be based on comparing
the adjusted coefficient of determination, or on the AIC or BIC. This approach closely
corresponds to using a t or F test for the restrictions and using the critical value 1
as threshold: Reject the restricted model when the test statistic is larger than 1 and
accept otherwise. In samples with several hundred observations this closely corresponds
to using the χ2 version of the test and using the number of tested restrictions (the
degrees of freedom, also being the expectation of the null-distribution) as the threshold
value. Hence, neglecting the skewness of the χ2 distribution, this closely corresponds
to rejection if the test statistic is in the right-hand half of the null-distribution and
acceptance for a realization in the left-hand half, which is close to a 50% significance
level instead of 5%. More precisely, it can rather easily be checked that this corresponds
in fact to using the p-value of the test as criterion and employing a threshold which
is close to 0.5 indeed when over 100 restrictions are being tested, whereas it is 0.68
when just 1 restriction is tested. A few more of these threshold values are: 0.63 (for
2 restrictions), 0.61 (for 3), 0.58 (5), 0.56 (10), 0.54 (20), 0.53 (50) and 0.52 (for 100).
Hence, model selection criteria applied to nested alternatives implicitly use significance
levels which are much and much larger than 5%.
Simply assuming that similar thresholds could also be employed in a GMM context,

but also taking into account the systematic asymptotic approximation errors and our
desire to mitigate type I but especially type II errors, we feel an undoubtedly subjective
and yet poorly evidence-based preference to recommend the following thresholds. For the
test on the first-order serial correlation coefficient of the disturbances a p-value threshold
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in the range 0.01-0.05 does seem reasonable, because the test should have substantial
power when the actual coefficient is −0.5 instead of zero. For the test on the second-
order serial correlation coefficient a threshold in the range 0.05-0.15 might be reasonable,
because we expect the test to have only modest power and want to avoid type II errors.
For overall Hansen tests with a large number of degrees of freedom we suggest to use a p-
value threshold in the range 0.10-0.20, and for incremental Hansen tests with less than 10
degrees of freedom in a candidate MSM a threshold in the 0.05-0.15 range, but a range
of 0.30-0.50 for deciding whether an initially as endogenous treated regressor seems
actually predetermined or whether an as predetermined treated regressor is actually
exogenous. For omitting single regressors from models with satisfactory Hansen tests we
feel inclined to use as a threshold for the t or z statistic a value in the range 0.5-1.0 (or a
p-value threshold in the range 0.4-0.6). For joint tests on the significance of substantial
groups of regressors a p-value threshold of about 0.5-0.7 may be reasonable to balance
the desire to improve efficiency and avoid inconsistency. Especially samples where N is
really small (say, smaller than 150) or reasonably large (over 2500, say) may certainly
motivate modifications of these tentative ranges on thresholds.

2.6. Consequences of sequential testing

In the above and the selection strategy developed below it is suggested to use various
test procedures again and again at the different stages of the model selection process
while using all the time the same one and only sample. Although this is most common
amongst practitioners in the social sciences, at the same time it is hard to structure such
practices in such a way that they can be justified as a proper and scientifically sound
methodology. Here we will just mention some literature that provides some support to
aspects of the overall strategy to be laid out in subsection 4.2.
Spanos (2017) argues that the inductive phase in which misspecification-testing is be-

ing used to discover a statistically adequate model by repeated re-specification should be
seen separate from —and is also indispensable for— a meaningful next deductive phase in
which substantive inferences are being produced by tests on the parameters of the exam-
ined structural relationship. In Kiviet and Phillips (1986) and Hendry (1995, p.490) it is
argued how overall test size of sequences of individual tests can be controlled in general
on the basis of the Bonferroni inequality, and especially when the successive maintained
hypotheses in these strings of tests are one by one nested so that the individual test
statistics are asymptotically independent.

3. Specification of the dynamics

In this section we will spell out how the inclusion of lagged variables in the regression will
determine the dynamic reaction patterns by deriving impact, interim and total or long-
run multipliers. We start off in the first subsections by focusing on pure time-series data;
for a more extensive treatment see Harvey (1990) or Hendry (1995). Next, generalizing
for standard panel data models is reasonably straight-forward. We discuss the major
differences in interim multipliers for a partial adjustment model and a more general
autoregressive distribute lag model by casting both in error-correction form. In standard
panel models all multipliers are homogeneous over all subjects. By introducing (lagged)
interaction terms heterogeneity can be accommodated at the cost of relatively few extra
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parameters. This is examined in the fourth subsection and in the fifth the impact of
feedbacks on multipliers is discussed. Finally, in the sixth subsection we develop an
algorithm to calculate interim multipliers for dynamic models with interactions.

3.1. ADL models

Consider the simple second-order dynamic time-series regression model (t = 1, ..., T )

yt = γ1yt−1 + γ2yt−2 + β0xt + β1xt−1 + β2xt−2 + εt,

where we assume that εt is white-noise, meaning that εt ∼ (0, σ
2
ε) and serially uncorre-

lated. For the moment we will also assume that scalar variable xt is strictly exogenous, so
E(xtεs) = 0 ∀t, s. An acronym for this autoregressive distributed lag model specification
is ADL(2, 2).
If xt were (hypothetically) running at constant finite value x̄, then E(yt) would be

constant and finite too (provided the values of γ1 and γ2 are such that the model is
stable, as will be clarified below), and in fact be given by

ȳ =
β0 + β1 + β2
1− γ1 − γ2

x̄.

A permanent increase in x̄ by 1 unit, would increase ȳ by TMy
x = (β0 + β1 + β2)/(1 −

γ1− γ2). This is called the total or long-run multiplier of y with respect to x. If x and y
are in fact the logs of underlying variables X and Y, then TMy

x is the long-run elasticity
of Y with respect to X.
A more sophisticated way to write down dynamic models is by making use of the lag

operator L. This operates on the time index of any variable vt as follows: L
hvt = vt−h

for integer values of h. Hence, L0vt = vt, Lvt = vt−1 etc. The above model can now be
written as

(1− γ1L− γ2L
2)yt = (β0 + β1L+ β2L

2)xt + εt.

More generally, a linear dynamic regression model with M separate exogenous explana-
tory variables is the ADL(p0, p1, ..., pM) model, given by

γ(L)yt =
∑M

m=1β
(m)(L)x

(m)
t + εt, (3.1)

where polynomial γ(L) = 1− γ1L− ...− γp0L
p0 and the polynomials β(m)(L) = β

(m)
0 +

β
(m)
1 L+ ...+β

(m)
pm Lpm have for m = 1, ...,M finite nonnegative integer orders p0, p1, ..., pm

respectively, and finite real coefficients γh, h = 1, ..., p0 and β
(m)
h for h = 0, ..., pm.

Such a model is stable when polynomial γ(L) has all its roots outside the unit circle.
There are no requirements regarding the roots of the polynomials β(m)(L). This can be
understood by the following reasoning. Let z be an arbitrary possibly complex scalar
variable. Now γ(z) = 0 will have p0 real or complex roots. Denoting these as γ

∗
1 , ..., γ

∗
p0

then γ(z) =
∏p0

l=1(1 − z/γ∗l ), where all γ
∗
l are a function of γ1, ..., γp0 . Assuming that

for each m all variables xmt run at constant and finite values, then γ(L)E(yt) = c with
c some finite constant, whereas E(yt) =

∏p0
j=1[1 − (1/γ

∗
j )L]

−1c. Let γ∗∗j = 1/γ∗j . Using

Lc = c and (1− γ∗∗j L)
−1 = 1 + γ∗∗j L− (γ

∗∗
j L)

2 + (γ∗∗j L)
3 − ...., it follows that E(yt) will

be constant and finite only when all γ∗∗j are within the unit circle, because otherwise
(1 − γ∗∗j L)

−1 does not converge. If p0 = 1 then γ(L) = 1 − γ1L, which has real root
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γ∗1 = 1/γ1, whereas for stability γ
∗∗
1 = γ1 should be smaller than 1 in absolute value; this

is the familiar requirement for stability of the first-order autoregressive model. Such an
AR(1) model is even covariance-stationary if V ar(y0) is such that V ar(yt) is constant
for t ≥ 0.
In what follows we will all the time assume that γ(L) has all its p0 roots γ

∗
1 , ..., γ

∗
p0

outside the unit circle. Thus, we restrict ourselves to dynamically stable behavioral
relationships. That does not imply that the variables x

(m)
i,t are not allowed to be non-

stationary through time. It just means that the degree of integratedness of yi,t is the

same as that of the highest degree amongst the variables x
(m)
i,t . Because T is supposed

to be finite the actual degree of integratedness of the variables is of no concern for the
inference techniques to be employed.

3.2. Dynamic multipliers

The total multiplier of regressor x
(m)
t (m = 1, ...,M) given stable model (3.1) with all

regressors x
(m)
t exogenous is simply β(m)(1)/γ(1) =

∑pm
h=0β

(m)
h /(1 −

∑p0
h=1γh), or, if we

define δ(m)(L) = β(m)(L)/γ(L), then

TMm = δ(m)(1) =
∑∞

d=0δ
(m)
d . (3.2)

It expresses the long-run effect on E(yt) of a unit change in x̄(m), whereas all other
regressors remain constant (ceteris paribus). The total multiplier is zero when βm(1) = 0,
implying that at least one of the roots of the lag polynomial β(m)(L) is unity. Then we
can factorize βm(L) = (1 − L)βm∗ (L) = ∆βm∗ (L), where the order of β

m
∗ (L) is pm − 1.

TMm = 0 occurs for pm = 1 when β1 = −β0 and for pm = 2 when β2 = −(β0 + β1).

TMm = 1 occurs when γ(1) = βm(1) or when
∑p0

h=1γh +
∑pm

h=0β
(m)
h = 1.

As a rule the rational lag polynomial δ(m)(L) = β(m)(L)/γ(L) is of infinite order,

where δ(m)(L) =
∑∞

d=0δ
(m)
d Ld, with

δ
(m)
0 = β

(m)
0 ,

δ
(m)
d =

∑min(d,p0)
l=1 γlδ

(m)
d−l + β

(m)
d for 1 ≤ d ≤ pm,

δ
(m)
d =

∑min(d,p0)
l=1 γlδ

(m)
d−l for d > pm.






(3.3)

The coefficients δ
(m)
d represent what the effect on yt is d periods after a non permanent

change of one unit in x
(m)
t occurred. Although δ(m)(L) is generally of infinite order, this

will not be the case when all roots of γ(L) are roots of β(m)(L) too. For instance, if

p0 = pm and for l ≥ 1 it happens to be the case that β
(m)
l = β

(m)
0 γl, then δ

(m)(L) = β
(m)
0 .

Hence, in this case all roots of the lag polynomials γ(L) and β(m)(L) are similar and
δ(m)(L) is of order zero.
For general stable models (3.1) the immediate effect on E(yt) of a unit change in x̄

(m)

is δ
(m)
0 = β

(m)
0 . This is also called the impact multiplier. The effect after D periods of

a permanent unit change in x̄(m) is called the Dth interim multiplier and is given by

δ
∗(m)
D =

∑D

d=0δ
(m)
d for D = 0, 1, 2, ... (3.4)
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Note that δ
∗(m)
0 = δ

(m)
0 and δ

∗(m)
∞ = TMm. The proportion of the total change completed

after D periods is given by
δ
†(m)
D = δ

∗(m)
D /δ∗(m)∞ . (3.5)

When all coefficients δ
(m)
d have the same sign, then the average ormean lag is defined as

D̄(m) =
∑∞

d=0dδ
(m)
d /δ

∗(m)
∞ . An alternative way to express this is as follows. Differentiating

polynomial δ(m)(L) with respect to L gives δ(m)′(L) =
∑∞

d=1dδ
(m)
d Ld−1, hence D̄(m) =

δ(m)′(1)/δ(m)(1). Using δ(m)′(L) = [γ(L)β(m)′(L)− γ′(L)β(m)(L)]/[γ(L)]2 we find

D̄(m) = β(m)′(1)/β(m)(1)− γ′(1)/γ(1). (3.6)

The median lag D̈(m) is found by solving D from δ
†(m)
D = 0.5. It expresses how long

it takes until 50% of the total multiplier has been realized. Note that when δ
(m)
d is

oscillating there may be multiple solutions. All these characterizations of the dynamic
effects of x

(m)
t on yt concern the hypothetical situation that all other exogenous regressors

remain constant.

3.3. Particulars of low order ADL panel models

We return now to panel data models and consider first the very simple dynamic model
given by

yi,t = γyi,t−1 + β(1)x
(1)
i,t + β(2)x

(2)
i,t + ηi + εi,t, (3.7)

where −1 < γ < 1. This stable ADL(1,0,0) panel model is well known as a partial
adjustment model. By successive substitution this can be rewritten as

yi,t = β(1)x
(1)
i,t + β

(2)x
(2)
i,t + γ(β

(1)x
(1)
i,t−1 + β(2)x

(2)
i,t−1 + γyi,t−2 + ηi + εi,t−1) + ηi + εi,t

= β(1)x
(1)
i,t + β

(2)x
(2)
i,t + γβ

(1)x
(1)
i,t−1 + γβ(2)x

(2)
i,t−1 + γ

2yi,t−2 + (1 + γ)ηi + εi,t + γεi,t−1

= .....

= β(1)Σ∞l=0γ
lx
(1)
i,t−l + β

(2)Σ∞l=0γ
lx
(2)
i,t−l + (1− γ)−1ηi + Σ

∞
l=0γ

lεi,t−l.

The latter expression shows that the effects on yi,t of a permanent one unit change in the

exogenous regressors x
(1)
i,t or x

(2)
i,t are in the long-run equal to β

(1)/(1−γ) and β(2)/(1−γ),

respectively. Moreover, the effects on yi,t of a non permanent one unit change in x
(1)
i,t or

x
(2)
i,t (so, both x

(1)
i,t and x

(2)
i,t are assumed constant through time, but only at time period

t0 they increase by one unit) varies and are β
(1)γl and β(2)γl respectively at time period

t0+ l, for l = 0, 1, 2, ... . So, both long-run and short-run effects of x
(1)
i,t on yi,t, in relation

to those of x
(2)
i,t , are similar, apart from a factor β(1)/β(2). Hence, in some sense, the

dynamic reaction patterns are parallel, since the effects decay exponentially at rate γ
for both, although they start at the different levels β(1) and β(2) and next accumulate to
the different magnitudes β(1)/(1− γ) and β(2)/(1− γ).

Now suppose the model contains the lags of x
(1)
i,t and x

(2)
i,t as well, hence we have

yi,t = γyi,t−1 + β
(1)
0 x

(1)
i,t + β

(1)
1 x

(1)
i,t−1 + β

(2)
0 x

(2)
i,t + β

(2)
1 x

(2)
i,t−1 + ηi + εi,t, (3.8)
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which is an ADL(1,1,1) panel model. Successive substitution yields now

yi,t = β
(1)
0 x

(1)
i,t + β

(1)
1 x

(1)
i,t−1 + β

(2)
0 x

(2)
i,t + β

(2)
1 x

(2)
i,t−1

+ γ(β
(1)
0 x

(1)
i,t−1 + β

(1)
1 x

(1)
i,t−2 + β

(2)
0 x

(2)
i,t−1 + β

(2)
1 x

(2)
i,t−2 + γyi,t−2 + ηi + εi,t−1) + ηi + εi,t

= β
(1)
0 x

(1)
i,t + (β

(1)
1 + γβ

(1)
0 )x

(1)
i,t−1 + γβ

(1)
1 x

(1)
i,t−2 + β

(2)
0 x

(2)
i,t + (β

(2)
1 + γβ

(2)
0 )x

(2)
i,t−1

+ γβ
(2)
1 x

(2)
i,t−2 + γ2yi,t−2 + (1 + γ)ηi + εi,t + γεi,t−1

= β
(1)
0 x

(1)
i,t + (β

(1)
1 + γβ

(1)
0 )x

(1)
i,t−1 + γβ

(1)
1 x

(1)
i,t−2 + β

(2)
0 x

(2)
i,t + (β

(2)
1 + γβ

(2)
0 )x

(2)
i,t−1

+ γβ
(2)
1 x

(2)
i,t−2 + γ2(β

(1)
0 x

(1)
i,t−2 + β

(1)
1 x

(1)
i,t−3 + β

(2)
0 x

(2)
i,t−2 + β

(2)
1 x

(2)
i,t−3 + γyi,t−3 + ηi + εi,t−2)

+ (1 + γ)ηi + εi,t + γεi,t−1

= β
(1)
0 x

(1)
i,t + Σ

∞
l=1γ

l−1(γβ
(1)
0 + β

(1)
1 )x

(1)
i,t−l + β

(2)
0 x

(2)
i,t + Σ

∞
l=1γ

l−1(γβ
(2)
0 + β

(2)
1 )x

(2)
i,t−l

+ (1− γ)−1ηi + Σ
∞
l=0γ

lεi,t−l.

So, here the effects on yi,t of a permanent one unit change in x
(1)
i,t or x

(2)
i,t (the long-run

multipliers) are found to be β
(1)
0 + (γβ

(1)
0 + β

(1)
1 )(1 − γ)−1 = (β

(1)
0 + β

(1)
1 )/(1 − γ) and

(β
(2)
0 + β

(2)
1 )/(1 − γ) respectively, which correslonds to (3.2). The impact multipliers

are β
(1)
0 and β

(2)
0 respectively, and the impacts after one period are γβ

(1)
0 + β

(1)
1 and

γβ
(2)
0 + β

(2)
1 respectively. These two are not necessarily parallel, because β

(1)
0 /β

(2)
0 6=

(γβ
(1)
0 + β

(1)
1 )/(γβ

(2)
0 + β

(2)
1 ) unless β

(1)
0 β

(2)
1 = β

(1)
1 β

(2)
0 . However, the effects of a non

permanent one unit change are parallel from lag one onwards, because γl−1(γβ
(1)
0 +

β
(1)
1 )/[γ

l−1(γβ
(2)
0 + β

(2)
1 )] = (γβ

(1)
0 + β

(1)
1 )/(γβ

(2)
0 + β

(2)
1 ). Hence, in this specification with

two extra coefficients the ratio of the two impact multipliers β
(1)
0 /β

(2)
0 is not necessarily

equal to that of the long-run multipliers (β
(1)
0 + β

(1)
1 )/(β

(2)
0 + β

(2)
1 ), nor to the ratio of

the impacts from lag one onwards. But, for both the lag patterns decay from lag one
onwards at the same exponential rate γ.
There are a few particular cases of special interest. When β

(1)
0 = −β

(1)
1 the long-run

multiplier of x(1) with respect to y is zero, and hence x(1) has only temporary effects
on y. When β

(1)
1 = −γβ

(1)
0 then the impact multiplier of x(1) on y is equal to the

total multiplier, namely β
(1)
0 and there are no delays in the effects of x(1) on y. When

β
(2)
1 = −γβ

(2)
0 too, model (3.8) specializes to

yi,t − γyi,t−1 = β
(1)
0 (x

(1)
i,t − γx

(1)
i,t−1) + β

(2)
0 (x

(2)
i,t − γx

(2)
i,t−1) + ηi + εi,t

or
yi,t = β

(1)
0 x

(1)
i,t + β

(2)
0 x

(2)
i,t + (1− γ)−1ηi + ui,t, ui,t = γui,t−1 + εi,t, (3.9)

which is a panel ADL(0,0,0) model with AR(1) errors. This result indicates that an
ADL model with AR(p) errors is just a special case of an ADL model with white-noise
errors, where the orders of all lag polynomials have been increased by p, but where the
lag coefficients obey particular nonlinear restrictions. This finding instigates to start our
model specification search by including at least one lag of all regressors, because validity
of internal instruments constructed from lagged not strictly exogenous regressors requires
white-noise disturbances, and obtaining white noise disturbances is promoted by using
sufficiently large orders of all lag polynomials.
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When we add to the ADL(1,1,1) model β
(1)
2 x

(1)
i,t−2 and β

(2)
2 x

(2)
i,t−2 we obtain an ADL(1,2,2)

specification. Then, apart from the ratio between the two long-run multipliers and that
of the two impact multipliers, also the ratio of the effects after one period may have
a unique value, but from lag two onwards there is decay at the same exponential rate
determined by γ. Hence, basically this just leads to an extra subtlety in the short-run dy-
namics at lag 1. It should be obvious now what the effects would be of further increases
of pm, while keeping p0 = 1.
However, if we rename γyi,t−1 in γ1yi,t−1, and add γ2yi,t−2 as well, whereas the values of

γ1 and γ2 are such that the dynamic process is still stable, then in this ADL(2,2,2) model
there is still a kind of parallel decay after one period, but not necessarily monotonically
exponentially decreasing, but probably oscillating while gradually decreasing at the same
time. Whereas on the other hand, when no lagged dependent regressors occur and
p0 = 0, then the dynamic patterns implied by changes in any of the x

(m) are completely
determined by the coefficients of the lag polynomials β(m)(L), which means that without
further coefficient restrictions there is no parallel decay. For each x(m) the lag pattern
is then completely determined by β(m)(L).
Presence of parallel decay for different regressors x(m) may at first sight establish

a curious restriction which one might better avoid. However, allowing p0 > 0, which
induces occurrence of forms of parallel decay in the dynamic processes implied by ADL
models, can be rationalized by the following behavior of economic agents. As an example
we take the ADL(2,...,2) model

yi,t = γ1yi,t−1 + γ2yi,t−2 + Σ
M
m=1(β

(m)
0 x

(m)
i,t + β

(m)
1 x

(m)
i,t−1 + β

(m)
2 x

(m)
i,t−2) + ηi + εi,t,

which, when using TM (m) = (β
(m)
0 + β

(m)
1 + β

(m)
2 )/(1− γ1 − γ2), can be rewritten as

∆yi,t = −γ2∆yi,t−1 + Σ
M
m=1[β

(m)
0 ∆x

(m)
i,t − β

(m)
2 ∆x

(m)
i,t−1]

+ (γ1 + γ2 − 1)[yi,t−1 − Σ
M
m=1TM

(m)x
(m)
i,t−1 − ηi/(1− γ1 − γ2)] + εi,t. (3.10)

The latter form is called the error-correction or the equilibrium-correction form, see
Hendry (1995). Neglecting for the moment the disturbances εi,t and assuming ∆x

(1)
i,t =

... = ∆x
(M)
i,t = 0 over a long period, a stationary equilibriumwhere yi,t = Σ

M
m=1TM

(m)x
(m)
i,t +

ηi/(1 − γ1 − γ2) will be attained eventually. Then the second factor in square brack-
ets in (3.10) will be zero, like all other terms in that equation. If the factor yi,t−1 −

ΣMm=1TM
(m)x

(m)
i,t−1−ηi/(1−γ1−γ2), which expresses the long-run disequilibrium at time

t − 1, were non-zero, this will trigger a change in yi,t determined by the magnitudes of
the disequilibrium and the disequilibrium correction factor (γ1 + γ2 − 1). In fact, also

any actual current changes ∆x
(m)
i,t and passed changes ∆x

(m)
i,t−1 and ∆yi,t−1, as well as

chocks εi,t, all affect a change in yi,t according to (3.10). Shocks εi,t and current and

passed changes ∆x
(m)
i,t may in fact aggravate disequilibria. However, in the long-run

these disequilibria will be overcome by the error-correction mechanism, because under
stability γ1 + γ2 − 1 < 0. So, if the disequilibrium is negative (yi,t−1 too low) the third
term of (3.10) is positive and will help to achieve that ∆yi,t is positive, and the other
way around for a positive disequilibrium. Hence, agents do react to short-run shocks,
but aim to avoid a disequilibrium in the long-run. The latter brings about the parallel
dynamics for different m after the more independent short-run reactions. In models
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where p0 = 0 (no lagged-dependent variables as regressors) there is no overall reaction

by the agents to disequilibria as such, but only to changes in individual x
(m)
i,t variables.

In case of partial adjustment, so when p0 = 1 and p1 = ... = pM = 0, then

∆yi,t = Σ
M
m=1β

(m)
0 ∆x

(m)
i,t + (γ1 − 1)[yi,t−1 − Σ

M
m=1TM

(m)x
(m)
i,t−1 − ηi/(1− γ1)] + εi,t.

Here it are just the disequilibrium and the impact multipliers β
(m)
0 which determine the

fully parallel reaction patterns, under the perhaps curious restriction that for eachm the
impact multiplier β

(m)
0 and the total multiplier TM (m) are such that the reaction γ1− 1

to a disequilibrium is equal to −β
(m)
0 /TM (m), whereas when pm > 0 the error-correction

factor (γ1 − 1) and the impact and total multipliers are variation free. In such cases
the first pm− 1 intermediate impact multipliers may break away from the parallel decay
patterns which will occur from lag pm onwards in ADL models.
Obviously, by adding longer lags, more subtle lag patterns can be described by the

extra parameters. However, all the above models imply lag patterns which are similar
for all subjects i. They do not allow the total or intermediate multipliers to be different
for different subjects. Such homogeneity may not always be realistic.

3.4. Interactions in dynamic panel models

A severe restriction on the standard dynamic linear panel data model considered so far
is the homogeneity of all slope coefficients with respect to all individual subjects in the
sample. Allowing for some heterogeneity could be realized by splitting the sample in
a few subgroups, provided there is coefficient homogeneity within each subgroup. In
the extreme this may multiply the number of parameters by the number of required
subgroups. In case just some multipliers differ continuously or discretely with respect to
particular characteristics of the subjects one should extend the model with interaction
variables. It allows heterogeneity in the lag patterns and total multipliers for different
subjects i for individual variables x(m) at the cost of remarkably few extra parameters,
probably just one, whereas splitting the sample in G subgroups multiplies the number
of coefficients by G.
Let us first consider the specification

yi,t = γyi,t−1 + β(1)x
(1)
i,t + β(2)x

(2)
i,t + φx

(1)
i,t x

(2)
i,t + ηi + εi,t, (3.11)

where φx
(1)
i,t x

(2)
i,t establishes an interaction term. Assuming x

(2)
i,t = x̄

(2)
i is constant over

time, this yields

yi,t = (β
(1) + φx̄

(2)
i )x

(1)
i,t + β

(2)x̄
(2)
i + γyi,t−1 + ηi + εi,t

= (β(1) + φx̄
(2)
i )x

(1)
i,t + β

(2)x̄
(2)
i

+ γ[(β(1) + φx̄
(2)
i )x

(1)
i,t−1 + β

(2)x̄
(2)
i + γyi,t−2 + ηi + εi,t−1] + ηi + εi,t

= (β(1) + φx̄
(2)
i )Σ

∞
l=0γ

lx
(1)
i,t−l + β

(2)(1− γ)−1x̄
(2)
i + (1− γ)−1ηi + Σ

∞
l=0γ

lεi,t−l.

Hence, the impact multiplier of x
(1)
i,t with respect to yi,t is now β(1) + φx̄

(2)
i , and the

total multiplier is (β(1) + φx̄
(2)
i )/(1 − γ). These vary with the level of x̄

(2)
i , whereas

the lag pattern is still simply exponentially decaying. Similarly we find for the effect
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of x
(2)
i,t that it has individual specific impact multiplier β

(2) + φx̄
(1)
i , total multiplier

(β(2) + φx̄
(1)
i )/(1− γ) and for each individual an exponential lag pattern with the same

coefficient γ. Note that the lag patterns are again parallel over the whole range. If we
had used φx

(1)
i,t−1x

(2)
i,t−1 as the only interaction term, then the immediate impacts would

(again) be β(1) and β(2) (hence equal for all subjects i), but for time-constant x
(2)
i,t = x̄

(2)
i

we obtain

yi,t = β(1)x
(1)
i,t + β(2)x̄

(2)
i + φx

(2)
i x

(1)
i,t−1 (3.12)

+ γ(β(1)x
(1)
i,t−1 + β(2)x̄

(2)
i + φx

(2)
i x

(1)
i,t−2 + γyi,t−2 + ηi + εi,t−1) + ηi + εi,t

= β(1)x
(1)
i,t + (φx̄

(2)
i + γβ(1))x

(1)
i,t−1 + γφx̄

(2)
i x

(1)
i,t−2 + (β

(2) + γβ(2))x̄
(2)
i

+ γ2yi,t−2 + (1 + γ)ηi + εi,t + γεi,t−1

= β(1)x
(1)
i,t + (β

(1)γ + φx̄
(2)
i )Σ

∞
l=1γ

l−1x
(1)
i,t−l + β(2)(1− γ)−1x̄

(2)
i

+ (1− γ)−1ηi + Σ
∞
l=0γ

lεi,t−l.

So the total multiplier is again β(1)+(β(1)γ+φx̄
(2)
i )/(1−γ) = (β

(1)+φx̄
(2)
i )/(1−γ), but

now the exponential decay only starts from lag one onwards. Of course one could also
include both interactions φ0x

(1)
i,t x

(2)
i,t and φ1x

(1)
i,t−1x

(2)
i,t−1. Then also the immediate impact

varies per subject, whereas the effect of x̄
(2)
i on the impacts from lag one onwards may

be different.
Next consider the same options for adding interactions to the model with general first-

order dynamics instead of the just considered specific partial-adjustment case. First we
examine

yi,t = γyi,t−1 + β
(1)
0 x

(1)
i,t + β

(1)
1 x

(1)
i,t−1 + β

(2)
0 x

(2)
i,t + β

(2)
1 x

(2)
i,t−1 + φx

(1)
i,t x

(2)
i,t + ηi + εi,t. (3.13)

This yields for constant x
(2)
i,t

yi,t = γyi,t−1 + (β
(1)
0 + φx̄

(2)
i )x

(1)
i,t + β

(1)
1 x

(1)
i,t−1 + (β

(2)
0 + β

(2)
1 )x̄

(2)
i + ηi + εi,t,

which has similarities with (3.8) so that we can directly indicate that the long-run

multiplier is (β
(1)
0 +β

(1)
1 +φx̄

(2)
i )/(1−γ), the impact multiplier is β

(1)
0 +φx̄

(2)
i and from lag

one onwards exponential decay sets in with the impacts equal to γl(β
(1)
0 +φx̄

(2)
i )+γ

l−1β
(1)
1 .

The other option, where we include φx
(1)
i,t−1x

(2)
i,t−1, gives

yi,t = γyi,t−1 + β
(1)
0 x

(1)
i,t + (β

(1)
1 + φx̄

(2)
i )x

(1)
i,t−1 + (β

(2)
0 + β

(2)
1 )x̄

(2)
i + ηi + εi,t,

which yields the same total multiplier, a constant impact β
(1)
0 and next interim impacts

equal to γlβ
(1)
0 + γl−1(β

(1)
1 + φx̄

(2)
i ). Including both the unlagged and lagged interactions

yields

yi,t = γyi,t−1 + (β
(1)
0 + φ0x̄

(2)
i )x

(1)
i,t + (β

(1)
1 + φ1x̄

(2)
i )x

(1)
i,t−1 + (β

(2)
0 + β

(2)
1 )x̄

(2)
i + ηi + εi,t,

giving total multiplier [β
(1)
0 + β

(1)
1 + x̄

(2)
i (φ0+ φ1)]/(1− γ), impact β

(1)
0 + φ0x̄

(2)
i , followed

by interim impacts equal to γl(β
(1)
0 + φ0x̄

(2)
i ) + γl−1(β

(1)
1 + φ1x̄

(2)
i ) = γl−1[γβ

(1)
0 + β

(1)
1 +

(γφ0 + φ1)x̄
(2)
i ]. The latter has, of course, the earlier two as special cases.
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Possibly in many actual cases specification (3.13) already provides sufficient flexibility
to model variability per subject of the total multipliers and lag patterns in both variables
x
(1)
i,t and x

(2)
i,t . Of course, when models contain more explanatories than just x

(1)
i,t and x

(2)
i,t

further interactions can be introduced leading to variability of impacts with respect to
more than just one other regressor.
Yet another option is to involve the lagged dependent variable itself in the interac-

tions. We examine the case

yi,t = γyi,t−1 + φx
(2)
i,t−1yi,t−1 + β

(1)
0 x

(1)
i,t + β

(1)
1 x

(1)
i,t−1 + β

(2)
0 x

(2)
i,t + β

(2)
1 x

(2)
i,t−1 + ηi + εi,t.

For constant x
(2)
i,t this implies

yi,t = (γ + φx̄
(2)
i )yi,t−1 + β

(1)
0 x

(1)
i,t + β

(1)
1 x

(1)
i,t−1 + (β

(2)
0 + β

(2)
1 )x̄

(2)
i + ηi + εi,t.

Now the requirement that the lagged dependent variable coefficient is smaller than 1 in
absolute value in order to have sensible behavioral stable dynamic processes is at chal-
lenge. Therefore, only for particular x

(2)
i,t variables such interactions seem manageable.

In particular when x
(2)
i,t is a dummy variable it enables to distinguish different coefficient

values of the lagged dependent variable between two subgroups.
From the above we conclude regarding relaxing the homogeneity of all subjects with

respect to the total impact of the separate determining factors and their dynamic pat-
terns that it seems promising in many cases to just augment the standard dynamic
panel data specification by the products of couples of current regressors. Note that
when M = 10 this already implies the addition of possibly 55 interaction terms, which
then also includes the squares of the regressors x

(m)
i,t to allow for a parabolic relation-

ship. Even more subtle heterogeneity can be parameterized by including the products
of triples of regressors.

3.5. Dynamic multipliers in panel models with feedbacks

Let us now consider the situation where in model (3.1) the variables x
(m)
i,t are exogenous

for m > 1, whereas x
(1)
i,t is predetermined, and E(x

(1)
i,t−lεi,t) = 0 and E(x

(1)
i,t+1+lεi,t) 6= 0

for l ≥ 0. We will first examine a relatively simple case, namely

x
(1)
i,t = φεi,t−1 + ψyi,t−1 + ẍ

(1)
i,t , (3.14)

where ẍ
(1)
i,t is the joint contribution of all other determinants of x

(1)
i,t , which are all exoge-

nous with respect to εi,t, hence E(εi,tẍ
(1)
i,s ) = 0 ∀t, s. Note that x

(1)
i,t is affected by lagged

feedback from εi,t, directly if φ 6= 0 and also indirectly if ψ 6= 0.

Now consider the hypothetical situation in which ẍ
(1)
i,t and all exogenous regressors

of yi,t are running at constant values. Then E(x
(1)
i,t ) = x̄

(1)
i and E(yi,t) = ȳi will remain

constant too. A permanent increase of x̄
(1)
i at time period t0 by one unit, due to an

increase by one unit of ẍ
(1)
i,t at t0, whereas all other exogenous variables remain constant,

will have the following effects. Although ∆x̄
(1)
i,t = x̄

(1)
i,t − x̄

(1)
i,t−1 = 0 for t < t0, we have

∆x̄
(1)
i,t0
= 1, whereas ∆x̄

(1)
i,t = ψ∆ȳi,t−1 for t > t0, while ∆x

(m)
i,t = 0 for m = 2, ...,M and

∀t. Since γ(L)ȳi,t =
∑M

m=1β
(m)(L)x̄

(m)
i,t , it follows that γ(L)∆ȳi,t = β(1)(L)∆x̄

(1)
i,t . This
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yields ∆ȳi,t0 = β
(1)
0 ∆x

(1)
i,t0
= β

(1)
0 , because ∆ȳi,t = 0, ∆x̄

(1)
i,t = 0 for t < t0 and ∆x̄

(1)
i,t0
= 1.

So, the immediate effect on yi,t is β
(1)
0 . It also yields

∆ȳi,t0+1 = γ1∆ȳi,t0 + β
(1)
0 ∆x̄

(1)
i,t0+1

+ β
(1)
1 ∆x̄

(1)
i,t0

= (γ1 + β
(1)
0 ψ)∆ȳi,t0 + β

(1)
1 = (γ1 + β

(1)
0 ψ)β

(1)
0 + β

(1)
1 . (3.15)

This illustrates that all the interim multipliers (apart from the impact multiplier) differ

from the formulas derived earlier in case ψ 6= 0. For ψ = 0 we have ∆x̄
(1)
i,t = 0 for t > t0,

so ∆ȳi,t0+1 = γ1β
(1)
0 + β

(1)
1 as in the case of exogenous x

(1)
i,t . Apparently the value of φ is

irrelevant.
More generally, we may face the situation where

π(L)x
(1)
i,t = φ(L)εi,t + ψ(L)yi,t + ẍ

(1)
i,t , (3.16)

with π(L) = 1 − π1L − ... − πpπL
pπ , φ(L) = φ0 + φ1L + ... + φpφL

pφ and ψ(L) =
ψ0+ψ1L+ ...+ψpψL

pψ , with the integer orders pπ, pφ and pψ all nonnegative. Assuming

again that ẍ
(1)
i,t and x

(m)
i,t for m > 1 are all exogenous, x

(1)
i,t is an endogenous regressor in

our model of primary interest if either φ0 6= 0 or ψ0 6= 0 or both, whereas regressor x
(1)
i,t

is exogenous if φ(L) = 0 and ψ(L) = 0 and it is predetermined in all other cases. Taking
into account that the single relationship under study may contain several endogenous
and predetermined regressors, which probably are determinants of x

(1)
i,t too, it is obvious

that to be able to characterize the dynamic effects of a change in a predetermined or
endogenous regressor on dependent variable yi,t it appears required to specify and ana-
lyze a whole system of structural equations, instead of just one single equation. Then
by substitution the so-called final form equation for yi,t can be obtained, in which yi,t
is expressed in just its lags, (lags of) all the exogenous variables of the system and all
disturbances of the system. In most practical situations finding the proper specification
of the final form equation seems extremely difficult, if not impossible. Therefore, a more
realistic and pragmatic approach may be, to analyze dynamic multipliers as indicated
in the preceding subsections, thus neglecting any possible indirect feedbacks via endoge-
nous an predetermined regressors x

(m)
i,t , though explicitly mentioning that the obtained

results concern the primary dynamic effects, upon neglecting any secondary effects. Of
course, such calculations are of modest usefulness, not in the least because supplementing
them with a meaningful assessment of their accuracy by confidence intervals is generally
beyond reach.

3.6. Primary interim multipliers in the presence of interactions

Let the finally accepted estimated dynamic model include lags of squared regressors and
of interactions between couples of the M explanatories x

(m)
i,t and be given by

∆yi,t =
∑p

l=1γ̂l∆yi,t−l +
∑M

m=1

∑p

l=0β̂
(m)
l ∆x

(m)
i,t−l +

∑M

m=1

∑M

j=m

∑p

l=0β̂
(m,j)
l ∆(x

(m)
i,t−lx

(j)
i,t−l)

+
∑T

s=2τ̂s∆d
(s)
i,t +∆ε̂i,t. (3.17)

Here p is the maximum lag length that occurs. For the sake of simplicity we will assume
p = 2 below. Due to the accepted imposed restrictions many of the coefficients γ̂l,
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β̂
(m)
l and β̂

(m,j)
l may actually be zero, or obey other types of linear restrictions. We will

derive now an algorithm for calculating the primary interim multipliers (neglecting other
feedbacks than the direct feedbacks via γ̂l) for some hypothetical individual, say Q, of
yQ,T ∗+h with respect to a small hypothetical one-off change at time period T

∗ in one of the

M explanatory variables, say x
(F )
Q,T ∗ , where 1 ≤ F ≤M. These multipliers will be denoted

as IM
(F )
Q,h , for h = 0, ..., H, where H is the time horizon. Hence, IM

(F )
Q,0 is the immediate

multiplier and IM
(F )
Q,∞ the total multiplier with respect to regressor F , provided dynamic

process (3.17) is stable. Whereas in absence of interactions such multipliers, as presented
in section 3.3, are invariant regarding the particular individual F and time period T ∗

considered, in presence of interactions the multipliers are individual specific and they
depend on the actual state of the dynamic process for F over the period T ∗−p until T ∗.
To find an expression for IM

(F )
Q,h in terms of the relevant characteristics of individualQ

and the coefficient estimates γ̂l, β̂
(m)
l and β̂

(m,j)
l , we will first define a baseline projection

for the dependent variable, indicated by y
(0)
Q,T ∗+h, and next M level shift projections,

indicated by y
(F )
Q,T ∗+h, for F = 1, ...,M, for which the baseline value x

(F )
Q,T ∗ is replaced

by (1 + q)x
(F )
Q,T ∗ , with q some small real value. From these projections the M series of

interim multipliers can be obtained. They are given by

IM
(F )
Q,h = (y

(F )
Q,T ∗+h − y

(0)
Q,T ∗+h)/qx

(F )
Q,T ∗ , h = 0, ..., H. (3.18)

For q not larger than, say, 0.1 in absolute value, we expect very modest dependence of
IM

(F )
Q,h on q.

For the baseline projection we assume that ∆x
(m)
Q,T ∗+h = ∆ε̂Q,T ∗+h = 0 for h > 0 and

all m. This implies

∆y
(0)
Q,T ∗ = ∆yQ,T ∗ ,

∆y
(0)
Q,T ∗+1 = γ̂1∆yQ,T ∗ + γ̂2∆yQ,T ∗−1 +

∑M

m=1

∑1
l=0β̂

(m)
l+1∆x

(m)
i,T ∗−l

+
∑M

m=1

∑M

j=m

∑1
l=0β̂

(m,j)
l+1 ∆(x

(m)
i,T ∗−lx

(j)
i,T ∗−l),

∆y
(0)
Q,T ∗+2 = γ̂1∆y

(0)
Q,T ∗+1 + γ̂2∆yQ,T ∗ +

∑M

m=1β̂
(m)
2 ∆x

(m)
i,T ∗

+
∑M

m=1

∑M

j=mβ̂
(m,j)
2 ∆(x

(m)
i,T ∗x

(j)
i,T ∗),

∆y
(0)
Q,T ∗+h = γ̂1∆y

(0)
Q,T ∗+h−1 + γ̂2∆y

(0)
Q,T ∗+h−2, h = 3, ..., H.






(3.19)

For the level shift projection with respect to the F th explanatory variable there is just
one different underlying assumption, namely that x

(F )
Q,T ∗ is multiplied by 1 + q. So,

∆x
(m)
Q,T ∗−l and ∆(x

(m)
Q,T ∗−lx

(j)
Q,T ∗−l), for both m and j different from F, do not change,

nor does ∆x
(F )
Q,T ∗−l for l > 0, but ∆x

(F )
Q,T ∗ should be replaced by ∆x

(F )
Q,T ∗ + qx

(F )
Q,T ∗ , and

for m 6= F expression ∆(x
(F )
Q,T ∗x

(m)
Q,T ∗) = x

(F )
Q,T ∗x

(m)
Q,T ∗ − x

(F )
Q,T ∗−1x

(m)
Q,T ∗−1 should be replaced

by ∆(x
(F )
Q,T ∗x

(m)
Q,T ∗) + qx

(F )
Q,T ∗x

(m)
Q,T ∗ , whereas ∆(x

(F )
Q,T ∗x

(F )
Q,T ∗) = x

(F )
Q,T ∗x

(F )
Q,T ∗ − x

(F )
Q,T ∗−1x

(F )
Q,T ∗−1

should be replaced by ∆(x
(F )
Q,T ∗x

(F )
Q,T ∗) + (2q + q2)x

(F )
Q,T ∗x

(F )
Q,T ∗ . Hence, defining ∆x

∗(m)
Q,T ∗−l

and ∆(x
∗(m)
Q,T ∗−lx

∗(j)
Q,T ∗−l) such that they are equivalent to ∆x

(m)
Q,T ∗−l and ∆(x

(m)
Q,T ∗−lx

(j)
Q,T ∗−l)

respectively, except for the replacements just mentioned, then the level shift projection
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can be expressed as

∆y
(F )
Q,T ∗ = ∆yQ,T ∗ + β̂

(F )
0 qx

(F )
i,T ∗

+
∑M

m=1β̂
(m,F )
0 [∆(x

∗(F )
Q,T ∗x

∗(m)
Q,T ∗)−∆(x

(F )
Q,T ∗x

(m)
Q,T ∗)],

∆y
(F )
Q,T ∗+1 = γ̂1∆y

(F )
Q,T ∗ + γ̂2∆yQ,T ∗−1 +

∑M

m=1

∑1
l=0β̂

(m)
l+1∆x

∗(m)
Q,T ∗−l

+
∑M

m=1

∑M

j=m

∑1
l=0β̂

(m,j)
l+1 ∆(x

∗(m)
Q,T ∗−lx

∗(j)
Q,T ∗−l),

∆y
(F )
Q,T ∗+2 = γ̂1∆y

(F )
Q,T ∗+1 + γ̂2∆y

(F )
Q,T ∗ +

∑M

m=1β̂
(m)
2 ∆x

∗(m)
i,T ∗

+
∑M

m=1

∑M

j=mβ̂
(m,j)
2 ∆(x

∗(m)
Q,T ∗x

∗(j)
Q,T ∗)

∆y
(F )
Q,T ∗+h = γ̂1∆y

(F )
Q,T ∗+h−1 + γ̂2∆y

(F )
Q,T ∗+h−2, h = 3, ..., H.






(3.20)

From the above we find that the effect of the level-shift on the dependent variable after
h = 0, ..., H periods is given by

y
(F )
Q,T ∗+h − y

(0)
Q,T ∗+h = Σ

h
l=0∆y

(F )
Q,T ∗+l + yQ,T ∗−1 − Σ

h
l=0∆y

(0)
Q,T ∗+l − yQ,T ∗−1

= Σhl=0(∆y
(F )
Q,T ∗+l −∆y

(0)
Q,T ∗+l).

Substitution of (3.19) and (3.20) in this expression enables to evaluate all the M series
of interim multipliers (3.18).

Different series of multipliers will be obtained for different values of x
(m)
Q,T ∗ ,∆x

(m)
Q,T ∗

and ∆x
(m)
Q,T ∗−1 for m = 1, ...,M ; it can easily be shown that the multipliers are in fact

invariant with respect to ∆yQ.T ∗ and ∆yQ.T ∗−1. A straight-forward choice would be

x
(m)
Q,T ∗−l = N−1ΣNi=1x

(m)
i,T−l for l = 0, 1, 2. But, instead of focussing on the average indi-

vidual, multipliers can also be calculated for more atypical individuals Q, perhaps by
adding/subtracting a multiple of the value of the sample standard deviations of x

(m)
i,T−l

over the N subjects. If the model does not include interactions nor squared variables,
then the interactions calculated according (3.18) will be equal to those of section 3.3

when one assumes ∆x
(m)
Q,T ∗ = ∆x

(m)
Q,T ∗−1 = 0.

4. Further practical considerations and a tentative strategy

Let us now try to integrate all issues discussed above into a practical strategy and set
of instructions that can be implemented in Stata software via the package Xtabond2.
In a first subsection we will address some of the peculiarities of this software, also in
relation to a few general observations on what is presently known about the qualities
of the various techniques in finite samples, for which we refer to the second half of
Kiviet et al. (2017). Next we will develop a 10-stage practical modelling strategy for
microeconometric single relationships.

4.1. Some unpleasant peculiarities

All established theoretical qualities of the econometric tools to be used are asymptotic in
nature, namely for samples containing an infinite number of subjects (individuals, firms)
over a short time span (N extremely large, T finite). In empirical samples, where N is
finite too, depending on peculiarities still hardly understood, the actual qualities of the
tools may differ, sometimes in a counterintuitive way, from their asymptotic qualities.
Examples of such counterintuitive phenomena are: (i) 2-step GMM estimation, which
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employs 1-step residuals to take possible heteroskedasticity into account, although in
theory more efficient than robust9 1-step GMM estimation, may actually be less accu-
rate (produce estimates with larger mean squared errors), probably due to vulnerability
regarding the estimated weighting matrix; (ii) discarding the use of some valid (though
relatively weak) instruments, either by collapsing or curtailing the instrument matrix,
although harmful for the efficiency of the limiting distribution of consistent GMM es-
timators, may actually reduce estimator bias in finite samples and thus yield improved
accuracy.
As far as I know, for no serious finite sample problem in the analysis of dynamic

panel data models a universally effective correction to overcome it has been developed
yet. To a limited degree there is one prominent exception to this. That is the Windmei-
jer (2005) correction to the usually overoptimistic (negatively biased) standard errors
produced by standard 2-step GMM. One should always employ this correction10, though
not overestimate its effectiveness, because often the true standard deviations are still
substantially larger than the corrected ones. Moreover, the 2-step GMM coefficient es-
timates are often seriously biased too. Hence, just correcting the bias of the variance
estimate in Wald-type coefficient tests and not the bias of the coefficients themselves
may still lead to poor (or even worse) test performance.
With respect to instrument validity tests the following should be mentioned. All

Hansen tests produced by Xtabond2 are obtained as a quadratic form in the product of
the transposed instruments and the 2-step residuals, whereas the estimated covariance
matrix of this vector has been obtained by employing 1-step instead of 2-step residuals.
Therefore we will address it as J (2,1) like in Kiviet et al. (2017, p.18), where it has been
compared with the variant suggested in Arellano and Bond (1991), which uses 2-step
residuals for the covariance as well.
As suggested by Hayashi (2000, p.222), sub-optimal weighting is being used in

Xtabond2 for incremental Hansen tests. This avoids negative outcomes of the test
statistic. These may occur when one simply takes the difference of two standard Hansen
tests. However, negative test outcomes as an approximation to an asymptotically non-
negative statistic do not seem a major problem, as they simply suggest an extremely
high p-value. Using sub-optimal weights, though, may sacrifice test power and possibly
disturb size control. By calculating in an incremental Hansen test the overall Hansen
test based on the restrained set of instruments while weighting is based on using the
unrestrained set its distribution is shifted to the right. Apart from preventing negative
outcomes, this may also affect the distribution in the right-hand tail. This could offset
possible underrejection by a standard difference Hansen test11, but could also lead to
more serious overrejection. This is one of the many finite sample issues that has not

9The robustification here is with respect to estimating the variance matrix of the 1-step GMM
coefficient estimates such that it is consistent under unknown forms of possible heteroskedasticity of
the disturbances (either over individuals or over time or both). Robustness of variance estimates with
respect to unknown forms of serial correlation is unachievable when some regressors are not exogenous,
because serial correlation would render instruments invalid and GMM coefficient estimates inconsistent.
10In Xtabond 2 this correction is wrongly addressed as "robustifying" 2-step estimation. The correc-

tion produces a better approximation to the true standard errors than the standard asymptotic one,
by employing higher-order asymptotic methods. Both the uncorrected and the corrected version are
robust with respect to unknown forms of heteroskedasticity.
11This can easily be obtained from Xtabond2 by subtracting manually two optimally weighted stan-

dard Hansen tests.
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been thoroughly examined yet.
In summary, for producing inference on dynamic panel data models it is in general

not clear yet which of the many alternative implementation options one should prefer
in practice for test procedures and for estimators of coefficients and of their variance.
The particular options provided by Xtabond2 are not always the only ones possible and
probably not always the ones one should prefer.12

4.2. A sequential strategy for implementing GMM for micro panels

As a consequence of all the above mentioned obstacles, finding an initial candidate MSM
will be far from easy, if not sheer impossible. This MSM should ideally be such that the
true underlying data generating process of the structural relationship can ultimately be
represented and accurately estimated after imposing the right coefficient restrictions and
finding and exploiting any additional valid and effective moment conditions. Before we
can get to this deductive specialization phase of imposing extra coefficient restrictions
and exploiting extra moment conditions, we first need to design an inductive discovery
phase to search for and lastly find an acceptable MSM. The latter phase is mainly
conducted on the basis of the interpretation of p-values of a well-designed series of
misspecification tests. These should reveal impermissible patterns of serial correlation
in the disturbances, any omitted relevant regressors and invalidity of subsets of the
exploited instruments. Next, after an acceptable MSM has been discovered, in the
deductive phase the p-values of series of mostly very similar test procedures are being
used. But now these tests are designed to reveal any redundant regressors or additional
valid instruments to enable to achieve higher levels of efficiency.
Against the background provided above, and given the currently available still limited

understanding of the performance in finite samples of the various statistical tools, the
methodology that we want to recommend here embarks on a strategy consisting of the
following ten sequential stages. All mentioned thresholds for p-values should be taken
with substantial pinches of salt and be adapted to the actual situation regarding size
of the available panel data set and any trustworthy expert knowledge regarding the
relationship under study. Examples of the precise formulation of the required Xtabond2
code can be found in Appendix B. The 10 stages are:

1. Start with a specification of the model and instrument set which seems a reason-
able compromise between generality in order to aim for consistency and specificity
in order to acquire some precision as well. So, avoid to impose patently false re-
strictions on the model by omitting possibly relevant direct determinants of the
dependent variable. Nor exploit any instruments that could well be invalid. Hence,
include sufficient lags of all variables x

(m)
i,t that seem relevant and some lags of yi,t

too, not only to allow for a sufficiently rich pattern of the dynamic adjustments,
but also to avoid serial correlation of the disturbances.13 Treat all contemporane-
ous variables as endogenous with respect to εi,t, except when their exogeneity is

12In addition, in the current version the figure used for the number of regressors does not correct
for any regressors omitted by the program (to avoid extreme multicollinearity, which will occur when
too many time dummies are being included). As a consequence, the number of degrees of freedom of
Sargan and Hansen tests may be deflated, and so will then be the associated asymptotic p-values.
13In many applied studies it seems to be believed wrongly that by adopting a partial adjustment

framework, thus just including yi,t−1 as the one and only lagged regressor, by its single extra coefficient,
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beyond doubt. Though, at the same time, avoid to include regressors that most
probably will actually be redundant or may jeopardize identification of the struc-
tural equation of interest for variable yi,t, because their effect is not direct but just
indirect via other possibly endogenous explanatories. Right from the beginning
exploit a fair number of instruments which seem reasonably strong and should be
valid if the chosen dynamic specification is general enough to avoid serial corre-
lation. Because we will estimate the model after taking first-differences in order
to remove time-constant unobserved individual effects, it is useless to include in
the model any variables which are systematically time-constant for each unit over
the whole time period covered by the sample, such as the intercept, etnicity, coun-
try of birth of individuals, or as may occur for gender, domicile, highest level of
education, etc. Effects of such variables are absorbed by the individual effects. In-
clude time dummies and use them as instruments too. To avoid the dummy-trap
in (2.1) it should contain next to the individual effects just T − 1 time-dummies,
for instance for t = 2, ..., T. Their inclusion implies that explanatories which are a
function of these should not be included too. This regards a linear (or quadratic,
hence any systematic) trend, or the age of unit i (if the data have been collected
on the same date each year) or inflation as experienced by all units, etc. Make

sure that any scaling or other transformations used for the variables yi,t and x
(m)
i,t

for m = 1, ...,M do make sense, so make a deliberate choice between including
variables in real or in nominal terms, taking them as fractions or not, including
them directly as observed or taking their logarithm, etc. The crucial issue is here:
what transformation of the variables realizes that the coefficient of each regressor
in the estimated model will really be constant in the sample and over the whole
population. Hence, at stake is the constancy of the partial derivatives, or perhaps
of the elasticities (which would require taking logs) or yet another characteristic,
of the explanatory variables with respect to the dependent variable as observed
in the sample. If these partial derivatives should vary with one or more other
variables, this may require to include interaction terms.

2. Estimate this initial candidate MSM, taken in first-difference form, both by 1-step
Arellano-Bond GMM, requesting heteroskedasticity robust standard errors, and by
2-step Arellano-Bond GMMwith Windmeijer correction of its standard errors. For
both 1-step and 2-step use the same set of instruments and formulate these such
that separate incremental Hansen tests will be calculated for all the instruments
obtained from each separate variable x

(m)
i,t and from yi,t. If the size of the sample

permits, employ all the available internal instruments. Hence, use to construct
the instruments for all endogenous (with respect to εi,t) regressors x

(m)
i,t , as well

as for yi,t, the option gmm(2 .). For all current predetermined regressors x
(m)
i,t use

the option gmm(1 .) and for all current exogenous regressors gmm(0 .), except
for variables like the first difference of time dummies which each just yield one
instrument namely the regressor itself. If this leads to too many instruments in
relation to N(T − 1) −K, where K is the total number of estimated coefficients,
including the T − 1 time effects, then use the collapse option for all variables, or

provided it is nonzero, any possible form of dynamics in a relationship can adequately been taken care
of. That this is seriously short-sighted follows from Section 3.
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curtail, by replacing for all gmm-statements the dot by 4, 3 or 2. Do this possibly
jointly with collapsing. So, in principle, do not use fewer internal instruments
obtained from exogenous14 than from predetermined regressors, and not fewer from
predetermined than from endogenous regressors. Well substantiated rules of thumb
on reasonable boundaries on the number of instruments are not available, apart
from the obvious restrictions that it should be somewhere between the number of
estimated regression coefficients and the number of available observationsN(T−1).
Denoting the total number of employed instruments by L, for the current candidate
MSM L should (to my current subjective taste) obey (very roughly) inequalities
like

K + 4 ≤ L < qKK and qLL < NT − T −K, (4.1)

where qK and qL may be in a wide range
15, possibly 4 < qK < qL < 10. After es-

timation, do not yet verify and interpret the coefficient estimates seriously before
stage 3 has been reached and an acceptable MSM may have been found. First,
just verify for both 1-step and 2-step results whether they pass the requirements
regarding the two tests on serial correlation and for the standard and all incremen-
tal Hansen16 overidentification restrictions tests. As long as no evidence has been
produced on homoskedasticity of the disturbances completely neglect the outcome
of the Sargan test. The overall Hansen test, which has L−K degrees of freedom,
and the 1-step and 2-step based tests on the second-order serial correlation coef-
ficient of the disturbances, should all have a p-value (well) above 0.20, say, and
the 1-step and 2-step tests for the first-order serial correlation coefficient should
have a p-value below, say, 0.05. Otherwise, reformulate the model and/or instru-
ment set. Especially if any of the incremental Hansen tests has a p-value below
0.10, say, this may give a clue on how to reformulate the model by including extra
lags of that variable as regressor in the model. Also consider changing the func-
tional form of the relationship by employing variable transformations or include
variables that had not been tried yet, or allow for nonconstancy of the impacts
by including either dummy variables that define categories of individuals per time
period or include squared regressors or interaction terms. This requires employing
instruments from these dummies, squared variables and interactions from lag 2
onwards, or from lag 0 onwards if their exogeneity is self-evident. So, go back to
stage 1, and reconsider how to obtain an improved candidate MSM which passes all
the above criteria reasonably well. Especially because all our inference techniques
are asymptotic in nature one should prefer the sample to be as large as possible.
However, it could turn out to be easier to find a satisfactory model with constant
coefficients by seeking a more homogeneous subsample, either by focussing just
on a subgroup (for instance, only families with children, or just firms with more

14Many practitioners do just use one instrument per exogenous regressor, namely te regressor itself,
whereas lags of these often constitute relatively strong instruments for other regressors.
15Underlying motivations for these inequalities are that L should be strictly larger than K to assure

the existence of at least the first four moments of the GMM coefficient estimates. This may help to
avoid the occurrence of huge outliers. Also, one may decide to use a relatively very large number of
instruments, say 10K, but only in situations where the number of degrees of freedom N(T − 1)−K is
at least 10 times as large as L too.
16In Xtabond2 the Hansen (incremental) tests presented for robust 1-step GMM are in fact those

calculated for 2-step GMM.
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than 100 employees), so decreasing N. Or by focussing on a particular era (only
the years after the financial crisis), so decreasing T. It might be the case that
analyzing the complete available sample requires so many extra parameters that
separate analysis of subpopulations proves beneficial.

3. If the above criteria have been fulfilled, and especially if none or very few of the
incremental Hansen tests has a p-value below 0.1, say, whereas increasing p0, ..., pM
by one, or adding squares or interactions of variables, does not yield corresponding
coefficients with p-values below 0.2, say, it could be that a reasonably adequate
and acceptable MSM has been found. Next, one could move on to stage 4, or first
verify whether any of the coefficients for the longest lag of a variable x

(m)
i,t or of

yi,t has a t-value below 0.5, say, or a p-value above 0.6 or 0.7, say. If so, impose
the least significant one of them to be zero, re-estimate the model, and repeat the
same procedure until the coefficients of all longest lags have absolute t-values (well)
above 0.5, and the overall and incremental Hansen tests and the serial correlation
tests still produce satisfactory results.

4. Optional: Obtain for both 1-step and 2-step results the level residuals and run
regressions by LSDV (fixed effects or within least-squares estimation) for their
squares on all levels of the regressors that remained after stage 3, except the
unlagged ones that were treated as endogenous. If none of their coefficients has an
absolute t-value above 1, say, this could mean that the disturbances are (almost)
homoskedastic and that 1-step estimation without asking for robust standard errors
for the model at the end of stage 3 may be taken serious too, provided the overall
Sargan test has a p-value above 0.20, say, and also the incremental Hansen and
serial correlation tests remain satisfactory. If accepting homoskedasticity seems
reasonable then from now on just standard 1-step GMM could be employed.

5. Now examine sequentially (in case of homoskedasticity just for 1-step, otherwise
just for corrected 2-step) one by one, for all unlagged explanatory variables yet
classified as endogenous with respect to εi,t what the p-value is of the incremental
Hansen test for the instruments that would be valid too if that regressor were ac-
tually predetermined; this involves employing one by one the extra option gmm(1
1) for the instruments constructed from each variable initially treated as endoge-
nous. For the variable with the highest such p-value, provided this value is above
0.5, say, one may contemplate treating it from now on as predetermined, hence
adopting the extra instruments gmm(1 1). Next, repeat the same procedure until
no such incremental p-values can be obtained with values above 0.5, say. During
this process check whether the overall and other incremental Hansen tests and the
serial correlation tests (which use coefficient standard errors, so it is essential that
the Windmeijer correction has been applied) are still satisfactory.

6. Next, repeat stage 5, but now checking sequentially for all unlagged variables
x
(m)
i,t yet treated as predetermined with respect to εi,t whether they actually seem
exogenous; this involves employing the extra option gmm(0 0). After stages 5 and
6 due to now using possibly some extra valid and relatively strong instruments,
ideally the standard errors of the coefficient estimates should be smaller now. If
homoskedasticity has not been accepted then estimate the present specification
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of model and instrument set not just by corrected 2-step but also by robust 1-
step GMM. Hopefully the results are reasonably similar. If not, examine where
in the process the results started to diverge. If a discrepancy cannot be resolved
my subjective preference would be to continue on the basis of the robust 1-step
results.

7. Now, again preferably sequentially, and as long as no problems emerge regard-
ing the serial correlation and instrument validity tests, impose restrictions on the
model by removing regressors with absolute t-ratio’s below 0.5, say, starting with
those with the highest p-values (smallest absolute t-values). Probably the effectiv-
ity of stages 5 and 6 would benefit when preceded by stage 7, but undoubtedly the
power of the tests used in 7 will benefit after stages 5 and 6 yielded some extra
strong and valid instruments. Anyhow, it could be beneficial to start stages 5 and
6 only after the most insignificant regressors have already been removed. Possi-
bly it is worthwhile to examine any differences that occur when the examination
of the acceptability of imposing zero coefficient restrictions and imposing extra
orthogonality conditions is performed in different orders.

8. At this stage, but also depending on what seemed required already in stage 2,
one should (aiming to reduce estimator bias) investigate the effects of restricting
the number of employed instruments either by removing long lags (curtailing) or
taking linear combinations of instruments (collapsing), or by both. In this process,
keep an eye on the inequalities mentioned in stage 2, taking into account that K,
L and T will/may be different since adopting the MSM in stage 3. Note that
T here denotes the time-series sample size, being the number of available time-
series observations for the left-hand side variable in the equation before taking
first differences. This number may have increased since stage 3, due to imposing
zero restrictions on the coefficients of the longest lags. And K will usually be
smaller now and L larger.

9. Keep in mind that valid relevant coefficient restrictions are not necessarily just
of the zero restriction type. Possibly, two coefficients may for good reasons have
opposite sign, so sum to zero, or sum to unity, etc. Testing whether a total
multiplier is zero may require to test the significance of the sum of a series of
coefficients.17 Compulsively removing regressors when their p-value exceeds 5% is
condemnable. Demonstrating the insignificance of an effect can be very informative
as such. Removing regressors with t-values (well) below 1 may make sense if there
is no strong theory to leave them in. Useful additional evidence can be produced by
also testing the joint significance of groups of single coefficient restrictions already
imposed on the MSM and verifying whether the p-value is high indeed. Such joint
significance tests can be obtained by using the "test" option.

10. Finally, or immediately after stage 7, a similar sequential procedure as in stages 6
and 7 can be performed regarding additional first-differenced instruments that un-
der effect stationarity of an individual regressor x

(m)
i,t , which requires E(ηi∆x

(m)
i,t ) =

17For instance, testing whether β0 + β1 + β2 = 0 in the model yit = γyi,t−1 + β0xit + β1xi,t−1 +
β2xi,t−2 + ... can be done by estimating yit = γyi,t−1 + β

∗

0∆xit + β
∗

1∆xi,t−1 + β
∗

2xi,t−2 + ... and then
testing the significance of β∗2 , because β

∗

0 = β0, β
∗

1 = β1 + β0 and β
∗

2 = β2 + β1 + β0.
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0, would be valid for the model in levels. In the level equation Xtabond2 automati-
cally includes an intercept term, both in the equation and in the set of instruments.
Note that the (lagged) dependent variable yi,t can only be effect stationary if all the
other regressors are effect stationary too while yi0 obeys the required initial condi-
tions. Hence, instead of immediately testing the effect stationarity of all variables,
one better starts by investigating the regressors x

(m)
i,t one by one.18 Only if all the

associated p-values are, say, 0.3 or larger, it seems not unlikely that standard 2-step
Blundell-Bond GMM (Windmeijer-corrected) should be preferred to an Arellano-
Bond implementation. Mostly, Blundell-Bond estimates have smaller estimated
standard errors than Arellano-Bond estimates anyhow, but this should not auto-
matically be taken as evidence of their superiority; it could also be a side-effect of
their inconsistency.19 If not all regressors are found to be effect stationary it can
nevertheless make sense to do system estimation (jointly estimating the equation
in first-differences and the equation in levels), just exploiting the instruments in

first-differenced form for the level equation obtained from those regressors x
(m)
i,t

which seem effect-stationary.

Of course, the above 10 stages should not be followed in a too mechanical way. Every
particular data set and relationship goes with specific peculiarities that require special
attention. Especially the p-value thresholds suggested in the above should be taken with
wide margins. Choosing a really sensible value would require to first quantify the risks
and costs of taking wrong decisions, and knowing the finite sample distribution of the
test statistics (instead of just their asymptotic chi-squared null-distribution), which is
practically impossible.
The model specification strategy formulated in the above 10 stages starts with find-

ing after some trial and error an MSM for which no obvious evidence is found that its
underlying statistical assumptions should be rejected, and next in a sequential search a
restrained version of it is established in which coefficient restrictions have been imposed
and extra moment conditions are employed to estimate it hopefully more accurately.
From that final specification series of interim multipliers and any other substantive in-
ferences regarding the established relationship should be obtained. One should realize,
though, that it would be naive to interpret the ultimate findings on this restrained MSM
in the usual standard way. Estimated standard errors will carry only little information
now on the actual statistical variability of the estimated coefficients and a solid standard
for the actual significance of the final results can not be provided. The final result is the
product of data reduction instigated by reasonably sophisticated but at the same time
rather cosmetic, say cosmetric, methods. They cannot simply lead to the construction of
trustworthy 95% confidence intervals on the values of the unknown structural parame-
ters. As discussed in Section 3, from the estimates of the restrained MSM short-run and
long-run multipliers can be obtained, but a serious assessment of their standard errors
seems an unattainable endeavour.
To conclude this section: Always keep in mind, that larger/smaller estimated stan-

dard errors between different implementations of an estimation technique do not provide

18How this is done is illustrated in de do-file given in Appendix B.
19For similar reasons OLS estimates usually have smaller estimated standard errors than IV estimates.

This occurs irrespective whether OLS is consistent or not. To choose between them one should test the
validity of the extra orthogonality conditions used by Blundell-Bond.

37



evidence on similar differences in actual accuracy. The difference in true standard de-
viation may be opposite and there may be a substantial difference in actual bias too.
It usually occurs that when extra information is being exploited (coefficient restrictions
imposed, moment conditions employed) this yields estimates with smaller estimated
standard errors, irrespective whether the extra information is actually valid or not.

5. An empirical example

Following the principles and strategy outlined above we will illustrate these by re-
analyzing the same sample of only N = 140 UK companies observed annually over
a period not exceeding 1976-1984 that has earlier been examined in the classic studies
by Arellano and Bond (1991) and Blundell and Bond (1998).20 They considered a dy-
namic employment equation for the logarithm of employment (ni,t) in company i at the
end of year t. For its explanation the data set contains three variables (M = 3), namely
the log of real product wage (wi,t), the log of gross capital (ki,t), and the log of industry
output (ysi,t), next to the linear trend (year).
Table 1 reports in its columns for particular model specifications the GMM coefficient

estimates, with their standard errors between parentheses. The table does not present
the time effects which were always included. The coefficient values have three stars when
the absolute t-ratio is larger than 3, otherwise two stars when larger than 2, and otherwise
one star when larger than 1. In the heading of each column codes are given indicating
which particular implementation of GMM has been used, which classification of the
three separate current regressors has been adopted, and whether any particular form of
reduction regarding the available instruments has been used. Also the total number of
regressors (K), the total number of instruments (L) and the asymptotic p-values of the
major misspecification test statistics as calculated by Stata package Xtabond2 are given.
If the data set would have been balanced over the period 1976-1984 there would have
been N(T −1) = 140∗6 = 840 observations for all columns in Table 1, which all concern
specifications with second order dynamics. Because the actual data set is unbalanced
only 611 observations of ∆ni,t participate as left-hand side variable in estimation. For
the code to obtain all presented and some extra supporting results see Appendix B.
Column (A) replicates the results from column (a1) of Table 4 in Arellano and Bond

(1991, p.290). So, it gives 1-step Arellano-Bond estimates with heteroskedasticity robust
standard errors (indicated as AB1R). The standard errors are slightly larger here due
to applying a degrees of freedom correction. From the predetermined lagged dependent
variable all 27 available instruments have been employed (indicated as Pa), whereas all
three current regressors have been treated as exogenous, while these first differenced
regressors and their lags have all directly been used as instruments, and thus have not
been used to generate any extra instruments (XXXn, where the n indicates no over-
identification). Due to the many instruments constructed from lags of the dependent
variable the degree of over-identification is nevertheless 25=27+14-16.

20Other empirical examples inspired by the strategy outlined in the foregoing section can be found
in Kiviet, Pleus and Poldermans (2017, p.43) and Kiviet, Pindado and Requejo (2019).
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Table 1. Empirical findings for the Arellano-Bond (1991) data

(A) (B) (C) (D) (E) (I) (J)
AB1R AB2 AB2W AB1R AB1R AB1R BB2W
PaXXXn PaXXXn PaXXXn PEEEa PEEE4 PEEX32 PEEX32

ni,t−1 .686∗∗∗ .629∗∗∗ .629∗∗∗ .759∗∗∗ .913∗∗∗ .966∗∗∗ 1.07∗∗∗

(.147) (.092) (.197) (.082) (.105) (.098) (.044)
ni,t−2 -.085∗ -.065∗∗ -.065∗ -.132∗∗ -.127∗∗ -.159∗∗∗ -.104∗∗

(.057) (.027) (.046) (.046) (.043) (.049) (.035)
wi,t -.608∗∗∗ -.526∗∗∗ -.526∗∗∗ -.538∗∗∗ -.582∗∗∗ -.615∗∗∗ -.490∗∗∗

(.181) (.055) (.157) (.158) (.159) (.114) (.088)
wi,t−1 .393∗∗ .311∗∗∗ .311∗ .579∗∗∗ .721∗∗∗ .565∗∗∗ .519∗∗∗

(.171) (.096) (.206) (.184) (.226) (.184) (.107)
wi,t−2 - - - -.100∗ -.161∗∗ -9.52∗∗ -1.97∗

(.065) (.070) (3.43) (1.60)
ki,t .357∗∗∗ .278∗∗∗ .278∗∗∗ .334∗∗∗ .239∗ .903∗ 0.993∗

(.060) (.046) (.074) (.100) (.133) (.692) (.554)
ki,t−1 -.058 .014 .014 -.104∗ -.261∗∗ -2.53∗∗ -1.87∗∗

(.074) (.054) (.094) (.081) (.095) (.866) (.676)
ki,t−2 -.020 -.040∗ -.040 -.019 -.030 1.46∗∗ .718∗

(.033) (.026) (.044) (.033) (.037) (.715) (.428)
ysi,t .609∗∗∗ .592∗∗∗ .592∗∗∗ .536∗∗ .895∗∗∗ .575∗∗ .383∗

(.175) (.118) (.176) (.219) (.277) (.195) (.201)
ysi,t−1 -.711∗∗∗ -.566∗∗∗ -.566∗∗ -.641∗∗ -.954∗∗∗ -.722∗∗∗ -.652∗∗

(.235) (.142) (.265) (.223) (.307) (.238) (.243)
ysi,t−2 .106 .101 .101 .230∗ .371∗ -25.8∗ -17.2∗

(.143) (.114) (.164) (.180) (.198) (13.7) (10.1)
year .010 .011∗ .011 - - - -

(.010) (.008) (.012)
K 16 16 16 17 17 25 26
L 41 41 41 114 74 100 173
m1 .000 .003 .034 .000 .000 .000 .000
m2 .606 .678 .725 .934 .531 .842 .799
J (2,1) .177 .177 .177 .532 .939 .927 .962

At least four aspects of (A) are surprising: (i) leaving out the wi,t−2 regressor; (ii)
adopting exogeneity for all three explanatories; (iii) using all possible instruments from
ni,t and the absolute minimum from the other explanatories; (iv) including, next to the
time dummies, a linear trend (which gives an intercept in the first-differenced model).
Regarding (iv) the explanation is simple: if time-dummies had been included for all
T − 1 = 6 time-series observations in the estimation equation21 then estimating the
linear trend as well would have been problematic, but not when just 5 time dummies are
included, as occurred. Regarding (iii) we would suggest using some further lags of the

21From the 9 observations during the 1976/1984 period one is lost due to taking first differences and
another 2 are lost due to having twice lagged variables in the regression, so at most 6 remain. In this
dataset missing observations do not occur halfway the sample period, but just at the beginning or the
end.
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three exogenous regressors as instruments too, because these will be useful explanatories
of∆ni,t−1 and∆ni,t−2 in the implicit first-stage regressions. With respect to (ii), it seems
that one better should not take the exogeneity of the three regressors for granted at this
stage. Regarding (i), simply adding regressor ∆wi,t−2 to the first differenced model
and employing it as extra instrument as well yields −.146∗ (.087) for its coefficient and
standard error (this regression is not reported in the table, but is available via Appendix
B), which makes one wonder why this regressor has been left out, and not the other
three second order lags, which all have smaller absolute t-ratio’s. The p-values for the
autocorrelation tests m1 and m2 are satisfying, but the Hansen J test does not inspire
great confidence.
In column (B) we replicate column (a2) from Table 4, which applies 2-step GMM

(AB2). The results regarding the coefficients are again equivalent with those published
earlier. In column (C) we estimate the same equation, but calculated the Windmeijer-
corrected standard errors (AB2W), which were not yet developed in 1991. These are
found to be often almost twice as large as the uncorrected ones. The robust 1-step and
corrected 2-step results of columns (A) and (C) do not differ much. Extending the model
of column (C) with regressor wi,t−2 yields now −.133

∗ (.086), so leaves the same doubts
about its exclusion. The Hansen test, as calculated by Xtabond2, is exactly the same
statistic in columns (A), (B) and (C). The serial correlation tests differ, because they
depend on coefficient standard errors and residuals, but they are again satisfactory.
In columns (b), (c) and (d) of Table 4 in Arellano and Bond (1991, p.290) models with

further restricted dynamics have been estimated by 2-step GMM upon treating in (c)
and (d) w and k as endogenous now, whereas as instruments, next to their second lags,
also some external instruments have been employed. Due to lack of detailed information
these results are hard to replicate. From now on we will switch to the 10-stage strategy
developed in Section 4.2 and examine the single relationship for ni,t, just using internal
instruments.
Column (D) of Table 1 contains 1-step robust estimates (AB1R) for the ADL(2,2,2,2)

model, where all three explanatories have been treated as endogenous and all available
internal instruments have been used (PEEEa). We removed the trend, which does
not affect the slope coefficient estimates, because we always included T − 1 = 6 time-
dummies. Probably, employing 114 instruments for a total of only 611 observations,
as in (D), may lead to detrimental finite sample problems due to overfitting the 11
non-exogenous regressors. Therefore we reestimate this model in column (E) using
curtailing. We left out instruments beyond lag 4, which reduces their number by 40.
Most standard errors in (E) are larger than in (D), as is to be expected, but also quite
a few of the estimated coefficients differ between (D) and (E), those from (E) often
about one standard error further away from zero. This might be due to (D) being more
vulnerable to finite sample bias. In (E) the coefficient for the earlier omitted variable
wi,t−2 seems significant. The serial correlation tests are still satisfactory, whilst the
Hansen test is much more comforting than before. In the model of column (E) we find
for the incremental Hansen tests for the 17 instruments constructed from each of the
variables n, w, k and ys the p-values 0.71, 0.72, 0.75 and 0.66 respectively. Hence, at
first sight, it seems that we may have obtained here an adequate MSM.
Testing the restrictions which would simplify (E) to a simple partial adjustment

model (removing all lags, apart from ni,t−1) yields a p-value of 0.00. Despite the fact
that partial adjustment is strongly rejected, estimating the partial adjustment model
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yields seemingly highly significant coefficients, whereas the p-values of m1 and m2 are
0.00 and 0.62, and 0.15 for the Hansen test. Hence, these three diagnostics do not appear
very powerful to detect dynamic misspecification in comparison to the test for omitted
regressors.
Comparing the implications of (A) and (E) on the basis of their multipliers we find

that the impact multipliers (the coefficient estimates of wi,t, ki,t and ysi,t) do not dif-
fer very much. However, their total multipliers (3.2) vary a lot. For (A) TMn

w, TM
n
k

and TMn
ys are -0.54, 0.25 and 0.01 respectively, whereas for (E) these are -0.10, -0.24

and 1.46. Note, though, that it is well-known that such ratio estimators do not have
finite moments and may therefore vary widely, especially in relatively small samples. By
testing hypotheses like Σpml=0β

(m)
l = 0 we find that all three total multipliers for specifi-

cation (E) are strongly significantly different from zero. Testing for ys the hypothesis

Σpml=0β
(m)
l + Σp0l=1β

(0)
l = 1 yields p-value 0.63, so its total multiplier is not significantly

different from 1.
To collect more evidence on the putative adequacy of model (E) we examine the p-

values of tests for the significance of particular additional regressors. Adding to (E) four
extra regressors, namely the four variables each lagged three times, reduces the number
of observations from 611 to 471 and yields, when testing their joint significance, a p-value
of 0.84. From this, and the satisfactory serial correlation tests in (E), we deduce that
higher order lags than two do not seem required to model the dynamics.
But what about the functional form? We constructed the squares of the three vari-

ables w, k and ys, added them and their first and second lags to the specification of
model (E) and also used them to construct instruments, treating them as endogenous.
This increases the number of regressors to 17+9=26 and would increase the number of
instruments to 74+3x17=125 which we suppose is too large. Therefore we take just
second and third lagged variables as instruments (interacted with the time-dummies, as
usual), which yields L = 86. Now the joint test of the extra 9 regressors has p-value
0.05, which falsifies (E) as representing a statistically adequate MSM, unless we decide
to neglect this result because we suspect that it is due to unsatisfactory finite sample
behavior.
We choose to accept that it seems well possible that no simple homogeneity assump-

tions on the dynamic effects of the three variables w, k and ys should be imposed. So,
despite the fact that N is rather small here, we will embark on a more general analysis
of the possible significance of interaction effects in this relationship. Therefore, also the
variables w ∗ k, w ∗ ys and k ∗ ys, have been constructed. They will be treated, at
least initially, as endogenous. In Table 2 we just present the coefficient estimates and
standard errors of the (lagged) squared and interacted regressors. Including them with
the same lags as the other explanatories leads to 26+9=35 regressors. If we just use
second and third lags as instruments this leads to the pretty large total of 122 instru-
ments. Using only the second order lags as instruments leads to just 64 instruments
and much larger standard errors. When we collapse all the instruments in the standard
way 76 instruments remain with results that differ substantially from those that simply
skip higher-order lags from the full set of available instruments. Collapsing yields more
insignificant regressors too. We also estimated the model with 35 coefficients where we
used as instruments just lag two of the four original variables and both lags two and
three for the squares and interactions. This leads to 100 instruments.
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Table 2. Further empirical findings for the Arellano-Bond (1991) data

(F) (G) (H) (I) (J)
AB1R AB1R AB1R AB1R BB2W
PEEE32 PEEE32 PEEX32 PEEX32 PEEX32

wi,t × wi,t -.170 - - - -
(.327)

wi,t−1 × wi,t−1 .151 - - - -
(.298)

wi,t−2 × wi,t−2 .372∗ .156 .208∗ .225∗ -.199∗

(.289) (.199) (.176) (.175) (.100)
wi,t × ki,t .273∗∗∗ .210∗∗ .213∗∗∗ .205∗∗∗ .157∗∗∗

(.079) (.073) (.068) (.068) (.044)
wi,t−1 × ki,t−1 -.150∗∗ -.074∗ -.085∗ -.080∗ -.151∗∗∗

(.064) (.064) (.065) (.064) (.038)
wi,t−2 × ki,t−2 -.039 - - - -

(.086)
wi,t × ysi,t -1.01∗ -.265 -.061 - -

(.990) (.521) (.394)
wi,t−1 × ysi,t−1 .953 - - - -

(1.01)
wi,t−2 × ysi,t−2 1.21∗ 1.64∗∗ 1.73∗∗ 1.70∗∗ .667∗

(.919) (.676) (.675) (.660) (.380)
ki,t × ki,t -.017 - - - -

(.022)
ki,t−1 × ki,t−1 -.006 - - - -

(.023)
ki,t−2 × ki,t−2 .016∗ .010 .013 - -

(.014) (.015) (.015)
ki,t × ysi,t -.185∗ -.254∗∗ -.227∗ -.241∗ -.238∗∗

(.145) (.123) (.120) (.122) (.104)
ki,t−1 × ysi,t−1 .574∗∗∗ .588∗∗∗ .572∗∗∗ .562∗∗∗ .450∗∗∗

(.179) (.173) (.173) (.163) (.133)
ki,t−2 × ysi,t−2 -.349∗ -.378∗∗ -.348∗∗ -.321∗∗ -.175∗

(.199) (.178) (.168) (.153) (.090)
ysi,t × ysi,t .295 - - - -

(1.30)
ysi,t−1 × ysi,t−1 -2.21∗ -1.96∗ -0.023 - -

(1.72) (1.41) (.833)
ysi,t−2 × ysi,t−2 3.90∗ 3.67∗ 2.36∗ 2.20∗ 1.64∗

(2.10) (1.88) (1.69) (1.36) (1.16)
K 35 28 28 25 26
L 88 88 100 100 173
m1 .000 .000 .000 .000 .000
m2 .678 .780 .789 .842 .799
J (2,1) .687 .599 .927 .927 .962
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In column (F) we present the results for using both lags two and three for the four
original variables and just lag two for the squares and interactions. This leads to 88
instruments and yields satisfactory p-values of the misspecification tests. Not without
hesitation, we are inclined to accept this as our general adequate MSM. For seven of
the squares and interactions in (F) we find an absolute t-ratio below 1. Testing the
significance of these 7 regressors jointly yields p-value 0.91. In column (G) we present
the results after imposing these restrictions. Specification (G) has three coefficients of
squares and interactions with absolute t-value below 1. Testing them jointly yields p-
value 0.63. Thus, we could decide to impose them, but we do not (yet) and first examine
the classification of the three explanatories w, k and ys.
In their specifications (c) and (d) Arellano and Bond treated ys as exogenous, with-

out testing. Exogeneity of ys in G would imply 12 extra instruments (not taking any
consequences for the square of ys into account). Testing their validity yields a p-value
of 0.999, so we accept, which yields the results in column H. Testing in separate stages
now validity of the 6 extra instruments associated with possible predeterminedness of w
and k yields p-values of 0.02 and 0.04 respectively. So, the endogeneity of w and k is
endorsed.
Three of the coefficients of (H) associated with squares and interactions have absolute

t-values below 1; two of them correspond with those having small absolute t-values in
(G). Testing them jointly yields p-value 0.84, so we impose them. Now k2 and its
lags have been removed from (F), so we could decide to remove its instruments too,
or keep them as external instruments. We chose the latter, which yields column (I).
None of its coefficients has absolute t-value below 1. We performed an informal test for
heteroskedasticity by running a fixed effects regression of the squared level residuals of
(I) on first and second lags of n, w, k, ys and the time dummies and obtained several
significant coefficients, so will not use 1-step ABwithout robustifying the standard errors.
We also estimated the specification of (I) by 2-step Windmeijer-corrected GMM. This
does not differ much from robust 1-step estimation. Hence, just following the guidance
by statistical criteria, we could accept (I) as our final AB result.
The coefficient estimates for specification I of the (lags of) the variables n, w, k and

ys are presented in Table 1. We note that some of these estimates, in particular for wi,t−2
and ysi,t−2, have rather exorbitant values. This already occurred from specification (F)
onwards. This could of course just be an effect of the inclusion of the squared and
interacted variables. We calculated the interim multipliers, adopting for each of the
three explanatories time invariance at a level equal to the average over all available data
points. This yields impact multipliers for (I), giving those for (F) between parentheses,
of -0.73 (-0.82), -0.19 (-0.47) and 0.58 (4.11) for w, k and ys respectively and total
multipliers equal to -2.48 (-2.54), -0.87 (-0.88) and -30.4 (-21.9). Whether these figures
throw a new light on genuine economic phenomena, or are simply the result of estimators
that may be consistent but just behave awkwardly in small samples, or that the available
data and model selection procedure used are in fact incompatible, is difficult to say at
this stage. Van den Doel and Kiviet (1994) provide evidence that estimates of long-run
multipliers tend to converge to the same probability limit irrespective of the adequacy of
the specification of the short-run dynamics by the model. This result, though, provides
no comfort for interpreting the just mentioned estimates from a rather small sample.
Finally we examined whether system estimation and using differenced variables as

instruments for the equation in levels seems appropriate here. In column (J) of Tables 1
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and 2 the results are presented of applying standard Windmeijer-corrected 2-step esti-
mation according to Blundell-Bond (BB2W) to the specification of (I), supplemented in
the level equation with an intercept. As is usually the case, Blundell-Bond estimation
yields smaller, often substantially smaller, standard errors. So, should we prefer result
(J) over result (I)? Result (J) assumes all regressors to be effect stationary. The dif-
ference test for validity of the 70 associated instruments presented by Xtabond2 yields
p-value 0.965. Should this induce acceptance of (J)? At first sight that seems legitimate.
Nevertheless, we suppose that (J) should be rejected for the following reason. Variable n
can only be effect stationary if all other regressors are effect stationary. However, if w, k
or ys are effect-stationary (which requires that their correlation with ηi is time-invariant)
then it seems highly unlikely that their squares and interactions will be too. Therefore
we tested whether w, k and ys are individually effect-stationary. This yields p-values of
0.235, 0.003 and 0.180 respectively. From this we conclude that the standard form of
Blundell-Bond estimation should better be avoided here.
In the last two columns of Table 4 in Blundell and Bond (1998) the very same data

set has been examined. However, their specifications omit various of the regressors we
have found to have low p-values in less restrained specifications. They completely leave
out regressor ys, and also any second-order lags, squared variables and interactions have
been omitted. However, they treat variables wi,t and ki,t both as endogenous, like we
do. Due to the restrictions they impose, which are strongly rejected, our results falsify
their simple specification. We can exactly replicate the AB1R estimates presented in
their last but one column, but our BB2W findings differ substantially from those in
their last column, despite using the same regressors and number of instruments (these
results can be obtained via Appendix B too). By system estimation we find a long-run
elasticity of employment with respect to capital in the restrained specification of (.49−
.42)/(1− .93) = 1 which is substantially larger than the 0.79 reported by Blundell and
Bond (1998, p.138), who also focus on primary multipliers (neglecting the endogeneity).
They ratify their findings on the basis of satisfying values for the m1 and m2 tests and
the overall Hansen overidentification test. For the latter test AB estimation yields a p-
value of 0.21. However, for BB estimation they report results implying a Hansen p-value
of just 0.13. This implies a p-value of 0.16 for the incremental Hansen test of validity
of all the effect stationarity assumptions. These values seem rather weak supporting
evidence for these very simple first-order dynamic models, certainly for BB estimation.
Our calculations for the strongly restrained model yield 0.20 and 0.24 for these p-values,
but testing validity of the 7 instruments implied by effect-stationarity of variable w only
produces a p-value of 0.05. So, also for the strongly restrained model, we conclude that
these data provide no support for applying standard Blundell-Bond estimation. Thus,
at long last, our specification search process selects result (I) to represent our preferred
characterization of the structural relationship for variable ni,t, although it yields interim
multipliers with rather awkward values.

6. Major conclusions

This paper aims to provide practitioners with a detailed structured framework for a great
many issues that require attention when searching for an adequate model specification
and GMM implementation for a single structural dynamic relationship on the basis of a
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microeconometric panel data set. It pays attention in particular to selecting the relevant
regressors and any interactions between them, jointly with determining whether these
regressors and their lags are correlated with the disturbances and possibly equicorre-
lated with the individual effects. From this it follows which instrumental variables obey
credible orthogonality conditions, and can be exploited when producing statistical infer-
ence on the parameters that determine the dynamic multipliers of the relationship. For
practitioners assessment of these multipliers is often the major research objective.
In the available panel data literature, both theoretical and empirical, it has usu-

ally been taken for granted that relationships are homogeneous in the slope coefficients,
at least over subsamples, whereas very little attention has been paid to the relatively
simple possibilities offered by interaction terms to detect and eventually model slope
heterogeneity. Recently attention has been given by theorists in particular to attempts
to repair poorly specified panel models, not by adding constructive actually observed ex-
planatories like interactions, but by supplementing the unobserved individual and time
effects by further unobserved stochastic factors. Of course, only when these constructed
factors sufficiently represent the wrongly omitted explanatories, including their rela-
tionship with the included regressors, this may yield a satisfying cure for misspecified
models.
The extensive literature on variable selection strategies for regression analysis is of

little help in the present dynamic panel data context, because this literature is mainly
about situations where all candidate regressors are assumed to be exogenous so that
application of GMM and selecting appropriate instrumental variables at the same time
is not incorporated in those strategies. For the very same reasons we do not believe that
automated search machines can easily be designed for the present multilayered problem.
A striking result from the empirical illustration is that in all the different formula-

tions for the relationship estimated, also those which patently suffer from the omission
of strongly significant regressors, the serial correlation tests m1 and m2 always gave
satisfactory results. And also the overall J test of the over-identification restrictions
demonstrates its meagre power to detect misspecified models when the number of in-
struments is substantially larger than the number of estimated coefficients. Only when
difference Hansen tests are being used to test the validity of a limited subset of the
instruments rejections have been obtained. Such rejections, assuming that they do not
establish type I errors, are indispensable for steering the model selection process away
from improper models, which either omit important explanatories or adopt invalid or-
thogonality conditions.
Both the empirical results for the classical data set examined in this paper and the

experimental results obtained from the extensive simulation study in Kiviet et al. (2017)
suggest that the present understanding of the actual properties of the current techniques
for statistical inference on microeconomic panel data sets require an actual sample size
in the cross-section dimension which is much larger than often available and used in
practice. To uplift the accuracy of panel data inference it seems required that either
much larger samples are being analyzed or that more sophisticated techniques are being
developed. Any model selection strategy will fail when the null distribution of test
statistics deviates substantially from their asymptotic approximations and coefficient
estimates and the estimates of their standard deviation are seriously biased.
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Appendices

A. More on asymptotic p-values

Here we discuss and illustrate the difficulties faced when interpreting an individual p-
value obtained from a single asymptotic test, and also on using series of p-values in the
model selection strategy developed above. As is usually the case in econometrics, the
limiting distribution under the tested null hypothesis of a test statistic is χ2df with a
number of degrees of freedom (df) equal to the number of tested restrictions. When just
1 restriction is being tested this distribution specializes to χ21, the square of a standard
normal distribution. In that case it is possible to test the null hypothesis against one
sided alternatives. Below we will just focus on the case of testing against two sided
alternatives for df ≥ 1. For some particular df the density function of χ2df is sketched
in Figure 1 (green uninterrupted line). The figure shows two more densities, also just
defined for positive scalar arguments; self-evidently all three density functions integrate
to unity.
The figure indicates the argument χ2(df,α); this is the critical value to be used for

chosen nominal probability α of type I errors (rejecting the restrictions when they are
true), where 0 < α < 1. The surface below the green density to the right of the α-level
critical value χ2(df,α) equals α. It is also called the nominal significance level of the test.
In finite samples the actual distribution of a test statistic assuming the null hypothesis
is true will as a rule differ from its asymptotic approximation. Its distribution is also
determined by the unrestricted and generally unknown parameters of the data generating
process. The discrepancy from the asymptotic null distribution depends on the values of
the so-called nuisance parameters, but this dependence gradually vanishes the larger the
sample is. The actual distribution of the test statistic under validity of the restrictions
specified by the null hypothesis is represented in the figure by the red (dashed) density.
The actual distribution of the test statistic for the true data generating process (without
restricting it by the null hypothesis) is represented by the blue (dotted) density. The
latter two densities are in practice generally unknown (but not necessarily in controlled
computer simulations and in oversimplified text book models). Because the red and
blue densities do not coincide in the figure we apparently consider a case where the null
hypothesis is not true.
When we apply the test statistic we draw one realization from the blue (dotted)

density and we compare it either with critical value χ2(df,α), or calculate its so-called p-
value and compare it with some threshold value pc. Equivalence occurs when choosing
pc = α. In case the null hypothesis is true then asymptotically (and thus hypothetically)
the probability to draw a value to the right of χ2(df,α) is α. In our actual sample this

probability equals the surface under the red (dashed) line to the right of χ2(df,α). The figure
depicts a case where the test is apparently oversized, because the actual significance
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level is larger than the nominal significance level. Because in practice the actual null
distribution is usually unknown we do not know whether an asymptotic test is undersized
or oversized and neither do we know how much the actual and nominal significance level
actually differ. Sometimes alternative asymptotically equivalent versions of test statistics
are available which attempt to mitigate these size problems, either by simple degrees of
freedom corrections or more sophisticated bias corrections, or by bootstrapping the test.

Figure 1: Illustration of asymptotic tests, p-values, and significance.

Let us now assume that our single draw from the distribution of the test statistic
(hence from the blue-dotted one) has realization indicated by X. The asymptotic p-value
(as calculated by software, realizing 0 ≤ p ≤ 1) is then obtained as the surface under the
green density to the right of the observed test statistic value X. The unknown true p-
value should be obtained by calculating the surface to right of X under the red (dashed)
density, but this density being unavailable in practice one uses the asymptotic p-value,
not knowing how (in)accurate it actually is.
Also unknown is the actual type II error (not rejecting a false hypothesis) probability

of the test. It is the surface under the blue (dotted) density to the left of the available
critical value χ2(df,α). Note that this probability will be small if the blue (dotted) density is

located much more to the right (which in principle corresponds to testing restrictions on
parameter values which are very far from the truth). We cannot influence the unknown
blue density, but we can choose a different critical value. By increasing α we move the
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critical value to the left and realize a smaller type II error probability at the expense
of allowing the type I error probability to be larger. This is why we did plead in the
foregoing for using much larger α values than, say, 0.05 in cases where committing a
type I error has much less serious consequences than committing a type II error.
The power of a test is only formally defined for cases where the size of the test, which

is the actual rejection probability of the test under the null hypothesis when maximized
over all possible nuisance parameter values, can be controlled. If this is possible the test
is called exact. If the red (dashed) density would be known true α-level critical values
could be constructed.
In all stages of the model selection strategy developed in this study a great number

of diagnostic, classification and specification tests are being used and all the time their
asymptotic p-value is being used as a beacon to determine the direction in which the
specification search process should proceed. Using p-values has the advantage that one
does not have to look up critical values of the asymptotic null distribution of the test
all the time.

B. Stata and Xtabond2 code and log files of the illustration

By the Xtabond2 package for Stata balanced and unbalanced panel data sets can be
analyzed by estimating and testing linear models such as (2.1) and (3.17) using various
implementations of GMM. See Roodman (2009a) for further detailed instructions on the
various commands and their options. To actually use the package Xtabond2 it has to be
installed as follows. While running Stata, give the command "ssc install xtabond2". A
series of Stata and Xtabond2 commands can be collected in a so-called Stata do-file, and
the output on the resulting statistical analysis can be collected in a so-called log-file.
The do-file ABexample.do, which generates all the estimation and test results men-

tioned in Section 5 and some useful additional ones, and its log-file ABexample.log, which
contains all these results, can be downloaded from the authors personal homepage at:
https://sites.google.com/site/homepagejfk/discussion-papers
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