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Abstract

In this paper we provide an axiomatic characterization of the painting rule for
minimum cost spanning tree problems with multiple sources. The properties we
need are: cone-wise additivity, cost monotonicity, symmetry, isolated agents,
and equal treatment of source costs.
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1. Introduction

The multi-source minimal cost spanning tree problems consider a group of
agents that needs services provided by multiple sources. Agents do not care
if they are connected directly or indirectly to the sources but they need to be
connected to all of them. Every connection entails a cost. These situations
are an extension of the classical minimum cost spanning tree problem with one
source.

There are two objectives in these problems. The first one is to find a cost
minimizing network which connects all the agents with all sources. Such a
network is a tree, and it can be computed using the same algorithms as in the
classical problem.

Once the tree is obtained, the second issue is how to allocate the cost of
such tree among the agents. Some recent papers have studied rules for the
multi-source problem. Bergantiños et al. [4] extend the definition of the folk
rule following four definitions and present some axiomatic characterizations.
Bergantiños and Navarro-Ramos [2] extend the definition of the painting rule to
the case of multiple sources and prove that it also coincides with the extension of
folk rule. Bergantiños and Lorenzo [1] consider several family of rules obtained
through Kruskal’s algorithm.
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The objective of the paper is to provide an axiomatic characterization of
the painting rule for multi-source cost spanning tree problems. We do it using
the properties of cone-wise additivity, cost monotonicity, symmetry, isolated
agents, and equal treatment of source costs. The first three properties are quite
standard in the literature and are defined as in the classical minimum cost
spanning tree problem. Cost additivity says that the rule should be additive on
the cost function when restricted to cones. Cost monotonicity says that if some
connection costs increase and the rest (if any) remain the same, no agent should
end up better off. If two agents are symmetric with respect to their connection
costs, symmetry says that both agents should pay the same.

The isolated agents property is inspired by the property introduced in Bergantiños
et al. [3]. Nevertheless, the extension is not as straightforward as with the pre-
vious ones. An agent is called isolated when her connection cost to any other
agent is the same. Besides such connection cost is larger than any other con-
nection cost in which such agent is not involved. If there is a way of connecting
all sources to one another for free (not necessarily directly), an isolated agent
should only pay her connection cost to any node.

Equal treatment of source costs was introduced in Bergantiños et al. [4], and
it is a property defined only for the case of multiple sources. It says that if the
cost between two sources increases, then all agents should be affected in the
same way.

The paper is organized as follows. Section 2 introduces minimum cost span-
ning tree problems with multiple sources. Section 3 introduces two definitions
of the folk rule for the multi-source problem. Section 4 gives the axiomatic
characterization.

2. The model

We introduce the model following the same notation as in Bergantiños and
Navarro-Ramos [2].

Let N = {1, ..., n} be the set of agents. Let M = {a1, ..., am} be the set of
sources. We assume that each agent want to be connected to all the sources. The
cost matrix C = (cij)i,j∈N∪M over N ∪M represents the cost of the direct link
between any pair of nodes, with cji = cij ≥ 0 and cii = 0, for all i, j ∈ N ∪M .
CN∪M is the set of all cost matrices over N ∪M .

A multi-source minimal cost spanning tree problem (briefly, multi-source mc-
stp or a problem) is a triple (N,M,C) where N is the set of agents, M is the set
of sources, and C ∈ CN∪M is the cost matrix. If cij ∈ {0, 1}, for all i, j ∈ N∪M ,
then (N,M,C) is called a simple problem.

An edge is a non-ordered pair (i, j) such that i, j ∈ N ∪ M . A network
g is a subset of edges. The cost associated with a network g is defined as
c(N,M,C, g) =

∑

(i,j)∈g cij .When there is no ambiguity, we write c(g) or c(C, g)

instead of c(N,M,C, g).
Given a network g and any pair of nodes i and j, a path from i to j in g is

a sequence of distinct edges gij = {(ih−1, ih)}
q
h=1 satisfying that (ih−1, ih) ∈ g
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for all h = 1, ..., q, i = i0 and j = iq. A cycle is a path from i to i with at least
two edges. A tree is a graph without cycles that connects all the elements of
N ∪M . Given S ⊂ N ∪M , gS denotes the restriction of g to nodes in S.

Two nodes i, j are connected in g if there exists a path from i to j in g. A
subset of nodes S ⊆ N ∪M is a connected component on g if every i, j ∈ S are
connected in g and S is maximal, i.e., for each T ∈ N ∪M with S ( T there
exist k, l ∈ T , k 6= l, such that k and l are not connected in g.

Let (N,M,C) be a simple problem. The network induced by the edges with
zero cost is denoted by g0,C = {(i, j) : i, j ∈ N ∪M and cij = 0}. S ⊆ N ∪M
is a C-component if S is a connected component on g0,C .

A minimal tree (briefly, mt) connects all agents to the sources at the lowest
cost. Several algorithms (for instance, Kruskal [7] and Prim [9]) enable us to
compute a mt. We denote by m(N,M,C) the cost of any mt in (N,M,C).

Let (N,M,C) be a problem and t a minimal tree in (N,M,C). For each i, j ∈
N ∪M , tij is the unique path in t joining i and j. Bird [5] defines the minimal
network associated with the minimal tree t as the problem (N,M,Ct), where
ctij = max(k,l)∈tij ckl. It is well known that Ct is independent of t. Then, the
irreducible problem (N,M,C∗) of (N,M,C) is defined as the minimal network
associated with any minimal tree in (N,M,C).

After obtaining a minimal tree, sometimes it is necessity to divide its cost
among the agents. A cost allocation rule (briefly, a rule) is a map f that as-
sociates a vector f(N,M,C) ∈ RN with each problem (N,M,C) such that
∑

i∈N fi(N,M,C) = m(N,M,C). The element fi(N,M,C) denotes the pay-
ment of agent i ∈ N .

3. Extensions of the folk rule

In the classical minimum cost spanning tree problem, the most popular rule
is folk rule. Bergantiños et al. [4] extend the definition of the folk rule to the
multi-source problem and provide several ways to obtain it. One of them is
through cone-wise decomposition.

For each problem (N,M,C), there exists a positive number m(C) ∈ N, a

sequence {Cq}
m(C)
q=1 of simple cost matrices, and a sequence {xq}

m(C)
q=1 of non-

negative real numbers satisfying two conditions:

1. C =
m(C)
∑

q=1
xqCq.

2. Take q ∈ {1, . . . ,m(C)} and {i, j, k, l} ⊂ N ∪ M . If cij ≤ ckl, then
cqij ≤ cqkl.

This means that any cost matrix can be written as a non-negative combina-
tion of simple problems. This is an adaptation of a result of Norde et al. [8] for
the problem with one source.

Let (N,M,C) be a simple problem and P = {S1, ..., Sp} the partition of
N ∪M in C-components. Bergantiños et al. [4] define the folk rule F for simple
problems as follows.
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Fi(N,M,C) =















|Sk ∈ P : Sk ∩M 6= ∅| − 1

|N |
, if S(i, P ) ∩M 6= ∅

1

|S(i, P )|
+

|Sk ∈ P : Sk ∩M 6= ∅| − 1

|N |
, otherwise,

where S(i, P ) is the element of P to which i belongs to. Then, the folk rule for
a general problem (N,M,C) is defined as

F (N,M,C) =

m(C)
∑

q=1

xqF (N,M,Cq).

Bergantiños et al. [3] study a general framework of connection problems
involving a single source, which contains classical minimum cost spanning tree
problems. They propose a cost allocation rule, called the painting rule because
it can be interpreted through a painting story. They also give some axiomatic
characterizations of the rule. They prove that the painting rule coincides with
the folk rule in classical mcstp.

Bergantiños and Navarro-Ramos [2] extend the definition of the painting rule
to problems with multiple sources. They also prove that it coincides with the
folk rule in the multi-source problem.

Next, we present the two-phase algorithm introduced in Bergantiños and
Navarro-Ramos [2] that induce the painting rule. Given a problem (N,M,C)
and a minimal tree t in (N,M,C), let P (tM ) = {S1, ..., Sm(t)} denote the par-
tition of M in connected components induced by tM .

Phase 1: Constructing the tree. Start with t0 = t. Assume that stage β is
defined for all β ≤ δ − 1.

Stage δ:

• If P (tδ−1
M ) = {M}. The algorithm ends and t∗ = tδ−1.

• If P (tδ−1
M ) 6= {M}. Let

E(tδ−1) = {(ih−1, ih)}
q
h=1

be the unique path from
⋃δ

r=1 Sr to Sδ+1 in tδ−1, with i0 ∈
⋃δ

r=1 Sr,

iq ∈ Sδ+1, i1 /∈
⋃δ

r=1 Sr and iq−1 /∈ Sδ+1.

Let (i, j) be the most expensive edge in E(tδ−1) (if there are several edges,
select just one). Namely, cij = max(k,l)∈E(tδ−1){ckl}. Now,

tδ = tδ−1\(i, j) ∪ (i0, iq).

Phase 2: Painting the tree. Let t∗ be the tree obtained in Phase 1. Start with

• e0i (C, t∗) = ∅ for all i ∈ N. In general, eδi (C, t
∗) denotes the edge of t∗

assigned to agent i at stage δ. Agent i will pay part of the cost of this
edge.
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• c0(C, t∗) = 0 and cδ(C, t∗) represents the part of the cost of each edge that
it is paid at stage δ.

• p0i (C, t
∗) = 0 for all i ∈ N . In general, pδi (C, t

∗) is the cost that agent i
pays at stage δ.

• E0(C, t∗) = t∗\t∗M and Eδ(C, t∗) is the set of unpaid edges of t∗\t∗M at
stage δ.

When no confusion arises, we will write eδi , e
δ
i (C) or eδi (t

∗) instead of eδi (C, t
∗).

We will do the same with cδ(C, t∗), pδi (C, t
∗) and Eδ(C, t∗). Assume that stage

β is defined for all β ≤ δ − 1.
Stage δ:

• For each i ∈ N , let eδi be the first edge in the unique path in t∗ from i
to M belonging to Eδ−1. If all edges in such path are not in Eδ−1, take
eδi = ∅.

• For each (i, j) ∈ Eδ−1, let

N δ
ij = {k ∈ N : eδk = (i, j)}

and

cδ = min

{

cij −
δ−1
∑

r=0

cr : (i, j) ∈ Eδ−1

}

.

• For each i ∈ N ,

pδi =











cδ
∣

∣

∣
N δ

eδi

∣

∣

∣

, if eδi 6= ∅

0, otherwise.

• Now,

Eδ =

{

(i, j) ∈ Eδ−1 :

δ
∑

r=0

cr < cij

}

.

This procedure ends when we find a stage γ(C, t∗) (γ(C), γ(t∗) or γ when
no confusion arises) such that Eγ = ∅.

Stage γ + 1:

pγ+1
i =

c(t∗M )

|N |
.

For each problem (N,M,C), each mt t, and each i ∈ N , the panting rule

fP,t
i is defined as

fP,t
i (N,M,C) =

γ+1
∑

δ=1

pδi (C, t
∗).

Even this definition could depend on t and t∗, Bergantiños and Navarro-
Ramos [2] show that the fP,t coincides with F for every t, t∗, and (N,M,C).
Henceforth, we denote the painting rule also by F .
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4. An axiomatic characterization

This section presents an axiomatic characterization of the painting rule. In
their Corollary 1, Bergantiños et al. [3] characterize the folk rule in classical
mcstp with the properties of cost monotonicity, symmetry, cone-wise additivity,
and isolated agents. We extend this characterization to the case of multiple
sources by considering these four axioms and adding a new one called equal
treatment of source costs. The definition of the properties of cost monotonicity,
symmetry, and cone-wise additivity in the case of multiple sources is the same
as in the classical case. The definition of isolated agents multi-source mcstp is
not so straightforward. Equal treatment of source costs is a property defined
only in the case of multiple sources.

A rule f for a problem (N,M,C) satisfies:
• Cone-wise additivity (CA). Let (N,M,C) and (N,M,C ′) be two problems
satisfying that there is an order σ over the set of edges of N ∪M such that for
all i, j, k, l ∈ N ∪M satisfying that σ(i, j) < σ(k, l), then cij ≤ ckl and c′ij ≤ c′kl.
Thus, f(N,M,C + C ′) = f(N,M,C) + f(N,M,C ′).

CA says that the rule should be additive on the cost function C when re-
stricted to cones.
• Cost monotonicity (CM). For all (N,M,C) and (N,M,C ′) such that C ≤ C ′,
then f(N,M,C) ≤ f(N,M,C ′).

CM says that if a certain number of connection costs increase and the rest
(if any) remain the same, no agent should end up better off.
• Symmetry (SYM). For all (N,M,C) and all i, j ∈ N such that cik = cjk,
∀k ∈ (N ∪M)\{i, j}, then fi(N,M,C) = fj(N,M,C).

If two agents are symmetrical with respect to their connection costs, SYM
says that they should pay the same.

The next property is inspired by the isolated agents property introduced in
Bergantiños et al. [3] for source connection problems.

An agent i ∈ N is called isolated in a problem (N,M,C) if cij = x, for all
j ∈ (N ∪M)\{i} and cjk ≤ x, for all j, k ∈ (N ∪M)\{i}. Notice that if agent i
is isolated, then agent i does not benefit from connecting to the sources through
agents in N\{i}.
• Isolated agents (IA). For all (N,M,C) such that for all k, l ∈ M , there is a
path from k to l, gkl, such that c(gkl) = 0, fi(N,M,C) = x, for every isolated
agent i ∈ N .

If there is a way of connecting all sources to one another for free (not nec-
essarily directly), an isolated agent should only pay her connection cost to any
node.
• Equal treatment of source costs (ETSC). For each pair of problems (N,M,C)
and (N,M,C ′) such that there exist k, l ∈ M , k 6= l, such that ckl < c′kl
and cij = c′ij otherwise, then fi(N,M,C ′) − fi(N,M,C) = fj(N,M,C ′) −
fj(N,M,C), for each i, j ∈ N .

This property was introduced in Bergantiños et al. [4]. It says that if the
cost between two sources increases, then all agents should be affected in the
same way.
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In the next theorem, we present the characterization of the painting rule.

Theorem 1. The painting rule is the unique rule satisfying CA, CM, SYM, IA
and ETSC.

Proof. First we prove that the painting rule satisfies the five properties. Bergantiños
et al. [4] proved that the folk rule satisfies CA, CM, SYM and ETSC. Bergantiños
and Navarro-Ramos [2] proved that F coincides with the folk rule. Then, F sat-
isfies CA, CM, SYM and ETSC.

We now prove that F satisfies IA. Let i ∈ N be an isolated agent for a
problem (N,M,C). Let t be a minimal tree for (N,M,C). We can take t in
such a way that no agent in N\{i} is connected to any source through agent i.
Namely, for each j ∈ N\{i} and each k ∈ M , i /∈ tjk.

Since there is a path at cost zero to join together every two sources, the tree
obtained in Phase 1, t∗, is such that c(t∗M ) = 0.

We now apply Phase 2. Since no agent is connected to the source through
agent i and cik = x ≥ cjk, ∀j, k ∈ (N ∪ M)\{i}, we have that, for each δ =
1, ..., γ, eδi = (i, iM ) and eδj 6= (i, iM ), for all j ∈ N\{i}.

Then,

Fi(N,M,C) = ciiM +
c(t∗M )

|N |
= x+ 0 = x.

Thus, F satisfies IA.
We now prove the uniqueness. Let f be a rule satisfying the properties of

Theorem 1. By CA, it is enough to prove that f = F in simple problems.
Let (N,M,C) be a simple problem and P = {S1, ..., Sp} the set of C-

components. Consider the next cost function:

c′ij =

{

cij , if {i, j} ∩N 6= ∅
0, otherwise.

We have a simple problem (N,M,C ′) such that all sources are connected to
one another at cost zero and C ≥ C ′.

For each Sk ∈ P such that Sk ∩M = ∅, we define a pair of cost function as
follows:

ckij =

{

1, if {i, j} ∩ Sk 6= ∅
0, otherwise

and

c′kij =

{

c′ij , if {i, j} ∩ Sk 6= ∅
0, otherwise.

We first analyze how f works on (N,M,Ck) and (N,M,C ′k). Let Sk ∈ P
with Sk ∩M = ∅ and i ∈ N .

7



• On (N,M,Ck). If i ∈ Sk, i is an isolated agent. By IA, fi(N,M,Ck) = 1,
for all i ∈ Sk. Besides, m(N,M,Ck) = |Sk|. Since all agents in N\Sk are
symmetric, fi(N,M,Ck) = 0, for all i /∈ Sk. This is,

fi(N,M,Ck) =

{

1, if i ∈ Sk

0, otherwise.

• On (N,M,C ′k). We have that C ′k ≤ Ck. If i /∈ Sk, by CM, fi(N,M,C ′k) ≤
fi(N,M,Ck) = 0. It is straightforward to see that if a rule satisfies CM
and SYM, then it should be non-negative. Then, fi(N,M,Ck) = 0 if
i /∈ Sk. All agents on Sk are symmetric and m(N,M,C ′k) = 1. Thus,

fi(N,M,C ′k) =







1

|Sk|
, if i ∈ Sk

0, otherwise.

Take i ∈ N and let S(i, P ) denote the C-component to which i belongs. We
consider two cases:

• S(i, P ) ∩M = ∅. Since C ′ ≥ C ′k and CM,

fi(N,M,C ′) ≥ fi(N,M,C ′k) =
1

|S(i, P )|
.

• S(i, P ) ∩ M 6= ∅. Since a rule satisfying CM and SYM should be non-
negative, namely fi(N,M,C ′) ≥ 0.

Taking into account that m(N,M,C ′) = |Sk ∈ P : Sk ∩M = ∅| and

∑

i∈N

fi(N,M,C ′) ≥
∑

i∈N |S(i,P )∩M=∅

1

|S(i, P )|
= |Sk ∈ P : Sk ∩M = ∅|,

we conclude that

fi(N,M,C ′) =







1

|S(i, P )|
, if S(i, P ) ∩M = ∅

0, otherwise.

Finally, notice that C could be obtained from C ′ by increasing the connection
costs among the sources. Thus, by applying ETSC several times (once by each
pair k, l ∈ M such that ckl > 0) we deduce that for all i, j ∈ N ,

fi(N,M,C)− fi(N,M,C ′) = fj(N,M,C)− fj(N,M,C ′).

Fix i ∈ N ,

|N |[fi(N,M,C)− fi(N,M,C ′)] =
∑

j∈N

[fj(N,M,C)− fj(N,M,C ′)]

=
∑

j∈N

fj(N,M,C)−
∑

j∈N

fj(N,M,C ′)

=|P | − 1− (|P | − |Sk ∈ P : Sk ∩M 6= ∅|)

=|Sk ∈ P : Sk ∩M 6= ∅| − 1.
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Thus,

fi(N,M,C) =
|Sk ∈ P : Sk ∩M 6= ∅| − 1

|N |
+ fi(N,M,C ′)

=















|Sk ∈ P : Sk ∩M 6= ∅| − 1

|N |
, if S(i, P ) ∩M 6= ∅

1

|S(i, P )|
+

|Sk ∈ P : Sk ∩M 6= ∅| − 1

|N |
, otherwise,

Therefore, f(N,M,C) = F (N,M,C).

In the next proposition we prove that all properties are needed in the previ-
ous characterization.

Proposition 1. The properties used in Theorem 1 are independent.

Proof. CA is independent of the other properties. Consider the rule fe defined in
Bergantiños et al. [4] when they prove that CA is independent of the properties
they use in Theorem 2. fe satisfies all properties but CA.

CM is independent of the other properties. Given a problem (N,M,C), let
t be a mt of (N,M,C) and t∗ a mt of (N,M,C∗) obtained through Phase 1.
We now consider the following classical problem (N0, C), where c0i = max{c∗kl :
(k, l) ∈ t∗ij for some j ∈ M and k, l ∈ N} and cij = c∗ij , for all i, j ∈ N .

For a classical problem with a single mt, Bird [5] proposed a rule called the
Bird rule. This rule is obtained by requiring each agent to pay the total cost of
the first edge in her unique path to the source. Dutta and Kar [6] extended the
Bird rule when there is more than one mt (an extension we denote as B). This
rule is the average of the allocations given by the Bird rule on all the minimal
trees associated with Prim’s algorithm. We now extend it to our setting in the
following way:

fB(N,M,C) = B(N0, C) +
c(t∗M )

|N |
.

fB satisfies all properties but CM.

SYM is independent of the other properties. For each problem (N,M,C)
and each δ = 1, ..., n+m− 1, let (iδ, jδ) denote the edge selected by Kruskal’s
algorithm at stage δ and gδ be the set of all edges selected according to Kruskal’s
algorithm until stage δ (included). Besides P (gδ) denotes the partition of N∪M
in connected components induced by gδ.

Given a partition P we define the function α as

αi(P ) =















if S(i, P ) ∩M = ∅|Sk ∈ P : Sk ∩M 6= ∅| − 1

|N |
+ 1,

and i ≤ j, ∀j ∈ S(i, P )
|Sk ∈ P : Sk ∩M 6= ∅| − 1

|N |
, otherwise,
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Thus we define the rule fα such that for each problem (N,M,C) and each
i ∈ N ,

fα
i (N,M,C) =

n+m−1
∑

δ=1

ciδjδ [αi(P (gδ−1))− αi(P (gδ))].

fα satisfies all properties but SYM.

IA is independent of the other properties. Let E be the rule in which the
cost of the minimal tree is divided equally among all agents. Namely, for each
problem (N,M,C) and each i ∈ N ,

Ei(N,M,C) =
m(N,M,C)

|N |
.

This rule satisfies all properties but IA.

ETSC is independent of the other properties. Let (N,M,C) be a problem.
If N = {1, 2} and M = {a1, a2}, let us define the sets N ′ = {1, 2, a2} and
M ′ = {a1}. Then, for every i ∈ N , we define the rule

fi(N,M,C) =

{

Fi(N
′,M ′, C) +

Fa2
(N ′,M ′, C)

2
, if N = {1, 2} and M = {a1, a2}

Fi(N,M,C), otherwise.

This rule satisfies all properties but ETSC.

We end this paper by comparing our characterization with other results of
the literature.

Bergantiños et al. [3] characterizes the folk rule in classical minimum cost
spanning tree problems with CA, CM, SYM, and IA. If we restrict to classical
minimum cost spanning tree problems we realize that our CA coincides with the
property of CA as it was defined in Bergantiños et al. [3]. The same happens
with the properties of CA, SYM, and IA. Besides ETSC says nothing in classical
minimum cost spanning tree problems because only applies when we have several
sources. Thus, our result is an extension of the characterization of Bergantiños
et al. [3] to the case of multiple sources.

Bergantiños et al. [4] provide two characterizations of the folk rule in multi-
sources mcstp. The next properties are used in such characterizations.
• Independence of irrelevant trees (IIT). For each (N,M,C) and (N,M,C ′), if
they have a common minimal tree t such that cij = c′ij for each (i, j) ∈ t, then
f(N,M,C) = f(N,M,C ′).

This property requires the cost allocation chosen by a rule to depend only
on the edges that belong to a minimal tree.
• Core selection (CS). For each (N,M,C) and each S ⊆ N ,

∑

i∈S fi(N,M,C) ≤
m(S,M,C).

CS implies that no coalition of agents would be better off by constructing
their own minimal tree.
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• Separability (SEP). For each (N,M,C) and each S ⊆ N , if m(N,M,C) =
m(S,M,C) +m(N\S,M,C), then

fi(N,M,C) =

{

fi(S,M,C), if i ∈ S,
fi(N\S,M,C), if i ∈ N\S.

Two subsets of agents, S and N\S can be connected to all the sources either
separately or jointly. This property implies that if the minimal costs in two
situations are the same, agents will pay the same in both circumstances.

These properties are related with some properties used in our characteriza-
tion. The following proposition summarizes such relations.

Proposition 2. (i) CM implies IIT.

(ii) CS implies IA.

(iii) SEP implies IA.

Proof. (i) It has been proved in Bergantiños et al. [4].

(ii) Suppose that i ∈ N is an isolated agent in (N,M,C). Then m(N,M,C) =
m(N\{i},M,C) + x. By CS

∑

j∈N\{i} fj(N,M,C) ≤ m(N\{i},M,C)

and fi(N,M,C) ≤ x. Thus, fi(N,M,C) = x.

(iii) It is similar to Case (ii). Bergantiños et al. [4]

As in Theorem 1, Bergantiños et al. [4] use CA, SYM, and ETSC in both
characterizations of the folk rule in multi-sources minimum cost spanning tree
problems.

They also use IIT and complete one characterization with CS and the other
with SEP. By Proposition 2 the three characterizations are unrelated. Namely,
no characterization is a consequence of another.

Apart from this, the proof of uniqueness in the characterization of this paper
and the proof of uniqueness in the characterizations of Bergantiños et al. [4] are
also unrelated. In all three cases the first step is the same. By CA we can
consider only simple games. But now the arguments are completely different.
In this paper we consider the problems C ′, Ck, and C ′k and depending on how
a rule works in such problems uniqueness is obtained. Bergantiños et al. [4]
obtain uniqueness by considering the expression of the folk rule as an obligation
rule.
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