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Abstract

This paper studies the effects on the asset price of the introduction of a
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1 Introduction

The idea that a price system based on competitive markets is able to aggregate
dispersed information in the economy dates back at least to Hayek (1945). A
detailed description of the ability of markets in efficiently aggregate information,
and the conditions under which this might take place, is found in the theoretical
literature of rational expectations and market structure. Grossman and Stiglitz
(1980) demonstrate that a paradox exists when in a competitive and efficient market
the production of information is costly. Informed traders have no incentive to reveal
their private information into the market if not properly compensated by the costs
of producing information, and therefore it does not exists an equilibrium price. This
problem is solved when prices only partially reveal the information.

There is a large experimental literature dealing with the aggregation and dis-
semination of information in laboratory financial markets to test the theoretical
predictions of rational expectation equilibrium models. Many experimental contribu-
tions have shown that centralized asset markets can disseminate private information
held by agents (Plott and Sunder, 1982). However, the ability of markets to dissemi-
nate (free allocated) information is limited (Plott and Sunder, 1988; Camerer and
Weigelt, 1991; Corgnet et al., 2015).

There is another set of models that study the aggregation of information in
decentralized markets. These markets are characterized by their opaqueness, where
the details of the contracts are only known by the two parties (Duffie, 2012). Several
theoretical studies suggest that decentralized markets are able to aggregate dispersed
information in the market, although the aggregation process is slowed down with
respect to centralized markets (Duffie et al., 2005; Duffie and Manso, 2007; Duffie
et al., 2015).

Despite the extensive literature on aggregation of information, not much attention
has been paid to the interplay between private and public information and its
potential adverse effects on market performance. In addition to the information held
privately by traders, one might assume the existence of a disciplining institution
that releases public information to improve market efficiency. For instance, the
European Central Bank employs the forward guidance to manage the expectations
of investors and consumers, providing information about future monetary policy
targets. Thus, the forward guidance can influence current financial and economic
conditions. However, the central bank announcements might influence too much
the informativeness of prices and create an overweighting phenomenon, enhancing
the volatility of markets. Public information, in fact, provides common priors for
the market and “significant market events generally occur only if there is similar
thinking among large groups of people...” (Shiller, 2002).

Taking stock of that, it is not trivial to predict the effect of public announcements
on market performance. Beyond the information on fundamentals, public announce-
ments provide information about the beliefs of the other market participants. Morris
and Shin (2005) state that “The central bank cannot manipulate prices and, at
the same time, hope that prices yield informative signals.” Another example is the
sovereign bonds market where prices are closely tracked to assess the probability of
debt default of a country. However, prices may become uninformative when some
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unwarranted information is publicly announced. This public information may allow
self-fulfilling beliefs. Allen et al. (2006) prove that there is an excessive reliance
on a public signal even when there is not an explicit coordination motive. Agents
use that information to better forecast the aggregate demand and, therefore, they
overweight its value above and beyond its role in predicting the liquidation value of
the asset.

We address the overweighting of public information phenomenon within a simple
trading model. We formalize a decentralized asset market with heterogeneous
agents who differ in their level of reasoning and information.1 Using Monte Carlo
simulations and comparing them with the observed experimental data in Ruiz-Buforn
et al. (2019), we establish two conjectures. Our first conjecture suggests that the
presence of more traders with higher levels of reasoning increases the impact of public
information in the aggregate transaction prices. Second, the common knowledge of
the public signal is the main responsible of the distortive effect of a misleading public
signal. Ruiz-Buforn et al. (2019) study the effects of releasing public information
in a laboratory financial market where traders have access to private information.2

Our model reproduces qualitatively the main patterns observed in the laboratory
experiment. Prices are strongly biased toward the public signal independently of its
realization, i.e. correct or incorrect prediction on fundamentals. However, the impact
of mistaken information lessens when the released signal, even if it is observed by
all traders, is not common knowledge.

The rest of the chapter is organized as follows. Section 2 introduces the behavioral
trading model and its results. Section 3 describes the laboratory experiment. Section
4 illustrates the model calibration and the finite sample properties of the model,
implementing Monte Carlo simulations and comparing them to the observed data.
Finally, Section 6 concludes.

2 The model

2.1 Information set

The market is populated by N agents who are endowed with risky assets and cash.3

The asset is essentially an Arrow-Debreu security, which can take two possible
values D ∈ {0, 1} with equal probability. At the beginning of the market, all agents
observe a binary public signal y ∈ {−1, 1} that predicts the value of the asset with
probability q ∈ [1

2
, 1]. A public signal y = −1 indicates that D = 0 whereas a signal

y = 1 indicates that D = 1. Moreover, each agent receives two binary private signals
that predict the value D, each one with probability p ∈ [1

2
, 1]. Agent i’s private

information can take three values: (i) xi = 2 if the agent receives two private signals
predicting D = 1; (ii) xi = 0 if they receive two opposite signals and (iii) xi = −2 if

1Cognitive hierarchical models represent stock markets where some traders believe, incorrectly
and over-confidently, that their strategy is the most sophisticated. In such situations, “the players
are not in equilibrium because some players’ beliefs are mistaken” (Camerer et al., 2004).

2Ruiz-Buforn et al. (2018) test the overweighting phenomenon when traders can acquire costly
private information.

3The amount of cash is a loan that they must give back at the closing of the market.

3



they receive two private signals predicting D = 0. Thus, there are three possible
information levels depending on the realization of the private signals. Each level of
information is denoted by “i”, which indicates high, medium and low i ∈ {H,M,L}.
Note that y is common knowledge to all agents whereas xi is private information for
each agent and, therefore, not observable by the other agents.

According to the Bayesian inference, agent i’s expected dividend is

E[D = 1|xi, y] =
1

1 +
(

1−p

p

)xi
(

1−q

q

)y . (1)

According to the informational levels, there are three possible expected dividend
values in the market Di ∈ {DH , DM , DL}.

4 Agent i’s expected dividend is high (DH)
when his private information is xi = 2. If agent i observes xi = 0, he is privately
uninformed and his expected dividend is medium (DM). Finally, if he observes
xi = −2, he has a low expected dividend DL.

2.2 Agents’ decisions

Once private and public information is revealed, agents decide whether to be sellers
or buyers and the price of their offer. Agents have one chance to decide their offer
and bargaining is not allowed. Each agent’s offer involves one randomly chosen
agent as a counterpart. Thus, an agent who observes the offer of another agent in
the market decides whether to accept or reject it.

We assume that all agents are risk-neutral and bounded rational since they
are not fully aware of the strategic implications of their actions in an asymmetric
information environment. Using the concepts of cognitive hierarchy theory, there
are two types of agents τ ∈ {N,S} according to their level of reasoning. A fraction
θ ∈ [0, 1] of the agents’ population is sophisticated (S) while a fraction 1 − θ is
constituted by naive traders (N). Agents desire to maximize expected payoffs5,
using their information. Naive traders only consider the information they have
about the fundamentals. Sophisticated traders, on the other hand, make use of the
public information in order to forecast other agents’ beliefs, considering that it also
carries information on the asset liquidation value. Unlike naive traders, sophisticated
traders compute the probability of acceptance for each offer. Essentially, our market
population is characterized by agents trading based on their first-order beliefs (naive)
and agents trading based on their second-order beliefs (sophisticated).

An important point should be clarified here. Our market is populated by
heterogeneous agents with different time-invariant trading strategies. This means
that the agents do not learn from their trading activity, but they follow the same
strategy. The market is not centralized since we implement a bilateral trading
mechanism between two agents. We use the average price as a measure of central
tendency of the whole transactions distribution.

4Hereafter, we will denote the expected dividend as Di ≡ E[D = 1|xi, y].
5The expected payoff denotes the income of the trader after dividend payment.
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Naive traders

A naive trader acts as prior information trader considering only his own information
without taking into account the zero-sum nature of the game and the strategic
implications of his actions.

Naive Proposer: First, we define the features of naive traders’ bidding behav-
ior. If he submits a buy offer at price b and it is accepted, he gets an additional unit
of the asset and his expected payoff is πN (b|Di) = 2Di − b. If his sell offer at price a
is accepted, he trades his unit and gets a payoff6 πN(a|Di) = a. Finally, if he does
nothing, i.e. there is no trade (nt), his expected payoff is πN(nt|Di) = Di.

A naive trader takes the action that provides him with the highest expected
payoff:

si = argsup
s∈{a,b,nt}

πN(s|Di) , (2)

where a, b and nt refer to every possible action s of a naive trader: submitting a sell
offer at price a, submitting a buy offer at price b and doing nothing, respectively.

Comparing the three possible strategies -submitting a bid, an ask or doing
nothing- he prefers submitting bids below his expected dividend and asks above
it (b < Di < a). Since he only considers the information on fundamentals, we
assume he estimates that the probability of an offer being accepted is exponentially
decreasing with the gains from trading. So, he submits bids and asks close to his
expected dividend Di. The naive proposer i, therefore, submits bids bi = Di − ε

and asks ai = Di + ε with the same probability, since both actions provide him with
the same expected payoff, which is strictly higher than doing nothing. Note that he
earns the extra profit ε with respect to doing nothing, which is independent of his
type i. The parameter ε is exogenously fixed. We assume that 0 < ε < min{Di}.
So that all bids and asks are within the range [0, 1] independent of i.

The expected payoff of a naive proposer when submits his optimal offer is

πN(a|Di) = Di + ε

and
πN(b|Di) = Di + ε .

Since it is the same, he randomizes between the two strategies.

Naive Receiver: Similarly, we assume that a naive trader accepts offers that
provide him with a higher expected payoff than no accepting them. If a naive trader
receives a bid, the expected payoff of acceptance is b. If he receives an ask and
accepts it, he gets an additional asset and his expected payoff is 2Di − a. Thus, a
naive trader accepts buy offers below and sells offers above his expected dividend:

πN(b,Di) =

{

b if he accepts

Di if he rejects

6The proposer knows with certainty the gains of his action since they do not depend on the
liquidation value of the asset.
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and

πN(a,Di) =

{

2Di − a if he accepts

Di if he rejects

In conclusion, he accepts a bid if b > Di and an ask if a < Di.

Sophisticated traders

We assume that a sophisticated trader acts with certain level of strategic reasoning.
When deciding her strategy, a sophisticated trader uses her information set (xi, y)
and considers the trading motives of the counterpart to decide her optimal action.
We assume that sophisticated traders consider their second-order beliefs based on
the assumption that all other traders in the market are naive. As a consequence,
sophisticated traders take into account how information (private and public) is
distributed across traders in the market. The bounded rationality of this kind of
traders stems from the fact that they do not contemplate higher-order beliefs, i.e.
they believe that all other traders are naive, without further iteration levels.

In this framework, the public signal enters in the information set of all traders in
the market. The public nature of this signal allows sophisticated traders to better
characterized other traders’ expectations.

Sophisticated Proposer: When a sophisticated trader submits an offer, her
expected payoff depends on the selling price a or the buying price b, her information
Di and the probability that her offer is accepted. She faces a trade-off between the
transaction payoff and the probability of closing such transaction. If she submits an
ask a, her expected payoff is7

πS(a|Di) = Di + (a−Di)
∑

j

Pr[a < Dj|Di] ,

where Pr[a < Dj|Di] denotes the probability that a sophisticated trader with
expected dividend Di sells her asset at price a. In other words, Pr[a < Dj|Di]
represents the probability to be matched with a trader with an expected dividend
Dj > a given her information. Similarly, when submitting a bid b her expected
payoff is

πS(b|Di) = Di + (Di − b)
∑

j

Pr[b > Dj|Di] ,

where Pr[b > Dj|Di] denotes the probability that a sophisticated trader with
expected dividend Di buys her asset at price b. In case that the sophisticated trader
decides to do nothing, her expected payoff is Di.

A sophisticated trader takes the action that provides her with the highest
expected payoff:

s∗i = argsup
s∈{a,b,nt}

πS(s|Di) , (3)

7See appendix A.1 for the extended functions.
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where a, b, nt denotes every possible trader’s action: selling at price a, buying at
price b and doing nothing, respectively. She faces a trade-off between maximizing
her payoff and maximizing the potential market demand.

Solving eq. (3), the optimal action for a sophisticated trader with an expected
dividend DH is submitting buy offers at price b∗H = DM +ε. If her expected dividend
is DL, she will submit sell offers at price a∗L = DM − ε. The trade-off between her
transaction payoff and the potential market demand is optimized at the medium-
price level. To give some intuition, at that price she satisfies the demand of two
out of three types of naive traders. Finally, if she is privately uninformed (DM),
submitting a bid b∗M = DL + ε or an ask a∗M = DH − ε provides her with the highest
expected payoff. Note that an uninformed sophisticated trader is not able to exploit
the difference between her private information and the public signal. Given that her
information is the public signal, it does not help her to characterized other traders’
expectations. So, her optimal choice is selling at the highest possible price or buying
at the lowest possible price that a trader is willing to accept.

Sophisticated Receiver: In case a sophisticated trader receives an offer, it
provides her with new information to be updated. Indeed, the received offer carries
information about the proposer’s private information. A sophisticated trader knows
that traders submit offers that provide them with positive expected payoffs. This
means that no trader will submit sell offers below his expected dividend nor buy
offers above his expected dividend.8 The expected payoff of a sophisticated trader
when she receives a bid b or an ask a is

πS(b,Di) =

{

b if she accepts
∑

j Dij Pr[Dj|Dj > b] if she rejects

and

πS(a,Di) =







−a+ 2
∑

j Dij Pr[Dj|Dj < a] if she accepts
∑

j Dij Pr[Dj|Dj < a] if she rejects

where Dij denotes the updated expected dividend of the trader i when she infers
from the offer that the proposer’s expected dividend is Dj.

9 Dij is computed by
adding the proposer’s private signals xj ∈ {−2, 0, 2} to her own information set
Dij ≡ E[D = 1|xi, xj, y]. Finally, Pr[Dj|Dj > b] and Pr[Dj|Dj < a] define the
probability of the proposer’s level of information given the observed bid and ask,
respectively.10 The optimal action depends on which of the two expected payoffs is
higher.

8For example, she identifies the proposer as type H when she observes a bid b > DM . In case
she observes a buy offer at b > DL, she infers the probability that the expected dividend of the
proposer is DH or DM . A bid b < DL does not carry additional information since any trader
makes positive expected payoffs buying at a very low price.

9Table 3 in Appendix A.2 describes the information revealed in every offer, together with some
illustrative examples to explain the computing process of the expected payoffs.

10Recall that sophisticated traders believe all other traders are naive.
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2.3 Endogenous order flow

Having defined the optimal strategy for each type of trader, we now compute the
optimal number of offers submitted by them. In order to do so, we introduce a cost
function in the number of offers. This cost function is composed by a quadratic
term11 c · (zτi )

2 and an opportunity cost term Di. The parameter c is a constant of
proportionality. The variable zτi denotes the number of offers submitted by a trader
of type τ and with expected dividend Di. The quadratic term can be understood
as some costs to manage all information related to the offers. The opportunity
cost denotes trader’s expected payoffs if he would not submit any offer. Proposer’s
cumulative payoff function is

Πτ (s|Di) = [πτ (s|Di)− c zτi −Di] z
τ
i , (4)

where πτ (s|Di) denotes the proposer’s expected payoffs when playing his or her
optimal strategy s given her information. The order flow is the optimal number of
offers per unit of time and it is computed maximizing eq. (4) with respect to zτi :

zτi =
πτ (s|Di)−Di

2c
.

For naive traders, we denote the order flow with zNi = ν = ε
2c
, which is inde-

pendent of their information level. The order flow of sophisticated traders, on the
other hand, changes based on their information level. The relative order flow of
sophisticated traders with respect to the naive traders is

µi =
zSi
zNi

=
πS(s|Di)−Di

ε
.

Without loss of generality, we can set the value of c in such a way that the order
flow of the naive traders is ν = 1, so that c = ε

2
.

2.4 Transactions

What we have characterized so far the traders’ behavior given their level of reasoning
and information. In general, a trade occurs because traders differ in endowments,
preferences or beliefs. The latter element takes place in our framework. In this
section, we study the tendency of transaction prices as a function of the fraction of
sophisticated traders in the market θ ∈ [0, 1].

Without loss of generality, Table 1 describes the market transactions assuming
D = 1. The first column lists the proposer’s type according to their level of reasoning
and information, the second and the third columns show the optimal strategy of
every type of trader. Finally, the last column lists what types of traders accept the
offer.

Let us define with f(τi, τ
′
j) the probability per unit of time that a given match

between two traders, a proposer τi and a receiver τ ′j , turns out in a transaction.12 If

11The quadratic nature of the costs is necessary for having an optimal value for the number of
offers.

12In order to compute it, we refer to Table 1. Note that f(τi, τ
′

i
) = 0 ∀i.
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Proposer (τi) Offer Price Receiver (τ ′j)

SH b∗H DM + ε NL, NM SL

a∗M DH − ε NH
SM

b∗M DL + ε NL

SL a∗L DM − ε NH , NM SH

aH DH + ε No trade
NH

bH DH − ε NM , NL, SL

aM DM + ε NH SH
NM

bM DM − ε NL, SL

aL DL + ε NH , NM , SH
NL

bL DL − ε No trade

Notes: In the first and last columns both parts of a transaction, the proposer and the re-
ceiver, are described. S (N) denotes the type of traders according to their level of reasoning
-sophisticated (naive)-, whereas the subindex H, M and L represent traders’ expected divi-
dend. The other two columns of the table show the offers and their corresponding prices.

Table 1 Transactions.

we sum over the index τ ′ and j,
∑

τ ′j f(τi, τ
′
j), we obtain the probability per unit of

time that a trader τi closes a transaction according to her or his optimal strategy.

Introducing the order flow ωτ
i =

{

µi if τ = S

1 if τ = N
we have

t(τi) = ωτ
i

∑

τ ′j

f(τi, τ
′
j) , (5)

where t(τi) is the expected number of transactions of trader τi per unit of time.
Table 2 shows the expected number of transactions per unit of time for each

trader of type τi. Note that it is already included the corresponding order flow. To
give an example, the probability of observing a transaction of a NH is computed as
the probability that a naive with high expected dividend is matched with any trader
who is willing to accept his offer bH = DH − ε: a sophisticated trader SL with low
expected dividend, an uninformed naive trader NM or a naive trader NL with low
expected dividend. All the sum is multiplied by the order flow ν = 1. The explicit
calculation is the following:

t(NH) = ν
∑

τ ′j

f(NH , τ
′
j) = ν[

1

2
(1− θ)θp2(1− p)2

+(1− θ)2p3(1− p)] +
1

2
(1− θ)2p2(1− p)2] .

Let us define a vector T whose components are t(τi). As a proxy for the tendency
of transaction prices, we compute the average price P in the market. The vector of
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Proposer (τi) T

SH µHθ[(1− θ)2p3(1− p) + p2(1− p)2]

SM

µMθ(1− θ)p3(1− p)

µMθ(1− θ)p(1− p)3

SL µLθ[(1− θ)2p(1− p)3 + p2(1− p)2]

NH ν(1− θ)[(1− θ)p3(1− p) + 0.5p2(1− p)2]

NM ν(1− θ)[p(1− p)3 + p3(1− p)]

NL ν(1− θ)[0.5p2(1− p)2 + (1− θ)p(1− p)3]

Table 2 Probability of transaction per unit of time.

prices P = (DM , DH , DL, DM , DH , DM , DL) is defined according to the proposer’s
offers in Table 1.13 Finally, the average price P is computed as the weighted sum of
each possible value of the price according to the probability of observing such price
over the total feasible transactions, F =

∑

τi
T (τi). Defining T′ as the transpose of

T, the average price is

P =
T′

F
P . (6)

3 Laboratory experiment

In this section, we sketch briefly the experimental design of Ruiz-Buforn et al. (2019).
The experiment took place in the LEE (Laboratori d’Economia Experimental) at
University Jaume I in Castellón. Each session consists of ten independent markets
lasting 3 minutes each. The asset market is implemented as a double auction where
subjects are free to introduce their bids and asks or directly accept other trader’s
outstanding bid or/and ask. Every bid and ask concerns only one unit of the asset,
but subjects can handle as many as desired as long as they have enough cash or
assets (no short sale is allowed).

Each market is populated by 15 subjects who are endowed with 1000 units
of experimental currency (ECU)14 and 10 one-period life units of a risky asset.
The dividend takes the value 0 or 10 with a 50% probability, which is common
knowledge to all subjects. At the beginning of each market, the dividend is randomly
determined by the experimenter, but not revealed to the subjects until the end of
the same, when the dividend is paid. Additionally, subjects receive noisy signals on
the dividend value. Signals are partially but not totally informative and they are
presented to the subjects taking the value 10 or 0. If a subject observes a signal

13We omit the ε parameter for notational convenience.
14During the experiment, earnings and dividends are designated in experimental currency units

(ECU) and converted into Euro at the end of the session.
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that results to be 10 (0), he can infer that the dividend is expected to be 10 (0)
with probability 0.8 and 0 (10) with probability 0.2.

The experiment consists of three treatments depending on the source of informa-
tion in the market. In the baseline treatment (B), subjects receive two noisy private
signals. In the public information treatment (PS), all subjects observe an identical
noisy public signal besides the two private signals. In the common information
treatment (CS), subjects observe three signals and one of them is identical to all
subjects in the market. However, unlike in the PS treatment, this signal is not
common knowledge.15,16

At the end of each market, dividends are paid out and the subjects’ profits are
computed as the difference between their initial endowment and the money held at
the end of the market. Essentially, profits consist of the gains or losses generated by
the trading activity and the dividend. Each subject’s final payoff is computed as
the accumulated profit in all markets.

4 Model calibration

In this section, we calibrate our model to compare the theoretical mean price P and
the experimental data (Ruiz-Buforn et al., 2019). It is important to emphasize that
this model provides a post hoc interpretation of the impact of public information on
traders’ behavior. Indeed, we did not design the experiment to test this model.

Morris and Shin (2002) claims that public information is a double-edged in-
strument that simultaneously provides information about the fundamentals and
information about other traders’ beliefs. The second edge is due to the common
knowledge of that signal, and it is the reason for the emergence of overreliance on
public information above and beyond its information on fundamentals. Our study
aims at providing some theoretical insights into the overweighting mechanism. We
disentangle the dual role of public information by comparing the mean price when
traders observe a public signal and the mean price when they observe an identical
signal, which is not common knowledge among traders. In this case, the identical
signal carries information on the fundamentals but does not reveal information about
the other traders. We refer to that signal as common signal. If an incorrect public
signal pushes prices away from fundamentals while an incorrect common signal does
not exhibit such distorting effect (or has a much lower degree of distortion), we can
state that it is the public nature of information the main determinant of traders’
overreliance. Stated differently, we find evidence on the overweighting phenomenon
if the mean price is biased towards the public signal regardless of its realization,
namely whether it is correct or incorrect. Conversely, the mean price should never
be biased toward the common signal, independently of its realization. Onward, we
will refer to the following scenarios: markets with a public signal are labeled as

15Within treatments, we differentiate between two types of markets. Markets with a correct
public or common signal are labeled “Correct PS” and “Correct CS”, respectively. Markets with
an incorrect released signal are labeled as “Incorrect PS” and “Incorrect CS”.

16In treatment B, one group of subjects participate and, therefore, there are 10 markets. In
treatments PS and CS, two groups of subjects participate; we have therefore 20 markets for each
treatment.
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PS scenario, and markets with an identical signal that is not common knowledge
(common signal) as CS scenario.17 Additionally, we introduce a baseline scenario
(B) where there is no identical signal released to the market. Thus, each trader only
observes two private signals.

The public information benchmark (PB) represents the theoretical expected
dividend considering only the public information and is computed by the following
formula:

E[D = 1|ŷ] =
1

1 +
(

1−q

q

)ŷ
, (7)

where ŷ takes values 1 or -1 if the signal is public and ŷ = 0 if the signal is common.18

PB = 0.8 when the public signal predicts D = 1 and PB = 0.2 when that signal
predicts D = 0. Finally, PB = 0.5 in the B and CS scenarios.

Recall that, for simplicity, we focus our attention on the case D = 1 since the
model is symmetric in the two states of the world. Thus, the fraction of traders that
receive two signals pointing to the dividend and, then, have a high expected dividend
DH is p2. A fraction of 2p(1− p) are uninformed traders whose expected dividend
is DM and a fraction of (1− p)2 are misinformed traders whose expected dividend
is DL. Considering those probabilities, instead of the corresponding frequencies in
the population, implies that we neglect the fluctuations in the configuration of the
population due to the finite number of traders.19 Just like the experimental design,
we fix the quality of every private, public and common signal at p = q = 0.8.

4.1 Results

Without loss of generality, Figure 1 shows the mean price in the three scenarios (B,
PS and CS) when D = 1 as a function of the proportion of sophisticated traders
in the market population. The mean price is computed separately according to
the correctness of the released signal. We use the B scenario as a benchmark for
evaluating the impact of releasing a public signal. One can see that the mean price
in the B scenario (dashed-dotted line) is biased towards the dividend, although
without converging to it. The presence of sophisticated traders drives prices away
from the dividend.

Looking at the bottom lines of the figure, it is evident that an incorrect released
signal pushes prices away from the dividend D = 1. However, one can notice several
differences between PS an CS scenarios at a glance. An incorrect public signal
(thick-solid line) has a stronger distorting impact on price performance. The mean
price quickly drops when there are sophisticated traders in the market. In fact, a
small fraction of sophisticated traders (θ = 0.2) is sufficient to observe that the mean
price clearly tends to the incorrect public signal (PB = 0.2), getting closer to the

17In the CS scenario, the procedure for the resolution of the theoretical model is explained in
Appendix B.

18We denote now the released signal by ŷ instead of y like in eq. (1) to unify the three scenarios
(benchmark, public signal, and common signal) into a single equation.

19We assume that the number of traders is sufficiently large that the fluctuations around the
mean can be neglected.
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PB as θ increases. The maximum level of overweighting is eventually reached when
θ = 1. It is worth noting that this phenomenon is quite a robust outcome. The
distance between mean prices and the public signal is, in fact, almost unchanged
in the interval θ ∈ [0.2, 0.7]. This means that, in order to observe the price biased
towards the incorrect public signal, it is not necessary a process of fine-tuning the
value of θ.

On the other hand, the price behavior in the CS scenario is markedly different.
Even though an incorrect common signal distorts the mean price (thin-solid line),
this negative effect is less harmful than the negative impact of an incorrect public
signal. Interestingly, the presence of sophisticated traders has no impact on the
mean price until they make up the majority of the market population. The mean
price starts from the middle of range values and remains constant until sophisticated
traders reach a percentage close to 80%, which is the large majority of the population.

The top lines of the Figure 1 show the mean price when the released signal
points towards the dividend. Mean prices show a lower sensitivity to the presence of
sophisticated traders in both scenarios with respect to the case with an incorrect
signal. The convergence of the mean price to the PB = 0.8 is largely independent
of the fraction of sophisticated traders. Surprisingly, there is almost no difference
between markets with a public and a common signal. The mean price takes similar
values in both scenarios. The mean price gets closer to the dividend with respect
to the B scenario. We can claim that releasing an identical signal improves market
performance, moving traders’ activity at levels closer to fundamentals.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

θ

m
ea
n
pr
ic
e

correct PS

incorrect PS

correct CS

incorrect CS

B

PB

Figure 1 Mean price over the proportion of sophisticated traders, assuming
ε = 0.025.

We can deduce from our model that public information is beneficial per se when
it is correct. Both information on fundamentals and on other traders’ expectations
help market price to converge to the dividend value. The mean price is almost
indistinguishable in the public or common scenario. However, we observe a different
impact when there is an identical misleading signal in the market. The fact that
traders are aware that they observe an identical signal reinforces the distorting
effects. The public signal is overweighted in the aggregation of information into
prices due to the overreliance of the traders on public information. Differences
between mean prices in scenarios PS and CS, when the released signal is incorrect,
indicate the importance of the common knowledge of the public announcements.
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We evaluate now whether the released signal has different impacts on the mean
price in aggregate terms. Figure 2 plots the mean price for every scenario computed
as the weighted probability of occurrence of the signal. Stated differently, the
aggregate mean price is computed by the sum of two terms: (i) the mean price when
the released signal predicts dividend 1 weighted by the probability of being correct,
p, and (ii) the mean price when the released signal predicts dividend 0 weighted
by the probability of being incorrect (1− p). On aggregate, releasing a signal into
the market improves mean price performance. The mean prices in both PS and CS
scenarios are closer to the dividend than the mean price in the baseline scenario.
Figure 2 shows that the effect of the common knowledge is almost indistinguishable
in aggregate terms.
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Figure 2 Mean price over the proportion of sophisticated traders, assuming
ε = 0.025 in aggregate terms.

4.2 Monte Carlo simulations

Eq. (6) assumes a very large number of traders and encounters, since we replace
the frequencies with probabilities. We study now the finite sample properties of our
model. We run Monte Carlo simulations based on our theoretical model, assuming
15 heterogeneous traders who have different levels of reasoning. We run 100 market
configurations for every realization of the public or common signal given D = 1. In
each market configuration, 30 private signals are drawn using a binomial distribution
and allocated to the traders. Once we fix the distribution of signals among traders,
the simulations are initialized with θ = 0, progressively increasing the value of θ in
steps of 0.1 until θ = 1. One trader of the whole pool is randomly chosen with equal
probability. The probability of being sophisticated or naive depends on the value of
θ. Moreover, the number of submitted offers changes depending on the type of the
proposer (S,N) and his or her expected dividend. Every offer of a given trader is
associated with a counterpart, which is randomly chosen among the rest of traders.
The receiver may accept or reject the offer depending on his or her level of reasoning
and information. For each value of θ, this operation is repeated 100 times. Finally,
the average price of transactions is computed in each case.

Figure 3 shows the mean price obtained in Monte Carlo simulations for PS cases
on the panels (a,c) and CS cases on the panels (b,d). We also differentiate between
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markets where the released signal is correct (y = 1) on the panels (a,b) and those
where it is incorrect (y = −1) on the panels (c,d). One can see that mean price of
simulations closely follow the theoretical predictions in all cases. We note further
that the mean price dispertion is larger in CS scenario than in PS scenario. This
finding indicates that the price is more sensitive to the distribution of signals in CS
scenario rather than in the PS scenario.

5 Corroborating evidence: observed vs simulated

data

This section compares the computational with the experimental data. The com-
putational data are generated following the process explained in Section 4.2 with
a fix value of θ = 0.2. In order to compare the impact of public information on
market prices, we evaluate how public information pushes prices away or towards
the dividend. We compute the mean absolute deviation of transaction prices PRtr

from the dividend value in the laboratory markets:

DPe =
1

Tr

Tr
∑

tr=1

|D − PRtr|

10
, (8)

where Tr is the total number of transactions. For the computational data, the
formula is

DPs =
1

M

M
∑

m=1

|D − Pm| , (9)

where Pm refers to the mean price of every simulated market (m), and M denotes
the number of Monte Carlo runs. When DPe = 0 or DPs = 0, prices or mean prices
converge to the dividend value.

Figure 4(a) plots the DPs indicator and Figure 4(b) plots the DPe indicator. At
a first glance, similarities are clear although a higher dispersion is present in the
experimental data. Comparing to the B treatment, the release of a correct public
signal helps prices to converge towards the dividend (Correct PS). However, an
incorrect public signal drives prices far from the dividend (Incorrect PS). The impact
of an incorrect common signal is strongly attenuated in some laboratory markets.
This result suggests that subjects are able to learn from prices in the laboratory, even
when they receive incorrect signals. Note, however, that an incorrect public signal
seems to drag this learning process out. We have tested the effect of misleading
information assuming that simulated traders are not able to learn. Although this is a
weakness of our model, the main results of the laboratory experiment are reproduced.

After analyzing the impact of a correct and incorrect public signal, it remains to
answer to the question: What is the aggregate impact of public information? Figure
5 plots the data averaging over the different realizations of the signal. One can
see that the release of information, public or common, improves price convergence.
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(b) CS scenario with y = 1
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(c) PS scenario with y = −1
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(d) CS scenario with y = −1

Figure 3 The results of 100 Monte Carlo simulations with a public signal on the left panels (a,c), and a common signal on the right panels
(b,d). The X-axis denotes the proportion of sophisticated traders in the market and Y-axis denotes mean prices. Dashed-blue line describes
the theoretical mean price, the solid line represents the average of simulated mean market prices and shaded area shows 2 standard deviations.
Horizontal lines represent the PB ∈ {0.2, 0.5, 0.8} depending on the value of the released signal.
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Figure 4 Distribution of DP across markets, considering whether the released
signal is correct or incorrect.

Therefore, we can conclude that public information is beneficial for market dynamics
in the experimental as well as simulated markets.20
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Figure 5 Distribution of DP across markets.

In conclusion, our model is able to reproduce qualitatively the patterns observed
in the experiment, which are i) prices are biased towards the fundamentals when an
additional signal is released, ii) the presence of price distortion when the released
signal is incorrect and iii) a limited distortion if traders observe the same signal
without being common knowledge.

6 Conclusions

We propose a simple decentralized asset market with asymmetric information popu-
lated by naive and sophisticated traders. The model aims at identifying the principal

20From Figure 3 one can infer that we would obtain similar results if the fixed proportion of
sophisticated traders lies in the interval θ ∈ [0.2, 0.7].
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effects of unwarranted or mistaken public information on prices when it interplays
with noisy private information. Under bounded rationality, public information
differently affects traders’ behavior. Whereas naive traders only consider their
own information, sophisticated traders make use of public information to infer the
distribution of aggregate demand. We find that a noisy public signal pushes prices
away from fundamentals when it predicts the wrong state of the world. A low
proportion of sophisticated traders is sufficient to observe that the mean transaction
price follows a mistaken public signal.

We also perform Monte Carlo simulations with a finite sample of traders and
calibrate the key parameters to match the ones in the laboratory experiment. We
compute three scenarios: markets where there is not public information, markets
with public information and, markets where one of the signals is observed by all
traders but they are not aware of it. An interesting result emerges: the price is
biased towards the incorrect public signal rather than the dividend value. Whereas
the distorting impact of unwarranted public information emerges, this effect is much
lower under the assumption of non-common knowledge about the released signal. In
our behavioral model, the common knowledge nature of public information makes
traders overrely on public information.

Our simple model qualitatively reproduces the aggregate behavior observed in the
laboratory asset markets of Ruiz-Buforn et al. (2019). Heterogeneity combined with
bounded rationality generates similar findings to those of the experimental study.
Finally, future work should relax some strong assumptions as learning capacity of
traders and implement different market architectures.
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A Public signal scenario

A.1 Sophisticated proposers

The expected payoff function of a sophisticated proposer has two components: (i) the
expected payoff if the offer is accepted multiplied by the probability of acceptance
and (ii) the expected payoff if the offer is rejected, i.e. Di. Submitting sell offers:
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πS(a|Di) =
∑

j

(a Pr[a < Dj|Di] +Di Pr[a ≥ Dj|Di]) .

Submitting buy offers:

πS(b|Di) =
∑

j

(

(2Di − b) Pr[b > Dj|Di] +Di Pr[b ≤ Dj|Di]
)

.

A.2 Sophisticated receivers

This section provides some illustrative examples to clarify the computation of
expected payoffs when a sophisticated trader receives an offer. Table 3 lists all
inferences that a sophisticated trader can make observing a particular offer, assuming
all offers are submitted by naive traders.

Observed offer Type of the proposer

bid

b ≥ DM NH

DL ≤ b < DM NH , NM

b < DL NH , NM , NL

ask

a > DH NH , NM , NL

DM < a ≤ DH NM , NL

a ≤ DM NL

The first columns describe possible offers. Right column shows receiver’s inference about
proposers type.

Table 3 Sophisticated receivers’ inference about the expected dividend of the
proposer.

Receiving buy offers: an example21

Let us suppose that a sophisticated trader SL, whose expected dividend is DL

observes a bid. She updates her beliefs and decides whether accepting or rejecting
the offer. For instance, in case she observes a bid bH− = DH − ε, she infers the type
of proposer is a naive whose expected dividend is DH .

22

21The intuition to follow when a sophisticated trader receives a sell offer is similar to a buy offer.
22We adopt the following notation throughout the examples of received offers. b and a indicate

whether the received offer is a buy or a sell offer, respectively; subindex {H,M,L} stands for
the level of the price, which is equivalent to the expected dividend level; H− and H+ are used
to denote that the price is slightly below or above the level DH , namely DH − ε and DH + ε,
respectively.
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πS(bH− , DL) =















bH− accepting the bid

∑

j

DLj Pr[Dj|Dj > bH− ] rejecting the bid

where Dj = DH since a naive trader with a high expected dividend is the only trader
submitting this offer without incurring in losses. Thus DLj = DLH refers to the
updated expected dividend, where subindex L means her prior expected dividend
and H is the guessed proposer’s expected dividend. Her updated expected dividend
is

DLH ≡ E[D = 1|xL, xH , y] =
1

1 +
(

1−p

p

)−2+2 (

1−q

q

)y
.

In case she observes a bid bM− = DM − ε, the type of proposer might be M or H.

πS(bM− , DL) =















bM− accepting the bid

DLM Pr[DM |DM > bM− ]

+DLH Pr[DH |DH > bM− ]
rejecting the bid

where the updated expected dividend is given by

DLM ≡ E[D = 1|xL, xM , y] =
1

1 +
(

1−p

p

)−2+0 (

1−q

q

)y

and

DLH ≡ E[D = 1|xL, xH , y] =
1

1 +
(

1−p

p

)−2+2 (

1−q

q

)y
.

The probability assigned to a proposer of type M given that the receiver has an
expected dividend DL is computed by

Pr[DM |DM > bM− ] =
Pr[bM− |DM ] Pr[DM |DL]

Pr(bM− |DL)

=
1

4
2pq[(1−DL) +DL]

1

4
[DL(p2 + 2pq) + (1−DL)(q2 + 2pq)]

Conversely, she cannot update her beliefs when she observes a bid bL− = DL − ε

because any type of trader could submit that offer.
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πS(bL− , DL) =







bL− accepting the bid

DL rejecting the bid

B Common signal scenario

The analysis of the common signal scenario follows the same structure as the case
of PS scenario. The main difference with the PS scenario lies in the sophisticated
traders’ strategies. Nonetheless, the lack of common knowledge does not change
naive traders’ behavior since they evaluate signals according to their precision about
fundamentals. This Appendix explains the main differences in the CS scenario and
the results of the model.

B.1 Sophisticated traders

Sophisticated traders consider the distribution of information in order to assess
market demand. However, contrary to public signal, the common signal does not
allow them to better characterized the potential market demand. They estimate
the potential demand assuming each trader possesses three independent private
signals {xi, yi} because they are not aware that yi is identical to all traders. We
must redefine, therefore, the expected dividend for a trader of type i as:

E[D = 1|xi, yi] =
1

1 +
(

1−p

p

)xi
(

1−q

q

)yi (10)

where xi = {−2, 0, 2} refers to private signals and yi = {−1, 1} refers to the
common signal. Notwithstanding the common signal is unique for all traders in the
market, the sophisticated traders classify traders in four groups according to the four
possible expected dividends {DH , DM , DM , DL}, corresponding to all the possible
combinations of χi = (xi+ yi).

23 We introduce the notation M and M to denote the
low and high intermediate levels. The variable i takes the values {H,M,M,L}. It is
important to stress, however that only three are the levels effectively present in the
market. For instance, if the common signal is yi = 1, existing types of traders are
{H,M,M} and the types of traders are {M,M,L} when common signal is yi = −1.
The optimal offer is computed by following the process explained in Section 2.2.

In case a sophisticated trader receives an offer, it provides her with new informa-
tion to be updated. Unlike markets in the PS scenario, she identifies four possible
type of proposers j ∈ {H,M,M,L}, although one of them does not actually exist.

23In CS, privately uninformed traders are absent, therefore χi ∈ {−3,−1, 1, 3}. Remember that
in PS scenario, traders might be informed xi ∈ {−2, 2} or uninformed xi = 0.
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B.2 Transactions

Tables 4 and 5 list the market transactions when the dividend is D = 1 and the
common signal is correct or incorrect, respectively. The first column denotes the
proposer’s type according to his level of reasoning and expected dividend. The
second and the third columns show the optimal offer of each trader while the last
column shows the counterpart of every transaction.

In order to compare the results between common and public signal, one should
consider that when the common signal indicates dividend 1, j = M corresponds
to the M and j = M corresponds to L. If the common signal indicates dividend
0, j = M corresponds to the H and j = M corresponds to M . We rename the
type of traders and offers for each prediction of the common signal yi = {−1, 1}
for an easier comparison between markets with common signal and markets where
the released signal is public. Considering only private signals, the possible types
of traders are {H,M,M} if the common signal predicts dividend 1 (Table 4);
otherwise j ∈ {M,M,L} (Table 5). Considering the previous changes, we define
a vector of market prices following the proposer’s type offer in Table 4, P =
(DM , DL, DL, DM , DH , DM , DL). The vector of transaction prices when the common
signal predicts dividend 0 is P = (DM , DH , DH , DM , DH , DM , DL), which is listed
in Table 5.

Finally, the expected number of transactions per unit of time is listed in Table 6.
The mean price is computed by eq. (6).

Proposer (τi) Order Price Receiver (τj)

DM + ε NM , NM
SH b∗H

DM + ε NM

SM b∗
M

DM + ε NM

SM a∗M DM − ε NH , NM SH

aH DH + ε No trade
NH

bH DH − ε NM , NM , SM

aM DM + ε NH SH
NM

bM DM − ε NM , SM

aM DM + ε NH , NM , SH , SM
NM

bM DM − ε No trade

Table 4 Transactions when the common signal is 1.
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Proposer (τi) Order Price Receiver (τj)

SM b∗
M

DM + ε NL, NM , SL

SM a∗M DM − ε NM

DM − ε NM
SL a∗L

DM − ε NM , NM ,

aM DM + ε No trade
NM

bM DM − ε NM , NL SM , SL

aM DM + ε NM SM
NM

bM DM − ε NL SL

aL DL + ε NM , NM , SM
NL

bL DL − ε No trade

Table 5 Transactions when the common signal is -1.

Proposer (τi) T (if yi = 1) T (if yi = −1)

SH

µHθ(1− θ)p2(1− p)(p+ 0.5(1− p))
µHθp2q[(1− θ)2p+ (1− p)]

µHθ(1− θ)0.5p2(1− p)2

SM µMθ(1− θ)2p(1− p)3 µM2θ(1− θ)p3(1− p)

SL µLθ(1− p)2p[p+ (1− θ)2(1− p)]
µL0.5θ(1− θ)(1− p)2p2

µLθ(1− θ)(1− p)2p[0.5p+ (1− p)]

NH ν(1− θ)[(1− θ)p3(1− p) + 0.5p2(1− p)2] ν(1− θ)[p3(1− p) + 0.5p2(1− p)2]

NM ν(1− θ)[p(1− p)3 + p3(1− p)] ν(1− θ)[p(1− p)3 + p3(1− p)]

NL ν(1− θ)[0.5p2(1− p)2 + p(1− p)3] ν(1− θ)p(1− p)2[0.5p+ (1− θ)(1− p)]

Table 6 Expected number of transactions per unit of time for every type of
trader, given D = 1 in CS scenario.

C Robustness: Does market configuration mat-

ter?

This subsection aims at testing the relevance of the distribution of signals in markets
with public information. Intuitively, the proportion of informed traders in the
aggregation and dissemination of information matters. For example, an incorrect
public signal might largely distort prices when the proportion of informed traders
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is small. However, an incorrect public signal should be harmless when most of the
traders are informed. Since the most concerning case is the impact of an incorrect
public signal, we restrict our attention to the PS scenario to assess the importance
of market configuration. We define three market configurations based on observed
distributions of information across traders in the laboratory experiment. i) Config.
1, markets are populated by 5 uninformed and 10 informed traders. ii) Config. 2,
markets are populated by 1 misinformed trader, 7 uninformed traders and 7 informed
traders. iii) Config. 3 where markets are populated by 2 misinformed, 5 uninformed
and 8 informed traders.

Figure 6 shows that mean prices change depending on the distribution of private
information. When the public signal is correct, one can see that the computational
mean takes similar values to the theoretical prediction in markets where uninformed
and misinformed traders have a large presence (Config.2 and Config.3). For the
markets with an incorrect public signal, the public signal always dominates the
mean price. The impact is larger when the proportion of informed traders is small
(Config.2 and Config.3).

Altogether, we can claim that the market configuration can generate systematic
deviations from the theoretical prediction, however “not too large”, i.e. the general
conclusions still hold. A special case seems to be the configuration where there
is absence of misinformed traders. The mean price is noticeably higher than the
other market configurations, independently of the prediction of the released signal
y = {1,−1}. Besides, it is interesting to note that there are no transactions when
θ = 1. Therefore, if a market where all traders are sophisticated and none is
misinformed, we have no transactions.
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(a) Correct public signal y = 1
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(b) Incorrect public signal y = −1

Figure 6 Mean price of the market configurations assuming dividend D = 1.
Shaded area shows 1 standard deviation of the Monte Carlo simulations.
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