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Abstract

Short-term Electricity Demand Response (DR) is an emerging technlogy in Europe's Electricity markets
that will introduce a new degree of exibility. The objective of th is work is to analyze to what extent the
untapped DR potential can facilitate an optimal transition to an European low emission power system. The
bene ts of DR consists of a reduction in peak load consumption, which lads to reduction in capacity invest-
ments, production and consumption savings, reduced congestion phasereliable integration of intermittent
renewable resources and supply and demand exibility. The capabities of DR are studied in the European
Model for Power Investment with (High Shares of) Renewable Energy (BMPIRE), which is an electricity
sector model with a time span of 30 years ending in 2050. The model is twdegje stochastic that includes
uncertainty at the operational level and energy economics dynamics at a sategic level. The main contri-
bution of this article is designing the investment-operation DR module within the EMPIRE framework. It
models several classes of shiftable and curtailable loads in residésdt commercial and industrial sectors,
including exibility periods, operational costs and endogenous DR irvestments, for 31 European countries.
The results show that DR capacity substitutes partially exible s upply side capacity from peak gas plants
and battery storage, in addition to enabling more solar PV production.
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1. Introduction

The modernization of the European Power markets will inevitably introduce e cient mechanisms that
will help in the tremendous challenge of meeting sustainability goals This challenge can be divided into
two subproblems, rst, increasing the share of power capacity from enewable sources as well as their share
in the energy mix, and second, operating the power system in an e ciet and reliable way. Those market
tools are new renewable energy market products, smart metering anddT infrastructure, new market rules,
aggregators, and nally Demand Response (DR) exibility.

In the European Union directive on energy e ciency article 15.8 (ENTSO-e, 2015) it is indicated that
member states shall ensure the National Regulatory Agencies encouragentind side resources such as DR,
to participate alongside supply in wholesale and retail markets In that respect, allowing the consumer
side to have more decision power would increase price elasticity othe retail side and at the end on the
wholesale electricity market. In that respect consumer aggregators hasthe responsibility of managing their
clients exibility. The European Network of Transmission System Operators for Electricity (ENTSOe) has
established guidelines and recommendations to develop DR in Europdegtricity markets (ENTSO-e, 2015).
Six key requirements are described for unleashing the potential@velopment of DR: (1) price signals need to
reveal the value of exibility for the electricity system, (2) e cient use of DR based on an economic choice
between the value of consumption and the market value of electricity3) involvement of consumers can be
facilitated by automation or by a third-party company, (4) regulatory barriers regarding market agents should
facilitate the development of DR, (5) subsidies to DR should remain linted and (6) reliability of DR for
small consumers has to be guaranteed through proper communiaati and control technologies.

DR can be used for shaving peak hour demand, avoiding the use of expéves peak generator plants,
increase the reliability of the system by reducing outages, diveiifying resources, integration of variable
renewable resources, a more e cient system operation, as reserve cagity and giving more decision options
to customers (Albadi and El-Saadany, 2008). Even more, recently the capagitof reducing CO, emissions
through load shifting and ICT energy e cient measures has been estimaéd between 0.23% and 3.3% (Bastida
et al., 2019). However, some of this issues can be handled by other technolegiwhich might compete with
DR. Pumped-Storage hydro power, compressed air storage, Closed CydBas Turbines (CCGT) and battery
storage systems can resolve high demand contingencies.

DR a ects numerous agents and sectors in the electricity system, fom base power and RES plants to
large industrial consumers, commercial buildings and households. Frorthis multi-agent panorama, the
amount of research articles on DR is vast (Bossmann and Eser, 2016). In the lastiears they have lled
the research gaps pointed out in (O'Connell et al., 2014) at the same time tat attracting the attention of
techno-social modelers (McKenna et al., 2018; Srivastava et al., 2018).

From our techno-economic system planning perspective, investmés in power balancing technologies
should be considered jointly in the same model. System operation coiittbns have to be considered in order
to see which technologies are more worthwhile, at the same time that irgstment costs along the long-term
outlook. Thereby, two main questions have to be investigated. Firt in which way will DR evolve in the
European power system, and second, what will the impacts be on long-ter investments in a sustainable
power system. To this end, the perspective adopted in this resech is the electricity system perspective,
assessing the system performance as a whole.

Literature review

In Lund et al. (2015) a review of exible measures in energy systems is psented. According to them
DR, can provide very short, short and intermediate exibility in t he range of 1 minute to 3 days. In Huber
et al. (2014) the needs of exibility in the operation of European power sysems with over 30% of Renewable
Energy Sources (RES) energy share are signi cant. They studied thoseequirements at a 1 to 12 hours time
span and suggest that DR, storage, exible power plants and interconneairs can alleviate the power ramps
caused by RES. Ulbig and Andersson (2015) establishes three factors to cpare exibility of power system
units: ramp, power and energy. Generators, storages and load units are quttatively compared in those
terms.



Although the literature on DR in the electricity system perspective is numerous (Bossmann and Eser,
2016), there is a lack of articles on DR on long-term investment with RES uwertainty. In Lohmann
and Rebennack (2016), a short-term DR model with a long-term investmenscope is described, and it is
solved with a novel Benders decomposition approach. One of the characistics of the model is the use
of inter-hour electricity demand elasticities, which are theoreical parameters di cult to estimate. Instead,
the EMPIRE model avoids them by modelling the clearing market cordition through the power balance
equation. De Jonghe et al. (2012) proposes a complementarity programming approlaca method using
electricity elasticities and a piecewise linear integration of consmer value to integrate DR in a expansion
model. Unfortunately the rst method requires a euilibrium form ulation of the problem and the other two
are dependent on own and cross-price electricity elasticities.

In Ottesen and Tomasgard (2015) two exibility management methods for a muti-energy carrier building
are studied. The rolling deterministic model and the rolling stochastic model represent a prosumer optimizing
its energy inputs including exible loads: shiftable volume, shitable pro le, curtailable and interruptible
loads, assuming no e ciency losses.

In a lower scale setting, in Garca-Garre et al. (2018) the authors presehan algorithm to coordinate a
prosumer's household solar PV and residential DR. Their results shw that self-consumption rate raises 25%
and payback lowers 20%, but without considering system e ects. In anther paper by Seljom et al. (2017),
the system e ects of Zero Emission Buildings (ZEB) were studiedn fact but without including storage, DR
or continental Europe.

In Ottesen et al. (2016) a bidding methodology based on stochastic optimiation for aggregators with
several prosumers (equipped with lossless DR) is proposed. Uncaimty in wholesale spot market prices
and loads are handled with a scenario generation method. The bidding sitegy is obtained in a two-stage
stochastic mixed integer linear program.

A similar problem setting is presented in Saez-Gallego et al. (2018) whre a retailer buys energy in
the day-ahead market for a pool of price-responsive consumers. Theyqvide an analytic solution in the
case that the retailer is not risk averse and a stochastic programming del for optimal bidding under risk
aversion.

In Ottesen et al. (2018) a multi-market bidding strategy for an aggregator managirg four industries
is studied using a three-stage stochastic optimization approach. Theechnical characteristics of industrial
demand response are also studied in Rodrguez-Garca et al. (2018). Téay design a methodology for standard
prequalifying industrial resources and validate it at three European high-energy intensive factories. On
a broad European perspective, Papadaskalopoulos et al. (2018) study the impaztof Flexible Industrial
Demand (FID) on the generation and transmission mix with a capacity exparsion model and a stochastic
unit dispatch model. However their model does not include endogesus capacity investments in exibility,
the study is limited to 2030 and they do not include exibility sche duling costs. Their conclusion is that FID
saves capacity investments in generation, transmission and distrilstion grids to the order of billion euros.

In Iria et al. (2019) a two-stage stochastic optimization model is proposeddr an aggregator bidding in
the day-ahead and secondary reserve market, showing that the stochis strategy is bene cial compared
to an in exible and single strategy. Another paper with an aggregator nds that EV obsolete batteries can
have a second life when used by a exible consumer to provide capi#g reserves to the grid (Casals et al.,
2019).

Valks et al. (2018) give an empirical methodology to exhaustively characteize residential consumers'
exibility in response to economic incentives. Their approach congsts on quantile regression to assess the
probabilistic responsiveness of residential consumers, endingpwith two measures called exibility at risk
and conditional exibility at risk.

Flexible consumers can be implemented in models that look at the fiure European power system. In
Kies et al. (2016) a simpli ed European power system model with Demad Side Management (DSM) as
storage is presented and sheds light of the needs for demand exibilitunder di erent transmission and RES
shares scenarios for Europe in 2030.

Zerrahn and Schill (2015) suggest a DR model solving the problem of undueecovery, with time free
structure and handling excessive DR units activation which is appiable to several numerical models. In
Geransson et al. (2014) a simpli ed DSM model is used to investigate theapplicability of DSM to deal with
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congestion management. The simpli ed model simulates several levglof DSM penetration in the dispatch
model EPOD.

Zerrahn and Schill (2017) write a survey on generation expansion models westigating the needs of
power storage in a highly renewable power system, focusing in North Aerica and Europe. For instance
the DIMENSION model (Jagemann et al., 2013), with the same time horizon as BMPIRE, supports the
assessment of decarbonization pathways in the power sector. The varidlly of RES was limited to 4
representative days, by the time in that model version.

Zerrahn and Schill (2017) also present a green- eld model, DIETER, tostudy the optimal storage
capacity and exibility options in 2050. They improve short-comings of existing models, with the above
mentioned DR model, plus reserve capacity and multi-term variabilty. However the model cannot assess
the system transformation since it is run on only one year. In a companion gper, Schill and Zerrahn (2018),
the results of a case study for Germany are shown, representing ifsower system as a copper-plate (single
node). They use 2013 as base year for RES in-feed time series to estimabermany's 2050 generation and
storage portfolio.

In Maller and Mest (2018) the time availability of DR is investigated. T hey look at the potential of DR
for integrating RES generated electricity at 60% and 80% in Germany by 2035 and 205Cirst they estimate
the theoretical DR potentials for residential, industrial and commercial sectors taking into account weather
conditions and seasonality with a single base line year, but disregardinDR operational costs. Then, by using
a deterministic linear electricity market model, ELTRAMOD, th e impacts of exible loads on renewables,
peak plants and storage are found to be relevant. Although the curtailment ofRES generation decreases
by 35-77%, DR cannot integrate large time sustained RES oversupply due tdats short-term limitations.
Therefore in this approach the system in-take evolution of DR is overoked.

In Maller and Jansen (2019) a large-scale experiment with more than 300 rédential heat pumps is
performed. The authors make a probabilistic characterization of the aggregatd heat pumps loads achieving
40-65% load reductions.

Europe's Demand Response Potential

Despite of the early implementation of DR programmes in countries likeFrance (Albadi and El-Saadany,
2008), policy makers have been reluctant to full support DR programmes,ni favour of nding the right
mix of solutions for the ambitious environmental goals, and focusing on lieralizing markets (Torriti et al.,
2010), mainly during the 1990s and 2000s. From the beginning, the most successiDR programmes have
been applied at large industrial consumers, by means of costumer incéve based measures like Direct Load
Control (DLC) and interruptible/curtailable programmes. Time of Use Tari s (TOU) and Real Time Pricing
(RTP) have been also available for residential and commercial customs, although to a lower extent due to
a lack of price signals and support to DR programmes.

Nowadays, DR programmes are really diversi ed between countries. By015, the countries with open
DR trading in the wholesale electricity market (explicit DR) wer e: UK, Ireland, France, Switzerland and
Belgium. The countries with partial opening to explicit DR were Norway, Sweden, Netherlands and Austria
(SEDC, 2015). As of 2019, new partially opened markets for aggregators are in Germany aridenmark.
New commercially opened markets are Switzerland and Finland (SEDC Sart Energy Demand Coalition,
2017). That means 13 out of 31 European countries under this study have asseskexplicit DR (i.e. DR
market bidding) programs. Meanwhile the rest of the countries have eglicit DR under development, have
restricted participation or have not been assessed yet (East Europe)

Modeling characteristics of DR are exhaustively retrieved from swveys investigated by Gils (2016).
Investment costs in exible technologies are estimations that range fom 0 to 25000@ /MW. Variable oper-
ational costs estimations range from 5 to 156 /MWh for load shifting and 1000 e /MWh for curtailing load.
The standard load pro les for exible end consumers are given in Gils (2015)aking into account weekdays
and seasonality. Estimates for DR as reserve capacity prices in France aranging between 68 /MWh and
500e /MWh for utilization and 12-20 e /MW/year for availability as given in (SEDC Smart Energy Demand
Coalition, 2017). Secondary control reserves receive 16000MW/year. In Norway the balancing market
pays approximately 2% /MWh for down-regulation and 30 e /MWh for up-regulation (SEDC Smart Energy

5



Demand Coalition, 2017). In Spain only power consumers with higher than 5SMW have access to imrrupt-
ible demand mechanisms. For 5SMW blocks the payments are 127563MW and the utilization payments
are determined in the balancing market and tertiary reserve. In Gemany, payments for activations are
based on bids and limited to 40@ /MWh. In the United Kingdom, the Frequency Control by Demand
Management pays about 4/MW/hour. Unfortunately the balancing mechanisms are only accessible afer
complying with the particular regulations of each market.

As for today, global DR policy long term impacts remain to be assessed. Téa European DR shedding
potential has been estimated on an average of 93GW in Gils (2014), which repsents 18% of overall peak
demand. The analysis goes further by identifying the processes dnits DR potential. In another study,
a linear optimization model with seven important DR processes was =l to speci cally estimate the DR
impacts in Germany Gils (2016).

Today's DR is very limited all across Europe. According to Baker (2015) andENTSO-e (2015) the
maximum DR power assumed by each country barely reaches 5 % of the pealeshand in some of the most
developed. For instance this is 1.3GW, 1GW and 0.7GW for France, Spain and Gat Britain respectively.
The forecast for 2025 is scarcely 6% in all the countries with highest potdial.

The sectors that could increase its contribution to DR are the residatial and services sector; while the
implementation of DR in the industrial sector is already a standard pradice. For the same reason DR
investments prices in industry are basically non existent. It isexpected that residential DR will be greatly
developed with the planned roll-out of smart metering no later than 2020. hdustry consumers that may
contribute with DR are steelmaking industries, paper, pulp and cHoralchali process among others. In the
services sector DR could be used by storage heating, retail cooling d¢gms and ventilation systems for
example. In the residential sector the appliances with reasonable pettial are washing machines, tumble
dryers and dishing machines, as well as air conditioning systems.

In order to assess e ects of DR at a system level, the above mentionelbads can be aggregated per
country. Furthermore, from a modelling perspective, these loadsan be classi ed based on behaviour and
characteristics in groups, in the same methodology proposed by Gils (2014)The potential of these DR
loads have been studied in assessment studies like Gils (2016) at a caoiynlevel. Still there is no consensus
on DR costs. The study by Schill and Zerrahn (2018) represents 6 types afemand response is still relying
in the same costs assumptions than Gils (2016) and other out-of-date Germartiglies.

2. Demand Response Model

2.1. De nitions

For the purpose of clarifying the scope of the model presented in tlsiwork, some de nitions will be given
here. First of all, we understand by Demand Response(DR) the short-term changes in electricity load,
by demand-side resources, responding to price variations or inceine-payments, seeking low consumption
during high wholesale electricity prices or providing reserve apacity when the power system reliability is
compromised. Two aspects are underlined in that de nition: economice ciency and reliability. These two
general drivers have bene ts both for suppliers and consumers, andriply two aspects of DR: economic DR
and reliability DR . The third aspect in the de nition is the short-term scope of DR, which di erentiates it
from broader demand side measures, here callddemand Side Managemen{DSM). It is a broader concept,
including economic and reliability DR, that consists in permanent and long-term measures like ancillary
services investments and electricity use changes driven mainlyy electric utilities, including e ciency, storage
and supply measures. The scope of this research is limited teconomic DR

In this context we consider a load a vector s 1;:::;yin ) 2 (R*)N) to be a non-negative vector with N
components representing the demand of the corresponding hour. Thiotal energy of a load is the sum of
its components. A exible load f, denoted by (y;1;:::; V¥ ), iS a load whose hourly pro le can be changed

by upward or downward regulation in some of its hourly valuesys, 2. A shiftable volume loadis a exible

1This depends on the market area.
2ghjftable and curtailable load de nitions are based on Otte sen et al. (2016). More precise de nitions are given in the
appendix.



load such that allowed changes are those that keep the same total energy. ghiftable pro le load is a type
of shiftable volume load that can be delayed or advanced without changing & load prole. A curtailable
load is a exible load that whose components can be decreased but not increadeA interruptible load is a
curtailable load which can either be left unmodi ed or decreased to dlzero components. It is worth pointing
out that shiftable pro le loads and interruptible loads can only be imple mented by using discrete variables.

Integrating DR into a stochastic optimization capacity expansion modd presents two challenges. First,
nding and adapting the right input data parameters to the optimization framework, and second, designing
a DR module that keeps the problem tractable.

2.2. The EMPIRE model

The European Model for Power Investment with Renewable Energy (EMPIRE) is a stochastic capacity
expansion model designed to assess the optimal investments in geaion and transmission over a long-term
planning horizon (Skar et al., 2016). The model makes use of a multi-horizompproach in order to avoid
the curse of dimensionality. It combines short-term uncertainty in system operation decoupled from long-
term investment periods. This allows the inclusion of several sbrt-term stochastic scenarios created from
uncertainty in load, solar and wind production historical data in each cowntry. Investments are available
in all kinds of power capacity, storage and transmission. The EMPIRE franework allows the introduction
of new variables and constraints that enables responsive demand, in othevords, price elastic electricity
demand?

EMPIRE is a bottom-up model with an approximate representation of electric energy exchange between
31 European countries. By representing the power system through aenergy transport network with 31
nodes, the model stays tractable when using multiple investmet periods and short-term uncertainty. In
this way, the model focus on the least-cost energy delivery and stem design overseeing some power system
aspects. The main principles of the model are the following: (1) Pedct competition, (2) No unit commitment
and (3) Transport network. Given that, the technical aspects of DR are adaped to the characteristics of
the EMPIRE model.

As a result this DR module is classi ed as an electricity techno-eonomic system perspective DR model
with focus on system performance, in accordance to the classi cation gen in Bossmann and Eser (2016¥.

2.3. Model Scope

The DR module objective is to estimate the impacts of exible loads onthe power system design and
operation. The DR module, adopting the same central planer perspecte as EMPIRE, allows the unique
decision maker rst to invest in demand responsive loads, that is DR mtential capacity, and second to shift
and curtail country aggregated demand when in need. It follows, in the sara way that for all the other
production technologies, that the amount of DR capacity in a country is a ected by its internal mix and by
neighbors' mix, regardless of the individual pro tability each country could get from DR. In the same way,
generation companies, power consumers and DR traders act in reality wlit strategic behavior in the power
market with regards to DR. Looking at the power market at that level of detail is an aspect that is not
covered in the model. Thus, the DR module complies too with thecentral planer assumption. Nevertheless,
the convergence towards a uni ed power market and coordinated intemational planning, makes the central
planer assumption feasible.

2.4. Mathematical Model

The EMPIRE model can be sketched as shown below where DR indicasethe new parts that model
exible demand. The expectation E is taken over the time series of load, solar power, wind power and
hydropower. The module comprises new second-stage variablgSR ; yPRCAP - yREG for the exible loads

3This article focus in the DR module description, keeping Ska r et al. (2016) as the reference for the complete description of
the EMPIRE optimization.
4 Aspects like behavioral operation of demand responsive loa ds and DR price schemes are out of the scope of this study



as well as rst-stage multi-period investment variables in DR technologiesxbR (i.e. endogenous expansion
capacities). A summary of DR variables and parameters can be found in tabld®.

The grid network is modelled through a transport model, avoiding thus a DC ow model that would result
in an intractable problem. That means that each node has to satisfy a powebalance equation, including
import, export and generation. Generation and the power ow through transmission lines is constrained by
capacity limits and ramping constraints. The balance equation (1) includes new DR operational variables
called load deviation yRES for each exible load f 2 F, periodi 2 1 , scenario! 2 and hour h2 H. It
represents the up regulation (positive) and down regulation (negativg of exible loads. It also includes the

energy loss of activating exible loadsy:$SS since we assume there exist DR rebound e ects and operational

ine ciencies, in the same way that storage and transmission have thei own e ciencies "9 ;
The new second-stage variables are co-optimized with the network operiinal variables as generation

gen dischrg chrg feai ow I
Ygitn » StorageYyiy° , Ypgiin » transmissionygy - and lost load ypp, -

tran
b .

X gen X dischrg | ,dischrg chrg X tran ,, ow X ow
Ygih ¥t b Yhith Ypin: + a Yaih Yaith

2G, 2B 2A In a2A gut

2z f {z R el L

Generation X Storage handling Netimport

— load REG LOSS | 1

= nih * Yrin + Yfim Yhith @
2F
[ - —

Load Deviation

n2N;h2H;! 2 ;i2l

Uncertainty in the balance equation (1) appears in the original load 1939 | exible loads F and through
additional constraints (2) for the generation from variable renewable soures:

ygﬁﬂ gﬁ,’] gien; g2G;h2H;! 2 ;i2l (2)

where gﬁﬁ is stochastic for wind, solar and hydro power, and scenario indeperaht for the rest of
technologies, while g?“ which is scenario independent, is the rst-stage variable reprsenting capacity of

generator g. Note that equations (2) link rst and second-stage decisions.

2.5. The Data Disaggregation

In order to disaggregate each of the DR group loads from the country load 93¢ , equation (3) links
investment and operational variables in the same way that (2) links powe supply operation and capacity.
Variable yRRCAP is called potential load and represents the available hourly load from exible groupf . The

fih constants, taking values in [Q 1], represent the share of exible load of each DR group in a given hour
h according to pre xed weekday and weekend patterns. They capture lte hourly availability of each DR
group and are speci ¢ for each period, group and hour of the year. Note that theydepict the characteristic
seasonal load demand of each group. The yearly peak load is represented By . which takes part into the
second factor that scales the DR capacity according to the system load at the h. The goal of the second
factor is to adjust the installed DR capacity, PR, to seasonal and yearly levels.

Iqlad
yP“ﬁCAP = i Rl.h PiR f 2Fn (3)
ni!

SFirst-stage variables x™ represent capacity expansion on generation, transmission and storage. Second-stage variables
y°P represent operation of generators, interconnectors and st orages. For clarity of exposition their indices have been om itted
at this point.



min CAPEX xi"v

S.t.

Table 1: DR module variables and parameters

Symbol Description
Index and sets
f2F =S[C Index and set of exible loads
f2F, Set of exible loads that belong to noden
f2S Set of shiftable loads
f2C Set of curtailable loads
Independent Decision Variables
xPR DR capacity investment
yER Actual DR load of group f
Model-De ned Decision Variables
PR Total DR capacity of group f
yDRCAP Potential downward regulation of group f
yRECG DR load deviation
Parameters
coR DR investment cost
oy DR operational cost
fih DR load pro le
X PR Maximum DR capacity investment
URR Maximum upward regulation of group f
PR Maximum DR capacity of group f
gShift Maximum load time shift of group f
DR

f

(for all scenarios! )

Supply = Uncertain load + DR-Regulation
Power Supply Capacity

RES Supply Uncertain availability
Energy Supply Energy Limit

Emissions Emissions Cap
Storage Balance = 0
DR Balance = 0

DR Regulation DR Capacity

+ E OPEX(y°P) + DR-CAPEX xDPR

E ciency of exible load f

+ E DR-OPEX yPR; yPRCAP

. yREG



In order to track the amount of shifted and curtailed loads for each class, arauxiliary variable actual
load is de ned in 4. It is a load (i.e. positive values) representing theactual country aggregated load value
of exible group f.

YRR = yPRCAP 4 yREG. 12 si21;f 2F,N 2N 4)

According to the de nition the actual load in hour h is zero if yRE¢ = yRRCAP |t has the standard
value if yRE¢ =0 and upward regulation if yRES > 0.

The DR energy loss is the extra energy needed to shift or curtail load.The DR e ciency of load f,

PR is de ned as the ratio of the e ective regulated load and the energy loss It follows from the de nition

that the energy loss is

!
DR

1
yEOSS = (jyREG ?Rf H2H;!' 2 :i21:f2F,N2N (5)
f
where ©
(0-5 f2S
fo= (6)

1 f2cC

The deviations from the original loads are performed under a supply costunction, included in the
objective function.

Zi = G Yo (7)
With this, the main components of a general exible load are de ned. A exible load given by
(YRRCAP 5oinypReP ) 2 R
is a load satisfying equations (3)-(8).
yin  Unh (8)
Specifying additional constraints and parameters, the following types of exible loads are de ned.
A shiftable volume load(ypR“AP ;:::;yRREAP ) in a time window (Ti1; Tyn ), indexed by f 2 S, can

be replaced by a new load provided that theirtotal energies are equal. In other words the new energy
consumption is the same as the original, thus an equality in (9) represds this condition. A shiftable volume
load satis es equations (3)-(12). Note that for each hourh the demand variablesyER°AP  representing the
shifted load, can have a larger or lower value than the originaly?R“A" . The time window subintervals
W 5 j 23, form a partition of ( Tr 1; Ten ). They de ne the time span during which load can be shifted and
their size is limited by the maximum load time shift t$"" , characteristic of each type of load. The choice of
the partition is a decision variable of the problem.

N Y RPN ©
h2 Wy h2 Wi;

Yin = Yano h2Hn[ 25 W (10)
tWi G 2} (Tra T )); (11)

jWg j<tiM;r 2 si21;f2S (12)

6We model the energy loss assumming it equally distributed be tween the hours with load shift regulation. This sets the
value 0.5 for shiftable loads to avoid double counting.
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Curtailable loads Ccan be adjusted from zero to the original value in a prede ned time wirdow (T; 1; Ty ),
which means that they have to satisfy equations (3)-(8) and the inequaties (13)-(15) 7.

yan YR i h2 (Tig Tiw) (13)
Yo = Yan " sh2Hn (Tra; Tew ) (14)
yoRo01 2 si2lf2cC (15)

Shiftable pro le loads constraints can be represented through a time shift variables? 2 Z. They satisfy
equations (3)-(8) and equations (16)-(18§.

v (h+ %) = yar (h); h 2 (Tra; Tiw ) (16)
yar(h)=0 h2Hn (Try; Tin ); 17)
gt ¢ it 1 2 i21;f2S (18)

Interruptible loads switching on or o are represented by the binary variable in a prede ned time
window (Tt 1; Tz ) as in equation (19). They satisfy equations (3)-(8) and equations (19)-(20).

Yon = YR i h2 (Tra; Tew ) (19)
2f0;1g;! 2 :;i21;:f2C (20)

A fth type of load that is useful to model is a exible load that can be ei ther curtailed or increased with
no cost and no total energy balance. That kind of load could be an industry ttat increases production in
times of negative electricity prices or when oversupply could ddabilize the power system. This is a exible
curtailable load which ful lls constraints (3)-(8) and (21)-(22) and its costs are zero for load increase.

G Yhno > Oif ygr® 0 (21)
G Yino =0;if yqne > 0,12 ;i21;f2C h2H (22)

3. Demand Response in EMPIRE

3.1. Piece-wise Cost Functions

The operation of exible loads is executed at a xed a priori cost. If a exible load diverges at a given hour
from the value of the original load, then that change is penalized by a cost{). Therefore the load deviation
yREG is penalized either if it is positive or negative. In this model thecosts are given by a convex piece-wise
linear symmetric function, parametrized as follows. Abscissae are pametrized by ﬁ!%ﬁ ; p2 P, variables
that form a Special Order Set (SOS1) and prede ned ordinates {"‘pEG as shown in equation (23)-(25), which
are de ned to be symmetric around the origin. Marginal costs, which are gmmetric for load increase and
decrease, are increased proportionally by the ratianreg 0on each piece (see gure 1). More speci cally,
the rst interval has costs of operation given by input data, denoted by QRE® in the cost function. The
following intervals have increased marginal costs by the factomgegs (26). In this way it is more and more
costly to produce a change in the load pro le?.

“Note that shiftable loads are allowed to be higher than the or iginal load, but curtailable loads are constrained by the
potential load in (13). As both types of actual shiftable loa d and actual curtailable loads are required to be non-negati ve, the
downward regulation can be as low as ~ yRRCAP

8The time index is in parenthesis to highlight the use of the va riable tg.
9Note that curtailable loads, since they can only be decrease d, do not need variables REG on the positive axis, or

filph
equivalently, qf%R =0;p2P* .
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X
REG _ REG REG (23)

Yiin = fp  filph
p2P
« %= BCivr® =0, p=1::1;jPj=2 (24)
fioh =18Lif 2S[C (25)
p2P
T R 2s)
Gy =gy C p=0;:5jPj=2f 28 (27)
ao =9 (28)
05 f2S
T 1 fac (29)

3.2. DR Upper Bounds

It follows from equation (9) that the exible variables for the shiftabl e groups are upper bounded by

h2w, YRRCAP (which is the right hand side in the shiftable load balance in that equaion). However
this limit can be extremely high and would suppose an infeasible upwat regulation. For that reason
it is necessary to x an upper limit to shiftable loads. The upper-bound should have the following two
characteristics: 1. Allowing at least the same upward regulation than dowward regulation and 2. allowing
extra upward regulation during o -peak hours proportionally higher than i n peak hours. In other words,
it allows load valley lling and restricts upward regulation at peak hours. The upper bound, denoted by
URR , are de ned in detail in 7 and are speci c for each year, scenario and eible group.

YRR URR 12 i21;f2S (30)

In addition to DR operation upper bounds, there are DR investment and @pacity upper bounds. The
upper bound capacity PR is set as an exogenous. The maximum investment in DR capacity in yeair for
load f 2 F is denoted by X?R . If DR denotes the total DR capacity of loadf in period i, xER denotes

the power investment in load f and DRL is the DR investment operational life in number of investment
periods, then the constraints that must be satis ed are

xPR - X PR (31)
I;EQL

pR= PR (DRL i)+ Xot s (32)
j=0;
j<i

R (PiR i21;f2S][C (33)

0 x O
X) = 34
(x) 1 x>0 (34)

3.3. The Objective Function

The objective function is extended with two new terms: the investments in DR capacity and the cost of
operation of exible loads. The marginal costsq{fjEG are calculated through equations (26)-(29). u is the
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Figure 1: Piece-Wise Linear Cost Function. The abscissa repr esent percentage of upward and downward capacity and the
ordinates represent the percentage cost of deviation.

number of years between each investment period and #%° is a recovery factor to count the present value of
each year within the investment period.

X :
mnz=  (1+r) Y0 D
8 i21
< gen_gen X tran ,,tran DR ,DR X torPW , storPW StorEN , StorEN
Cgi Xgi + G X * i Xf + Gy Xpi T G Xpi
© 926G 12L f2F b2B
| {z }
Investment cost for generﬁtion, transmission, DR and stora ge capacity, period i 39 (35)

X X X X 4 X gen, gen X REG REG Il -

+# ! s i Ygnt t Gp  fiph T+ Ghi Ynni
12 s2S h2H s n2N 92Gp

f2F HJZP ’

System operation cost (all nodes  n),
generation + cost of DR operation + value of lost load,
period i scenario !; seasons; hour h
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4. Demand Response Baseline Case

A signi cant amount of input data regarding DR potentials is needed in order to run the model. The
data compilation has been based in two sources. In rst place, the global aessment of the DR potential in
Europe presented in Gils (2014) is unique in terms of spatial, seasonal anehd-consumer representatioft.
The study is thorough in putting together previous assessments of partular exible load sectors across
Europe. For that reason, it is the main source for de ning the model paameters described in table 1.
Additionally to that study, the same author's reference Gils (2015) provides hourly and seasonal variations
for DR loads, and Gils (2016) contains investment and operation prices for eacBR technology.

In second place, the need for initial DR potentials requires the usef data from Baker (2015) where
current European exible potentials are assessed. According to that gurce the countries with highest DR
potential are Belgium, Germany, Spain, France, Great Britain, Ireland, Netherlands, Poland Slovenia and
Sweden'?

The DR technologies that represent exible demand in the model are aggrgated in the following 7
groups. Heating and air conditioning (AC) in all sectors are exible since they can be controlled according
to the network and weather conditions. Heating Ventilation and AC (HVAC) are specic of large indus-
tries and commercial centers. Cooling and water group includes all indstrial and commercial appliances
aimed to manage large food cooling systems or water supply systems. Tipgocess shift group includes the
following industrial processes: pulp, paper, recycling paper ah cement. All of them allow to hourly shift
production. Washing appliances comprises only household appliancesieat storage consists of appliances
and installations that allow thermal storage and releasing it at need. And nally, process shedding are
industrial processes that can be partially stopped: aluminium, copr, zinc, chlorine and steel Gils (2014).
In the appendix the potentials of each group by country are showed in take .7.

Load series by country are obtained from Open System Power Data Data (2017); Wse et al. (2019),
which is one of the most exhaustive public available data bases. Wind ahsolar series are provided by the
Renewables Ninja dataset (Pfenninger and Sta ell, 2016; Sta ell and Pfeniinger, 2016; Renewables Ninja,
2017), based in rigorous assessment of weather data

With a database consisting of 7 years of hourly wind, solar and load data, the smario generation routine
based on moment matching creates the scenario tree representingdtshort-term uncertainty. The scenario
generation routine is based in Seljom and Tomasgard (2015) and consists in ndonthe best scenario tree
that matches the mean, variance, skewness and kurtosis of the histort data. Each scenario consists of 4
seasons with 168 consecutive hours each for load, wind, solar and hydro, at tlsame moment in time across
all countries in order to preserve internal correlation between seaes. In addition, there are 24 extra hours
for two extreme operating conditions: 1. Day with single highest peak et load and 2. Day with lowest
global IRES energy generation. That makes 672 hours per scenario, that is, 6720 hsuin 10 scenarios per
period (in total 900 scenarios}*.

The DR costs are summarized in table 2 compared with other technology cost Note that investment
costs plus xed OM costs in DR technologies, which most probably a ect the optimal solution, are lower
than the cheapest technology (OCGT). However investment costs are nothe only criteria to choose these
technologies, because variable OM costs and capacity availability have sd an impact. Industrial DR
investment costs are non-existent because DR is an inherent featarof industry operation, to di erent
degrees according to each industry sector. The span of hours where thead can be shifted is limited for
each group by the maximum load time shift prclrrclmetertfh'ft in the last column in table 2. The group with
largest load shifting time is the industrial shifting with 24 hours, characteristic of a medium-term planning
process. The second largest is heat storage with 12 hours, as thermal eggrstorage technologies allow that
time span.

1 Throughout the rest of the article DR potential refers to the estimated DR capacity in Gils (2014). This DR po tential
denoted by fDiR is in fact constant along the strategic time frame .

12This potential is measured by the ratio between the DR potent ial and the country's peak demand.

13Both data from load and IRES have been preprocessed to correc t data measure errors and synchronize historical data in
the period from 2010 to 2016.

14The simulations performed with the input data show that the s olutions are stable with respect to the scenario trees.
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Table 2: DR technology costs for the 7 groups considered in th e model and other technology costs for comparison. Sectors: 1.

Residential, 2. Industrial, 3. Commercial, DR source: Gils (2016),
Technology Sector Investment Fixed OM Variable E ciency Max.
Cost (e /MW) OM DR Time Shift
(ke /MW) pr. yr. (e /MWh) (h)
Heating & AC All 250 7500 10 0.97 2
HVAC 2,3 10 300 5 0.97 2
Cooling & Water 2,3 5 150 20 0.98 6
Process Shift 2 0 0 150 0.99 24
Washing appliances 1 30 900 50 1.00 6
Heat Storage 1,3 20 600 10 0.98 12
Process Shedding 2 0 0 1000 1.00 -
Gas OCGT 400 1950 0,45 -
Battery Storage (Zn) 588 0.75
Battery Storage (Li-ion) 400 0.88
Pumped Storage Hydro 1000 0.80

Given the level of aggregation in the model, the exible loads suitable 6ér the model are shiftable loads
and curtailable loads. Therefore the DR groups are meant to be shiftable eume loads, except the last one
which is a curtailable load. In a market modelling setting where ealb single load needs to be modelled, it
would make sense to represent shiftable pro le and interruptibleloads. In addition, the problem size in the
European model would make it intractable with exible loads that require binary variables.

4.1. DR in Europe

Two factors impact the DR development: the initial DR capacity and the bounds on total DR capacity.
The model should allow investments to reach at least the theoreticaDR potential. Therefore the upper
bound for the DR baseline case is set exactly at the DR potential of each DRyroup in each country!®.

As mentioned in section 1, the initial DR capacities are below 1.3GW in edt country. That is a
substantial low exibility utilization compared to what the result s show in gure 2. There are considerable
DR capacity increases in most countries during the investment peod. The DR-to-peak ratio (DR capacity
divided by peak demand) and the DR to IRES ratio (DR capacity divided by total Intermittent Renewable
Energy Sources (IRES) generation capacity) give insight of the DR intake From a system perspective, in
the nal period (2050) the DR-to-peak ratio amounts to a total of 34.5% of European peak demand on the
winter season, while the initial DR-to-peak ratio is 0.8%. However thee are varied ratios along the countries
with highest DR capacities, as shown in table 3, from the lowest ratio m the United Kingdom (5.4%) to the
highest in Hungary (40.8%). When it comes to the global DR to IRES ratio, its variation goes from 0.4% to
5.8% along the optimization horizon. The top 10 countries show a moderate DRo IRES ratio ranging from
4.8% to 11.7%. The top-10 countries have a 6.9% DR to IRES ratio and accumulatthe 81% of European
installed exible loads.

4.2. DR Operation

The rst DR impact is on the hourly load pro le. It can be easily observed in all lands during all stages
that DR capacity allows load upward regulation when the inter-hour price di erence is higher than the cost
of exible load arbitrage. This can be easily seen in the net load pro le, which is de ned as load minus IRES

15 |t is worth mentioning that the real consumer potential is a ected by multiple factors as national TSO policies or geogra phic
and weather conditions. Anyhow, if a signi cant amount of th e above mentioned loads fall into DR programmes, then DR
would have a role in the optimal power system design and share s as promising as 10% of peak load with exible loads could
be reached in the coming decades. Later in the sensitivity an alysis section we will investigate what happens when this li  mit is
varied between 0.5 and 1.5 times the DR potential
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Figure 2: Total DR Capacity Evolution from 2010 to 2050 of top DR countries in GW.

Table 3: 10 highest DR capacities in 2050 and initial DR capac ity in 2015 together with other ratios.

Country DR Capacity Inital DR DR to peak DR to IRES IRES Capac- Total capac-
(GW) Capacity ratio (%) ratio (%) ity (GW) ity (GW)
(Gw)
Italy 21.7 0.0 31.0 11.2 194.2 219.6
Spain 15.6 11 29.6 4.8 322.3 343.7
France 8.5 1.3 6.8 5.0 168.8 242.3
Germany 7.6 0.4 6.5 8.0 95.3 221.6
Greece 4.6 0.0 38.6 9.0 51.0 58.2
Great Britain | 4.5 0.7 5.4 5.9 76.7 117.2
Romania 3.0 0.0 25.2 7.4 40.8 56.2
Hungary 3.0 0.0 40.8 5.4 54.5 55.1
Portugal 2.6 0.0 27.1 11.7 22.6 28.5
Sweden 2.2 0.1 6.6 6.5 33.2 50.0
Europe 91.0 4.2 14.5 5.8 1575.1 2059.4

production (g. 3). When the IRES production is quite variable it cr eates peaks and valleys in the net load.
The valleys, when there is high IRES production, can be used for upard regulation and thus downward
regulation during the peaks. The e ect is specially stressed in contries with high solar capacity as Spain
as shown in gure 3. The 48 hours load sample with DR events is shown witithanges in the original load
pro le making it atter and achieving peak shavings in the order of 10GW in Spain and 3GW in France
in the load pro le during the winter season. The DR regulation events depend strongly on the daily solar
peak production since this is the kind of production that creates sbstantial electricity price di erentials, as
opposed to wind power which is more stable throughout. A second factor ithe power mix of each specic
country. For instance a system mainly dominated by dispatchable poweplants has less price volatility.

4.3. DR and System Capacities

In 2050, the global DR changes amounts to 95.8TWh, which is 2.4% of the yearly net geration and
22% of total available exible energy. Across the long-term planning horizona total of 295TWh have been
changed by DR loads, while 1274TWh keep the original hourly pattern.

The major investment in DR capacity occurs in the sixth period (27GW). The DR groups in descending
order of capacity are 6, 2, 4, 7, 3, 5 and 1 with 41GW, 23GW, 10GW, 8GW, 8GW, 1GW and 0.3GW
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Figure 3: Sample load pro les in Spain and France in 2050. Net load refers to total load minus IRES production. The term
'new' refers to the pro le with active DR.

respectively. The reasons that groups 6, 2 and 4 have largest capacitiese diverse: 1) Group 6 has the 2nd
largest shifting time, 2) group 2 has the lowest variable cost and 3) group 4 &s largest time window even

though its variable cost is the second largesf. The 3 largest total investments are lead by the same groups
6, 2 and 4 with 38GW, 22GW and 10GW, respectively. There is no investmert in groups 1 and 5 for two

reasons. The former has high investment cost. The latter has charactestics inferior to class 2. Investments

in groups 3 and 7 represent only 18% of all DR investments, leaving maintgre, 82%, for groups 2, 4 and
6. On country average, the capacity of groups 2 and 3 reaches full potentiahiperiod 4, while the groups 1,

5 and 6 do not reach the capacity's upper theoretical potential at the endof the horizon.

At the nal period, 7 out of 10 countries with high installed RES capacities'’ are among the 10 highest
regarding DR installed capacities. The 10 countries with highest DR apacity in 2050 concentrate a total
of 80% of global DR capacity, 67% of IRES installed capacity and 68% of total installed @&pacity.

The renewable that receives the most investments globally is solar, ith an accumulated increase from
2010 to 2050 of 748GW, followed by onshore wind with 718GW. The main investmentni solar happens in
2035 with 234GW. This is corresponds to an annual equivalent rate of 17% with rgeect to solar capacity
in 2030. On the other side, o shore wind has no capacity in the nal period snce its energy contribution
is not worth the high investment costs. Nevertheless, considerig all the renewable technologies, there are 9
countries with more than 90% RES share in 2050 (of which only Spain and Hungary arelso in the previous
top-10). Europe's RES share amounts to 76%.

Regarding technologies that can compete with DR by providing generation exibility to the system,
ramping capacity and peak supply, it is interesting to see the change in the following technologies. In
the rst group, fossil fuel technologies with high ramping rates, which can supply during residual peak
demand periods. That is, existing Gas Turbine (GT), Open Cycle Gas Turbines (OCGT), Closed Cycled
Gas Turbines (CCGT) and gas with Carbon Capture and Storage (CCS). In the gcond group, technologies
that can store energy for periods with scarcity of supply like: regulaed hydro power, hydro pump storage
and battery storage.

The rst group has an increase of 35% caused by the increase of gas CCGT powewmimly and investments
in CCS from 2040. At that point, backup capacity from CCS substitutes the already abated nuclear power.

16Since the investment cost of groups 4 and 7 are zero their capa city is adjusted a posteriori to their actual maximum
operational values in each country
17RES are onshore wind, o shore wind and solar.
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Figure 4: Europe's Generation Capacity (GW) and Energy Gener ation (TWh)

The second group has a slight increase of 21% in power capacity. Regulateddyp power and hydro
pumped storage have moderate increases at around 16%. Meanwhile, the néechnology that is integrated
into the system is battery storage, which becomes cost-e ective eactly when the solar capacity starts the
large investments by 2030-2040. The degree at which those investments are cad (or causing) by DR
capacity is analysed in next section. Meanwhile, DR capacity increase more than 22 times its initial
capacity.

Transmission capacity sums up to 501GW by 2050, with the major investmentshappening when solar
capacity reaches system dominance. This represents a signi cant amease of 700% interconnector capacity
and means that half of the interconnectors would rise by more than 80% capagit The most reinforced
transmission corridors are Spain-France, France-Great Britain, PolandGermany, Poland-Lithuania, Poland-
Czech Republic and Italy-France with total capacities in 2050 of 83GW, 52GW, 306V, 13GW, 13GW
and 12GW respectively. The countries with highest aggregated transmissn capacity in 2050 are France
(179GW), Germany (104GW) and Spain (89GW).

The emission constraint imposing a 90% reduction by 2050 (EU aggregated) is tding in all periods.
The carbon price'® decreases from é/EUA in 2020 to 3 e/EUA in 2030. From there carbon price increases
steadily to 9e /EUA 19 in 2050. These values are far from the actual market carbon price, Z¥EUA, because
the emissions in the ETS from other sectors are not accounted here. Thearbon prices here show that any
carbon price above those mentioned before, would impose into the ekeicity system a more stringent
emission cap. There are many countries that decrease their emissiofly 100% in 2050: Norway, Sweden,
Finland and Austria (although they might be dependent on imports). In t otal there are 14 countries with
reductions of more than 98%.

Average electricity cost increases from 42.@ /MWh by 2020 to 53.2 e /MWh by 2050. The increase is
caused mainly by the increase on investment costs, despite that nopelluting technologies have decreasing
costs. Part of the increase is caused by high costs of CCS technologies, iath are necessary to cover the
demand. The investments in CCS start in year 2035 with 4GW total installed, then a 10 fold increase in
2040, reaching at the nal period a capacity of 85GW in total.

18Given as the shadow price of the emission constraint
190ne European Allowance or EUA is equivalent to 1 tCO»
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4.4. No DR Case

In order to analyse the impact of DR in the European power system, the mdel outcomes with disabled
DR operation are compared to the reference case. There are ve main diences, explained in this section,
between the two cases as can be seen in table 4: 1) IRES capacity is highiarDRB, 2) IRES curtailment
is higher in DRB, 3) peak plants capacity (OCGT, CCGT and Gas CCS) is higher in DRO and 4) storage
capacity is much more higher in DRO.

The rst di erence is caused by a higher solar capacity in DRB than in DRO, which is a consequence of the
availability of shifting load to high solar production periods. Unfortu nately that brings a 7.8% higher IRES
curtailment in DRB than in DRO, which is explained by the fact that in certain days the solar production
is high but not high enough to make a signi cant price di erence that can be economically e cient for load
shifting. Neither the solar surplus is transmitted on cross-country interconnections nor charging storage
units. This is surplus electricity that could be used in other sectors.

Regarding point 4 storage power capacity shows the highest of the deviaihs with 86% more in DRO
than in DRB. The di erence on battery energy capacity is incredibly 18 times higher in DRO. In this case,
it is clear that the availability of exible loads reduces the needs ofinvestments in storage infrastructure.
However, the DR loads cannot substitute all the storage power and energyapacity.

In accordance to di erence number 3, exible loads allow savings on peaklants because the net demand
peaks are reduced. The generation portfolios are further analysed in theest of this section, starting with
the energy mixes (g. 5). Despite the high curtailment di erence in 2050, the IRES annual generations are
approximately the same until 2035, period in which DRB shows more prodction from IRES and less from
peak plants (by 2050 in DRB there is only 1.8% more production). If we lookmto wind and solar separately,
DRB has more generation of both from 2030 to 2050 except only for 2040 (when a high inseent in solar
capacity causes a change in sign of production). In conclusion, exibldoads allow taking advantage from
solar production, which, although it is intermittent, has 75% lower investment costs than onshore wind.

Figure 5: Europe's Generation Di erence between DRO and DRB by period. Positive y-axis indicates larger energy generat ion
in DRB than in DRO and viceversa.

When it comes to generation from the peak power plants, there are low dérences in 2020 and 2025 when
solar still has low shares in the energy mix. In 2035 the electricity gesrated from peak plants is higher in
DRO than in DRB. From next period there is a trend switch: in DRB t here is more generation from CCGT
and less from CCS than in DRO. Therefore, only in peak plants, the DRB'senergy mix has higher emission
intensity (which is compensated by a major IRES electricity production). The main di erences in generation
in 2050 comes from CCS, onshore wind and solar with -68TWh, +17TWh and +32TWh resgctively.

The overall average electricity price without DR technologies follavs the same evolution as in DRB but
are 2% higher from 2035 due to a lower IRES integration and the need of gas CCSh& CCS capacities in
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Table 4: Main di erences between cases DRO and DRB in 2050.

Metric DRB DRO Dierence %

Electricity Generation (TWh) 4019.30 4023.30 -0.10
IRES capacity (GW) 1575.10 1537.70 2.37
Solar PV (GW) 773.90 744.90 3.75
IRES generation (TWh) 2726.60 2677.70 1.79
IRES curtailment (TWh) 118.80 109.50 7.83
Total Installed Capacity (GW) | 2059.40 2053.40 0.29
Transmission Capacity (GW) 501.10  499.40 0.34
Emissions (MtCO2) 2010-2050| 6399.00 6401.00 -0.03
Peak Plants (GW) 293.00 324.00 -10.58
Electricity Price (e/MWh) 53.20 54.50 -2.44
Storage Capacity (GW) 59.80 111.40 -86.29

DRO are two times higher than in DRB in 2035, and decrease until 2050 when theset at 16%.

As expected the di erences in energy generation have its re ectioron the capacity portfolio (and vicev-
ersa). Total generation investments are in fact very similar in both casse. If we include storage power
capacity and transmission capacity in the mix then DRO needs in fact 50GWmore than DRB. These 50GW
are compensated in DRB by the virtual infrastructure (or IT capacity) of exible consumers, with 91GW.

It is interesting to analyse the capacity mix in 2035 because by then tkre is a huge investment in DR
capacity of 25GW, in solar capacity and current fossil fuel plants are about tobe decommissioned. In DRB
there is more onshore wind capacity and solar capacity, while in DRO thex is more peak capacity (g. 6).
That is the moment when both cases start to diverge. 2040 is a moment whendth mixes even out. From
2045 to 2050, DRB's supply is based in solar and DR exible loads, while DRO ca&shas to make use of gas
CCS, onshore wind, and solar production through storagé.

Figure 6: Europe's Capacity Di erence between DRO and DRB by  year. Positive y-axis indicates larger capacity in DRB than
in DRO and the negative side less capacity.

20The portfolio of lignite and coal plants remains the same unt il 2050 in both cases with minor di erences in generation
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5. Sensitivity Analysis

5.1. Capacity Sensitivity

The amount of DR capacity that is permitted in the system is a key parameer. Therefore a sensitivity
analysis is performed on the total DR capacity of each country. The uppetimit is speci ed for each country
relatively to the theoretical DR potential in the reference case (hat is DRB) by using the following scaling
factors: 0.5, 0.75, 1.25 and 1.5 (indexed from case DR1 to DR4 respectivelyfractor 1 is considered to be the
baseline case, DRB, which allows full development of the DR potenél. Cases 1 and 2 take a conservative
approach to the assessed theoretical potential, while cases 3 and 4 haa@ptimistic view of how far DR can
be developed. This translates in the model into relaxing or tightering constraint 33.

Table 5: Relative di erences of each sensitivity case in per centage with respect to the reference case DRB (%).

Metric DRO DR1 DR2 DR3 DR4

DR Capacity -100.0 -41.8 -17.2 27.0 46.8
CAPEX 1.3 0.1 0.0 00 -01
OPEX 2.0 0.7 04 -04 -07
Net Generation 0.1 0.0 0.0 0.0 0.0
iRES cap 24 -1.4 -0.6 0.7 14
Solar cap -3.7 29 -13 1.6 3.1
IRES generation -18 -1.0 -05 0.5 0.9
Curtailed generation -7.8  -21 -1.3 1.1 2.1
Total capacity -0.3 -08 -0.3 0.4 0.8
Transmission Capacity -0.3 -06 -0.2 0.1 0.1
Emissions 2010-2050 0.0 0.0 0.0 0.0 0.0
Storage power capacity 86.3 13.7 70 -35 -54
Storage energy capacity 3.8 0.7 03 -01 -0.2
Average electricity cost 2.4 1.1 06 -04 -0.8
Peak plants 10.7 2.3 10 -09 -18
of which Gas CCS 16.2 5.9 25 -26 -49

Table 5 shows the percentage variation with respect to the refererecase DRB. We see that relaxing the
DR total capacity constraint (DR3 and DR4) allows more DR capacity into the system, more solar capacity,
more IRES curtailment, less peak plants capacity globally and less gas CC38lote that the sequence of cases
shows around 20% change in DR capacity while solar capacity changes by 1% and sige power capacity
by 2-6%.

The groups with highest DR capacity in all the cases are groups 6 (heat storage2 (HVAC) and 5
(washing appliances), except in DR4 where group 3 takes group 5's thirgbosition. In particular in DR4
their capacities are 234GW, 30GW and 11.7GW respectively, which added to th rest of the groups sums
up to 315GW. Investment in group 1 is not a ordable.

5.2. Costs Sensitivity

In order to analyse how investment and operation costs a ect the intake of DR capacity, results with
di erent costs levels have been obtained. The cost sensitivity ases consisted in scaling both the investment
and operational costs of all the DR groups at the same time with the followingfactors: 0.25, 0.5, 2, 4 and 8.
That is halving and doubling the costs in each case, which are labelleddm DRC1, DRC2 for the cheaper
cases and DRC3 to DRC5 for the more expensive.

In table 6 the main di erences between cases are represented. As @acted the amount of DR capacity
diminishes with increasing costs. There is less IRES, solar capagiand generation when less DR capacity
available. IRES curtailment is higher in DRC1 and DRC2 than in DRB becuase they have higher solar
capacity. High costs of DR make solar capacity ine cient as can be observed incases DRC3 to DRCS5,
which have a similar solar capacity. The reason behind this is that opeational costs in DRC1 and DRC2
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make e cient to shift a bit more energy to the IRES production hours. While in DRC4 and DRC5 the
curtailment is lower than in DRB since there is less RES hourly suplus during the normal and low demand
seasons.

Storage capacity di erences are signi cant (g. 6). It increases with less DR capacity from -9% to 38%
in DRCS5. In other words, storage and DR capacity are substitute technologis.

Although total installed capacity decreases with increasing DR costs (de to solar capacity), the capacity
of peak plants (+11%) and in particular gas CCS (+20%) increase. Electricily price are down to -8% cheaper
in DRC1 and stay stable at +3% in DRC3 to DRC5.

Table 6: DR costs sensitivity analysis outcomes' percentag e variation respect to DRB (%)

Metric DRC1 DRC2 DRC3 DRC4 DRC5

DR Capacity 2054 1241 -39.8 -76.9 -76.9
CAPEX -1.6 -0.6 0.5 0.6 0.7
OPEX -10.7 -5.9 2.0 2.6 -6.4
Net Generation -1.6 -0.5 0.1 0.1 0.1
iRES cap 11.9 10.2 -3.7 -3.8 -3.6
Solar cap 29.7 23.2 -6.8 -7.2 -6.8
iIRES generation 6.3 5.6 -2.8 -2.8 -2.7
Curtailed generation 11.2 17.9 -7.4 -7.1 -7.1
Total capacity 6.2 5.7 -1.7 -1.4 -1.2
Intercon. cap 6.2 3.3 0.8 0.5 0.5
Emissions 0.0 0.0 0.0 0.0 0.0
Storage power cap -9.0 -10.2 20.1 22.9 37.5
Storage energy cap -0.2 -0.2 0.8 0.9 1.6
Average electricity cost -7.5 -5.6 2.8 3.2 3.0
Peak plants -22.7 -15.1 7.7 10.9 10.8
Of which Gas CCS -52.9 -40.1 20.2 20.2 19.6

Figure 7: Europe's Capacity Development by year between DRB  and DRC1-5 cases.
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6. Discussion

The long-term capacity expansion model EMPIRE has been upgraded to alle investments in demand
responsive loads. In this way, the central planer can arbitrage a limied amount of exible load in order to
meet the energy demand. While in reality DR provides local bene ts to the grid, the model has assumed
a homogeneous distribution of exible loads within each country. That should not be a limitation of the
model as long as a correct assessment of the capabilities of exible loadgthin each country is made, and
as long as their operation is fairly represented. A higher spatial resoliion would divide DR potential in
smaller demand regions, which at the end would yield a lower total aggregate exible loads. The same
consideration is valid for the supply side. It should not be seen as a dirent problem as increasing the
spatial resolution of the model application.

The results might incur an underestimation of DR potential as in the model only energy based markets
are considered. That is, this study assessemconomic DR. A model that incorporates DR capacity reserves,
would probably require slightly higher capacities than the ones in theresults. The system perspective plays
a role in that sense. In any case the DR has been properly assessed bgsenably limiting its capacity and
operation. The model could be easily extended to include capacity erves at the current time resolution
by properly introducing slack capacity constraints. Further on, if the time resolution increases to the scale
of minutes, DR operating reserves could be assessed as primary, sedary and tertiary reserves. That is,
the operation of DR could be viewed both as economic DR andontingency DR

Investments in DR capacities happen because exible loads provida more e cient way to take prot
from wind and solar energy instead of curtailing it. This was an expectedresult. It has been seen that
the countries with highest IRES capacities have also the highest DRcapacities. Also, when solar power
investments become at the same price as onshore wind, the southern atties with high solar potential
would take more pro t of investing in solar than in onshore wind. It has to b e taken into account that IRES
capacities depend on multiple factors besides DR capacities as for exahe, most directly, country specic
IRES pro les, CO; prices and IRES technology costs.

Besides the great DR potentials seen in the results, electricitymarkets will have to evolve further to
technically integrate larger and larger amounts of DR and operate those resoges e ciently. European
electricity markets are going in that direction but there is still a long way to reach the desired level of
consumer participation. This development obviously cannot happen in éss than 5 years, and in fact it goes
hand in hand with the gradual digitalization and transformation of the power system into a zero emission
system.

The DR potentials in Europe have been assessed in Gils (2014) by usingsingle period optimization.
In this study, by including endogenous DR investments into a stehastic capacity expansion model, the
development of DR capacities has been co-optimized together with all otér available generation technologies.
Unfortunately the transport sector could not be included in the study case as load pro les for charging electric
vehicles (EVs) were not available. The total energy demand by EVs is inluded in the study as yearly
demand. On one side, EVs demand could cause higher peak loads that would réce higher generation
capacities. On the other side, EVs demand on a standard basis happen duag o -peak hours. In addition
the e ect of EVs on country load pro les in the coming 5 years would be insgni cant, while for longer
horizons when the eet of EVs grows, most probably the charging periods Wl be adapted to the shape of
the future load pro les.

The DR development in Europe has been assessed for seven di erenhe consumer groups, inside a
capacity expansion stochastic optimization model. In this way the sudy sheds light on what are the most
a ordable DR loads. Clearly, the results show that the main contributor by energy volume to load shifting
is heat storage end uses, followed by industrial process shifting. liese are expected results because these
are the groups that o er a more exible time frame. The type of DR group aggregation allows the modelling
to be done with linear second-stage variables, which keeps the modebmputationally tractable, because
modelling shiftable pro le loads or interruptible loads requires binary variables.

The approach for modelling exible demand consists of variables reprgenting the demand regulation
given a cost of operation. This approach relies on the assumptions on DR opeiiah costs, which express the
willingness of each consumer to shift demand into the less expensi hours. In the literature other approaches
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have been proposed as for example modelling responsive loads in a sett@vel optimization problem, which
would require to transform the model into a equilibrium model. The approach using inter-hour elasticities
of demand would require major assumptions on price elasticities, as tise are not available for all sectors
and countries.

The availability of exible loads is modelled through deterministi ¢ pro les. Despite of that, the amount
of available exible capacity becomes uncertain because it is proportinal to the system load, which is
uncertain. However, consumer behaviour from any economic sector has cagties dependent on weather
conditions, peak demand and the type of electricity contract. To upgrace the study case in that sense,
uncertainty in DR group availability could be represented in the load proles ¢, . Unfortunately, that
would imply increasing the computational complexity in terms of short-term scenarios.

In this study it was chosen to use homogeneous data regarding DR costs amotige countries. On one
side that is suitable for analyzing how DR technologies can spread througEuropean countries considering
a common European market. On the other side, there can be cost di ereres and varied electricity market's
mechanisms from country to country that make the situation quite diverse. When it comes to costs, it would
be interesting to see the results considering a decreasing casend.

7. Conclusions

Flexible demand can be modelled in a capacity expansion model withhert-term dynamics. From a
large scale perspective, exible demand can be aggregated in groups of endnsumers that share similar
time of use, investment and operative costs. Two types of exible load have been used in the study case,
shiftable volume loads and curtailable loads. The two types can be modkld with linear variables. Basically
the model for demand responsive loads is like a storage without the neeaf a physical infrastructure.

The optimal solution is the one that reallocates exible loads during valley net load hours, that is at
moments of highest IRES production. The load arbitrage in the optimization model EMPIRE, responds to
a system perspective least-cost criteria.

The adoption of demand responsive loads into a large scale power system eajity expansion model will
have positive impacts on the system. Specially relevant is the facthat gas power plants supplying exible
energy during peak events are partially substituted by the exibility o ered by DR loads. On one side DR
introduces more degrees of freedom into the model. It allows more IBS integration into the system, less
IRES curtailment, and less investments in peak plants. On the othe side, unexpectedly, investments in
polluting plants are a ordable (OCGT) when exible demand reduces emissions from other parts of the
system. In that sense, DR is not a technology that would allow a signi can reduction of CO, emissions.
Without policies that limit total emissions, DR has no e ect on global emissions.

Speaking globally, solar PV and onshore wind capacities follow similar pate because the former is more
e cient in southern countries while the latter is e cient in Nordi ¢ countries and British Islands. By 2050
their installed capacities are 774GW and 802GW respectively. Countries ith highest installed DR capacities
are the ones with highest solar capacity.

The sensitivity analysis on maximum DR capacity has shown that larger DR availability can underline
its bene ts. More DR capacity means, mainly, that fewer peak plant investments are needed. However, the
more DR capacity, the more IRES curtailment.

The impacts into the power system are not extreme in the sense of tming around the capacity mix. DR
capacities act as a support technology, integrating 2% more IRES, and thefere facilitating the transition
towards a system with high shares of renewables.
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Appendices
Load De nitions

In this context, we can de ne a load as a step functionf with domain a discrete interval whose image,
representing load values along the time domain, is a subset of a givendsible setX; . The total energy of a
load is the integral of f over the interval. A load transform of a load f , denoted by 7 is any composition
f-= h f g such that g is a bijective function representing the time shift, h is a function representing the
load regulation and f~is a load. A exible load is a loadf that can be replaced by any load transformf~with
image X . Considering di erent types of transforms we can de ne two subses of exible loads: shiftable
and curtailable loads Ottesen et al. (2016). Ashiftable volume loadf is a exible load that can be replaced
by a transform f~whose total energy is the same as the total energy df. In particular a shiftable pro le load
is a shiftable volume load such that the available transforms satisfyh = id and g is a translation in the time
domain. A curtailable load is a exible load such that the available transforms satisfyg=idand f~ f. A
interruptible load is a curtailable load such that either f~= f or "= 0. Given the discrete nature of a load,

we call its discrete representation It is worth pointing out that shiftable pro le loads and interruptibl e loads
can only be implemented by using discrete variables.

Upper bound mathematical de nition

The objective of the upper bounds is to limit load shifting and allow au cient valley lling.
Given a load (y%9 ,;:::;yad ) and a constant A, the scaled load is the component-wise scaling

(Ami® 1305 AR

ni!f
The load ramps are de ned as the consecutive hour di erences of the soadl load

Frn = AYfn +1 AYfn (1)
Ramp selection consists of de ning the positive and negative ramps as flolws.

rin = maxfran ;0g 2

i .= maxf rgn 5 0g

The rampsrf,, andr,, contain the absolute values of the positive and negative ramps separately.

Given an hour h, the load y}52 is: 1. a local minimum if the corresponding rampsry,, and ry, .
are positive (equivalently rr, ;= = 0), 2. a local maximum if the ramps rg, i, > O
(equivalently rf,, = rq, 4 =0), 3. in descending slope ifr,,,, > Oandr{, ;=0 and 4. ascending
slope ifr;,, ,=0and r,,, > 0. The principle to add up neighboring ramps in a given hour is basically
to add up all upcoming positive ramps and all previous negative ramps. In his way a local minimum load
accumulates all the neighbouring ramps and proportionally takes more slaclkncrease than the peaks.

The ramp time window parameter hy selects the neighboring ramps that de ne the upper bound. The
mathematical formula for the upper bound is as follows.

h )Q+ ho p( 1
Upfh = Ayam + e+ M it (:3)
t=h t=h ho

Note that in the de nition if y}‘i’!ﬁd is a local maximum (h  hg; h + hg), then the corresponding ramps
are 021, the two summations in the de nition are zero and the upper bound is just the rst term AyER

The upper bound depends on the choice of the constamk. As the input data for each load group speci es
that each hour load is the potential for both upward regulation and downward regulation, it is logical to
chooseA = 2. That means each hour load has a range to decrease and increase by at least 100%.

21Unless there are consecutive local minimum and maximum with in (h  hg;h + hp)
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Theoretical DR Potential by Country and Class

Table .7: DR potentials in GW. Adapted from Gils (2016).

Country Class1l Class2 Class3 Class4 Class5 Class6 Class7 Total
Europe 23.2 22.7 7.8 9.5 63.4 156.1 8.8 291.5
France 3.0 3.6 1.3 1.6 8.1 26.0 0.8 44.3
Germany 4.2 3.1 11 14 13.1 17.8 1.7 42.5
Great Brit. 2.7 2.3 0.8 0.5 9.1 21.5 0.3 37.1
Italy 2.7 2.6 0.8 0.9 6.8 16.2 1.3 31.4
Spain 2.2 2.8 0.8 0.8 4.1 9.6 1.2 21.5
Poland 1.2 1.0 0.4 0.3 2.8 8.5 0.3 14.5
Sweden 0.5 0.8 0.3 0.8 1.6 8.7 0.2 12.8
Norway 0.2 0.7 0.2 0.3 0.8 6.8 0.5 9.6
Netherlands | 0.7 0.8 0.3 0.2 3.0 3.6 0.1 8.8
Finland 0.2 0.4 0.2 1.0 0.8 5.4 0.2 8.1
Romania 0.6 0.2 0.1 0.2 1.1 4.0 0.4 6.5
Belgium 0.5 0.5 0.2 0.2 1.7 2.8 0.3 6.3
Greece 0.6 0.6 0.2 0.2 0.9 3.2 0.5 6.2
Austria 0.4 0.3 0.1 0.2 1.3 2.5 0.1 4.9
Czech R 0.4 0.3 0.1 0.1 0.9 2.5 0.1 4.4
Switzerland | 0.4 0.4 0.1 0.1 1.2 2.0 0.1 4.2
Hungary 0.4 0.3 0.1 0.1 0.7 2.4 0.1 4.1
Portugal 0.4 0.4 0.1 0.2 1.1 1.8 0.1 4.1
Denmark 0.3 0.2 0.1 0.1 1.1 1.6 0.0 3.4
Slovakia 0.2 0.2 0.1 0.1 0.5 1.6 0.1 2.7
Bulgaria 0.3 0.2 0.1 0.1 0.4 1.4 0.1 2.5
Ireland 0.2 0.2 0.1 0.1 0.6 1.3 0.0 2.4
Serbia 0.2 0.1 0.0 0.1 0.4 1.1 0.0 2.0
Croatia 0.2 0.1 0.0 0.1 0.3 0.6 0.0 1.4
Lithuania 0.1 0.1 0.0 0.0 0.3 0.8 0.0 1.3
Slovenia 0.1 0.1 0.0 0.0 0.3 0.6 0.1 1.1
Latvia 0.1 0.1 0.0 0.0 0.1 0.7 0.0 0.9
Bosnia H 0.1 0.0 0.0 0.0 0.1 0.5 0.1 0.8
Estonia 0.1 0.1 0.0 0.0 0.1 0.4 0.0 0.7
Luxemb. 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.5
Macedonia | 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.5
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