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Abstract. The shape factor defined as kurtosis divided by skewness squared  
𝐾𝑆2 

is characterized as the only choice among all factors 
𝐾|𝑆|𝛼 , 𝛼 > 0 which is greater 

than or equal to 1 for all probability distributions. For a specific distribution fam-

ily, there may exists α>2 such that min 𝐾|𝑆|𝛼 ≥ 1. The least upper bound of all such 

α is defined as the distribution’s characteristic number. The useful extreme values 

of the shape factor for various distributions which are found numerically before, 

the Beta, Kumaraswamy, Weibull, and GB2 Distribution, are derived using as-

ymptotic analysis. The match of the numerical and the analytical results can be 

considered prove of each other. The characteristic numbers of these distributions 

are also calculated. The study of the boundary value of the shape factor, or the 

shape factor asymptotic analysis, help reveal properties of the original shape fac-

tor, and reveal relationship between distributions, such as between the Kumaras-

wamy distribution and the Weibull distribution.  

Keywords: Shape Factor, Skewness, Kurtosis, Asymptotic Expansion, Beta 

Distribution, Kumaraswamy Distribution, Weibull Distribution, GB2 Distribu-

tion, Computer Algebra System, Numerical Optimization, Characteristic Num-

ber. 

1 Introduction 

The concept of shape factor is proposed and studied for various probability distribution 

families [1][2] ([1] has more background and references, [2] is more cogent). Three 

kind of uses are made of the shape factor: the global lower bound of the shape factor 

for a distribution family can be used to eliminate those distributions for data fitting that 

have these bound higher than the data distribution; when these bounds are not violated, 

the plot of the minimum shape factor value for given parameter can be used to locate 

the allowable range of that parameter; combine the shape factor plot with skewness 

plot, for known sign of the skewness, the allowable parameters ranges can be identified. 

Since in practice we mostly see positive skewness, we will generally restrict our anal-

ysis to the positive skewness region.  

    Numerical optimizations are used to get plots of those minimum shape factors. There 

are two types of possibly errors in those numerical studies: the system error and the 

operational error. The first type error is bringing about by the software system that per-

forming those analysis, such as the algorithms shortcomings used for the transcendental 
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functions, or the allowable numerical range for machine-precision numbers and arbi-

trary-precision numbers. The remedy for the system error is to check by software that 

are using different under-the-hood implementations. The operational or human error is 

occurred when manipulating the mathematical expressions, such as using not exactly 

equivalent substitutions or transformations. To reduce this kind of error, multiple ap-

proaches need to undertake to validate each other. The numerical and graphical results 

need to be subsidized by analytical deductions.    

    When the minimum of the shape factor is attained at the region interior, it can be 

found from the zero point of the partial derivatives. This is an application of differential 

analysis and root finding. The other case is at the boundary, usually either at 0 or infin-

ity, an application of limit and asymptotic expansion/analysis. 

    We will redo the mathematical analysis of the Beta, Kumaraswamy, GB2, GB1, and 

GH distributions shape factors, with either new formulas found, or more analytical 

ways to support our original empirical plots, adding more rigorousness to our conclu-

sions. To avoid repetition, we will resort to [1] or [2] heavily for most of the omitted 

contents. The GB1, GH studies will be in a second paper due to page length limitation.  

2 Results 

2.1 Shape Factor Characterization 

The shape factor is found and defined in Wang [1][2], where simple power and expo-

nential forms of distributions examples are used to justify that definition. Here we find 

more reason for the uniqueness of this definition. 

For a random variable 𝑓 with mean 𝑚𝑓, the following characteristics are defined: 

 Moment (M), 𝑀[𝑟] ≡ ∫ 𝑓𝑟𝑑𝜇, 𝑟 > 0, 
 Central Moment (CM), 𝐶𝑀[𝑟] ≡ ∫(𝑓 − 𝑚𝑓)𝑟𝑑𝜇, 𝑟 > 0, 
 Absolute Central Moment (ACM), 𝐴𝐶𝑀[𝑟] ≡ ∫|𝑓 − 𝑚𝑓|𝑟𝑑𝜇, 𝑟 > 0, 
 Skewness (S), 𝑆 ≡ 𝐶𝑀[3]𝐶𝑀[2]32, 
 Kurtosis (K), 𝐾 ≡ 𝐶𝑀[4]𝐶𝑀[2]2, 
 Shape Factor (SF), 𝑆𝐹 ≡ 𝐾𝑆2 = 𝐶𝑀[4]∗𝐶𝑀[2]𝐶𝑀[3]2 , 
 𝑆𝐹3[𝑟] ≡ 𝐴𝐶𝑀[𝑟]𝐴𝐶𝑀[1]𝑟 ≤ 1, 𝑤ℎ𝑒𝑟𝑒 0 < 𝑟 < 1 and 𝑆𝐹3[𝑠] ≡ 𝐴𝐶𝑀[𝑠]𝐴𝐶𝑀[1]𝑠 ≥ 1, 𝑤ℎ𝑒𝑟𝑒 𝑠 > 1, 
 Standard Deviation (SD), 𝑆𝐷 ≡ 𝐴𝐶𝑀[2]12, 
 Absolute Mean Deviation (MD), 𝑀𝐷 ≡ 𝐴𝐶𝑀[1], 
 𝑆𝐹3[2] = ( 𝑆𝐷𝑀𝐷)2. 

By Jensen’s inequality (https://en.wikipedia.org/wiki/Jensen's_inequality) we have: (∫(𝑓 − 𝑚𝑓)2 𝑑µ)2 ≤ ∫(𝑓 − 𝑚𝑓)4 𝑑µ, 𝐾 ≥ 1. (1) 

https://en.wikipedia.org/wiki/Jensen's_inequality
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From [1], we also know that 𝐾 ≥ 𝑆2, 𝐾 ≥ 𝑆2 ≥ |𝑆| 𝑖𝑓 |𝑆| ≥ 1, 𝐾 ≥ 1 > |𝑆| 𝑖𝑓 |𝑆| <1. So we arrive at the following: 𝐾 ≥ |𝑆|, 𝐾|𝑆| ≥ 1.  (2) 

 We can similarly get (by monotonicity of |𝑆|α w.r.t. α): 𝐾 ≥ 𝑆43, 𝐾𝑆43 ≥ 1,  (3) 

𝐾 ≥ |𝑆|α, 𝐾|𝑆|α ≥ 1, 𝑖𝑓 0 ≤  α ≤ 2.  (4) 

    The equation (2)-(4) can be used where the quotient can give simpler forms. For 

example, if the central moment have simpler forms than the skewness and kurtosis, then 

(3) will be simpler, involving only 
𝐶𝑀[4]𝐶𝑀[3]43.  

    Equation (4) says that the shape factor is among an extended family of shape factors 𝐾|𝑆|α that are bound below by 1, so we will call all of them the shape factors.  

    We postulate that 2 is the least upper bound of all α such that 
𝐾|𝑆|α ≥ 1 hold for all 

distribution families (that is, the condition in equation (4) is not only sufficient, but also 

necessary). But for a specific distribution family this inequality may hold for α larger 

than 2. These statements will be proved by example cases in section 2.3.  

    We guess for each specific distribution family there exists a critical value of α which 

is not less than 2, such that above it the minimum of 
𝐾|𝑆|α will be 0, and below it, the 

minimum of 
𝐾|𝑆|α will be bigger than 1. We will call such a critical value where the min-

imums of the shape factors have a sharp jump the critical value or the characteristic 

number of the distribution. 

The limit of the extended shape factors at 0 or infinity for parameters usually has 

simpler form that can be considered as a prototype, asymptotic value, or magnitude of 

order [3], in some cases are also the lower or upper bound, of the shape factors. The 

properties of these simpler form will give hint of similar properties for the original 

shape factors, such as for the critical value we guessed. We will start that limit calcula-

tion with the simplest distribution in the next section. 

2.2 Beta Distribution 

With the naming and parameterization convention for probability distributions from 

Mathematica or [4], for the 𝐵𝑒𝑡𝑎𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛[𝛼, 𝛽], we have 𝑆𝐹 = 3(2+𝛼+𝛽)(𝛼(−2+𝛽)𝛽+2𝛽2+𝛼2(2+𝛽))4(𝛼−𝛽)2(3+𝛼+𝛽) .  (5) 

  For practical use, we only consider the parameters region where 𝑆 > 0, so in this 

case 𝛽 > 𝛼.  
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    For a fixed β, the lower boundary value at α=0 is the minimum value of the shape 

factor: limit𝛼→0  𝑆𝐹 = 𝑚𝑖𝑛0<𝛼<𝛽 𝑆𝐹 = 3(2+𝛽)2(3+𝛽).   (6) 

This value increases from 1 to 1.5 when β turns from 0 to ∞.  
For a fixed α, the upper boundary at β=∞ and the minimum value of the shape factor 

are different: 𝑚𝑖𝑛𝛽>𝛼 𝑆𝐹 = 3𝛼(4+4𝛼−𝛼2+√𝛼(24+40𝛼+16𝛼2+𝛼3))4(6+𝛼−𝛼2+√𝛼(24+40𝛼+16𝛼2+𝛼3))(6𝛼+5𝛼2+√𝛼(24+40𝛼+16𝛼2+𝛼3))2 (48 +68𝛼3 − 𝛼4 + 28√𝛼(24 + 40𝛼 + 16𝛼2 + 𝛼3) + 𝛼2 (232 +√𝛼(24 + 40𝛼 + 16𝛼2 + 𝛼3)) + 16𝛼 (13 + 2√𝛼(24 + 40𝛼 + 16𝛼2 + 𝛼3))), (7) 𝑙𝑖𝑚𝑖𝑡𝛽→∞ 𝑆𝐹 = 3(2+𝛼)4 .  (8) 

The upper boundary value of the shape factor for β=∞ increases from 1.5 to ∞ when 
α turns from 0 to ∞. For given α, the minimum value of the shape factor increases from 

1 to 3 when α turns from 0 to ∞, Fig. 1. 

Fig. 1. Beta distribution minimum shape factor for given α in the horizontal axis. 

 

For a fixed α, the upper boundary value at β=∞ and the maximum value of the skew-

ness and the kurtosis are the same: 
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limit𝛽→∞  𝑆 = 𝑚𝑎𝑥β>𝛼 𝑆 = 2√𝛼,  (9) limit𝛽→∞  𝐾 = 𝑚𝑎𝑥β>𝛼 𝐾 = 3 + 6𝛼.  (10) 

In practice, the equation (6) and (9) give relatively good (less than 10% error) upper 

bound estimate for the parameters β and α from data 𝑆𝐹 and 𝑆. This can be roughly 

stated as the skewness determines α, the higher the skewness the smaller the α, and the 

shape factor determines β, the higher the shape factor, the bigger the β. So in the Beta 

distribution case, the asymptotic analysis heuristically reveals the intrinsic meaning of 

the parameters: α for skewness and β for shape factor.  

2.3 Kumaraswamy Distribution Part One 

Given Skewness 

Even though more complex than Beta distribution, we will see that the limit and mini-

mum value of the shape factor of the 𝐾𝑢𝑚𝑎𝑟𝑎𝑠𝑤𝑎𝑚𝑦𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛[𝛼, 𝛽] show simi-

lar pattern as the Beta distribution.  

For given skewness, the extreme value of the shape factor or the kurtosis is attended 

at the boundary; this pattern is simpler than given α or β, and can be checked by the 

contour plot of the ratio of the skewness contour tangent to the kurtosis contour tangent, 

Fig.2. That ratio is always larger than 1 indicates that the maximum shape factor is at 

the top boundary when β→∞, and the minimum shape factor is at the left boundary 
when α→0. 
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Fig. 2. Kumaraswamy distribution ratio of skewness contour tangent to kurtosis con-

tour tangent plot.  

This plot confirms that the limit when β→∞ gives the parametric representation of 
the maximum shape factor of Kumaraswamy distribution ([1] equation (4) and (6)). 

This maximum shape factor together with the broader distribution family GB1 [5] up-

per bound distribution LogNormalDistribution[𝜇, 𝜎] shape factor plot are in Fig. 3.  
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Fig. 3. Kumaraswamy distribution maximum shape factor and log normal distribu-

tion shape factor with respect to skewness plot.  

Boundary α=0  

For given β, when α→0, we will use the following 2nd order asymptotic expansion 

at ∞ for 𝑥: Beta[𝛽, 𝑥] → Gamma[𝛽] 124 𝑥−2−𝛽(24𝑥2 − 12𝑥(−1 + 𝛽)𝛽 + 𝛽(2 − 3𝛽 − 2𝛽2 +3𝛽3)).  (11) 

    To find the asymptotic order of a function, we will utilize the following heuristic 

trick:  

if 
𝑑log (𝑓(𝑥))𝑑𝑥 𝑥 → a,  then possibly𝑓(𝑥)~𝑥a. (12) 

    The computer algebra system (CAS) Mathematica may be able to find the first limit 

when it cannot prove the second formula. Combining these techniques, we finally get: limit𝛼→0  {𝑆, 𝐾, 𝑆𝐹}~{ (23)𝛽√2−𝛽(1𝛼)−𝛽𝛽Gamma[𝛽] , (1𝛼)𝛽𝛽Gamma[𝛽] , (98)𝛽}. (13) 

    We see that skewness and kurtosis turn to infinity but the shape factor has finite limit. 

    For a>0, from equation (13), we have: 

limitα→0  𝐾limitα→0  𝑆a ~ (1𝛼)(1−a2)𝛽 2−32a𝛽3a𝛽(𝛽Gamma[𝛽])12(−2+a). (14) 
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    From equation (14) we see that when a>2, limit𝛼→0  𝐾𝑆a ~0; when 0<a<2, limit𝛼→0  𝐾𝑆a ~∞; 

when a=2, limit𝛼→0  𝐾𝑆a ~(98)𝛽. The Kumaraswamy distribution shows that the shape factor 

with a=2 is the only definition that gives nonzero and finite boundary shape factor val-

ues, and when a>2 this value is 0. This conclusion is also true for the Beta distribution 

by equation (9) and (10).  

    This observation is not limited to the Kumaraswamy or the Beta distribution, for 

example, but valid also for the following kind of distribution with power function prob-

ability density function (PDF)  
𝑛+1𝑛 (1 − 𝑥𝑛), 𝑥 ∈ [0,1], 𝑛 > −1 , which is neither Ku-

maraswamy nor Beta distribution, it is also not GB1 as defined in [5], [6], or [4], having 

𝑆 = 6√3(1 + 𝑛)(4 + 𝑛(3 + 𝑛)) ( 3 + 𝑛(1 + 𝑛)(7 + 𝑛(4 + 𝑛)))3 2⁄
(3 + 𝑛)(4 + 𝑛) , 

𝐾 = 9(3 + 𝑛) (572 + 𝑛 (1011 + 𝑛 (813 + 𝑛 (366 + 𝑛(102 + 𝑛(15 + 𝑛))))))5(1 + 𝑛)(4 + 𝑛)(5 + 𝑛)(7 + 𝑛(4 + 𝑛))2 , 𝑆𝐹 = (4+𝑛)(7+𝑛(4+𝑛))(572+𝑛(1011+𝑛(813+𝑛(366+𝑛(102+𝑛(15+𝑛))))))60(5+𝑛)(4+𝑛(3+𝑛))2 . (15) 

When n→-1, only SF (used a=2) converges to a nonzero finite number 1.2. So these 

three types of distributions all have characteristic number 2. These examples are proofs 

of our postulation in section 2.1. 

2.4 Weibull Distribution 

If not for power function, but for exponential function form of the PDF, such as the 

exponential distribution family [1] with PDF 𝑒−𝑥𝑛𝑛𝑥−1+𝑛 , 𝑥 ∈ (0, ∞), 𝑛 > 0, which is 𝑊𝑒𝑖𝑏𝑢𝑙𝑙𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛[𝑛, 1]  or 𝐺𝑎𝑚𝑚𝑎𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛[1,1, 𝑛, 0]  or 𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛[1, 1𝑛 , − 1𝑛], will it behave similarly: the kurtosis divided by the 

squared skewness is the only choice which gives nonzero finite value when the skew-

ness and kurtosis are infinite? Or will it have a critical value bigger than 2? We will see 

that it is the second case, and start the study from its central moment: {𝐶𝑀[2], 𝐶𝑀[3], 𝐶𝑀[4]} = {−Gamma [1 + 1𝑛]2 + Gamma [1 + 2𝑛] , 2Gamma [1 +1𝑛]3 − 3Gamma [1 + 1𝑛] Gamma [1 + 2𝑛] + Gamma [1 + 3𝑛] , −3Gamma [1 + 1𝑛]4 +6Gamma [1 + 1𝑛]2 Gamma [1 + 2𝑛] − 4Gamma [1 + 1𝑛] Gamma [1 + 3𝑛] +Gamma [1 + 4𝑛]}.  (16) 

The goal of our asymptotic analysis is to find a simpler form for the limit. The sum 

of terms can be simplified by removing all terms that are of lower order of magnitude. 
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Algebraic or more quickly numerical method can be used to find inequalities or to com-

pare orders. For example, we can deduct either by 𝐶𝑀[2] ≥ 0 or from the numerical 

minimum NMinimize [{−Gamma [1𝑛]2 + 2𝑛Gamma [2𝑛] , 𝑛 > 0} , {𝑛, 1 10⁄ , 1000}] ={0.8425644753494974, {𝑛 → 1.6219726504389582}} that: 2𝑛Gamma [2𝑛] > Gamma [1𝑛]2 , 𝑤ℎ𝑒𝑛 𝑛 > 0. (17) 

This inequality is unique of the Gamma function, and is not hold for general log 

convex functions. It gives us idea or hint of the dominance of terms, then either by plot 

or by calculating symbolic limit of 
Gamma[1𝑛]22𝑛Gamma[2𝑛]  we know the squared term in 𝐶𝑀[2] can 

be ignored. 

We finally get the asymptotic expansion of (16) when n→0 from those simplifica-

tions and other simplifications such as using the formula (a + 𝑛)a𝑛 → 𝑒aa𝑛, where we 

cannot simply remove the 𝑛 in the sum without add the factor 𝑒 in: limit𝑛→0  {𝐶𝑀[2], 𝐶𝑀[3], 𝐶𝑀[4]}~{( 2ⅇ𝑛)2𝑛√4 𝜋𝑛 , ( 3ⅇ𝑛)3𝑛√6 𝜋𝑛 , ( 4ⅇ𝑛)4𝑛√8 𝜋𝑛}. (18) 

From (18) and from the 7th order expansion of the Gamma[𝑥, 𝑦] at infinity followed 

by removing the minor terms we get: limit𝑛→0  {𝑆, 𝐾, 𝑆𝐹, 𝐾𝑆43 , 𝑆𝐹3[2]} ~
{(68)12 (278 )1𝑛 (𝑛𝜋)14 , (12)12(16)1𝑛(𝑛𝜋)12, 232(1024729 )1𝑛3 , 256(25681 )1𝑛𝑛1 6⁄

323𝜋1 6⁄ , 41𝑛√𝑛4√𝜋
}. (19) 

There are generally wonders about the differences of the 𝑆𝐷 and 𝑀𝐷. The deviation 

of them as represented by 𝑆𝐹3[2] is a measure of the convexity of the PDF, and since 

it involves absolute function, the calculations are more complex, so much so that its 

asymptotic expression cannot be validated by symbolic limit but only by plots or nu-

merical evaluation for lists of values. The asymptotic approximation for 
𝐾𝑆43  is not as 

neat as 𝑆𝐹 either.  

Also from (18) we know that 
𝐾𝑆a ~2−12+a3−a2(24+3a33a )1𝑛𝑛12−a4𝜋14(−2+a)

. The solution of 24+3a33a = 1 gives a critical point 2.279348388468605 that is larger than 2: when a is 

above it, limit𝑛→0  𝐾𝑆a ~0, but when a is equal to or below it, limit𝑛→0  𝐾𝑆a ~∞. So this is an 

example we cannot see a nonzero finite limit number, and an example which has a 

critical value bigger than 2.  

From the minimum plot 
𝐾|𝑆|a in Fig. 4, we see that the asymptotic formula gives crit-

ical value very close to the original shape factors critical value 2.279882. By numerical 

optimization, we find the minimum of 
𝐾|𝑆|a is 1.138705 when the minimum is bigger 
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than 0, complying with our guess in section 2.1. This numerical result is supported by 

the contour plot of the derivative of 
𝐾|𝑆|a with respective to distribution parameter n, Fig. 

5, where we see when a is fixed and between 2.279882 and 2.29975, 
𝐾|𝑆|a has two min-

imum with the global minimum 0 attended when n→0. 

Fig. 4. Weibull distribution minimum  
𝐾|𝑆|a for given a. The horizontal axis is a. 

Fig. 5. Weibull distribution contour plot of 𝐷[ 𝐾|𝑆|a , 𝑛]. The horizontal axis is a. 

When a=2, the minimum of 
𝐾|𝑆|a is 1.9122718704899456695, attended at n= 

0.6411485565697524681. 
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2.5 Kumaraswamy Distribution Part Two 

Boundary β=∞ 

    Return to Kumaraswamy distribution, for a given α, when β→∞, [1] formula (4)-(6) 

gives the value of the skewness, kurtosis, and the shape factor. We have a similar trick 

to (12) that: 

if log (𝑓(𝑥))𝑥 → log (a),  then possibly𝑓(𝑥)~a1𝑥. (20) 

    Use (20), and confirmed by both 4th order and 1st order asymptotic expansion of the 

Gamma function we get the asymptotic order of the boundary shape factor: 

limit𝛼→0  limit𝛽→∞  𝑆𝐹 ~ 232(1024729 )1𝛼3 .  (21) 

    It is a surprise that the shape factor formula (21) for Kumaraswamy distribution and 

formula (19) for Weibull distribution are the same while their PDF are very different. 

    From equation (13), at the boundary α=0, the shape factor increase from 1 to ∞ when 

β turns from 0 to ∞. From equation (21) and [1] equation (4) and (6), at the boundary 

β=∞, the shape factor has a minimum value of  1.9122718704899369 𝑤ℎ𝑒𝑛 𝛼 =0.6411485567602634, increase to ∞ when α turns to 0 or 3.602349425719043. 

 This minimum value for Kumaraswamy distribution is very unusual since it is at the 

same time the minimum shape factor of the MaxStableDistribution[𝜇,𝜎,𝜉] and the GB2 

distribution BetaPrimeDistribution[p,q,α,β] when p=1 ([1] Section 7.1 and Figure 26), 

three distributions with no relationship apparently. 

    One experience in this exploration is that when series expansion and heavy substitu-

tion are made, the final asymptotic form deducted or guessed need to be validated with 

the original expression, either by take the symbolic limit of the ratio, or by numerical 

evaluation of the ratio; different orders of the series expansion arriving at the same form 

is not enough to guarantee that the form is correct. 

Relationship with Weibull Distribution 

The identical asymptotic form and minimum value of the shape factor shows that the 

Kumaraswamy distribution when β→∞ and the Weibull distribution may be related. 

This guess is proved in Fig. 6 that they have identical skewness, kurtosis, and shape 

factor formulas. 
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Fig. 6. Prove that Kumaraswamy β→∞ and Weibull distribution have identical S K SF. 

    Since Kumaraswamy distribution can be regarded heuristically as β fold minimum 

distribution of the power distribution 𝑥𝛼, when β→∞, we guess it should converge in 
distribution to some extreme value distribution [7][8], and Weibull distribution or the 

slightly general 𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is just that extreme value distribution. 

    Diverse distributions converge to one of the three types of extreme value distribution, 

so boundary value analysis or asymptotic analysis of the shape factor should arrive at 

the same or a few typical simple form. We can call distributions with identical SF 

boundary value formulas asymptotically equivalent distributions, so that asymptotically 

equivalent distributions will have close or identical parameters when fit a given empir-

ical distribution. This is non-trivial when their PDF/CDFs do not have clear relation-

ships or similarities.   

Minimum Shape Factor Value for Given α or β 

For fixed β and the Kumaraswamy distribution, unlike the Beta distribution, the 

lower boundary values are not the minimum values of the shape factor, which are at-

tended at interior points, 𝐹𝑖𝑛𝑑𝑅𝑜𝑜𝑡 are used to plot them, Fig.7. 
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Fig. 7. Kumaraswamy distribution minimum shape factor for given β. The horizontal 

axis is β. 

 

In Fig.7 we see that when β increases from 0 to ∞, the minimum shape factor in-

creases from 1 to 1.91227, the minimum value of the shape factor at the boundary β=∞. 

For a given α, the minimum shape factor is also taking place in interior point, and 

increases from 1 to ∞ as α increases from 0 to 3.602349, Fig. 8. Different directional 

minimum behaves differently. 
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Fig. 8. Kumaraswamy distribution minimum shape factor for given α. The horizontal 

axis is α. 

    For given shape factor, Fig. 7 and Fig. 8 give the permissible parameters α and β 

ranges. 

2.6 GB2 Distribution 

Asymptotic Expression When q→∞ 

 The 𝐺𝐵2([5]), or 𝐵𝑒𝑡𝑎𝑃𝑟𝑖𝑚𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜n[𝑝,𝑞,𝛼,𝛽] shape factor turns to con-

stant when q→∞ from Figure 22 and 23 in [1]. From section 2.4 we see that the asymp-

totic expression or boundary value of the shape factors can be used as a hint for the 

original shape factors. So we will utilize asymptotic analysis of the shape factor not for 

its own sake but as an approximation or initial value to the original shape factor, fol-

lowed by numerical correction or validation. Combined with affine transformation in-

variance, we can assume q→∞, β=1. From Gamma function 1st order expansion at ∞ 

we guessed and proved by calculating symbolic limit that:  limit𝑞→∞  {𝐶𝑀[2], 𝐶𝑀[3], 𝐶𝑀[4]} ≍{Gamma[𝑞]−2e−2𝑞𝑞−1+2𝑞−2𝛼, Gamma[𝑞]−3e−3𝑞𝑞−32+3𝑞−3𝛼, Gamma[𝑞]−4e−4𝑞𝑞−2+4𝑞−4𝛼}. (22) 

    Divided by these factors that will cancel out by themselves we can get the asymptotic 

limit for q→∞: 
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limit𝑞→∞  𝑆~ 2Gamma[𝑝+1𝛼]3−3Gamma[𝑝]Gamma[𝑝+1𝛼]Gamma[𝑝+2𝛼]+Gamma[𝑝]2Gamma[𝑝+3𝛼](−Gamma[𝑝+1𝛼]2+Gamma[𝑝]Gamma[𝑝+2𝛼])32 , (23) 

limit𝑞→∞  𝐾~ − 1(−Gamma[𝑝+1𝛼]2+Gamma[𝑝]Gamma[𝑝+2𝛼])2 (3Gamma [𝑝 + 1𝛼]4 − 6Gamma[𝑝]Gamma [𝑝 +
1𝛼]2 Gamma [𝑝 + 2𝛼] + 4Gamma[𝑝]2Gamma [𝑝 + 1𝛼] Gamma [𝑝 + 3𝛼] − Gamma[𝑝]3Gamma [𝑝 + 4𝛼]), (24) 

limit𝑞→∞  𝑆𝐹~ Gamma[𝑝+1𝛼]2−Gamma[𝑝]Gamma[𝑝+2𝛼](2Gamma[𝑝+1𝛼]3−3Gamma[𝑝]Gamma[𝑝+1𝛼]Gamma[𝑝+2𝛼]+Gamma[𝑝]2Gamma[𝑝+3𝛼])2 (3Gamma[𝑝 + 1𝛼]4 −6Gamma[𝑝]Gamma[𝑝 + 1𝛼]2Gamma[𝑝 + 2𝛼] + 4Gamma[𝑝]2Gamma[𝑝 + 1𝛼]Gamma[𝑝 + 3𝛼] −Gamma[𝑝]3Gamma[𝑝 + 4𝛼]).  (25) 

The simpler formula in the right side of (23)-(25) for S, K, and SF which only in-

volve parameters p and α will be our new starting point for studying the minimum and 

boundary tendencies, and we will call them SB, KB, and SFB, the boundary values of 

S, K, and SF for q=∞. 

First we have some symbolic limit values for them: limit𝑝→0  𝑆𝐹𝐵 = Gamma[2𝛼]Gamma[4𝛼]Gamma[3𝛼]2 ,  (26) 

limit𝛼→∞  𝑆𝐹𝐵 = PolyGamma[1,𝑝](3PolyGamma[1,𝑝]2+PolyGamma[3,𝑝])PolyGamma[2,𝑝]2 , (27) limit𝑝→∞  𝑆𝐹𝐵 = ComplexInfinity, limit𝛼→0  𝑆𝐹𝐵 = ∞. (28) 

When p increases from 0 to ∞, equation (27) increases from 2.25 almost linearly to 
∞. When α increases from 0 to ∞, equation (26) decreases from ∞ to 1.125. The two 

directional limits of SFB at the corner of p=0 and α=∞ are different.  
 

Minimum Shape Factor Given p 

Now we reduced the parameters numbers to 2, we can similarly use contour plot, 

partial derivative contour plot, and partial derivative zero points to get minimum shape 

factor values. For fixed p and α, when q→∞, from the contour plot we see the SF is 

decreasing, a justification for using q→∞ asymptotic values to calculate the minimum 
shape factor. 

S and SF 3D plot with mesh can show us overall values distribution of SF, Fig. 8, 

Fig. 9; from them we can see that the positive SF region is at the bottom left portion 

where α is small, and for given p the minimum SF is attended in interior point of α. 
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Fig. 9. GB2 Skewness 3D contour plot at q=∞. 
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Fig. 10. GB2 shape factor 3D contour plot at q=∞. 

Take the SF asymptotic formula (25) or SFB partial derivative with respect to α, 

solve to get its zero points and the corresponding SFB value, plot it against the empirical 

minimum SF formula (7) from [1], in Fig. 11. That these two curves are very close can 

be regarded as both validations for our asymptotic formula (25) and the empirical for-

mula (7) from [1]. 
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Fig. 11. GB2 minimum SF plot for given p, either from asymptotic expression when q→∞ or 
from empirical formula for numerical optimization results.  

 The two curves in Fig. 11 have two intersection at p≈0.0016 and p≈0.52, inside 

the interval [0.0016, 0.52] the empirical curve is slightly lower, and outside of it the 

asymptotic formula is lower. Checking against the original numerical optimization re-

sults shows that when p<1 the asymptotic formula gives better match than the empirical 

formula, in this case the “human learning” is better than the machine learning from 

Mathematica 𝐹𝑖𝑛𝑑𝐹𝑜𝑟𝑚𝑢𝑙𝑎.   

This minimum shape factor through asymptotic expression converges to 1.125 when 

p→0, and to 2.4881 when p→∞. 

Minimum Shape Factor Given α  

We can get the minimum shape factor for given α similarly by using SFB partial 

derivative with respect to p. But there is a max α= 0.6379212899193917, below it, the 

minimum take place at the zero derivative point, above it, all the partial derivative is 

positive and the minimum shape factor is attended at the boundary of p=0 through for-

mula (26). So the plot of the minimum shape factor given α has two portion which 

intersect at the mentioned α value with corresponding shape factor value 

1.8147359390703104, Fig. 12. 



19 

 

Fig. 12. GB2 minimum SF plot for given α, from SFB zero derivative point value or boundary 

value when p→0. 

The composite plot in Fig.12 is checked against the empirical plot Fig. 27 in [1] for 

the range of α from 0.5 to 1: they matched very well. The tendency of the minimum 

shape factor given α as shown in Fig. 12 is decreasing from ∞ to 1.125 when α turns 

from 0 to ∞.  
Fig.11 and Fig.12 can be used to validate the parameter or find the parameters p and 

α range when the shape factor is given. 

One lesson learned in using series expansion or asymptotic expansion to study the 

limit of shape factor in the GB2 case is that different order expansions may give differ-

ent results. For example, in studying the SFB limit when p→∞, if we use the 0th order 

expansion of the Gamma function at ∞, we get limit𝑝→∞  𝑆𝐹𝐵~ − 125 𝑝𝛼, an absurd negative 

number; if we use 1st order expansion, and the substitution (𝑝 + 𝑧𝛼)−𝑜+𝑛(𝑝+𝑧𝛼) →𝑒𝑛𝑧𝛼 𝑝−o+𝑛(𝑝+𝑧𝛼)
, we get limit𝑝→∞  𝑆𝐹𝐵~ − 14𝛼 𝑝−2, different but still negative. But for the 2nd, 

3rd, 4th, and 5th order expansions, we get the same limit𝑝→∞  𝑆𝐹𝐵~ 43. We may hurriedly con-

clude that the expansion converged when using above 2nd order expansions. Symbolic 

calculation is useful, but is also error prone, such as when substitutes are made of terms 
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in a summation expression. So it need to be confirmed by other means, such as numer-

ical calculation and graphical plot. Plot of the 5th order expansion SFB crashed Mathe-

matica kernel, and numerical calculation caused overflow. It is found that Mathematica 

cannot calculate Gamma[10.^14] in arbitrary-precision arithmetic due to a restriction 

of maximum numbers allowed in this format. That may be why its plots have many 

void portions. So verification by alternative software is desired: there is a package 

MPMATH in SYMPY that can be tested in IPython, which can calculate 

gamma(10**14) or even gamma(10**100). For α=1, p increasing, MPMATH calcu-

lated SFB is also increasing and follows some pattern until p=10**21, after that the 

calculated SFB fluctuates between positive and negative numbers; for p=10**55, 

10**100000, 10**1000000, it gives 0: results hard to reconcile.  

When plot the zero value contour in the parameter space of p and α of the partial 

derivatives of SFB with respective to α and p, we see that the former is higher than the 

latter, Fig.13.  

 

Fig. 13. D[SFB,α] and D[SFB,p] 0 contour plot. 

Combine Fig. 13 and Fig.11 we know for given α sufficiently small, the SFB will be 

larger than 2.4881. So we may incline to think that ∞ rather than  43 is the limit when 

p→∞. We will leave that as a mystery to be solved.  
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Characteristic Number 

From equation (22) take more symbolic limit we get: 

limit𝑞→∞  𝐶𝑀[2]~𝑞−2𝛼 −Gamma[𝑝+1𝛼]2+Gamma[𝑝]Gamma[𝑝+2𝛼]Gamma[𝑝]2 , (29) 

limit𝑞→∞  𝐶𝑀[3]~𝑞−3𝛼 2Gamma[𝑝+1𝛼]3−3Gamma[𝑝]Gamma[𝑝+1𝛼]Gamma[𝑝+2𝛼]+Gamma[𝑝]2Gamma[𝑝+3𝛼]Gamma[𝑝]3 , (30) 

limit𝑞→∞  𝐶𝑀[4]~ 𝑞−4𝛼Gamma[𝑝]4 (−3Gamma [𝑝 + 1𝛼]4 + 6Gamma[𝑝]Gamma [𝑝 +1𝛼]2 Gamma [𝑝 + 2𝛼] − 4Gamma[𝑝]2Gamma [𝑝 + 1𝛼] Gamma [𝑝 + 3𝛼] +Gamma[𝑝]3Gamma[𝑝 + 4𝛼]).  (31) 

From equation (29)-(31) and similarly by working with limit of each individual fac-

tors for a production expression we get: limit𝑝→0  limit 𝑞→∞ 𝐾𝑆a ~Gamma[𝑝]1−a2Gamma[2𝛼]−2+3a2 Gamma[3𝛼]−aGamma [4𝛼], (32) 

limit𝛼→0  limit 𝑞→∞ 𝐾𝑆a ~23a𝑝−a−12 3a(12−𝑝)𝜋a−24 (24+3a33a )1𝛼𝛼(a−2)(2𝑝−1)4 Gamma[𝑝]1−a2. (33) 

From equation (32) we know the characteristic number of GB2 distribution is still 2: 

whose min 𝐾𝑆a → 0 when a>2, q→∞, and p→0.  
Equation (33) says that at the boundary of α=0 and q=∞, an identical to the omni-

present Weibull distribution critical value a=2.279348388468605 exit: above it, limit𝛼→0  limit 𝑞→∞  𝐾𝑆a ~0, but below it, limit𝛼→0  limit 𝑞→∞  𝐾𝑆a ~∞. So the α=0 and the p=0 boundaries 

have different directional critical values with the p=0 boundary one smaller and gives 

the global characteristic number 2 for GB2.  

3 Conclusion and Discussions 

The conditional minimum of the shape factor for given parameter value or given ex-

pression value such as the skewness is useful, but its plot can usually only be obtained 

through numerical method (as in [1][2]). The simplification of the shape factor through 

asymptotic approximation can provide a deterministic way of solving the conditional 

minimum problem. The numerical and analytical method are thus checking and vali-

dating each other. In the process of those boundary or limit and minimum analysis, 

some characteristics of the shape factor (the characteristic number), as well as mysteri-

ous relationships of distributions, such as those between Kumaraswamy and Weibull 

distributions, and between GB2 and Weibull distributions, 𝐵𝑒𝑡𝑎𝑃𝑟𝑖𝑚𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜[1, ∞, 𝛼, 1] ≈ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛[𝛼, 1] ≈𝐾𝑢𝑚𝑎𝑟𝑎𝑠𝑤𝑎𝑚𝑦𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛[𝛼, ∞],  in the sense of identical S, K, and SF formulas, 

are discovered. 
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GB1 distribution, similar to GB2 distribution, has simpler form of moment than cen-

tral moment; those kind of shape factor by moment, such as 
𝑀[2]∗𝑀[4]𝑀[3]2 , is easier to work 

at, and arrive at identical boundary or asymptotic limit formulas as we get of GB2 or 

Kumaraswamy distribution. The asymptotic limit seems even out the differences be-

tween moment and central moment in this case.  

So whenever asymptotic limit can be calculated and has simpler form, it will be an 

invaluable tool for studying the original shape factor. This substitute method is also 

applicable when the limit of distribution PDF/CDF is hard to get, we can work on the 

SF limit instead; or when some but not all of S, K, and SF have infinite limit, we can 

change/modify to study the one with finite limit which can reveal additional infor-

mation of the distribution (“structure inside the singularity”). 
Heuristically or by analogy we can think S as a first order derivative, K as a shifted 

first order derivative, and SF as a second order derivative, describing the convexity or 

curvature of the distribution PDF, so in some cases SF should have simpler form than 

S or K, a reason for using it as the alternative. 

The method in Fig.2 can be used to study GB2 minimum shape factor with given 

product of 𝑝𝛼, and we guess the peak in [1] Fig. 27 is the impact of the zero value 

contour curve of the skewness. Some deduction of the asymptotic value of the shape 

factor of GH is in [2], but the detailed study for all these will be in a subsequent paper.  
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