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          Resolutions to Flip-Over Credit Risk and Beyond   
                  - Least squares estimates and maximum likelihood estimates  

                                              with monotonic constraints                                               
                                                                              Bill Huajian Yang† 

                                                                                      Abstract 

Given a risk outcome 𝑦 over a rating system {𝑅𝑖}𝑖=1𝑘  for a portfolio, we show in this paper that the maximum likelihood estimates with 

monotonic constraints, when 𝑦 is binary (the Bernoulli likelihood) or takes values in the interval 0 ≤ 𝑦 ≤ 1 (the quasi-Bernoulli 

likelihood), are each given by the average of the observed outcomes for some consecutive rating indexes. These estimates are in 

average equal to the sample average risk over the portfolio and coincide with the estimates by least squares with the same monotonic 

constraints. These results are the exact solution of the corresponding constrained optimization. A non-parametric algorithm for the 

exact solution is proposed. For the least squares estimates, this algorithm is compared with “pool adjacent violators” algorithm for 

isotonic regression. The proposed approaches provide a resolution to flip-over credit risk and a tool to determine the fair risk scales 

over a rating system.  
 

Keywords: risk scale, maximum likelihood, least squares, isotonic regression, flip-over credit risk 

 
1. Introduction  
 

Flip-over is a phenomenon where a low risk segment has a larger value of risk estimate than a 

high risk segment. It is usually caused by over-segmentation when practitioners seek 

discriminatory power greedily in the model development stage. This means that a segment is 

forced to split further into several small segments for a seemly in-sample increase of the 

discriminatory power, but they have no obvious difference from the population perspectives. 

When flip-over occurs, practitioners typically combine segments manually, or through 

hierarchical clustering.  
 

We show in this paper that the flip-over phenomenon can be resolved by approaches based on 

least squares estimates or maximum likelihood estimates with monotonic constraints.  
 

Let {𝑅𝑖}𝑖=1𝑘  denote a segmentation or the non-default risk ratings for a risk-rated portfolio. Let 𝑦,  −∞ < 𝑦 < +∞, be a general risk outcome, for example, the loan loss, the exposure at default, or 

the default indicator. A monotonicity rule is assumed: a higher index 𝑅𝑖 is expected to carry 

higher risk, i.e. the expected value of 𝑦 is higher for a higher index rating.  
 

Monotonic constraints are widely used in learning processes. Examples of learnings, where 

monotonic constraints are imposed, include isotonic regression ([2], [3], [5], [8]), risk scale 

estimation for a rating system ([18]), classification tree ([11]), rule learning ([6]), binning ([1], 

[4]), and deep lattice network ([19]). 
 

We use the following notations: For a given a sample 𝑆, let 𝑦𝑖𝑗 denote the 𝑗𝑡ℎ observation of the 

risk outcome over 𝑅𝑖 and 𝑛𝑖 the total number of observations for 𝑅𝑖. We assume 𝑛𝑖 > 0. Let 𝑑𝑖 =∑ 𝑦𝑖𝑗 𝑛𝑖𝑗=1  be the sum of all the observed 𝑦-values, and  𝑟𝑖 = 𝑑𝑖/𝑛𝑖, the average observed risk for 𝑅𝑖 .    
 

We are interested in the least squares estimates {𝑝𝑖}𝑖=1𝑘 that minimize the sum squared error (1.1) 

subject to monotonic constraints (1.2) below: 
 
 

             𝑆𝑆𝐸 = ∑ ∑ (𝑦𝑖𝑗 − 𝑝𝑖)2,𝑛𝑖𝑗=1𝑘𝑖=1                                                                      (1.1) 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑘 .                                                                                     (1.2)                                                          
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When 𝑦 is binary (e.g. the default indicator) or takes values in the interval 0 ≤ 𝑦 ≤ 1, we are 

interested in the maximum likelihood estimates {𝑝𝑖}𝑖=1𝑘  that maximize the log-likelihood (1.3) 

below subject to (1.2): 
 𝐿𝐿 = ∑ [𝑑𝑖 log(𝑝𝑖) + (𝑛𝑖 − 𝑑𝑖)log (1 − 𝑝𝑖)],𝑘𝑖=1                                                     (1.3) 
 

where the additive term 𝑑𝑖 log(𝑝𝑖) + (𝑛𝑖 − 𝑑𝑖)log (1 − 𝑝𝑖) corresponds to the Bernoulli log-

likelihood when 𝑦 is binary, i.e., we assume that the risk outcome 𝑦 over rating 𝑅𝑖 follows a 

Bernoulli distribution with probability 𝑝𝑖. It corresponds to the quasi-Bernoulli log-likelihood 

when 𝑦 takes values in the interval 0 ≤ 𝑦 ≤ 1 ([10]). 

  

Main results. In this paper, we show that (see Propositions 3.1 and 4.1), for a given sample 𝑆 ={𝑦𝑖𝑗  | 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛𝑖}, there exist partition integers {𝑘𝑖}𝑖=0𝑚 , where 0 = 𝑘0 < 𝑘1 < ⋯ <𝑘𝑚 = 𝑘, such that the values {𝑝𝑗}𝑗=1𝑘
, given by (1.4) below, minimize (1.1) and maximize (1.3), 

subject to (1.2):   

 

             𝑝𝑗 = 𝑑𝑘𝑖−1+1+𝑑𝑘𝑖−1+2+⋯+𝑑𝑘𝑖𝑛𝑘𝑖−1+1+𝑛𝑘𝑖−1+2+⋯+𝑛𝑘𝑖 , 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖,                                     (1.4) 

 

These {𝑝𝑗}𝑗=1𝑘
satisfy the equation below: 

 𝑛1𝑝1+𝑛2𝑝2+⋯+𝑛𝑘𝑝𝑘𝑛 = 𝑑𝑛                                                                               (1.5)                                                               

where 
 

               𝑛 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘,                                                                                       (1.6) 

               𝑑 = 𝑑1 + 𝑑2 + ⋯ + 𝑑𝑘.                                                                                      (1.7)                                           
 

These results are the exact solution for the corresponding constrained optimization and are proved 

in a more general setting under weighted least squares and weighted maximum likelihood.  

 

Given the above results, flip-over credit risk can be resolved by combining each group with 

indexes in 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖, and replacing their estimates by the average of the risk over the 

group.   

 

One of the most important estimations with monotonic constraints is the isotonic regression ([2]). 

Given values {𝑟𝑗}𝑗=1𝑘 , the goal of isotonic regression is to find {𝑝𝑖}𝑖=1𝑘 , subject to (1.2), that 

minimize the weighted sum squares ∑ 𝑤𝑖(𝑟𝑖 − 𝑝𝑖)2𝑘𝑖=1 , where {𝑤𝑖}𝑖=1𝑘  are the given weights. A 

unique exact solution to the isotonic regression problem exists and can be obtained by a non-

parametric algorithm called Pool Adjacent Violators (PAV) ([2], [3], [5], [8]).  
 

A non-parametric algorithm (Algorithm 5.1) with time complexity 𝑂(𝑘2) is proposed in section 5 

for finding these partition integers in (1.4), hence the estimates. For estimates with general 

monotonic constraints, we propose a parametric algorithm (Algorithm 5.2) for least squares 

estimates with constraints: 𝑝𝑖 ≤ 𝑝𝑖+1 + 𝜖𝑖 for 1 ≤ 𝑖 ≤ 𝑘 and 𝜖𝑖 ≥ 0, and for maximum likelihood 

estimates with constraints: 𝑝𝑖+1/𝑝𝑖 ≥ 1 + 𝜖 for 1 ≤ 𝑖 ≤ 𝑘 and 𝜖 ≥ 0. A detailed comparison 

between the PAV algorithm and the non-parametric algorithm proposed in this paper can be 

found in section 6.1. 
 

The key ideas to the proof of (1.4) and the algorithms proposed in this paper are the re-

parameterization of the estimates so that (1.2) is automatically satisfied. Consequently, the 
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constrained programming is transformed into a tractable non-constrained mathematical 

programming problem (see sections 3, 4 and 5).   
 

The paper is organized as follows: In section 2, we define the partition integer for a given sample. 

A formula like (1.4) is shown in section 3 for weighted maximum likelihood estimates and in 

section 4 for weighted least squares estimates. The non-parametric algorithm for the exact 

solution is proposed in section 5. In section 6, we illustrate how this proposed non-parametric 

algorithm can be used to determine the fair risk scales over a rating system. Applications to risk-

supervised monotonic binning are also discussed. 

 
2. The Partition Integers 

 

For a given sample 𝑆 = {𝑦𝑖𝑗 | 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛𝑖}, let  {𝑤𝑖}𝑖=1𝑘  denote the given weights, 

where 𝑤𝑖 > 0 is the weight assigned to the observed outcomes {𝑦𝑖𝑗}𝑗=1𝑛𝑖
for 𝑅𝑖. We use the  

notations introduced in section 1 and let 𝑟𝑖 = 𝑑𝑖/𝑛𝑖 and 𝑑𝑖 = ∑ 𝑦𝑖𝑗𝑛𝑖𝑗=1 . 
 

For 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘, let  
 

           𝑢(𝑖, 𝑗) = 𝑟𝑖𝑛𝑖𝑤𝑖+𝑟𝑖+1𝑛𝑖+1𝑤𝑖+1+⋯+𝑟𝑗𝑛𝑗𝑤𝑗𝑛𝑖𝑤𝑖+𝑛𝑖+1𝑤𝑖+1+⋯+𝑛𝑗𝑤𝑗                                                               (2.1)                               = 𝑑𝑖𝑤𝑖+𝑑𝑖+1𝑤𝑖+1+⋯+𝑑𝑗𝑤𝑗𝑛𝑖𝑤𝑖+𝑛𝑖+1𝑤𝑖+1+⋯+𝑛𝑗𝑤𝑗 .                                                                       (2.2) 

 

By (2.1), 𝑢(𝑖, 𝑗) is the weighted average of {𝑟𝑖, 𝑟𝑖+1, … , 𝑟𝑗} where 𝑟ℎ is weighted by 𝑛ℎ𝑤ℎ. 

Specifically, we have 
 

          𝑢(1, 𝑘) = 𝑑1𝑤1+𝑑2𝑤2+⋯+𝑑𝑘𝑤𝑘𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘𝑤𝑘 = 𝐷𝑁,                                                                   (2.3)                                                         

 

the weighted average of  {𝑟𝑖}𝑖=1𝑘  over the portfolio, where 𝑁 and 𝐷 are defined respectively by 

(2.4) and (2.5) below: 
 
 

            𝑁 = 𝑛1𝑤1 + 𝑛2𝑤2 + ⋯ + 𝑛𝑘𝑤𝑘,                                                                                (2.4) 

            𝐷 = 𝑑1𝑤1 + 𝑑2𝑤2 + ⋯ + 𝑑𝑘𝑤𝑘.                                                                                (2.5)                                           
 

Let  {𝑘𝑖}𝑖=0𝑚  be the partition integers, where 0 = 𝑘0 < 𝑘1 < ⋯ < 𝑘𝑚 = 𝑘, such that (2.6) and 

(2.7) below hold for  0 < 𝑖 ≤ 𝑚: 
 𝑢(𝑘𝑖−1 + 1, 𝑘𝑖) = 𝑚𝑖𝑛{𝑢(𝑘𝑖−1 + 1, 𝑗) | 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘},                         (2.6)   𝑢(𝑘𝑖−1 + 1, 𝑘𝑖) < 𝑢(𝑘𝑖−1 + 1, 𝑘𝑖 + 1).                                                          (2.7)        
 

That is, given 𝑘𝑖−1, the integer 𝑘𝑖 is the largest index such that 𝑢(𝑘𝑖−1 + 1, 𝑗) reaches its 

minimum at  𝑗 = 𝑘𝑖 within all remaining indexes 𝑗 ≥ 𝑘𝑖−1 + 1. When {𝑟𝑖}𝑖=1𝑘  are strictly 

increasing, we have  𝑚 = 𝑘 and {𝑘𝑖}𝑖=1𝑚 = {1, 2, … , 𝑘}.     
 

By (2.6) and (2.7), we have the following inequalities: 
 𝑢(1, 𝑘1) < 𝑢(𝑘1 + 1, 𝑘2) < ⋯ < 𝑢(𝑘𝑚−1 + 1, 𝑘𝑚).                                    (2.8) 
 

This is because if, for example, 𝑢(1, 𝑘1) ≥ 𝑢(𝑘1 + 1, 𝑘2), then we have: 
 𝑢(1, 𝑘2) = 𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘1𝑤𝑘1𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘2𝑤𝑘2  𝑢(1, 𝑘1) +  

      
𝑛𝑘1+1𝑤𝑘1+1+𝑛𝑘1+2𝑤𝑘1+2+⋯+𝑛𝑘2𝑤𝑘2𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘2𝑤𝑘2 𝑢(𝑘1 + 1, 𝑘2)  
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               ≤ 𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘1𝑤𝑘1𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘2𝑤𝑘2 𝑢(1, 𝑘1) +   𝑛𝑘1+1𝑤𝑘1+1+𝑛𝑘1+2𝑤𝑘1+2+⋯+𝑛𝑘2𝑤𝑘2𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘2𝑤𝑘2 𝑢(1, 𝑘1) 

               = 𝑢(1, 𝑘1).  
 

This contradicts the fact that 𝑘1 is the largest index where 𝑢(1, 𝑗) reaches its minimum at  𝑗 = 𝑘𝑖 
for all 𝑗 ≥ 𝑘𝑖−1 + 1.   
 
3. Weighted Maximum Likelihood Estimates with Monotonic Constraints 
 

 

Under weighted maximum likelihood framework, log-likelihood (1.3) becomes  
 𝐿𝐿 = ∑ 𝑤𝑖[𝑑𝑖 log(𝑝𝑖) + (𝑛𝑖 − 𝑑𝑖)log (1 − 𝑝𝑖)]𝑘𝑖=1 .                                                      (3.1) 
 

We are interested in the weighted maximum likelihood estimates {𝑝𝑖}𝑖=1𝑘 that maximize (3.1) 

subject to (1.2).  
 

Let 𝑓𝑖(𝑝𝑖) = 𝑑𝑖 log(𝑝𝑖) + (𝑛𝑖 − 𝑑𝑖)log (1 − 𝑝𝑖) be an additive term of (3.1). Values 𝑓𝑖(1) and 𝑓𝑖(0) are defined as follows: By taking the limit of 𝑓𝑖(𝑝𝑖) when 𝑝𝑖 approaches 1 from the left, 

we can assume 𝑓𝑖(1) = 0 if 𝑑𝑖 = 𝑛𝑖 , and 𝑓𝑖(1) = −∞ if 𝑑𝑖 < 𝑛𝑖. Similarly, by taking the limit 

of 𝑓𝑖(𝑝𝑖) when 𝑝𝑖 approaches 0 from the right, we can assume 𝑓𝑖(0) = 0 if 𝑑𝑖 = 0, and 𝑓𝑖(0) =−∞ if 𝑑𝑖 > 0. In absence of (1.2), the sample means {𝑟𝑖}𝑖=1𝑘  maximize (3.1), because each 𝑓𝑖(𝑝𝑖) 

is maximized at 𝑝𝑖 = 𝑟𝑖. This is true when 𝑟𝑖 = 0, 1.  For 0 < 𝑟𝑖 < 1, one can see it by taking the 

derivative for the additive term with respect to 𝑝𝑖  and set it to zero (see [18]). 
 

Proposition 3.1. With the partition integers {𝑘𝑖}𝑖=0𝑚  defined by (2.6) and (2.7), the values {𝑝𝑗}𝑗=1𝑘
 

given by (3.2) below maximize (3.1) subject to (1.2): 
 

              𝑝𝑗 = 𝑢(𝑘𝑖−1 + 1, 𝑘𝑖) 

                   = 𝑑𝑘𝑖−1+1𝑤𝑘𝑖−1+1+𝑑𝑘𝑖−1+2𝑤𝑘𝑖−1+2+⋯+𝑑𝑘𝑖𝑤𝑘𝑖𝑛𝑘𝑖−1+1𝑤𝑘𝑖−1+1 +𝑛𝑘𝑖−1+2𝑤𝑘𝑖−1+2+⋯+𝑛𝑘𝑖  𝑤𝑘𝑖,  where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖,     (3.2)       

 

In addition, the following equation holds:                        
 

              
𝑛1𝑤1𝑝1+𝑛2𝑤2𝑝2+⋯+𝑛𝑘𝑤𝑘𝑝𝑘𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘𝑤𝑘 = 𝐷𝑁.                                                                         (3.3) 

 

Proof. First, by (2.8), the estimates {𝑝𝑖}𝑖=1𝑘  given specifically by (3.2) satisfy (1.2). By (3.2) and 

(2.2), the sum of {𝑛𝑗𝑤𝑗𝑝𝑗 | 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖} is equal to the sum of {𝑑𝑤𝑗 | 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖}. 

Thus, we have:   
             𝑛1𝑤1𝑝1 + 𝑛2𝑤2𝑝2 + ⋯ + 𝑛𝑘𝑤𝑘𝑝𝑘  = 𝑑1𝑤1 + 𝑑2𝑤2 + ⋯ + 𝑑𝑘𝑤𝑘 = 𝐷.  
 

Therefore, with these specific values for {𝑝𝑖}𝑖=1𝑘 , equation (3.3) holds.  
 

For 𝑖 ≤ 𝑗, let 
 

              𝐿𝐿 = ∑ 𝑤𝑖[𝑑𝑖 log(𝑝𝑖) + (𝑛𝑖 − 𝑑𝑖)log (1 − 𝑝𝑖)]𝑘𝑖=1 = ∑ 𝐿𝐿(𝑘𝑖−1 + 1, 𝑘𝑖)𝑚𝑖=1             

where 

              𝐿𝐿(𝑘𝑖−1 + 1, 𝑘𝑖) = ∑  𝑤ℎ[𝑑ℎ log(𝑝ℎ) + (𝑛ℎ − 𝑑ℎ)log (1 − 𝑝ℎ)]𝑘𝑖ℎ=𝑘𝑖−1+1 .  
 

Because of (2.8), it suffices to show that each log-likelihood 𝐿𝐿(𝑘𝑖−1 + 1, 𝑘𝑖) is maximized at 𝑝𝑗 = 𝑢(𝑘𝑖−1 + 1, 𝑘𝑖) for 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖, subject to (1.2) within the range 𝑘𝑖−1 + 1 ≤ 𝑗 ≤𝑘𝑖. We show only the case  𝑖 = 1 where 𝐿𝐿(𝑘𝑖−1 + 1, 𝑘𝑖)  is 𝐿𝐿(1, 𝑘1). The proof for other cases 
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is similar. Without loss of generality, we assume 𝑘1 = 𝑘. In this case, 𝑚 = 1,  𝑘1 = 𝑘, and 𝐿𝐿(1, 𝑘) = 𝐿𝐿. 
 
 

As the maximum likelihood estimates for probabilities,  0 ≤ 𝑝𝑗 ≤ 1 for 1 ≤ 𝑗 ≤ 𝑘. Consider the 

following four cases: (a)  𝑝𝑘 = 1. Then the additive term 𝑓𝑘(𝑝𝑘), hence 𝐿𝐿, takes value −∞ if  𝑑𝑘 < 𝑛𝑘. Hence 𝑑𝑘 = 𝑛𝑘 , and 𝑟𝑘 = 1. Because 𝑢(1, 𝑗) reaches its minimum at 𝑗 = 𝑘 for 1 ≤ 𝑗 ≤𝑘,  we must have 𝑟𝑗 = 1 for all 1 ≤ 𝑗 ≤ 𝑘, by (2.1). Therefore 𝑢(1, 𝑘) = 1 and, by (3.2), 𝑝𝑗 =1 for all 1 ≤ 𝑗 ≤ 𝑘. These values of {𝑝𝑗}𝑗=1𝑘
 do maximize 𝐿𝐿 subject to (1.2). (b) 𝑝1 = 0. As for 

case (a), we have 𝑝𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑘. We must have 𝑑𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑘, and 𝑢(1, 𝑘) = 0 (thus the proposition holds). Otherwise 𝑓𝑘(𝑝𝑘), hence 𝐿𝐿, takes value −∞. (c) 𝑢(1, 𝑘) = 1. Then 𝑟𝑗 = 1 for all 1 ≤ 𝑗 ≤ 𝑘. As for case (a), the proposition holds. (d) 𝑢(1, 𝑘) =0. Then 𝑟𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑘. As for case (b), the proposition holds.      
 

Therefore, we can assume 0 < 𝑢(1, 𝑘) < 1, 𝑝𝑘 < 1, and 𝑝1 > 0. Then we can parameterize 𝑝𝑗 

for 1 ≤ 𝑗 ≤ 𝑘 by letting 
 

        𝑝𝑘+1−𝑗 = exp[−(𝑏1 + 𝑏2 + ⋯ + 𝑏𝑗)],  𝑏𝑗 = 𝑎𝑗2,                                                         (3.4) 
 

where −∞ <  𝑎𝑗 < +∞ for 1 ≤ 𝑗 ≤ 𝑘. With this parameterization, (1.2) is satisfied. By plugging 

(3.4) into 𝐿𝐿,  we transform the constrained optimization problem to a non-constrained 

mathematical programming problem. The partial derivative of 𝐿𝐿 with respect to 𝑎𝑗 is given by: 
 

        
𝜕𝐿𝐿𝜕𝑎𝑗 = ∑ 𝜕𝜕𝑎𝑗 𝑤𝑘+1−𝑖[𝑑𝑘+1−𝑖 log(𝑝𝑘+1−𝑖) + (𝑛𝑘+1−𝑖 − 𝑑𝑘+1−𝑖)log (1 − 𝑝𝑘+1−𝑖)]𝑘𝑖=1  

              = ∑ 𝑤𝑘+1−𝑖 [−2𝑎𝑗𝑑𝑘+1−𝑖 + 2𝑎𝑗(𝑛𝑘+1−𝑖−𝑑𝑘+1−𝑖)𝑝𝑘+1−𝑖1−𝑝𝑘+1−𝑖 ]𝑘𝑖=𝑗                
                = ∑ 𝑤𝑘+1−𝑖 [−2𝑎𝑗𝑑𝑘+1−𝑖 − 2𝑎𝑗(𝑛𝑘+1−𝑖 − 𝑑𝑘+1−𝑖) + 2𝑎𝑗(𝑛𝑘+1−𝑖−𝑑𝑘+1−𝑖)1−𝑝𝑘+1−𝑖 ]𝑘𝑖=𝑗   

  = 2𝑎𝑗 ∑ 𝑤𝑘+1−𝑖 [(𝑛𝑘+1−𝑖−𝑑𝑘+1−𝑖)1−𝑝𝑘+1−𝑖 − 𝑛𝑘+1−𝑖]𝑘𝑖=𝑗     = 2𝑎𝑗 ∑ 𝑤𝑖 [(𝑛𝑖−𝑑𝑖)1−𝑝𝑖 − 𝑛𝑖]𝑘+1−𝑗𝑖=1  = 2𝑎𝑗𝑔(𝑗)                                                              

where  

            𝑔(𝑗) = ∑ 𝑤𝑖 [𝑛𝑖−𝑑𝑖1−𝑝𝑖 − 𝑛𝑖]𝑘+1−𝑗𝑖=1 .                                                                       (3.5) 

 

Setting this partial derivative to zero we have either 𝑎𝑗 = 0 or 𝑔(𝑗) = 0.  For 𝑗 = 1, we have 𝑎1 ≠ 0, otherwise 𝑝𝑘 = 1, contrary to our assumption. Thus, we have  
 

             0 = 𝑔(1) = ∑ 𝑤𝑖 [𝑛𝑖−𝑑𝑖1−𝑝𝑖 − 𝑛𝑖]𝑘𝑖=1 .                                                                   (3.6) 
  

We claim that 𝑎𝑗 = 0 for all 1 < 𝑗 ≤ 𝑘. If this is true, then  𝑝1 = 𝑝2 = ⋯ = 𝑝𝑘 .. Then by (3.6) we 

have  𝑝1 = 𝐷𝑁 = 𝑢(1, 𝑘), and the proof follows. Suppose 1 = 𝑖1 < ⋯ < 𝑖𝐻  (where 1 < 𝐻 and 𝑖𝐻 ≤ 𝑘) are all the indexes such that 𝑔(𝑖ℎ) = 0 and 𝑎𝑖ℎ ≠ 0 for 1 ≤ ℎ ≤ 𝐻.  For 1 < ℎ < 𝐻, we 

have:    
 0 = 𝑔(𝑖ℎ−1) − 𝑔(𝑖ℎ)  

   = ∑ 𝑤𝑖 [𝑛𝑖−𝑑𝑖1−𝑝𝑖 − 𝑛𝑖]𝑘+1−𝑖ℎ−1𝑖=1 − ∑ 𝑤𝑖 [𝑛𝑖−𝑑𝑖1−𝑝𝑖 − 𝑛𝑖]𝑘+1−𝑖ℎ𝑖=1    
   = ∑ 𝑤𝑖 [𝑛𝑖−𝑑𝑖1−𝑝𝑖 − 𝑛𝑖]𝑘+1−𝑖ℎ−1𝑖=𝑘+2−𝑖ℎ .                                                                        (3.7)        

 
 

Since  𝑎𝑗 = 0  when 𝑖ℎ−1 < 𝑗 < 𝑖ℎ, all {𝑝𝑖}𝑖=𝑘+2−𝑖0𝑘+1−𝑖ℎ−1 are equal to 𝑝𝑘+1−𝑖ℎ−1. Thus (3.7) becomes  
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              0 = ∑ 𝑤𝑖[(𝑛𝑖 − 𝑑𝑖) − 𝑛𝑖(1 − 𝑝𝑖)].𝑘+1−𝑖ℎ−1𝑖=𝑘+2−𝑖ℎ                                                   (3.8) 
 

Solving (3.8) for 𝑝𝑘+1−𝑖ℎ−1, we have: 
 𝑝𝑘+1−𝑖ℎ−1 =  𝑑𝑘+2−𝑖𝑤𝑘+2−𝑖+𝑑𝑘+3−𝑖𝑤𝑘+3−𝑖+⋯+𝑑𝑘+1−𝑗𝑤𝑘+1−𝑗𝑛𝑘+2−𝑖𝑤𝑘+2−𝑖+𝑛𝑘+3−𝑖𝑤𝑘+3−𝑖+⋯+𝑛𝑘+𝑗−𝑖𝑤𝑘+𝑗−𝑖  

                 = 𝑢(𝑘 + 2 − 𝑖, 𝑘 + 1 − 𝑗).                                                            (3.9) 
 

 

where  𝑖 = 𝑖ℎ and 𝑗 = 𝑖ℎ−1.  Similarly for 𝑖𝐻, we have 𝑔(𝑖𝐻) = 0, thus: 
 

               0 = ∑ 𝑤𝑖 [𝑛𝑖−𝑑𝑖1−𝑝𝑖 − 𝑛𝑖]𝑘+1−𝑖𝐻𝑖=1 .                                                                        (3.10) 

 

Since all  𝑎𝑗 = 0  when 𝑖𝐻 < 𝑗 ≤ 𝑘,  all {𝑝𝑖}𝑖=1𝑘+1−𝑖𝐻 are equal to 𝑝1. By (3.10) we have 𝑝1 =𝑢(1, 𝑘 + 1 − 𝑖𝐻).  Consequently, each of {𝑝𝑖}𝑖=1𝑘  is either 𝑢(1, 𝑘 + 1 − 𝑖𝐻) or is given by one of {𝑢(𝑘 + 2 − 𝑖ℎ , 𝑘 + 1 − 𝑖ℎ−1)}. Thus equation (3.3) holds, because by (2.2) the sum of {𝑛𝑗𝑤𝑗𝑝𝑗 |𝑘 + 2 − 𝑖ℎ ≤ 𝑗 ≤ 𝑘 + 1 − 𝑖ℎ−1} is equal to the sum of {𝑑𝑤𝑗 |𝑘 + 2 − 𝑖ℎ ≤ 𝑗 ≤ 𝑘 + 1 − 𝑖ℎ−1}, and the sum of {𝑛𝑗𝑤𝑗𝑝𝑗 |1 ≤ 𝑗 ≤ 𝑘 + 1 − 𝑖𝐻} is equal to 

the sum of {𝑑𝑤𝑗 |1 ≤ 𝑗 ≤ 𝑘 + 1 − 𝑖𝐻}.   
 

Now that the weighted sum in the right-hand-side of (3.3) must be larger than 𝑝1, because 𝑝𝑖 >𝑝1 for all 𝑖 ≥  𝑘 + 2 − 𝑖𝐻 .  However, the left-hand-side of (3.3) is 𝑢(1, 𝑘), therefore we have: 
 

        𝑢(1, 𝑘 + 1 − 𝑖𝐻) = 𝑝1 < 𝑢(1, 𝑘). 
  

This contradicts to the assumption that 𝑖 = 𝑘 is the largest index within 1 ≤ 𝑖 ≤ 𝑘 such that 𝑢(1, 𝑖) reaches the minimum. □ 

    
 

4.  Weighted Least Squares Estimates with Monotonic Constraints    
 

We use the notations introduced in section 1. Under weighted least squares framework, (1.1) 

changes to (4.1) below: 
 
             𝑆𝑆𝐸 = ∑ ∑ 𝑤𝑖(𝑦𝑖𝑗 − 𝑝𝑖)2𝑛𝑖𝑗=1𝑘𝑖=1 ,                                                                       (4.1) 

           𝑆𝑆𝐸 = ∑ ∑ 𝑤𝑖(𝑦𝑖𝑗 − 𝑟𝑖)2𝑛𝑖𝑗=1𝑘𝑖=1 + ∑ 𝑛𝑖𝑤𝑖(𝑟𝑖 − 𝑝𝑖)2𝑘𝑖=1 = 𝑆𝑆𝐸1 + 𝑆𝑆𝐸2      

                               

where 𝑆𝑆𝐸1 = ∑ ∑ 𝑤𝑖(𝑦𝑖𝑗 − 𝑟𝑖)2𝑛𝑖𝑗=1𝑘𝑖=1  and 
 
 

           𝑆𝑆𝐸2 = ∑ 𝑛𝑖𝑤𝑖(𝑟𝑖 − 𝑝𝑖)2𝑘𝑖=1 .                                                                             (4.2) 
 
 

Since 𝑆𝑆𝐸1 is a constant term, the weighted least squares estimates are the estimates {𝑝𝑖}𝑖=1𝑘 that 

minimize (4.2) subject to (1.2). Note that, in absence of (1.2), {𝑟𝑖}𝑖=1𝑘  minimize (4.1).  
 

Proposition 4.1. With the partition integers {𝑘𝑖}𝑖=0𝑚  defined by (2.6) and (2.7), the values {𝑝𝑖}𝑖=1𝑘  

given as in Proposition 3.1 by (4.3) below, minimize (4.2) subject to (1.2): 
 
 

            𝑝𝑗 = 𝑢(𝑘𝑖−1 + 1, 𝑘𝑖), where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖,                                              (4.3) 
 

In addition, the following equation holds: 
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𝑛1𝑤1𝑝1+𝑛2𝑤2𝑝2+⋯+𝑛𝑘𝑤𝑘𝑝𝑘𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘𝑤𝑘 = 𝐷𝑁.                                                                         (4.4) 

 

Proof. As shown the proof of Proposition 3.1, values {𝑝𝑖}𝑖=1𝑘  given by (4.3) satisfy (1.2) and 

(4.4). Next, for 𝑖 ≤ 𝑗, let 𝑆𝑆𝐸 = ∑ 𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖)𝑚𝑖=1 , where 
 

           𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) = ∑ ∑ 𝑤ℎ(𝑦ℎ𝑔 − 𝑝ℎ)2𝑛ℎ𝑔=1𝑘𝑖ℎ=𝑘𝑖−1+1 .  
 

Because of (2.8), it suffices to show 𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) is minimized at 𝑝𝑗 = 𝑢(𝑘𝑖−1 + 1, 𝑘𝑖) 

subject to (1.2), where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖. We show only the case  𝑖 = 1 where 𝑆𝑆𝐸(𝑘𝑖−1 +1, 𝑘𝑖)  is 𝑆𝑆𝐸(1, 𝑘1). The proof for other cases is similar. Without loss of generality, we assume 𝑘𝑖 = 𝑘. In this case, 𝑚 = 1 and 𝑘1 = 𝑘, and 𝑆𝑆𝐸(1, 𝑘) = 𝑆𝑆𝐸. 
 

Parameterize 𝑝𝑗 by letting 𝑝1 = 𝑎1, and for 2≤ 𝑗 ≤ 𝑘, 
 

        𝑝𝑗 = 𝑎1 + (𝑏2 + ⋯ + 𝑏𝑗),   𝑏𝑗 = 𝑎𝑗2                                                                  (4.5) 
 

where −∞ <  𝑎𝑗 < +∞ for 1 ≤ 𝑗 ≤ 𝑘.With this parametrization, (1.2) is satisfied. By plugging 

(4.5) into (4.1), we transform the constrained optimization problem to a non-constrained 

mathematical programming problem. We take the partial derivative of 𝑆𝑆𝐸 with respect to 𝑎𝑗. For 𝑗 ≥ 2, we have 
 

        
𝜕𝑆𝑆𝐸𝜕𝑎𝑗 = ∑ ∑ −4𝑎𝑗𝑤𝑖(𝑦𝑖𝑔 − 𝑝𝑖)𝑛𝑖𝑔=1𝑘𝑖=𝑗 = −4𝑎𝑗 ∑ 𝑤𝑖(𝑑𝑖 − 𝑛𝑖𝑝𝑖)𝑘𝑖=𝑗 = −4𝑎𝑗𝑓(𝑗)             

 

where 𝑓(𝑗) = ∑ 𝑤𝑖(𝑑𝑖 − 𝑛𝑖𝑝𝑖)𝑘𝑖=𝑗 . Setting this derivative to zero, we have either 𝑎𝑗 = 0 or 𝑓(𝑗) =0. For 𝑗 = 1, we have 
 

       
𝜕𝑆𝑆𝐸𝜕𝑎1 = ∑ ∑ −2𝑤𝑖(𝑦𝑖𝑔 − 𝑝𝑖)𝑛𝑖𝑔=1𝑘𝑖=1 = −2 ∑ 𝑤𝑖(𝑑𝑖 − 𝑛𝑖𝑝𝑖)𝑘𝑖=1 = −2𝑓(1).              

 

Setting this derivative to zero, we have  
 

        0 = 𝑓(1) = ∑ 𝑤𝑖(𝑑𝑖 − 𝑛𝑖𝑝𝑖)𝑘𝑖=1 . 
 

This implies: 
 
 

        
𝑛1𝑤1𝑝1 +𝑛2𝑤2𝑝2+⋯+𝑛𝑘𝑤𝑘𝑝𝑘𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑘𝑤𝑘 = 𝐷𝑁 = 𝑢(1, 𝑘). 

 

This shows that the weighted least squares estimates {𝑝𝑖}𝑖=1𝑘 , before their true values are found, 

satisfy (4.4). We claim that 𝑎𝑗 = 0 for all 1 < 𝑗 ≤ 𝑘.  If this is true, then 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑘. 

Then by (4.4) we have  𝑝1 = 𝐷𝑁 = 𝑢(1, 𝑘), and the proof follows. Otherwise, let 𝑖0 > 1 be the 

smallest integer such that 𝑎𝑖0 ≠ 0, and  𝑎𝑗 = 0 whenever  1 < 𝑗 < 𝑖0.  Then we have 𝑓(1) = 0  

and 𝑓(𝑖0) = 0. Thus    
 0 = 𝑓(1) − 𝑓(𝑖0) = ∑ 𝑤𝑖(𝑑𝑖 − 𝑛𝑖𝑝𝑖)𝑖0−1𝑖=1 .                                                      (4.6)     

                                                                         

Since  𝑎𝑗 = 0  when  1 < 𝑗 < 𝑖0, all {𝑝𝑗}𝑗=1𝑖0−1
 are equal to 𝑝1. Thus by (4.6) and (2.2), we have  

   𝑝1 = 𝑑1𝑤1+𝑑2𝑤2+⋯+𝑑𝑖0−1𝑤𝑖0−1𝑛1𝑤1+𝑛2𝑤2+⋯+𝑛𝑖0−1𝑤𝑖0−1 = 𝑢(1, 𝑖0 − 1).                                               (4.7) 

 
 

However, 𝑎𝑖0 ≠ 0, thus 𝑝1 < 𝑝𝑖0 . Thus by (4.4), (1.2), and (4.7), we have 
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𝐷𝑁 = ∑ 𝑛𝑖𝑤𝑖𝑁 𝑝𝑖 > ∑ 𝑛𝑖𝑤𝑖𝑁 𝑝1 = 𝑝1 = 𝑢(1, 𝑖0 − 1).𝑘𝑖=1𝑘𝑖=1    

 
 

Thus, we have 𝑢(1, 𝑖0 − 1) < 𝐷𝑁 = 𝑢(1, 𝑘). This contradicts the fact that 𝑗 = 𝑘 is the largest index 

where  𝑢(1, 𝑗) reaches its minimum for all 𝑗 ≥ 1. Therefore, we have  𝑎2 = 𝑎3 = ⋯ = 𝑎𝑘 = 0, 
and all {𝑝𝑖}𝑖=1𝑘  are equal to 𝑝1. □ 

 
5.  Algorithms for Least Squares Estimates or Maximum Likelihood Estimates with 

Monotonic Constraints 
 

First, we propose a non-parametric search algorithm, with time complexity 𝑂(𝑘2), for finding the 

partition integers  0 = 𝑘0 < 𝑘1 < ⋯ < 𝑘𝑚 = 𝑘  defined by (2.6) and (2.7), and then calculate by 

(3.2) or (4.3) for the estimates {𝑝𝑖}𝑖=1𝑘  subject to (1.2).  
 

Algorithm 5.1 (Non-parametric). Set 𝑘0 = 0.  Assume that partition integers {𝑘ℎ}ℎ=1𝑖−1  have been 

found for an integer 𝑖 > 0, and that {𝑝𝑗}𝑗=1𝑘𝑖−1  have been calculated by (3.2) or (4.3).  
 

(a) Scan into the remaining indexes range  𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘 for a value 𝑗 = 𝑘𝑖 such that    
 

 

               𝑢(𝑘𝑖−1 + 1, 𝑗) = 𝑑𝑘𝑖−1+1𝑤𝑘𝑖−1+1+𝑑𝑘𝑖−1+2𝑤𝑘𝑖−1+2+⋯+𝑑𝑗𝑤𝑗𝑛𝑘𝑖−1+1𝑤𝑘𝑖−1+1+𝑛𝑘𝑖−1+2𝑤𝑘𝑖−1+2+⋯+𝑛𝑗𝑤𝑗 
 
 

            reaches its minimum in the range  𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘, and 𝑗 = 𝑘𝑖 is the largest index for  

            this minimum.  
 

(b) Calculate  𝑝𝑗 ,  𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖, by (3.2) or (4.3) as 𝑢(𝑘𝑖−1 + 1, 𝑘𝑖).  
 

Repeat steps (a) and (b) until there are no more remaining indexes to partition. 
 

For the optimization problems of (1.1) and (1.3), when general monotonic constraints are required 

(including strictly monotonic constraints), we propose the following parametric algorithm, which 

can be implemented by using SAS procedure PROC NLMIXED ([14]). 
 

Algorithm 5.2 (Parametric). For problem (1.1), parameterize 𝑝𝑖 by letting 𝑝1 = 𝑎1, and for 2≤𝑖 ≤ 𝑘, 
 

        𝑝𝑖 = 𝑎1 + (𝑏2 + ⋯ + 𝑏𝑗),   𝑏𝑖 = 𝑎𝑖2 + 𝜖𝑖 , 2 ≤ 𝑖 ≤ 𝑘                                 (5.1)                    
 

where {𝜖𝑖 ≥ 0}𝑖=1𝑘  are the given constants. Then 𝑝𝑖 − 𝑝𝑖−1 ≥ 𝜖𝑖. For problem (1.3), let 𝑏1 = 𝑎12,  
and 𝑏𝑖 = 𝑎𝑖2 + 𝜖 for 2 ≤ 𝑖 ≤ 𝑘, where 𝜖 ≥ 0. Parameterize 𝑝𝑖 by letting  
 

        𝑝𝑘+1−𝑖 = exp(−(𝑏1 + 𝑏2 + ⋯ + 𝑝𝑖)).                                                        (5.2)                    
 

Then 𝑝𝑖/𝑝𝑖−1 ≥ exp (𝜖). Plug the corresponding parameterization into (1.1) or (1.3) and perform 

the non-constrained mathematical programming to obtain the estimates {𝑎𝑖}𝑖=1𝑘 , hence {𝑝𝑖}𝑖=1𝑘  by 

(5.1) and (5.2). 

 
6. Applications 

6.1.  Isotonic regression 
 

Given real numbers {𝑟𝑖}𝑖=1𝑘 , the task of isotonic regression is to find {𝑝𝑖}𝑖=1𝑘  that minimize the 

weighted sum squares ∑ 𝑤𝑖(𝑟𝑖 − 𝑝𝑖)2𝑘𝑖=1 , where {𝑤𝑖}𝑖=1𝑘  are the given weights. When 𝑤𝑖 is 1 and 𝑟𝑖 takes value 0 or 1 for all 𝑖’s, it is known ([13]) that the results for isotonic regression coincide 
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with the maximum likelihood estimates subject to (1.2) for log-likelihood ∑ [𝑟𝑖 log(𝑝𝑖) +𝑘𝑖=1(1 − 𝑟𝑖)log (1 − 𝑝𝑖)]. 
 

A unique exact solution to the isotonic regression exists and can be found by a non-parametric 

algorithm called Pool Adjacent Violators (PAV) ([2]). The basic idea as described in [5] is the 

following: Starting with 𝑟1, we move to the right and stop at the first place where 𝑟𝑖 > 𝑟𝑖+1. Since 𝑟𝑖+1 violates the monotonic assumption, we pool 𝑟𝑖 and 𝑟𝑖+1 replacing both with their weighted 

average. Call this average 𝑟𝑖∗ = 𝑟𝑖+1∗ =(𝑤𝑖𝑟𝑖 + 𝑤𝑖+1𝑟𝑖+1)/(𝑤𝑖 + 𝑤𝑖+1).  We then move to the left 

to make sure that 𝑟𝑖−1 ≤ 𝑟𝑖∗- if not, we pool 𝑟𝑖−1 with 𝑟𝑖∗and 𝑟𝑖+1∗  replacing these three with their 

weighted average. We continue to the left until the monotonic requirement is satisfied, then 

proceed again to the right (see [2], [3], [5], [8]). This algorithm finds the exact solution via 

forward and backward averaging. Another parametric algorithm, called Active Set Method, 

approximates the solution using the Karush-Kuhn-Tucker (KKT) conditions for linearly 

constrained optimization ([3], [9]).  

 

The algorithm PAV repeatedly searches both backward and forward for violators and takes 

average whenever a violator is found. In contrast, Algorithm 5.1 determines explicitly the 

groups of consecutive indexes by a forward search for the partition integers. Average is to be 

taken over each of these groups. For Algorithm 5.2, the constrained optimization is transformed 

into a non-constrained mathematical programming, through a re-parameterization. No KKT 

conditions and active set method are used.      

 
6.2.  An empirical example: the fair risk scales over a rating system 

 

In this section, we show an example how the non-parametric search algorithm (Algorithm 4.1, 

labelled as “NPSM”) can be used for estimation of the default risk scales with monotonic 

constraints for a rating system. We use the following two benchmarks:   
    
EXP-CDF – The method proposed by Burgt ([17]). The rating level PD is estimated by 𝑝𝑖 =exp (𝑎 + 𝑏𝑥), where 𝑥 denotes, for a rating 𝑅𝑖, the adjusted sample cumulative distribution: 
 𝑥(𝑖) = 𝑛1+𝑛2+⋯+𝑛𝑖𝑛1+𝑛2+⋯+𝑛𝑘                                                                                       (6.1)  

 

where {𝑛𝑖}𝑖=1𝑘  are defined as in section 1. Instead of estimating parameters via cap ratio ([17]), we 

estimate parameters by maximizing the log likelihood (1.3). 
 

LGST-INVCDF – The method proposed by Tasche ([16]). The rating level PD is estimated by 𝑝𝑖 = 11+exp(𝑎+𝑏Φ−1(𝑥)) , where x  is as in (6.1), and Φ−1 is the inverse of the cumulative 

distribution for the standard normal distribution. Parameters are estimated by maximizing the log 

likelihood (1.3). 
 

The sample consists of the default and non-default frequencies for six non-default ratings 

(labelled as “RTG” in Table 1 below). Table 1 shows the number of defaults by rating (labelled as 

“D”) in the sample, the count by rating (labelled as “N”), and the default rate (labelled as “DFR”). 
The third row denotes the sample distribution (labelled as “Dist”). It is assumed that lower index 
ratings carry higher default risks. For the proposed method “NPSM” in table 1, we need to first 

reverse the indexes of ratings and then apply Algorithm 4.1. 
 

The quality of an estimation is measured by log-likelihood (labelled as “LL”, larger values are 
better), the sum squared error (labelled as “SSE” in the sense of (1.1), smaller values are better), 

the portfolio level count-weighted average of the estimates (labelled as “AVG”, closer to the 
sample portfolio default rate is better). 
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As shown in Table 1, the sample default rate is not monotonic between ratings 2 and 3. The 

proposed non-parametric algorithm (NPSM) simply takes the average. It gets the highest log-

likelihood, the lowest sum squared error, and its count-weighted average is the same as the 

sample portfolio default rate. While for the other two benchmarks, the sum squared error is 

higher. Both overestimate the risk for ratings 4, 5, and underestimate the risk for ratings 1, 2, 3 

and 6.    
      

        
 
 

6.3. Risk-supervised monotonic binning for univariate data 
 

Given a sample, let 𝑆𝑥 = {𝑥𝑖}𝑖=1𝑘  be the order set of all the distinct sample values of an 

explanatory variable 𝑥 ordered by 𝑥𝑖 < 𝑥𝑖+1. Denote by {𝑦𝑖𝑗}𝑗=1𝑛𝑖
the set of all the observed 𝑦-

values conditional on 𝑥 = 𝑥𝑖. Discretization of continuous attributes are usually required in 

machine learning processes ([7]).  Binning is also widely used in retail portfolio credit scoring 

([1], [4], [15]). A discretization or binning of a numerical variable 𝑥 consists of a list of partition 

numbers {𝑐𝑖}𝑖=1𝑀  and intervals {𝐼𝑖}𝑖=1𝑀 , where 
 

      −∞ = 𝑐0 < 𝑐1 < ⋯ < 𝑐𝑀−1 < 𝑐𝑀 = +∞,  
 

       𝐼1 = (−∞, 𝑐1], 𝐼2 =  (𝑐1, 𝑐2], … , 𝐼𝑀−1 = (𝑐𝑀−2, 𝑐𝑀−1], 𝐼𝑀 =  (𝑐𝑀−1, +∞),       
 

where each intersection 𝐵𝑖 = 𝑆 ∩ 𝐼𝑖 is non-empty for all 1 ≤ 𝑖 ≤ 𝑀. Let 𝑁𝑖 denote the number of 

observations in 𝐵𝑖 and 𝑏𝑖 = 1𝑁𝑖 ∑ ∑ 𝑦ℎ𝑗𝑛ℎ𝑗=1𝑥ℎ∈𝐵𝑖 , the sample average of 𝑦 over 𝐵𝑖 .  A monotonic 

binning for the explanatory variable 𝑥 is a binning where {𝑏𝑖}𝑖=1𝑀  satisfy the monotonic condition 

(6.2) or (6.3) below: 
 

          𝑏1 < 𝑏2 < ⋯ < 𝑏𝑀 ,                                                                                              (6.2) 

          𝑏1 > 𝑏2 > ⋯ > 𝑏𝑀.                                                                                              (6.3) 
   

The quality of a binning can be measured by its sum squared error (smaller values are better), 

which is defined as: 
 
 

          𝑆𝑆𝐸 = ∑ ∑ ∑ (𝑦𝑗ℎ − 𝑏𝑖)2𝑛𝑖ℎ=1𝑥𝑗∈𝐵𝑖𝑀𝑖=1                

                  = ∑ ∑ ∑ (𝑦𝑗ℎ − 𝑟𝑗)2𝑛𝑖ℎ=1𝑥𝑗∈𝐵𝑖𝑀𝑖=1 + ∑ ∑ 𝑛𝑖(𝑟𝑗 − 𝑏𝑖)2𝑥𝑗∈𝐵𝑖𝑀𝑖=1 = 𝑆𝑆𝐸𝐴 + 𝑆𝑆𝐸𝐵 
 

where 𝑆𝑆𝐸𝐴 = ∑ ∑ ∑ (𝑦𝑗ℎ − 𝑟𝑗)2,𝑛𝑖ℎ=1𝑥𝑗∈𝐵𝑖𝑀𝑖=1  and 
 

          𝑆𝑆𝐸𝐵 = ∑ ∑ 𝑛𝑖(𝑟𝑗 − 𝑏𝑖)2.𝑥𝑗∈𝐵𝑖𝑀𝑖=1                                                                       (6.4) 
 

Because 𝑆𝑆𝐸𝐴 does not depend on the binning, the minimization of the sum squared error 𝑆𝑆𝐸 by 

binning depends only on the minimization of 𝑆𝑆𝐸𝐵. 
 

Table 1. Smoothing rating level default rate

RTG 1 2 3 4 5 6 LL AVG SSE

D 1 11 22 124 62 170

N 5529 11566 29765 52875 4846 4318

Dist 5% 11% 27% 49% 4% 4%

DFR 0.0173% 0.0993% 0.0739% 0.2352% 1.2833% 3.9442% -2208.01 0.003594 0

NPSM 0.0173% 0.0810% 0.0810% 0.2352% 1.2833% 3.9442% -2208.33 0.003594 0.00053

EXP-CDF 0.0061% 0.0086% 0.0294% 0.3431% 1.9081% 2.5057% -2264.46 0.003601 1.15966

LGST-INVCDF 0.0104% 0.0188% 0.0585% 0.2795% 1.5457% 3.4388% -2223.17 0.003594 0.16221
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When 𝑦 is binary or takes values in the range 0 ≤ 𝑦 ≤ 1, the quality of the binning can also be 

measured by the log-likelihood (Bernoulli, or quasi-Bernoulli, or binomial) (high values are 

better) as 
 

            𝐿𝐿𝐵 = ∑ ∑ [𝑑𝑗 log(𝑏𝑖) + (𝑛𝑗 − 𝑑𝑗) log(1 − 𝑏𝑖)]𝑥𝑗∈𝐵𝑖 .𝑀𝑖=1                                 (6.5) 
 

With the estimates given by Propositions 3.1 and 4.1 and in absence of the bin size requirements, 

a preliminary but the best monotonic binning, in the sense of maximum likelihood or minimum 

sum square error subject to (6.2), can be obtained as:  
 𝐼1 = (−∞, 𝑥𝑘1], 𝐼2 = (𝑥𝑘1 , 𝑥𝑘2], … , 𝐼𝑚−1 = (𝑥𝑘𝑚−2 , 𝑥𝑘𝑚−1], 𝐼𝑚 = (𝑥𝑘𝑚−1 , +∞)    
 

 

where {𝑘𝑖}𝑖=0𝑚  are the partition integers by (2.6) and (2.7). 

 

Conclusions. This paper shows that the maximum Bernoulli likelihood (or quasi-Bernoulli 

likelihood) estimates with monotonic constraints are each given by the average risk observed over 

some consecutive indexes. These estimates coincide with the least squares estimates with the 

same monotonic constraints. The proposed non-parametric algorithm provides a resolution to flip-

over credit risk, and a tool to determine the fair risk scales over a rating system.  
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