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Abstract—Monotonic estimation for the survival 

probability of a loan in a risk-rated portfolio is based on 

the observation arising, for example, from loan pricing 

that a loan with a lower credit risk rating is more likely to 

survive than a loan with a higher credit risk rating, given 

the same additional risk covariates. Two probit-type 

discrete-time hazard rate models that generate monotonic 

survival probabilities are proposed in this paper. The first 

model calculates the discrete-time hazard rate conditional 

on systematic risk factors. As for the Cox proportion 

hazard rate model, the model formulates the discrete-time 

hazard rate by including a baseline component. This 

baseline component can be estimated outside the model in 

the absence of model covariates using the long-run average 

discrete-time hazard rate. This results in a significant 

reduction in the number of parameters to be otherwise 

estimated inside the model. The second model is a general 

form model where loan level factors can be included. 

Parameter estimation algorithms are also proposed. The 

models and algorithms proposed in this paper can be used 

for loan pricing, stress testing, expected credit loss 

estimation, and modeling of the probability of default term 

structure. 

 
Index terms—loan pricing, survival probability, Cox 

proportion hazard rate model, baseline hazard rate, 

forward probability of default, probability of default term 

structure 

 

 

I. INTRODUCTION 

 

Monotonic learning is a learning process based on the 

prior knowledge of the monotone relationship between 

input and output. For example, we expect the loss for a 

portfolio to be higher in an economic downturn, and we 
also expect a loan with a lower credit risk rating to 

survive more likely than a loan with a higher credit risk 

rating, given the same additional risk covariates. 

Examples of monotonic learning include isotonic 

regression [1, 2], classification trees [3], rule learning 

[4], binning [5], and deep lattice network [6]. 

Let {𝑅𝑖}𝑖=1𝐺+1 denote a rating system for a portfolio 

ranking the credit risk (likelihood to default) of loans. 

Assume that higher index ratings carry a higher default 

risk; that is, loans with a rating 𝑅𝑖 are less likely to 

default than loans with a rating 𝑅𝑖+1, given the same 

additional risk covariates. Rating 𝑅𝐺+1 denotes the 

worst rating (i.e., the default rating). 

Let 𝑥𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑚𝑗 ) denote a vector of 

covariates for the risk profile of a loan in the period (𝑡𝑗−1, 𝑡𝑗]. For a loan with an initial rating 𝑅𝑖 at the 

initial observation time 𝑡0, let 𝑝𝑖𝑘 = 𝑝𝑖𝑘(𝑥𝑘) denote the 

forward probability of default (PD) in the period (𝑡𝑘−1, 𝑡𝑘] conditional on 𝑥𝑘 , given that the loan survives 

the period [𝑡0, 𝑡𝑘−1]. Forward PD is also called discrete-

time hazard rate [7]. Hereafter, we will use the terms 

“forward PD” and “discrete-time hazard rate” 
interchangeably. 

Let 𝑠𝑖𝑘  denote the probability that the loan survives 

the period (𝑡0, 𝑡𝑘], given the multivariate information 

time series 𝐻𝑘 = {𝑥𝑗 , 1 ≤ 𝑗 ≤ 𝑘}, and let 𝑐𝑝𝑖 𝑘 denote 

the cumulative PD over the period (𝑡0, 𝑡𝑘] given 𝐻𝑘 . 
The survival probability is said to be monotonic over 

the rating system if (1.1) holds for each period index 𝑘 ≥ 1, 

 

   𝑠1𝑘 ≥ 𝑠2𝑘 ≥ ⋯ ≥ 𝑠𝐺𝑘,              (1.1)   
 

given the same 𝐻𝑘 between ratings. That is, a loan with 

a lower index rating is more likely to survive, given the 

same time series 𝐻𝑘. This monotonicity is a 

fundamental requirement for a PD term structure model. 

Under the assumption that the forward PD 𝑝𝑖𝑗(𝑥𝑗), 

given the covariate vector 𝑥𝑗 , is the same as the forward 

PD 𝑝𝑖𝑗  conditional on the time series 𝐻𝑗, the marginal 

PD for the period (𝑡𝑘−1, 𝑡𝑘] given 𝐻𝑘, for a loan with an 

initial rating 𝑅𝑖 at the initial observation time 𝑡0, is 

equal to (1 − 𝑐𝑝𝑖 𝑘−1)𝑝𝑖𝑘 . Therefore, we have 

 

  𝑐𝑝𝑖 𝑘 = 𝑐𝑝𝑖 𝑘−1 + (1 − 𝑐𝑝𝑖 𝑘−1)𝑝𝑖𝑘  

 ⟹ 1 − 𝑐𝑝𝑖 𝑘 = (1 − 𝑐𝑝𝑖 𝑘−1)(1 − 𝑝𝑖𝑘).   (1.2) 
 

Then, by induction on the time index 𝑘 using the 

relation 𝑠𝑖𝑘 = 1 − 𝑐𝑝𝑖𝑘 , we have the following equation 

[8]: 

 

 𝑠𝑖𝑘 = (1 − 𝑝𝑖1)(1 − 𝑝𝑖2) … (1 − 𝑝𝑖𝑘).      (1.3)  

  
This means that (1.1) holds whenever (1.4) holds for 

forward PD for each period index 𝑘 ≥ 1: 
 

   𝑝1𝑘 ≤ 𝑝2𝑘 ≤ ⋯ ≤ 𝑝𝐺𝑘 .                       (1.4) 
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One of the most important hazard rate models is the 

Cox proportion hazard rate model [9], which is 

implemented by SAS procedure PROC PHREG [10]. 

One can use this SAS procedure, with rating as a class 

variable, to estimate forward PD between ratings, hence 
the survival probability by (1.3). Nevertheless, the 

baseline component of this model is in this procedure 

estimated either by the Kaplan–Meier method or by the 

Breslow method [11]. Monotonicity (1.4) is generally 

not guaranteed, without additional monotonic 

constraints being imposed for the baseline component. 

Main Results. In this paper, we propose two probit-

type discrete-time hazard rate models. Both models 

generate monotonic discrete-time hazard rates in the 

sense of (1.4). The first model (i.e., model (3.1) in 

Section III) estimates the discrete-time hazard rate 

conditional on systematic risk factors, with default 
points as the baseline component, whereas the second 

model (i.e., model (3.4) in Section III) is a general form 

model where loan level factors can be included. 

Monotonicity (1.4) is achieved by appropriate 

monotonic constraints being imposed for the baseline 

component for the first model and for the intercepts for 

the second model. Algorithms for parameter estimation 

are proposed. 

The advantage of the first model is that the baseline 

hazard rate component can be estimated outside the 

model using the long-run average discrete-time hazard 
rate, in the absence of model covariates. This leads to a 

significant reduction in the number of parameters to be 

otherwise estimated inside the model. 

The key ideas for the proposed algorithms are based 

on the reparameterization of the baseline component for 

the first model (see Algorithm 5.1) and the intercept 

component for the second model (see Algorithm 5.4) so 

that the required monotonic constraints for these 

components [i.e., (3.2) and (3.5)] are automatically 

satisfied. This transforms the original constrained 

optimization into a simpler tractable mathematical 

programming problem. 
This paper is organized as follows. In Section II, we 

briefly review the hazard rate models. Two probit-type 

discrete-time hazard rate models are proposed in 

Section III. Log-likelihood functions are shown in 

Section IV. Model parameter estimation algorithms 

based on the maximum likelihood are proposed in 

Section V. An empirical example is provided in Section 

VI, where we train a discrete-time hazard rate model for 

a wholesale portfolio using the first proposed model. 
 

 

 

 

 

 

 

II. A BRIEF REVIEW OF THE DISCRETE-TIME 

HAZARD RATE MODELS 

 
In [7], Allison proposed a discrete-time hazard rate 

model: 

 

 𝑝𝑖𝑘(𝑥) = 𝐹(𝑏𝑖𝑘 + 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ⋯ + 𝑎𝑖𝑚𝑥𝑚),    
 

where 𝐹 denotes the cumulative density function for 

logistic distribution. The intercept is time-dependent, 

whereas variable coefficients are time-independent and 

are differentiated between ratings. One can use the SAS 

logistic regression procedure [10], with rating and term 
number as two class variables, to train this model for a 

given sample. However, the survival probability 

generated by this model is not necessarily monotonic, 

without additional monotonic constraints (e.g., (3.5) in 

Section III) being imposed for the intercepts. 

With the Cox proportion hazard rate model [9], the 

continuous-time hazard rate is estimated by 

 

  ℎ(𝑡) = ℎ0(𝑡) exp(𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑚𝑥𝑚),   
 

where covariate coefficients can be estimated robustly 
using the partial likelihood method in the absence of ℎ0(𝑡) (i.e., even when ℎ0(𝑡) is unspecified). One can 

use the SAS hazard rate regression procedure PROC 

PHREG [10], with rating as a class variable, to estimate 

the baseline and covariate coefficients. With this 

procedure, the baseline is estimated by either the 

Kaplan–Meier method or the Breslow method [11]. 

Monotonicity (1.4) is not necessarily satisfied, without 

additional monotonic constraints being imposed for the 

baseline component. 
A discrete-time hazard rate model derived under the 

Merton model framework was proposed in [8] when 

scenarios are given by systematic risk factors (common 

to all loans), as described below. 

For a loan with a nondefault risk rating 𝑅𝑖 at initial 

time 𝑡0, we assume that the loan has survived the period [𝑡0, 𝑡𝑘−1], and we consider its forward PD in the period (𝑡𝑘−1, 𝑡𝑘]. Assume that the default risk for the loan in 

the period (𝑡𝑘−1, 𝑡𝑘] is driven by a latent normalized 

random variable 𝑧𝑖𝑘(𝑡) that splits into two parts: 
 

  𝑧𝑖𝑘(𝑡) = 𝑠(𝑡)√𝜌𝑖𝑘 + 𝜀𝑖𝑘(𝑡)√1 − 𝜌𝑖𝑘,      (2.1) 

 

where 0 < 𝜌𝑖𝑘 < 1 and 𝑠(𝑡)~𝑁(0, 1) represents the 

systematic risk (time-varying, common to all ratings) at 

time 𝑡, whereas 𝜀𝑖𝑘(𝑡)~𝑁(0, 1) is the idiosyncratic risk, 

independent of 𝑠(𝑡). 
By Merton’s model [12, 13], there exists a threshold 

value 𝑐𝑖𝑘 , called default point, for initial rating  𝑅𝑖 , such 

that the loan will default in the 𝑘th period (𝑡𝑘−1, 𝑡𝑘] 
when 𝑧𝑖𝑘(𝑡) falls below the threshold value 𝑐𝑖𝑘 . Here we 

assume that loans within the same initial rating are risk-



3 

 

homogeneous in the sense that the default point 𝑐𝑖𝑘  in 

the 𝑘th period is the same for all these loans. 

For simplicity, we suppress the time label 𝑡 from 𝑧𝑖𝑘(𝑡), 𝑠(𝑡), and 𝜀𝑖𝑘(𝑡) and write them as 𝑧𝑖𝑘 , 𝑠, and 𝜀𝑖𝑘, 

respectively. Denote by 𝐸𝑒[Φ(𝑎 + 𝑏𝑒)] the expected 

value of Φ(𝑎 + 𝑏𝑒) with respect to a random variable 𝑒. 
The following lemma is important. 

 

Lemma 2.1. ([14]) 𝐸𝑒[Φ(𝑎 + 𝑏𝑒)] = Φ(𝑎/√1 + 𝑏2 ), 
where 𝑒~𝑁(0,1). □ 
 

For a loan with an initial risk rating 𝑅𝑖 at time 𝑡0, let 𝑝𝑖𝑘(𝑠) denote the 𝑘th forward PD given the systematic 

risk 𝑠 as a latent variable in the period (𝑡𝑘−1, 𝑡𝑘]. By 

applying Lemma 2.1 to (2.1), we have the following 

equation [8]: 

 

  𝑝𝑖𝑘(𝑠) = Φ(𝑐𝑖𝑘√1 + 𝑟𝑖𝑘2 − 𝑟𝑖𝑘𝑠),          (2.2)  

 

where  𝑟𝑖𝑘 = √𝜌𝑖𝑘/√1 − 𝜌𝑖𝑘. The default point 𝑐𝑖𝑘  

satisfies the equation 𝐸𝑠[𝑝𝑖𝑘(𝑠)] = Φ(𝑐𝑖𝑘), by Lemma 

2.1. Thus, 𝑐𝑖𝑘  can be estimated by 𝑐𝑖𝑘 = Φ−1(𝑝𝑖𝑘0 ), 
where 𝑝𝑖𝑘0  denotes the long-run average of 𝑝𝑖𝑘(𝑠). 

In addition, for simplicity, we write a macroeconomic 

scenario 𝑥𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑚𝑗 ) for the period (𝑡𝑗−1, 𝑡𝑗] as 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚). Let 𝑐(𝑥) = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ +𝑎𝑚𝑥𝑚 , and 

 

  𝑐𝑖(𝑥) = (𝑐(𝑥) − 𝑢)/𝑣,                          (2.3)                                                                                   

 

where u  and v  denote, respectively, the mean and 

standard deviation of the linear combination 𝑐(𝑥). Assume that the systematic risk factor 𝑠 splits as 

 

  𝑠 = −𝜆𝑐𝑖(𝑥) − 𝑒√1 − 𝜆2,               (2.4) 

 

where 𝑒~𝑁(0,1), 0 < 𝜆 < 1. Then, 𝑝𝑖𝑘(𝑠) =Φ{𝑐𝑖𝑘√1 + 𝑟𝑖𝑘2  + 𝑟𝑖𝑘[𝜆𝑐𝑖(𝑥) + √1 − 𝜆2𝑒]}. Let 

 𝑔𝑖𝑘 = 𝑟𝑖𝑘𝜆/√1 + 𝑟𝑖𝑘2 (1 − 𝜆2). By Lemma 2.1 again, 

we have the following equation, assuming that e is 

independent of 𝑐𝑖(𝑥) [8]: 
 

             𝑝𝑖𝑘(𝑥) = 𝐸𝑒[𝑝𝑖𝑘(𝑠)|𝑥] 
  = Φ[𝑐𝑖𝑘√1 + 𝑔𝑖𝑘2  + 𝑔𝑖𝑘𝑐𝑖(𝑥)].      (2.5)  

 

We write in the remaining of the paper 𝑔𝑖𝑘 by 𝑟𝑖𝑘 . Then, 
(2.5) becomes 

 

  𝑝𝑖𝑘(𝑥) = Φ[𝑐𝑖𝑘√1 + 𝑟𝑖𝑘2  + 𝑟𝑖𝑘𝑐𝑖(𝑥)].       (2.6)  

 

Model (2.6) is the hazard rate model we proposed in 

[8]. This model formulates forward PD as being given 

by three risk components: the index score 𝑐𝑖(𝑥) 

approximating the systematic risk for the portfolio, the 

baseline long-run forward PD (via the default point 𝑐𝑖𝑘), 
and the sensitivity parameter 𝑟𝑖𝑘  that measures the 

responsiveness for a rating in responding to the changes 

of the systematic risk index 𝑐𝑖(𝑥). 

One advantage of model (2.6) is that the baseline 

component {Φ(𝑐𝑖𝑘)} can be estimated outside the model 

using the long-run forward PDs, leading to a significant 

reduction in the number of parameters to be otherwise 

estimated inside the model. However, monotonicity 

(1.4) is not necessarily guaranteed, without additional 

monotonic constraints (see (3.2) in Section III) being 

imposed for the baseline component. 
 

 
III. THE PROPOSED DISCRETE-TIME HAZARD 

RATE MODEL 

 

A. The Proposed Forward PD Models with 

Systematic Risk Covariates Only 
 

In order to ensure that lower credit risk ratings are 

more likely to survive, given the same additional risk 

covariates, the following two conditions, (a) and (b), are 

imposed to model (2.6), for each term index k. 

 

(a) The sensitivity parameter 𝑟𝑖𝑘  is constant 

between ratings. This is equivalent to the 

assumption that 𝜌𝑖𝑘 in (2.1) is constant across 

ratings. Then, (2.6) becomes 

 

                 𝑝𝑖𝑘(𝑥) = Φ[𝑐𝑖𝑘√1 + 𝑟𝑘2  + 𝑟𝑘𝑐𝑖(𝑥)].    (3.1) 

  

(b) 𝑐1𝑘 ≤ 𝑐2𝑘 ≤ ⋯ ≤ 𝑐𝐺 𝑘 .  (3.2)  
 

 

B. The Proposed General Forward PD Models with 

Loan-Specific Covariates 

 

For a loan with an initial rating 𝑅𝑖 at initial time 𝑡0, 
let {𝑥1, 𝑥2, … , 𝑥𝑚} denote the macroeconomic variables, 

which are common to all ratings, and let {𝑥𝑚+1, 𝑥𝑚+2, … , 𝑥𝑚+𝑝} denote the loan-specific 

variables. Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑥𝑚+1, … , 𝑥𝑚+𝑝). We 

assume that there exists a latent variable 𝑦𝑖𝑘 of the form 

 𝑦𝑖𝑘 = −𝑏𝑖𝑘 − 𝑟𝑘𝑐(𝑥) + 𝜀, 
 

such that a loan with an initial rating 𝑅𝑖 will default in 

the period (𝑡𝑘−1, 𝑡𝑘] if 𝑦𝑖𝑘 < 0, where 𝜀~𝑁(0,1), and 𝑐(𝑥) = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑚+𝑝𝑥𝑚+𝑝 subject to 

 

  𝑎12 + 𝑎22 + ⋯ + 𝑎𝑚+𝑝2 = 1.                (3.3)  
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Constraint (3.3) is imposed to prevent disturbances in 

parameter estimation caused by free switches for a 

scalar between the coefficient vector (𝑎1, 𝑎2, … , 𝑎𝑚) 

and the sensitivity parameters {𝑟𝑘}.We, thus, have 
 

  𝑝𝑖𝑘(𝑥) = 𝑃(𝑦𝑖𝑘 < 0 |𝑥) = 𝑃[𝜀 < 𝑏𝑖𝑘 + 𝑟𝑘𝑐(𝑥)].   ⟹ 𝑝𝑖𝑘(𝑥) = Φ[𝑏𝑖𝑘 + 𝑟𝑘𝑐(𝑥)].                              (3.4)  

 

Forward PDs generated by (3.4) satisfy (1.4) when the 

constraints below are imposed for each term index k: 

 

  𝑏1𝑘 ≤ 𝑏2𝑘 ≤ ⋯ ≤ 𝑏𝐺𝑘 .                       (3.5)  
 

  
IV. THE LOG-LIKELIHOOD FUNCTIONS 
 

 A. The Log-Likelihood for Model (3.1) Subject to 

(3.2) with Macroeconomic Covariates Only 

 

Let 𝑛𝑖𝑘 denote the number of loans that survive the 

period (𝑡0 , 𝑡𝑘−1] with an initial risk rating 𝑅𝑖 at initial 

time  𝑡0, and let 𝑑𝑖𝑘  denote the number of defaulters of 

these 𝑛𝑖𝑘 loans in the period (𝑡𝑘−1 , 𝑡𝑘]. For models 

including only macroeconomic variables, such as model 

(3.1), the log-likelihood for the 𝑘th forward term is 

 

  𝐹𝐿𝑖,𝑘 = ∑  {(𝑛𝑖𝑘 − 𝑑𝑖𝑘)log[1 − 𝑝𝑖𝑘(𝑥)] +𝑡𝑘   𝑑𝑖𝑘 log ([𝑝𝑖𝑘(𝑥)]},  (4.1)  

 

with (𝑡𝑘−1 , 𝑡𝑘] sliding through the sample time window. 

Here, we assume that the term default count 𝑑𝑖𝑘  follows 

a binomial distribution given the systematic risk factors 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚). Expression (4.1) holds, up to a 

constant given by the logarithms of some binomial 

coefficients. (4.1) is essentially the Bernoulli log-

likelihood. We call 𝐹𝐿𝑖,𝑘  in (4.1) the forward log-

likelihood. 

 

 B. The Log-Likelihood for Model (3.4) Subject to 

(3.5) with Loan-Specific Covariates 

 

Similarly, let 𝑛𝑖𝑘 denote the number of loans in the 

portfolio that survive the interval [𝑡0 , 𝑡𝑘−1] with an 

initial rating 𝑅𝑖 . Let 𝑦𝑖𝑘𝑗 be an indicator, for the 𝑗th loan 

with an initial risk rating 𝑅𝑖 , with value 1 if the loan 

defaults in the 𝑘th forward period (𝑡𝑘−1 , 𝑡𝑘] and zero 

otherwise. For models with loan-specific covariates, 

such as model (3.4), the log-likelihood for the 𝑘th 

forward period is given by 

   𝐹𝐿𝑖,𝑘 = ∑ ∑  {(1 − 𝑦𝑖𝑘𝑗)log[1 − 𝑝𝑖𝑘(𝑥)] +𝑗𝑡𝑘   𝑦𝑖𝑘𝑗log ([𝑝𝑖𝑘(𝑥)]},                   (4.2) 

 

with (𝑡𝑘−1 , 𝑡𝑘] sliding through the sample time window. 

We call 𝐹𝐿𝑖,𝑘  in (4.2) the forward log-likelihood at the 

loan level. 

Let 𝐿𝑖(ℎ, ℎ + 𝑘) denote the log-likelihood for loans 

with initial rating  𝑅𝑖 at 𝑡0 for the combined period [𝑡ℎ , 𝑡𝑘+ℎ], given that the loans survive the period [𝑡0 , 𝑡ℎ−1]. Here, the period [𝑡ℎ , 𝑡𝑘+ℎ] slides through the 

sample time window. Similarly, let 𝐿(ℎ, ℎ + 𝑘) be the 

log-likelihood for the period [𝑡ℎ , 𝑡𝑘+ℎ] for all loans in 

the portfolio with a nondefault initial risk rating at time 𝑡0, given that the loans survive the period [𝑡0 , 𝑡ℎ−1], 
where [𝑡ℎ , 𝑡𝑘+ℎ] slides through the sample time 

window. 

The following equation holds under the assumption 

that there is no withdrawal for the sample [8]: 

 
 𝐿𝑖(ℎ, ℎ + 𝑘) = 𝐹𝐿𝑖,ℎ+1 + 𝐹𝐿𝑖,ℎ+2 + ⋯ + 𝐹𝐿𝑖,ℎ+𝑘 . (4.3)  

 

  
V. ALGORITHMS FOR PARAMETER ESTIMATION 

BY MAXIMUM LIKELIHOOD 

 

 A. Algorithms for Model (3.1) Subject to (3.2) with 

Macroeconomic Covariates Only 

 

Estimating Default Points {𝐜𝐢𝐤} 𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 (𝟑. 𝟐). 
Given the sample, the realized default rate in period (𝑡𝑘−1 , 𝑡𝑘] for loans with an initial risk rating is 𝑟𝑖𝑘 = 𝑑𝑖𝑘/𝑛𝑖𝑘. We estimate {𝑐𝑖𝑘} subject to (3.2) by 

minimizing, for each term number 𝑘, the sum squares 

error below: 

   𝑆𝑆𝐸𝑘 =  ∑ ∑ 𝑛𝑖𝑘[(𝑟𝑖𝑘 −𝐺𝑖=1𝑡𝑘 Φ(𝑐𝑖𝑘)]2,        (5.1)  

 

with (𝑡𝑘−1 , 𝑡𝑘] sliding through the sample time window. 

 
Algorithm 5.1. (Monotonic estimation for default 

points). For each term number 𝑘, do the following: 

 

(a) Parameterize 𝑐𝑖𝑘  as 𝑐𝑖𝑘 = (𝛼1 + 𝛼2 + ⋯ + 𝛼𝑖), 

where 𝛼𝑖 ≥ 0 for 2 ≤ 𝑖 ≤ 𝐺. With this 

parametrization, {𝑐𝑖𝑘} satisfies (3.2). 

(b) Plug in Φ(𝑐𝑖𝑘) and minimize (5.1) to obtain the 

estimates for {𝛼𝑖}𝑖=1𝐺  and, thus, the estimates for {𝑐𝑖𝑘}. 

 

This algorithm can be implemented as the monotonic 

estimation algorithms proposed in [15] using, for 

example, the SAS procedure PROC NLMIXED [16]. 

 

The Variable Covariance Matrix. Given a list of 

macroeconomic variables {𝑥1, 𝑥2, … , 𝑥𝑚}, to be included 

in the models, calculate the corresponding sample 

covariance matrix. Let (𝑣𝑖𝑗) denote this covariance 

matrix. 
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Initial Parameter Values. Initially, the values for all 

sensitivity parameters {𝑟𝑘} are set to 1. For 

macroeconomic coefficients {𝑎𝑗}, let 𝑝𝑘(𝐷 |𝑥) denote 

the conditional forward PD for a loan in the 𝑘th forward 

period (𝑡𝑘−1, 𝑡𝑘] given x. Fit a simple model of the form 

below: 

 

 𝑝𝑘(𝐷 |𝑥) = Φ(𝑑𝑘 + 𝑎1 𝑥1 + 𝑎2𝑥2 + ⋯ + 

  𝑎𝑚𝑥𝑚),                                      (5.2)  

 

targeting the default event for the portfolio in the 𝑘th 

period (𝑡𝑘−1 , 𝑡𝑘] for some consecutive terms (e.g., 1 ≤𝑘 ≤ 4). This model can be fitted similarly by a simple 

logistic regression as proposed by Allison in [7] (here, 

with probit as the link function), using the SAS logistic 

regression procedure, with term number 𝑘 as a class 

variable. When this is done, rescale each 𝑎𝑗  by 1/𝑣, 
where 𝑣 is the standard deviation of 𝑎1 𝑥1 + 𝑎2𝑥2 +⋯ + 𝑎𝑚𝑥𝑚, calculated as 

 

  𝑣 = √∑ ∑ 𝑎𝑖𝑎𝑗𝑣𝑖𝑗𝑗𝑖 ,                    (5.3)  

 

where (𝑣𝑖𝑗) is the variable covariance matrix. 

 
Algorithm 5.2 (Estimating parameters in model (3.1) 

other than default points). Assume that the sample mean 

for each macroeconomic variable has been removed 

(i.e., all macroeconomic variables have sample mean 

zero). Given the default points {𝑐𝑖𝑘} satisfying (3.2) and 

the initial values for {𝑟𝑘} and {𝑎𝑗}, do the following. 

 

1a. Given {𝑟𝑘}, fit for {𝑎𝑗} by maximizing the pooled 

log-likelihood below at the portfolio level: 

 

  𝐿𝐿 = ∑ ∑ 𝐹𝐿𝑖,𝑘𝑘𝐺𝑖=1 ,                             (5.4)  

 

where 𝐹𝐿𝑖,𝑘 is as (4.1), and 𝑝𝑖𝑘(𝑥) is given by (3.1), 

that is, 

 

                 𝑝𝑖𝑘(𝑥) = Φ[𝑐𝑖𝑘√1 + 𝑟𝑘2 + 𝑟𝑘𝑐𝑖(𝑥)].      (5.5) 

  
We will perform an unconstrained search for the 

new values for {𝑎𝑗} using their current values. 

Before the search, the score 𝑐(𝑥) (i.e.,., 𝑎1 𝑥1 +𝑎2𝑥2 + ⋯ + 𝑎𝑚𝑥𝑚), with the current values for {𝑎𝑗 }, 
is normalized. 𝑐(𝑥) has standard deviation 1. For 

any new set of values for {𝑎𝑗}, the standard deviation 

for the new score 𝑐(𝑥) is given by 𝑣 in (5.3). For 

this new score 𝑐(𝑥), we have 
 

  𝑟𝑘𝑐(𝑥) = (𝑟𝑘𝑣)[𝑐(𝑥)𝑣 ] = (𝑟𝑘𝑣)𝑐𝑖(𝑥). 

 

Here, we use the relationship 𝑐𝑖(𝑥) = 𝑐(𝑥)/𝑣 (as 

the mean of 𝑐(𝑥) is zero). This means that, under 

model (3.1), the sensitivity parameter 𝑟𝑘  is scaled 

up by 𝑣 in response to the new set values of {𝑎𝑗}; 

that is, 𝑝𝑖𝑘(𝑥) in (5.5) becomes 

 

              𝑝𝑖𝑘(𝑥) = Φ[𝑐𝑖𝑘√1 + (𝑟𝑘𝑣)2 + (𝑟𝑘𝑣)𝑐𝑖(𝑥)]  
                          = Φ[𝑐𝑖𝑘√1 + (𝑟𝑘𝑣)2 + 𝑟𝑘𝑐(𝑥)]. (5.6) 

 

Estimate {𝑎𝑗 } by maximizing (5.4) with 𝑝𝑖𝑘(𝑥) 

being given by (5.6) and 𝑣 being given by (5.3). 

When this is done, rescale {𝑎𝑗} by scalar 1/𝑣 and 

rescale {𝑟𝑘} by scalar 𝑣 accordingly. Note that 

this rescaling does not change the current value 

of 𝑝𝑖𝑘(𝑥). 
 

1b. Given {𝑎𝑗}, fit for {𝑟𝑘} by maximizing the pooled 

log-likelihood (5.4) at the portfolio level. 

 

      1c. Repeat steps 1a and 1b until convergence is 

reached. 

 

Remark 5.3. In the simplest case when the sensitivity 

parameter 𝑟𝑘 is assumed to be the same for all forward 

term numbers 𝑘′𝑠, steps 1a, 1b, and 1c can be combined 

(i.e., run 1a to get {𝑎𝑗} and 𝑣). Then, 𝑣 is the value of 

the unique sensitivity parameter. Actually, model (3.1) 

in this case reduces to  

   𝑝𝑖𝑘(𝑥) = Φ[𝑐𝑖𝑘√1 + 𝑣2 + (𝑎1 𝑥1 + 𝑎2𝑥2 + ⋯ +  𝑎𝑚𝑥𝑚)]. (5.7) 

  
There is no need for an independent sensitivity 

parameter and no need for step 1c for the iteration.  

This algorithm differs from the algorithm proposed in 

[8], for fitting {𝑎𝑗} and {𝑟𝑘} in model (5.5). The 

algorithm in [8] fits the macroeconomic coefficients {𝑎𝑗} separately by a separate model, whereas Algorithm 

5.2 simply fits both {𝑎𝑗} and {𝑟𝑘} in the same model 

(5.6).  

 

B. Algorithms for Model (3.4) Subject to (3.5) with 

Loan-Specific Covariates 

 

Initial Values for Variable Coefficients {𝒂𝒋}. Let 𝑝𝑘(𝐷|𝑥) denote the conditional forward PD for a loan 

in the portfolio for the 𝑘th forward period (𝑡𝑘−1, 𝑡𝑘], 
given 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚+𝑝). Fit a simple model by 

logistic regression with term number 𝑘 as a class 

variable (e.g. for 1 ≤ 𝑘 ≤ 4): 
 

  𝑝𝑘(𝐷 |𝑥) = Φ(𝑑𝑘 + 𝑎1 𝑥1 + 𝑎2𝑥2 + ⋯ +  𝑎𝑚+𝑝𝑥𝑚+𝑝),                        (5.8) 
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targeting the default event for the portfolio in the 𝑘th 

forward period (𝑡𝑘−1 , 𝑡𝑘]. When this is done, rescale {𝑎𝑗} according to (3.3) by scalar  

   1/√𝑎12 + 𝑎22 + ⋯ + 𝑎𝑚+𝑝2 .  
 

Initial Values for Sensitivity Parameters {𝒓𝒌}. Given 

the initial values for {𝑎𝑗}, form 𝑐(𝑥) = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯ + 𝑎𝑚+𝑝𝑥𝑚+𝑝 . Use 𝑐(𝑥) as the single variable to run 

for each forward term 𝑘 a logistic regression model with 

the initial rating index as a class variable: 

 

  𝑝𝑖(𝐷 |𝑥) = Φ[𝛼𝑖𝑘 + 𝛽𝑘𝑐(𝑥)],               (5.9) 

 

targeting the default event in this forward term period 

for loans with an initial rating 𝑅𝑖. Set the initial values 

for 𝑟𝑘 by 𝛽𝑘 . 

 

Initial Values for Intercepts {𝒃𝒊𝒌). Assume that the 

sample mean for each covariate has been removed. 

Initialize 𝑏𝑖𝑘 as 𝑐𝑖𝑘√1 + (𝑟𝑘𝑣)2, where {𝑐𝑖𝑘} are the 

monotonic threshold values in (3.2) and 𝑣 is the 

standard deviation of 𝑐(𝑥), whereas {𝑟𝑘} are the initial 

values obtained previously. 

  

Algorithm 5.4 (Parameter estimation for model (3.4)). 

Assume that the sample mean for each covariate has 
been removed. Given the initial values for all 

parameters, do the following. 

 

2a. Given {𝑏𝑖𝑘} and {𝑟𝑘}, fit for {𝑎𝑗} by maximizing 

the pooled log-likelihood, 

 

            𝐿𝐿 = ∑ ∑ 𝐹𝐿𝑖,𝑘𝑘𝐺𝑖=1 ,                           (5.10)   

 

  at the portfolio level, where 𝐹𝐿𝑖,𝑘 is as in (4.2). 

Rescale {𝑎𝑗} for (3.3) by scalar  

  1/√𝑎12 + 𝑎22 + ⋯ + 𝑎𝑚+𝑝2 , and rescale the current 

values for {𝑟𝑘} by scalar √𝑎12 + 𝑎22 + ⋯ + 𝑎𝑚+𝑝2  

accordingly. 

 

2b. Given {𝑎𝑗 } and {𝑏𝑖𝑘}, fit for {𝑟𝑘} by maximizing 

the pooled log-likelihood (5.10). 
 

    2c. Given {𝑟𝑘} and {𝑎𝑗}, fit for {𝑏𝑖𝑘}. For each 

forward term k, parameterize 𝑏𝑖𝑘 as  𝑏𝑖𝑘 = (𝛼1 + 𝛼2 + ⋯ + 𝛼𝑖), where 𝛼𝑖 ≥ 0 for 2 ≤ 𝑖 ≤𝐺, as in Algorithm 5.1. Then, (3.5) is 

automatically satisfied under this 

parameterization. Estimate {𝛼𝑖} by maximizing 

the pooled log-likelihood:  

 

  𝐹𝐿𝑘 = 𝐹𝐿1,𝑘 + 𝐹𝐿2,𝑘 + ⋯ + 𝐹𝐿𝐺,𝑘 . (5.11)   

 

 When this is done, we will have estimates for {𝛼𝑖} 

and, thus, {𝑏𝑖𝑘} for the fixed 𝑘.  

  2d. Repeat steps 2a, 2b, and 2c until convergence is 
reached.  

 

Remark 5.5. In the case when the sensitivity parameter 𝑟𝑘 is assumed to be the same for all forward terms 𝑘′𝑠, 

steps 2a and 2b can be combined (i.e., run step 2a to get {𝑎𝑗}), and then 𝑟 = √𝑎12 + 𝑎22 + ⋯ + 𝑎𝑚+𝑝2  is the value 

of the unique sensitivity parameter. Actually, model 

(3.4) in this case reduces to 

 

  𝑝𝑖𝑘(𝑥) = Φ[𝑏𝑖𝑘 + (𝑎1 𝑥1 + 𝑎2𝑥2 + ⋯ +   𝑎𝑚𝑥𝑚)].                           (5.12)   

 

There is no need for an independent sensitivity 

parameter and no need to rescale {𝑎𝑗} by 

 1/√𝑎12 + 𝑎22 + ⋯ + 𝑎𝑚+𝑝2  in step 2a. 

 

 
VI. AN EMPIRICAL EXAMPLE  

 

In this section, we show an empirical example where 

we estimate the monotonic survival probability for a 

wholesale portfolio by a discrete-time hazard rate model 

(3.1) subject to (3.2). A logistic regression model is 

trained as a benchmark. 

The sample includes the historical data between 

2002Q3 and 2016Q3 for a wholesale portfolio of 

commercial and industrial loans. There are six ratings, 

with 𝑅6 as the default rating and 𝑅1  as the best quality 
rating. The sample contains the risk ratings of loans at the 

end of each quarter between 2002Q3 and 2016Q3. Loans 

with a nondefault initial risk rating at initial time 𝑡0 are 

kept for observation of default events for the next 16 

quarters. The charts below show the quarterly default rate 

by rating during the period between 2006Q3 and 

2016Q3. Default risk intensified during the financial 

crisis period between 2008Q1 and 2010Q1. Only a few 

defaults are observed for the best credit quality ratings 𝑅1  and 𝑅2  at quarters 2008Q3 and 2009Q2, where the 

realized default rate for 𝑅1 is slightly higher than that for 𝑅2. The overall average quarterly sample default rate is 

0.8% for 𝑅1 and 0.6% for 𝑅2. As such, a general logistic 

regression model, without additional monotonic 

constraints being imposed for the intercepts, could lead 

to a counterintuitive prediction between ratings 𝑅1  and 𝑅2. 
  



7 

 

   

   
Seasonally adjusted macroeconomic data is 

downloaded from the Federal Reserve website and then 

appended to this term structure data by matching the 

calendar quarter in the macroeconomic data with the 

calendar quarter in the term structure data. Data with 

quarter time key between 2006Q3 and 2016Q3 is 

selected. This results in a sample with the following 
characteristics. 

 

(1) For each nondefault rating 𝑅𝑖 and term number 1 ≤ 𝑘 ≤ 16, the time series sample {(𝑑𝑖𝑘 , 𝑛𝑖𝑘)} 
has 41 data points for 41 quarters between 

2006Q3 and 2016Q3, with the time interval (𝑡𝑘−1 , 𝑡𝑘] sliding through this time window.  

(2) The macroeconomic data is the same for all loans 

at each specific quarter. 

 

For each macroeconomic variable, its four lagged 
versions are included: current (L0), lagged one quarter 

(L1), lagged two quarters (L2), and lagged three quarters 

(L3). The sample mean is removed from each of these 

variables. 

We fit as follows two probit-type discrete-time hazard 

rate models. 

 

(1) The logistic regression model served as a 

benchmark with probit function Φ  as the link 

function. This is a model formulated as follows 
with rating and term index as two class variables: 

 

  𝑝𝑖𝑘(𝑥) = Φ(𝑏𝑖 + 𝑐𝑘 + 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +  … +                                         𝑎𝑖𝑚𝑥𝑚),                 (6.1)  

 

where 𝑏𝑖 is the intercept corresponding to 

nondefault rating 𝑅𝑖 , 1 ≤ 𝑖 ≤ 5, and 𝑐𝑘 is the 

intercept corresponding to term index 𝑘 for the 

period (𝑡𝑘−1, 𝑡𝑘]. The model is fitted using the 

SAS procedure PROC LOGISTIC [10]. 

 
(2) The proposed model (3.1) subject to (3.2) served 

as the champion model. The sensitivity 

parameter 𝑟𝑘  is kept the same for all terms 1 ≤𝑘 ≤ 16. By Remark 5.3, the model reduces to 

 

     𝑝𝑖𝑘(𝑥) = Φ[𝑐𝑖𝑘√1 + 𝑣2 + (𝑎1𝑥1 + 𝑎2𝑥2 +                                                      … + 𝑎𝑚𝑥𝑚)], (6.2) 

  

where 𝑣  denotes the standard deviation for the 

linear score 𝑐(𝑥) = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ +  𝑎𝑚𝑥𝑚 . 

This model is trained using the SAS procedure 

PROC NLMIXED [16]. 

 

We consider models that contain at least two 

variables but no more than four. Model selection is 

based on the value −2 log-likelihood (labeled as 

“2NLK;” lower values are better). The top model based 

on 2NLK consists of the same three variables below for 

both models (6.1) and (6.2): 
 

(1) L0 (Current) GDP. Growth rate of the US gross 

domestic product (quarter over quarter 

annualized by compounding). 

(2) L0 (Current) Unemployment Rate. Increase of 

the US civilian unemployment rate (quarter over 

quarter annualized). 

(3) L3 (Lagged Three Quarters) Volatility Index. US 

implied volatility (maximum of daily values per 

quarter). 

 
Table 1 shows the statistics for model estimation. The 

value of 2NLK for the proposed champion model is 

slightly better (lower) than that for the benchmark 

model. 

The risk factor weight 𝑤𝑖 for the 𝑖th variable in the 

above sequence is calculated as 𝑤𝑖 = (𝑎𝑖𝑣𝑖)/(|𝑎1𝑣1| +|𝑎2𝑣2| + ⋯ + |𝑎𝑚𝑣𝑚|), where 𝑣𝑖 denotes the sample 

standard deviation for the 𝑖th variable. The risk factor 

weight measures the relative contribution for the 
variable (when standardized to have a standard 

deviation of one) in the model. As shown in Table 1, the 

risk factor weight is distributed more evenly between 

the unemployment rate (Variable 2) and the volatility 

index (Variable 3) for the proposed model.  

 

 Figure 1. Realized quarterly default rate for ratings 1, 2, 3 
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Figure 2. Realized quarterly default rate for ratings 4, 5 
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The cumulative realized default rate and cumulative 

predicted PD are calculated using the formula 𝑐𝑝𝑖 𝑘 =𝑐𝑝𝑖 𝑘−1 + (1 − 𝑐𝑝𝑖 𝑘−1)𝑝𝑖𝑘 at the rating level and then 

aggregated to the portfolio level. Figures 3 and 4 show 

plots of the performance charts for the predicted 

cumulative PD against the actual cumulative default 

rate at the portfolio level for cumulating 4 and 16 

quarters. The RSQ for the predicted cumulative PDs for 

cumulating 4, 8, 12, and 16 quarters is, respectively, 

0.46, 0.68, 0.77, and 0.78 for the benchmark model and 

0.44, 0.67, 0.77, and 0.78 for the proposed model. 
 

 
 

 
  

We observed that the proposed model (6.2) performs 

as good as the benchmark model (6.1). Given its 

compatible performance, model (6.2) generates 

monotonic forward PDs (hence, monotonic survival 

probabilities) between ratings, whereas (6.1) does not. 

The average quarterly PD predicted over the sample by 

the benchmark model is 0.9% for rating 𝑅1 and 0.7% 

for 𝑅2. This is in contrast to 0.7% for 𝑅1 and 0.8% for 𝑅2 in the average quarterly PD predicted by the 

proposed model.  

 

 

VII. CONCLUSIONS AND FUTURE WORK  

 

The two probit-type discrete-time hazard rate models 

proposed in this paper generate monotonic survival 

probabilities between ratings. The first model focuses 
on systematic risks and includes only macroeconomic 

variables. Factorization of the intercepts via the default 

point results in a baseline hazard rate component, as the 

Cox proportion hazard rate model. This baseline 

component can be estimated outside the model in the 

absence of model covariates, leading to a significant 

reduction in the number of parameters to be otherwise 

estimated inside the model. A practical benefit for this 

proposed model is that, at times when model 

recalibration is imminent, due to, for example, the 

buildup of the latest portfolio data, one can simply 

recalibrate for the default points using the updated long-
run forward PDs, assuming that the responsiveness for a 

risk rating with respect to the macroeconomic variables 

remains the same. 

Two interesting future researches are the applications 

of reinforcement learning in optimal investment 

strategies and the discriminative restricted Boltzmann 

machine for detecting the default risk for a credit card 

portfolio, where a large number of risk covariates are 

generally involved. 
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