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Abstract 
This paper proposes new estimation techniques for gravity models with zero trade values and 
heteroscedasticity. We revisit the standard PPML estimator and we propose an improved version. We 
also propose various Heckman estimators with different distributions of the residuals, nonlinear forms 
of both selection and measure equations, and various process of the variance. We add to the existent 
literature alternative estimation methods taking into account the non-linearity of both the variance 
and the selection equation. Moreover, because of the unavailability of pre-set package in the 

econometrics software (Stata, Eviews, Matlab, etc.) to perform the estimation of the above-mentioned 
Heckman versions, we had to code it in Matlab using a combination of fminsearch and fminunc 
functions. Using numerical gradient matrix G, we report standard errors based on the BHHH 
technique. The proposed new Heckman version could be used in other applications. Our results 
suggest that previous empirical studies might be overestimating the contribution of the GDP of both 
import and export countries in determining the bilateral trade.  
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1. Introduction  

A typical gravity model of international trade predicts that the trade flows between two countries 

depend mainly on their economic sizes (measured by the GDP) and the distance between them.3 

Broadly speaking, the gravity equation is built around a nonlinear relationship between the trade 

variable and a set of explanatory variables. The strong theoretical foundations of the gravity model 

(i.e., Anderson, 1979; Anderson and van Wincoop, 2003) resulted in its good performance in 

explaining trade flows between countries. However, despite its empirical success in predicting 

accurately trade flows, some estimation practices have been subject to criticisms. In fact, the way 

zero values of bilateral trade were treated and the approaches considered to handle the 

heteroscedasticity issues represent the main estimation problems of the gravity model. For 

instance, for estimation purposes, the gravity equation is usually log-linearized. This technique 

suffers from two major issues, though. The first issue is related to the way the log-linearized 

models treated the zero bilateral trade values and the second issue is related to the econometric 

applications of Jensen’s inequality.  

For the first problem, if the recorded trade between two countries has a value of zero, the log-

linearization of the model leads to an estimation problem associated with the undefined cases of 

the dependent variable. Consequently, two methods have been widely used in the estimations of 

the log-linearized gravity models to deal with the zero trade flows: (i) estimate the model using 

only observations for which trade values are non-zeros (censored data); or (ii) augment the 

dependent variable (i.e., trade) by 1 to avoid undefined cases of log of zero. These proposed 

solutions could yield biased and inefficient estimators. In fact, the inconvenience of using censored 

data is that the reduction in the sample size is significant reaching more than 50% in some cases, 

especially in the disaggregated data. If the zero bilateral trade is not correlated with the explanatory 

variables in the gravity equation, then estimating gravity model without the zero trade observations 

(censored data) will not be biased. Yet, it is rational to think that the chance of having zero bilateral 

trade increases when the potential for bilateral trade between the two countries is low (so, it is 

obviously correlated with the explanatory variables). Hence, estimating the model without taking 

into account the zero observations could generate a bias in the estimated coefficients. Augmenting 

the dependent variable by 1, on the other hand, resolves the issue related to the reduction of the 

sample size discussed above, but it could present an important source a miss-specification in the 

estimated model as it interprets zero bilateral trade flows as absence of potential for trade between 

the two countries. This interpretation may not match the expectations of comparative advantage 

theories (based on relative factor abundance). In other words, the zero bilateral trade between two 

countries does not necessarily mean that the potential bilateral trade is a real zeros, but it could be 

explained by other factors. Moreover, as explained below, adding 1 to the dependent variable 

avoids undefined cases of log of zero but not the issue related to the econometric applications of 

the Jensen’s inequality. 

                                                           
3 Other variables such as price level and exchange rate have been shown to account for a significant amount of 

variance by the basic gravity equation. 



The second issue associated with the estimation of the log-linearized gravity equation is related to 

the Jensen’s inequality, which implies that the expected value of the logarithm of a random variable 

will not be equal to the logarithm of its expected value, yet, it could depend on the mean and the 

variance of that random variable. Hence, when estimating the gravity model with the standard 

estimation techniques that use log-transformed data assuming constant elasticity, the intercept 

coefficient estimation will be biased. Moreover, the whole estimation could yield biased results 

for the other coefficients when the heteroscedasticity is correlated with the explanatory variables, 

which, indeed, could be the case as we will explain later. 

Santos Silva & Tenreyro (2006) (SST (2006), hereafter) criticized conventional estimation 

practices of the log-linearized gravity trade models and proposed solutions to deal with the 

heteroscedasticity issue and the zero trade values. Broadly speaking, they argue that the gravity 

equation should be estimated in its multiplicative form using a Poisson Pseudo-Maximum-

Likelihood (PPML, hereafter) estimation technique. The PPML is a special case of the Generalized 

Nonlinear Linear Model (GNLM) framework in which the variance is assumed proportional to the 

mean. SST (2006) show that this method is robust to different patterns of heteroscedasticity, deals 

with the Jensn’s inequality and resolves the inefficiency problem. The work of SST (2006) is 

particularly striking given that their results raised important questions about the findings of many 

seminal studies in the trade literature (e.g., Anderson and van Wincoop, 2003) who predicted the 

coefficient on GDP close to one. The improvements that the PPML method has brought to the 

estimation of gravity models made it tractable in the international trade literature. In fact, it is has 

been used extensively in estimation of gravity equations (Bosquet and Boulhol, 2015; Egger and 

Tarlea, 2015; Dai et al., 2014; Lin, 2013; Yotov, 2012; de Sousa, 2012; Egger & Larch, 2011; 

Head et al., 2010; Shepherd, 2010; Fitzgerald, 2008; Tenreyro, 2007; among others).4  

However, despite the proven robustness of the PPML, some issues related to the zero trade values 

and heteroscedasticity persist. The first issue is related to the way the zeros were dealt with. When 

we estimate the gravity equation with PPML and non-zero data, the estimation will suffer from the 

censoring bias discussed above (i.e., selection bias). When we include all data, the technical 

problem we use to have with log-transformation disappears; yet, in this case, we will force the 

estimated gravity model to predict a trade level that should be as close as possible to zero. 

However, it is obvious that the zero trade does not necessarily mean that the potential trade 

between the two countries is exactly zero. It is true that the chances of having zero trade between 

two countries should increase when their potential bilateral trade is small, but it does not 

necessarily imply it. At the same time, we can have zero trade between two countries where the 

potential trade that should be predicted by the gravity model is not necessarily close to zero. 

Moreover, the fact that gravity equation is an exponential function that, technically, can never be 

equal to zero, makes it invalid for dealing with zero trade’ values. 

 The second issue related to the PPML estimator is technical and related to the assumption that the 

variance is proportional to the trade mean (i.e., exp(𝑥𝛽)), which may raise questions about the 

optimality of the PPML estimator. In section 3, we show that we can obtain a slightly different 

estimator from the PPML.  Moreover, when we estimate the nonlinear form of the gravity equation 
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(e.g, PPML, nonlinear least squares, etc.), we can avoid the Jensen inequality bias but estimators 

will not be efficient, given that variance process is usually non-constant. In other words, while the 

PPML estimator resolves the Jensen’s inequality issue, the inefficiency problem persists (as well 

as the zero trade problem). 

Subsequent attempts in the literature to deal with heteroscedasticity and the prevalence zero trade 

values did not fully address these issues. For instance, the concerns related to the prevalence of 

zero trade values do not seem to be resolved. In fact, the appeal to the standard Heckman correction 

for sample selection to deal with the zero trade flows has some limitations. As a general rule, when 

trade data is characterized with frequent zero values, selection equations are traditionally estimated 

on the basis of the same set of explanatory variables. Although Martin and Pham (2008) include 

additional variables in the selection equation, their approach has limitations too. First, they have 

no flexibility in modelling the selection equation as they assume a linear selection equation. They 

log-linearize the gravity model, most probably, to be able to estimate it with the standard statistical 

packages (Stata, Eviews, etc.), which will result in the Jensen inequality bias (heteroscedasticity). 

Second, the maximum likelihood estimation they propose assumes normal distribution of the error 

terms (while it could be lognormally distributed). Third, the Heckman model used in the 

conventional statistical packages (Stata and other software) assume constant variance, which leads 

to efficiency problem.  

We consider the above approach has shortcomings. Our contribution consists in dealing with these 

shortcomings by developing a new Heckman model to improve the existent estimators (in addition 

to the contribution related to the improvement of the PPML). First, we propose various Heckman 

estimators with different distributions of the residuals, (normal & log normal). Second, our new 

proposed Heckman allows for nonlinear forms of the selection equation, which would provide 

more flexibility in modelling the zero trade values. Indeed, zero bilateral trade could be due to a 

low potential trade or/and to other variables that can affect the non-trading decisions and not 

necessarily the potential bilateral trade between the two countries. Third, we explicitly model the 

conditional variance process as function of exp(𝑥𝛽) and exp(𝑥𝛽)2. So, our new proposed 

estimator allows for constant variance, variance proportional to trade level, variance proportional 

to the squared of the trade level, or for any combination of those variance processes. To do so, we 

estimate the conditional variance process simultaneously within the log-likelihood function of the 

New Heckman model.  

Other important contributions of this paper are related to the computational challenges we face 

when estimating our augmented model and reporting the standard errors. The biggest challenge 

we have encountered is how to perform the estimation of the new Heckman versions (log-normal 

distribution, nonlinearity, conditional variance estimation). No pre-set package in the 

econometrics software (Stata, Eviews, Matlab, etc.) can deal with this estimation. We had to code 

in Matlab and use a combination of fminsearch and fminunc functions. Another challenge is related 

to how to report standard errors of the estimated coefficients. Using numerical gradient matrix G 

(Davidsson and Mackinnon, 2003), we report standard errors based on the BHHH technique. The 

proposed new Heckman version could be used in other applications. 



The remainder of the paper is organized as follows. Section 2 provides a brief discussion of the 

literature while Section 3 highlights the theoretical and empirical applications of the gravity model. 

In section 4, we present our proposal to deal with the zero trade values and heteroscedasticity. 

Section 5 presents the simulation results and compare our estimator with the PPML, and the 

commonly used estimators in the literature under different specifications of the variance process 

and the Heckman selection equation. Section 6 presents the new estimates of the gravity equation. 

Section 7 concludes.  

2. Literature Review  

In this section, we review the literature on gravity models; discuss the proposed estimation 

methods, the main findings, and the drawbacks. The most problematic issues related to the 

estimation of gravity models are the heteroscedasticity and zero trade values. Note that in dealing 

with the issue of zero trade values, while most studies considered truncated or censored data, a 

trend in the literature had attempted to estimate the gravity equation without deleting zero trade 

values. Parametric and semi-parametric approaches were used in this trend of the literature.  

Parametric approaches that estimate gravity models that include limit observations adopted two 

types of models: Two-Part model or a Tobit/Heckman model. Broadly speaking, the Two-Part 

model suggests that we first use a qualitative-dependent model such as Probit to determine whether 

a particular bilateral trade flow will be zero then estimate the relationship between trade values 

and explanatory variables using only truncated data (Leung and Yu, 1996).5 The Two-Part model 

allows the sample selection and the behavioral equations to be estimated independently (see for 

example, Duan et al., 1983), which is implausible in a world where decisions on whether to trade 

and how much to trade are taken by individual firms based on the profitability of trade in their 

products. The Tobit/Heckman model, on the other hand, proposes to either use two-step estimators 

such as Heckman (1979) or a maximum likelihood approach such as Tobin (1958), Puhani (2000) 

or Jones (2000). Puhani (2000) reviewed the literature on the Heckman correction for sample 

selection bias and concluded that the full information maximum likelihood estimator of 

Heckman’s model generally gives better results than either the two-step Heckman estimator or the 

Two-Part model. Consequently, the Tobit/Heckman approach has been used more often in the 

literature.6 Note also that some semi-parametric models (such as Chay and Powell, 2001) had 

attempted to estimate the gravity equation without deleting the limit observations. Such 

applications, however, have been infrequent because of the computational efficiency problems 

related to them. 

In an influential paper, SST (2006) addressed the heteroscedasticity and zero trade values issues 

using the Pseudo Poisson Maximum Likelihood (PPML) estimator. Although this estimator 
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6 Regardless of the type of parametric model adopted, the most common distribution about the 

residuals is that they are normally distributed. Exceptions exist though (Poisson and Gamma 

distributions highlighted by SST, 2006). 



outperformed those obtained with traditional methods (OLS, NLS, etc.) it was subject to some 

criticisms, and many alternative estimation methods were proposed (Gamma Pseudo Maximum-

Likelihood, Feasible Generalized Least Squares, ET-Tobit, etc.). Martin and Pham (2008) revisit 

the work of SST (2006) and investigate to what extent their PPML estimator can deal with the 

biases of estimators that resulted from the heteroscedasticity and the prevalence of zero trade 

values. They conclude that the recommended PPML estimator successfully deals with the 

heteroscedasticity bias, only when the zero trade flows issue is not significant. In fact, they show 

that if the data is characterized by high frequency of zero trade values the PPML estimator is not 

bias free. Therefore, the PPML could be applied to a range of multiplicative (but not gravity) 

models such us consumer-demand systems, Cobb-Douglas type production functions and the 

stochastic impacts by regression on population, affluence and technology model, etc., when the 

number of zero values is relatively small. When the zero trade values are frequent, however, Martin 

and Pham (2008) argue that a standard threshold Tobit estimators perform better if the 

heteroscedasticity problem is satisfactory dealt with. Moreover, they show that if true identifying 

restrictions are available, the Heckman Maximum Likelihood estimators perform well. Santos 

Silva and Tenreyro (2011) argued that Martin and Pham (2008) results were based on misspecified 

models and showed that the PPML remains the best estimator even in the presence of high 

frequency data points of zero trade values.   

Based on Monte Carlo simulations, Martínez-Zarzoso (2013) compares the PPML estimator with 

the Gamma Pseudo-Maximum-Likelihood (GPML), a nonlinear least square (NLS) estimator and 

a feasible generalized least squares (FGLS) estimator using three different data sets. She finds that 

the PPML is less affected by the heteroscedasticity but it does not outperform the other estimators 

in terms of bias and standard errors. Simulations without zero values, however, show that GPML 

presents the lowest bias and standard errors. She concludes that, for any application, the selection 

of the most appropriate estimator requires a number of tests and depending on the characteristics 

of each dataset.  The focus of Martinez-Zarzoso (2013), however, is on cases with no zero trade 

values or with relatively low frequency of zero values for the dependent variable.   

Kareem (2013) estimates a gravity equation in the presence of zero trade using trade data for 47 

African countries over the period 1980-2002. She considered a large set of models including the 

log linear model, pooled regression model, fixed effects model, random effects model, 

multiplicative models, the generalized linear models (GLM), the Poisson Pseudo Maximum 

Likelihood (PPML) estimator, Negative Binomial Poisson Maximum Likelihood (NBPML) 

estimator. His results show that there is no one general best performing model, although most of 

the linear estimators outperform the GLM estimators in many of the robust checks performed. 

Herrera and Baleix (2010) provide a survey of the literature concerning the specification and 

estimation methods of the gravity equation and the several problems related its empirical 

application. For this purpose, they use a gravity equation based on Anderson and van Wincoop 

(2003) model and discuss the fit of different estimation procedures (OLS, panel regression with 

fixed and random effect and simple and panel Poisson methodology) applied to a large dataset of 



bilateral exports for 47 countries (80% of world trade) over the period 1980-2002. Their findings 

suggest that none of the estimators outperform the others in all aspects.  

Xiong and Chen (2014) estimate gravity equation in the presence of sample selection and 

heteroscedasticity, using a two-step method of moments (TS-MM) estimator. Their Monte Carlo 

experiment shows that the TS-MM estimates are resistant to various combinations of sample 

selection and heteroscedasticity. Moreover, the TS-MM estimator performs reasonably well even 

when data-generating process deviates from the TS-MM assumptions.  

Sukanuntathum (2012) performs two steps estimation of gravity models under heteroscedasticity 

and data censoring. He considers different estimators including OLS, NLS, PPML, GPML and 

NBPML (Negative binomial pseudo-maximum likelihood estimator). He recommends the use of 

the NBPML in the second step when both heteroscedasticity and zero flows occur because it gives 

consistent parameter, robust to different forms of heteroscedasticity and greatly deal with zero 

flows. Burger et al., (2009) use modified Poisson fixed effects method to estimate a gravity model 

of trade with excess zeros. Their Zero-Inflated estimation technique provides viable alternatives 

to both the lognormal and standard Poisson specification of the gravity model of trade in the 

presence of high frequency of zero trade values and failure of homoscedasticity assumption. 

Herrera (2013) compares alternative methods to estimate the Anderson and van Wincoop (2003) 

model. The estimators considered are truncated OLS, OLS (1+X), Tobit, Probit, Heckman, Panel 

fixed, Panel random, and the PPML. The findings suggest that the ad hoc methods are not 

appropriate for estimating the gravity equation since they provide biased and inefficient estimates. 

Although several authors have proposed the use of PPML, it does not behave so well for an 

aggregated dataset in the presence of unobserved heterogeneity. He suggests that Heckman sample 

selection model is preferred estimation method within nonlinear techniques in the presence of 

heteroscedasticity and significant proportion of zero observations. 

Joakim and Fredrik (2009) examine the effects of zero trade on the estimation of the gravity model 

using both simulated and real data with a panel structure, which is different from the more 

conventional cross-sectional structure. They suggest an alternative approach to the usual log-linear 

estimation method, which can result in highly deceptive inference when some observations are 

zero. Their proposal consists in using the Poisson fixed effects estimator, which eliminates the 

problems of zero trade and is shown to perform well in small samples. Arvis and Shepherd (2011) 

argue that in addition to dealing with heteroscedasticity and zero trade flows, the Poisson estimator 

also solves the adding up problem. They also argue that it is the only quasi-maximum likelihood 

estimator that preserves total flows between the actual and estimated bilateral trade matrices. The 

theoretical and empirical findings strengthen the case for using Poisson as the workhorse gravity 

model estimator. 

Krisztin and Fischer (2015) argue that estimating the gravity equation by means of PPML lead to 

consistent, but biased parameter estimates if spatial dependence between origin-destination flows 

is ignored. To overcome this problem, they suggest eigenvector spatial filtering variants of the 

Poisson gravity model (with or without zero inflation) along with pseudo maximum likelihood 

estimation. Assane and Chiang (2014) find that OLS and Heckman models produce coefficient 

estimates for distance and other trade costs parameters that are higher than those of PPML 



estimator, which is consistent with SST (2006) findings. This result could be driven by the large 

fraction of zero trade flows as well as by heteroscedasticity problems. They conclude that while 

Heckman and PPML are the appropriate estimation procedures to handle zero trade flows, the 

PPML estimator is the only estimator that deals with heteroscedasticity problems. 

3. The Theoretical and Empirical Applications of the Gravity Model 

Consider the econometric formulation of the traditional gravity equation 

𝑦𝑖𝑗 = 𝛽0 (𝑥𝑖𝛽1𝑥𝑗𝛽2𝐷𝑖𝑗𝛽3 ) . 𝜂𝑖𝑗             (1) 

where 𝑦𝑖𝑗 represents the trade flows from country 𝑖 to country𝑗; 𝑥𝑖 𝑎𝑛𝑑𝑥𝑗 represent the GDP for 

countries 𝑖 and 𝑗, respectively; 𝐷𝑖𝑗 is the distance between countries i and j;  and 𝛽1, 𝛽2, 𝑎𝑛𝑑𝛽3 

are unknown parameters. 𝜂𝑖𝑗 is an error term with expectation, 𝐸(𝜂𝑖𝑗|𝑥𝑖 , 𝑥𝑗 , 𝐷𝑖𝑗), of one and 

assumed to be statistically independent of the regressors which means that  

𝐸(𝑦𝑖𝑗|𝑥𝑖 , 𝑥𝑗 , 𝐷𝑖𝑗) = 𝛽0 (𝑥𝑖𝛽1𝑥𝑗𝛽2𝐷𝑖𝑗𝛽3 ) 

To estimate this model, traditional approaches in trade literature start by log-linearizing equation 

(1) then estimating the parameters of interest by least squares using the following equation: ln(𝑦𝑖𝑗) = 𝑙𝑛𝛽0 + 𝛽1𝑙𝑛𝑥𝑖 + 𝛽2𝑙𝑛𝑥𝑗 − 𝛽3𝑙𝑛𝐷𝑖𝑗 + 𝑙𝑛𝜂𝑖𝑗         (2) 

Two major issues are associated with this approach. First, if data includes values of zero, 

estimating the gravity models in their log-linearized forms such as equation (2) lead to 

complications associated with observations for the dependent variable with zero trade values. 

Many methods have been considered in the literature to deal with this issue (simple deletion of the 

observations of zero trade flows from the data or substitute the observations of zero trade values 

with a very small number, typically 1). Criticisms to these proposed methods argue that the 

estimators of the parameters based on these two approaches will be inconsistent (we discussed 

these issues in the Introduction and literature review sections). Second, estimating equation (2) 

with least squares can produce biased estimators if the 𝑣𝑎𝑟(𝜂𝑖𝑗) is correlated with the regressors. 

In fact, there is evidence to believe that that variance of bilateral trade data is not constant (SST, 

2006). Moreover, as emphasized by SST (2006), the trade variance might be correlated with the 

trade level. In fact, if the trade level between two countries is significantly high, we should expect 

the variability of trade values to be also high, and vice-versa. In other words, the mean of the error 

terms (ln 𝜂𝑖𝑗) and regressors (𝑥𝑖, 𝑥𝑗 , 𝑜𝑟𝐷𝑖𝑗) of equation (2) are correlated implying that the OLS 

estimation will be biased. Unfortunately, many studies neglect this fact leading to a bias related to 

Jensen’s inequality.  



3.1 Estimation in the Presence of Heteroscedasticity  

Economic theory suggests that if 𝑦 and 𝑥 are linked by constant-eleasticity model, we can write 

the model as7  𝑦𝑖 = exp(𝑥𝑖𝛽) +𝜀𝑖                 (3) 

where 𝑦𝑖 represents the bilateral trade, 𝑥𝑖 is a vector of explanatory variables, 𝛽𝑖is a vector of 

coefficients, and 𝜀𝑖 is an error term. With 𝑦𝑖 ≥ 0𝑎𝑛𝑑𝐸[𝜀𝑖|𝑥] = 0, (3) can also be written as  𝑦𝑖 = exp(𝑥𝑖𝛽) 𝜂𝑖 
with 𝜂𝑖 = 1 + 𝜀𝑖exp(𝑥𝑖𝛽) 𝑎𝑛𝑑𝐸[𝜂𝑖|𝑥] = 1. Taking the logarithms of both sides (assuming that 𝑦𝑖 ≥0) leads to   ln 𝑦𝑖 = 𝑥𝑖𝛽 + ln 𝜂𝑖                    (4) 

The estimation of the above log linear representation of the constant-elasticity model is useful 

under very specific conditions on the error term. Note that when 𝜂𝑖 is independent of 𝑥𝑖 , the 

conditional variance of 𝑦𝑖(𝑎𝑛𝑑𝜀𝑖) is proportional to exp(2𝑥𝑖𝛽).  
3.1.1 Proposed estimation solutions in the literature, SST (2006) 

SST (2006) argue that the conditional variance will depend onexp(𝑥𝑖𝛽). Therefore, OLS 

estimators will be inconsistent. Moreover, SST (2006) argue that the heteroscedasticity issue leads 

to estimates biased by 35% or more. To deal with these problems, SST (2006) propose an 

alternative approach consisting at estimating the multiplicative form of equation (2). That is, 

estimating  𝑦𝑖𝑗 = exp[𝑙𝑛𝛽0 + 𝛽1𝑙𝑛𝑥𝑖 + 𝛽2𝑙𝑛𝑥𝑗 − 𝛽3𝑙𝑛𝐷𝑖𝑗]𝜂𝑖𝑗          (5) 

using the Poison Pseudo-Maximum Likelihood (PPML) estimator.8 𝜂𝑖𝑗 is a log normal random 

variable with mean 1 and variance 𝜎𝑖2.  

The results of SST (2006) are based on simulation experiment to assess the performance of a set 

of simple pseudo-maximum likelihood (PML) estimators of many constant-elasticity models in 

the presence of heteroscedasticity (i.e., different specifications of the process generating 𝜎𝑖2) and 

zero trade values, focusing on the PPML. The PML estimators considered in their exercise are 

                                                           
7 The general form for a constant-elasticity model is 𝑦𝑖 = exp(𝑥𝑖𝛽), the function exp(𝑥𝑖𝛽) is interpreted as the 

conditional expectation of 𝑦𝑖  given 𝑥 , denoted 𝐸[𝑦𝑖|𝑥]. Since the relation between 𝑦 and 𝑥 holds on average but 

not for every 𝑖, an error term associated with each observation can be defined as 𝜀𝑖 = 𝑦𝑖 − 𝐸[𝑦𝑖|𝑥].    
8 This approach is based on McCullagh and Nelder (1989) model which estimates the parameters of interest using a 

Pseudo-Maximum Likelihood estimator. 



those of the NLS, gamma PPM, OLS of the log linear, a truncated OLS, and ET-Tobit. SST (2006) 

aimed measuring the magnitude of the biases resulting from two experiments. Their results show 

that despite the different specifications of the heteroscedasticity, almost all estimators are badly 

biased. Moreover, except under very special circumstances, estimation based on the log-linearized 

model cannot be recommended. The results of the PPML estimator are very encouraging though. 

In fact, its performance is reasonably good for all specifications of the heteroscedasticity. 

Therefore, the PPML method seems to be the best approach to estimate constant-elasticity models.  

It is true that when we use PPML, estimation will not suffer from the Jenson inequality bias, yet, 

the estimations will not be efficient, given the high degree of volatility in the variance process, 

especially when combined with the presence of zero observations. Despite its popularity and its 

superiority over many other estimators, we believe that an improved version of the PPML can be 

obtained. To see how this is the case, we re-write the minimization problem and show that the 

FOC should be different form the PPML FOC. 

The objective function of the nonlinear least squares (NLS) estimator can be formulate as follow: 

 �̂� = argmin𝑏 ∑ [𝑦𝑖 − exp(𝑥𝑖𝛽)]2𝑛𝑖=1 , 

 

The FOC derived from the above objective function (equation (8) in SST, 2006) can be written as  

 ∑[𝑦𝑖 − exp(𝑥𝑖�̂�)] exp(𝑥𝑖�̂�) 𝑥𝑖 = 0𝑛
𝑖=1  

 

SST (2006) argue that we can get a more efficient estimator by following McCullagh and Nelder 

(1989) and estimate the parameters of interest using a PML estimator based on the assumption on 

the functional form of the conditional variance is proportional to exp(𝑥𝑖𝛽). The proposed 

estimator by SST (2006) consists in dividing the NLS FOC by the conditional variance, which 

yields the following FOC:  

   ∑[𝑦𝑖 − exp(𝑥𝑖𝛽)]𝑥𝑖 = 0𝑛
𝑖=1  

The advantages of the PPML can be summarized as follow. First, it takes into account the 

heteroscedasticity by not overweighting noisier observations (large exp(𝑥𝑖𝛽)). PPML also avoids 

the Jenson inequality bias as it estimates the nonlinear form and allows to include zeros 

observations. Moreover, the fact that PPML is already available in many econometrics software 

(SATA for instance), makes it very attractive and practical. It is also important to note that 

simulations exercises of SST (2006) and subsequent empirical investigations (including the present 

study) show that PPML is relatively robust to different variance process scenarios. However, one 

could argue that if the variance process form is known (proportional to exp(𝑥𝑖𝛽)), it would be 



more efficient to include it in the objective function rather than dividing the NLS FOC by exp(𝑥𝑖𝛽) 
as SST(2006) did. 

3.1.2 Our proposed approach, “Optimal PPML”   

In the present study, we start from the same assumption made by SST (2006) which assumes that 

the conditional variance process is proportional to  exp(𝑥𝑖𝛽), then we derive a new FOC from a 

modified version of the objective function where errors are divided by their corresponding standard 

deviations, exp (12 𝑥𝑖𝛽). The new objective function can be written as: 

�̂� = argmin𝑏 ∑ [𝑦𝑖−exp(𝑥𝑖𝛽)exp(12𝑥𝑖𝛽) ]2𝑛𝑖=1 , (6) 

The FOCs are then:  ∑ [((𝑦𝑖 − 𝑒𝑥𝑝(𝑥𝑖�̂�)). 𝑥𝑖) . ((𝑦𝑖+𝑒𝑥𝑝(𝑥𝑖�̂�))𝑒𝑥𝑝(𝑥𝑖�̂�) )] = 0𝑛𝑖=1  , (7) 

which are different from the FOCs of the PPML estimator.  It can be shown that the expectation 

of the FOCs (7) given 𝑥  are equal to ∑ 𝑥𝑖𝑛𝑖=1 . 9 To ensure that FOCs expectation are zeros, we can 

simply use demeaned variables in the estimation. Even if we do not, the only biased coefficient 

will be the constant term. It is also worthy to note that our FOCs are, to some extend, 

asymptotically equivalent to the standard PPML FOCs10.  

 

An important step in our approach is the estimation of the variance of estimators. FOC (7) is 

equivalent to a vector of moment conditions:𝑊′(𝑦 − exp(𝑥𝛽)) = 0, where each element of 𝑊 is  

 𝑥𝑖 (𝑦𝑖 + 𝑒𝑥𝑝(𝑥𝑖�̂�))𝑒𝑥𝑝(𝑥𝑖�̂�) . 11 

Following Davidsson and Mackinnon (2003), we can show that a reasonable way to estimate a 

Heteroscedasticity-Consistent Covariance Matrix Estimator (HCCME) of 𝛽 is to use the sandwich 

covariance matrix: 

 (�̂�′�̂�)−1�̂�′Ω̂�̂�(𝑋′̂�̂�)−1 
                                                           

9 𝐸 {∑ [((𝑦𝑖 − 𝑒𝑥𝑝(𝑥𝑖�̂�)). 𝑥𝑖) . ((𝑦𝑖+𝑒𝑥𝑝(𝑥𝑖�̂�))𝑒𝑥𝑝(𝑥𝑖�̂�) )]𝑛𝑖=1 |𝑥𝑖} =𝐸 {∑ [(𝜀𝑖. 𝑥𝑖). (𝜀𝑖+2𝑒𝑥𝑝(𝑥𝑖�̂�))𝑒𝑥𝑝(𝑥𝑖�̂�) )]𝑛𝑖=1 |𝑥𝑖} = 𝐸 {∑ [(𝜀𝑖2𝑥𝑖+2𝜀𝑖𝑥𝑖𝑒𝑥𝑝(𝑥𝑖�̂�))𝑒𝑥𝑝(𝑥𝑖�̂�) )]𝑛𝑖=1 |𝑥𝑖} = ∑ (𝐸(𝜀𝑖2.𝑥𝑖|𝑥𝑖)𝑒𝑥𝑝(𝑥𝑖�̂�) )𝑛𝑖=1 = ∑ 𝑥𝑖𝑛𝑖=1 . 
10 Since 𝐸(𝑦) = 𝑒𝑥𝑝(𝑥𝑖𝛽),  (𝑦𝑖+𝑒𝑥𝑝(𝑥𝑖�̂�))𝑒𝑥𝑝(𝑥𝑖�̂�)  will vanish and (7) coincides with PPML FOCs. 

11  For the standard PPML, the 𝑖𝑡ℎ element of 𝑊 is simply 𝑥𝑖 



Where �̂�  with typical element corresponding to an estimate of the derivative of 𝑒𝑥𝑝(𝑥𝑖𝛽)with 

respect to 𝑏 which is: 𝑥𝑖 𝑒𝑥𝑝(𝑥𝑖�̂�). Ω̂ is n × n diagonal matrix with the squared residual 𝜀�̂�2as 

the𝑡𝑡ℎ diagonal element. 

If we assume that the variance is constant, the covariance matrix becomes:  (𝑋′̂�̂�(�̂�′�̂�)−1�̂�′�̂�)−1 �̂�2 

SST( 2006) reported standard errors based on the last version of the covariance matrix which 

assumes constant variance of the residuals. 

3.2 Problems Associated with the Prevalence of zero values of the Dependent Variable 

Zero trade values became frequent in most trade datasets. For instance, SST (2006) data contains 

almost 50% zero trade values. Similarly, about 50% of the observations on bilateral trade in 

Helpman et al. (2007) dataset were of zero values. Baldwin and Harrigan (2007) argue that more 

than 90% of potential import flows to the USA are zero. According to Martin and Pham (2008), 

zero trade flows account for more than 40% of the possible bilateral trade flows in country-level 

data and more than 60% in U.S. 10-digit product-level export data. Although the reported zero 

values in datasets may reflect errors, omissions or non-reporting, most of zero trade values in 

carefully prepared datasets reflect true absence of trade (Martin & Pham, 2008). A significant trend 

in the literature attributes the absence of trade flows (hence, zero values) to the high fixed costs 

associated with bilateral trade.  

Hence, including zeros in the estimation of the gravity model could lead to substantial biases as 

this would force the estimated gravity model (exp(𝑋𝛽) . 𝜂)) to predict a trade level that should be 

as close as possible to zero. However, it is obvious that the zero trade does not necessarily mean 

that the potential trade between the two countries is exactly zero. It is true that the chances of 

having zero trade between two countries should increase when their potential bilateral trade is 

small, but it does not necessarily imply it. At the same time, we can have zero trade between two 

countries where the potential trade that should be predicted by the gravity model is not necessarily 

very close to zero.  Excluding zero values would be a reasonable solution if the censoring process 

is random and is not correlated with the explanatory variables. However, it is rational to believe 

that the chance of having zeros trade between countries increases when the potential bilateral trade 

decreases. Thus, excluding zeros and estimating truncated data would suffer from selection bias. 

 Tobin (1958) had shown that zero values of the dependent variable could create potentially large 

biases in parameter estimates, even in linear models, if the estimator used does not allow for this 

feature of the data generating process. Hurd (1979) shows that estimations of gravity models with 

truncated data would result in large biases. Arabmazar and Schmidt (1981) find these problems 

less serious in the censored regression case where the zero values are retained.  

3.2.1 Theoretical Illustration of the problem 

The inclusion of the zero bilateral trade can lead to two types of bias, misspecification (i.e., 

systematic) and correlation biases.  



Misspecification bias: For zero trade observations, the multiplicative gravity equation is obviously 

misspecified as 𝐸(𝑦|𝑥) ≠ exp(𝑥𝛽) given that exponential function is strictly positive. Without 

loss of generality, let’s assume that 𝑥 ≥ 0. In this case, the estimation of gravity model including 

zero values would underestimate𝛽 (negative bias) as the model will tend to assign unrealistically 

large negative value to 𝛽 for 𝑦 = 0. So, even when the zero occurrence is not correlated with 

explanatory variables, including zeros would yield, in principle, biased coefficients. 

Correlation bias: In case where zeros occurrence is correlated with 𝑥, the sign of the bias caused 

by including zero values in the data, will depend on the sign of the true 𝛽.  

a) If 𝛽 > 0, then the estimated �̂� will be overestimated. In this case, the overall bias 

(systematic bias + correlation bias) will be ambiguous. 

b) If 𝛽 < 0, then the magnitude of �̂� will be amplified (negative bias), and the overall bias 

well be negative. 

3.2.2 Proposed estimation solutions in the literature 

Two techniques have been used in the literature to deal with prevalence of the zero trade values: 

single equations and two-equation techniques. Single equation techniques consist in estimating 

linear and nonlinear models. The oldest and mostly used linear single equation single equation 

estimation is the OLS method used to estimate linear regressions while logit, probit and Tobit are 

among the widely used nonlinear models. Although many estimators have been used to estimate 

the gravity equation, the PPML is the among the most efficient and influential single equation 

estimators. The empirical application of SST (2006) minimized the bias of the estimators and dealt 

with the zero values by avoiding the log-linear specification. Moreover, SST (2006) results raised 

important questions related to the main findings of the widely used model of Anderson and van 

Wincoop (2003), namely, a coefficient of almost one on GDP.12 The PPML and other nonlinear 

estimators implicitly assume that there is nothing special about the zeros. The problem is just to 

get them in the estimation sample. However, as we discussed above, zero trade values do not 

necessarily imply the absence of potential of trade between two countries.  

For the two-equation techniques, since Tobin (1958), many studies attempted to deal with the 

prevalence of zero values. However, the most influential and significant work was conducted by 

Heckman (1979). Broadly speaking, Heckman (1979) generalized Tobin’s (1958) approach to 

estimation in the presence of this problem based on non-random sample selection. According to 

the selection framework proposed by Heckman, the dependent variable 𝑦𝑖 is observed for a part of 

the data only. In general, the linear form of the Heckman selection model is specified as follow: 

                                                           
12 The tractability and robustness of SST (2006) model attracted a significant literature (Westerlund & 

Whilhelmsson, 2007; Xuepend Liu, 2007; Hebble et al., 2007, among others). 



{𝑦𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖 (8)𝑧𝑖 = 𝑊𝑖𝛾 + 𝑢𝑖 (9) 
where 𝑧𝑖 is a binary variable {0,1}. 𝑦𝑖 is observed, only when 𝑧𝑖 = 1. The error terms 𝜀𝑖𝑎𝑛𝑑𝑢𝑖 
follow a bivariate normal distribution with correlation  𝜌. Equation (8) is the response equation 

and (9) is the selection equation, which determines whether observations have a non-zero value. 

Estimating equation (8) in the presence of sample selection would result in biased estimates of the 

coeficients 𝛽𝑖𝑠 because of the omitted relevant explanatory variables.13 In our case, the dependent 

variable is the trade value between two countries.  

As discussed earlier, when estimating data without zero trade values, we can face a selection bias, 

if the selection process is not random, which is more likely to be the case in the gravity equation. 

That is, the chance of having zeros trade between country increases when the potential bilateral 

trade decreases. Even if we do estimate the data including zero observations, we may also face 

another issue: specification problem. Indeed, in this case, the model would interpret zeros as 

absence of any potential trade, which is not necessarily the case (overestimating coefficients). That 

is why we need to use an estimation technique that accurately models the zeros occurrence process. 

3.2.3 Our proposed approach: “New Heckman” 

Model specification and selection seem to be very challenging tasks when estimating Gravity 

models with many zero values of the trade flows. Although many functional forms have been used 

in the trade literature, the nonlinear relationship between the variables (in levels) seems to be more 

tractable and widely used. In fact, the estimation of the log linear representation would work only 

with non-zero observations (truncated data) which would lead to bias if there is correlation between 

the zero occurrence and explanatory variables. Besides the issues related to the prevalence of zero 

trade values, there is evidence that variance of bilateral trade data is not constant. Note, however, 

that although the nonlinear estimators (NLS, PPML, etc.) help avoiding the Jenson inequality bias, 

yet, the estimators will not be efficient, especially when combined with the presence of zero 

observations, which could lead to other type of bias as zero trade value does not necessarily mean 

that the model should predict zero potential bilateral trade.     

Heckman seems to be a rational remedy. Yet, it does not deal with the heteroscedasticity and 

assumes normal errors. Moreover, since econometrics software do not allow the estimation of non-

linear Heckman Models, previous attempts to work with Heckman (or Tobit) had to log-transform 

the data. It is true that this approach is consistent with the lognormal errors (since the log of 

lognormal distribution is a normal distribution), yet, we will then encounter the Jenson ‘inequality 
bias as those estimation techniques assume constant variance.  

To overcome these shortcomings, we propose NEW HECKMAN estimators based on the 

nonlinear model, a new selection equation, and an estimation of the variance process.  

                                                           

13 See Martin and Pham (2008) for a graphical and intuitive explanation. 



The selection equation we consider is given by:   𝑦1=exp(𝑥𝛽)𝜂𝑦2=exp(𝑥𝛽)+𝑧𝛼−𝑘+𝜇     (10),    (𝜂𝜇)~ (0, [𝜎2𝜌𝜎 𝜌𝜎1 ]) 

                                                         {𝑦 = 𝑦1, 𝑦2 > 0𝑦 = 0, 𝑦2 ≤ 0         (11)            

Where 𝜌 is the correlation between 𝜇 and𝜂, and 𝜎is the standard deviation of the measure 

equation. 𝑘 is a constant term. As will be explained later, the term k has two interpretation. First, 

it ensures that the trade between two countries takes place only if a minimum potential trade or a 

threshold is met. Second, for simulation purposes, k is introduced to ensure the prevalence of a 

significant number of zero trade values. The selection equation determines whether a bilateral trade 

can occur or not. 

The log-likelihood function is14 ∑ 𝑙𝑜𝑔𝛷(−exp(𝑥𝛽)− 𝑧𝛼+ 𝑘) +𝑦2≤0 ∑ 𝑙𝑜𝑔 1𝜎 𝑓 (y−exp(𝑥𝛽)𝜎 ) +𝑦2>0 ∑ 𝑙𝑜𝑔𝛷 (exp(𝑥𝛽)+𝑧𝛼−𝑘+ρ(y−exp(𝑥𝛽))/𝜎(1−ρ2)12 )𝑦2>0   (12) 

 𝑤ℎ𝑒𝑟𝑒:𝜎2 = |𝜔0| + |𝜔1|�̂� +  |𝜔2|�̂�2 ,   �̂� = exp(𝑥𝛽). 𝛷(. )is the cumulative distribution 

function of the standard normal distribution. f(.) is the probability density function (Normal or 

Lognormal distribution) 

4. Estimation Techniques 

In this section, we revisit SST (2006) and the different Heckman models specifications (standard 

Heckman and Marin and Pham, 2008) and extend them to cases where the selection equation and 

heteroscedasticity take nonlinear forms, and the distribution of the error terms is not restricted to 

the normal case.  

4.1 Parameters estimations  

We estimated the parameters using two estimation techniques: single equations and two equations.  

4.1.1 Single equations  

                                                           
14 When the ML estimation includes calculating the probability of a function of y (log(y) or  

𝑦exp(𝑥𝛽)) , we need to 

adjust the loglikelihood function accordingly. For instance, for the case of 𝑦exp(𝑥𝛽), we need to add the following 

term the loglikelihood function: - log(exp(𝑥𝛽)) = -𝑥𝛽. In fact, if  m and n are two dependent variables and f(.) is a 

probability density function, then: 𝑓(𝑚) = 𝑓(𝑛) |𝜕𝑛𝜕𝑚| 



Our single equations techniques are based on the traditional methods used in the literature to 

estimate the gravity equation (linear using the log linear forms and nonlinear using the 

multiplicative forms). For the log-linearized forms, we consider censored data only while for the 

multiplicative forms we consider both complete and censored data. Our estimators  include OLS, 

Heckman 2SLS, NLS, Censored NLS (𝑦 > 0), PPML, Censored PPML (𝑦 > 0), and the a new 

PPML estimator, ‘Optimal_PPML’, defined by equation (7) (derived form the modified version of 

the objective function, equation (6)). We also estimate generalized versions of Heckman 2SLS, 

NLS, and a Censored NLS. Generalized versions are obtained by running the following loop:  

i. Estimate constant variance model 

ii. Use squared residuals (𝜀̂2) to estimate the variance process: 

 𝑉𝑎𝑟 = 𝛾0 + 𝛾1𝜀̂2 + 𝛾2[𝜀̂2]2   (13) 

 

iii. Estimate the equation with new variance process  

iv. Continue until convergence 

The estimation of the generalized versions constitute one of our contributions in this paper. Table 

1 below describes our single equation estimators. 

Table 1. Single equations estimators 

Estimator Notation  

Ordinary least Squares OLS 

Heckman Two Stages least Squares Heckman 2SLS 

Generalized Heckman Two Stages Least Squares GHeckman 2SLS 

Log Heckman Two Stages Least Squares heckman2sls_Log 

Log Generalized Heckman Two Stages Least Squares Gheckman2sls_Log 

Nonlinear lease Squares NNLS 

Generalized Nonlinear Least Squares Gnnls 

Nonlinear lease Squares Censored  nnls_C 

Generalized Nonlinear least Squares Censored Gnnls_C 

Poisson Pseudo-Maximum Likelihood  PPML 

Poisson Pseudo-Maximum Likelihood Censored PPML_C 

Optimal Poisson Pseudo-Maximum Likelihood Optimal_PPML 

Optimal Poisson Pseudo-Maximum Likelihood Censored Optimal_PPML_C 

  

4.1.2 Two-equation estimators  

Our two equations techniques are based on various specifications of the mesure and the selection 

equations. For the measure equation, although our theoretical specification is aligned with the 

literature, our estimation approach is a novel contribution. In fact, while standard two equations 

models log linearize the measure equation for estimation purposes, we estimate the nonlinear form, 

which would avoid the Jenson inequality bias. Our contribution consists also in considering 

different processes of the error terms (normal vs. lognormal) and endogenously estimating the 



variance process (constant, nonlinear of order one, and of order two, or a combination of them). 

As for the determination of the selection equation, we consider three methods: the ET-Tobit model, 

the standard Heckman model and our proposed New Heckman model discussed above.  

Our first exercise in the two-equation framework consists in revisit the standard Heckman 

approach, which is based on the following model 𝑦1=exp(𝑥𝛽)𝜂𝑦2=𝑥𝛼+𝜈             (14)            

And it follows that {𝑦 = 𝑦1, 𝑦2 > 0𝑦 = 0, 𝑦2 ≤ 0           (15) 

For estimation purposes, the above model is log-linearized. 

Next, we propose a new selection equation where the occurrence of zero depends on the level of 

the potential trade and other variables not included in the measure equation.  𝑦2 = exp(𝑥𝛽) − 𝑘 + 𝛼𝑧 + 𝜇    (16) 

where 𝑘 is a constant term to ensure that a minimum potential trade or a threshold that should be 

met for a trade to take place. The selection equation determines whether a bilateral trade can occur 

or not. If the selection equation (i.e. the error term 𝜇) is correlated with the measure equation (i.e. 

the error term 𝜂𝑖), then Heckman estimation is efficient and the selection bias will be avoided. 

However, when the error terms in the two equations are not correlated, the Heckman estimation 

becomes equivalent to a standard Maximum Likelihood (ML) estimation of the censored data. In 

the case a gravity model, it is rational to believe that factors determining whether or not a bilateral 

trade between two countries occurs depend on two factors: (i) the potential trade predicted by the 

gravity model. In fact, we can think of a minimum potential trade or a threshold (k) that should be 

met for a trade to take place, (ii) variables possibly omitted in 𝑦1 or external factors affecting the 

occurrence of trade itself which we try to capture by  𝛼𝑧. Obviously, in this case, the two errors 

terms (𝜂 and 𝜇) are correlated, which makes the Heckman technique plausible. 

This last selection equation represents one of our main contributions in this paper. In fact, the 

selection equation we propose estimates significantly less coefficients compared to standard 

Heckman selection equation, where we need to estimate new coefficients for all explanatory 

variables of the measure equations (i.e., 𝛼s).  Clearly, by using the new Heckman method we 

substantially decrease the computational burden. At the same time, the assumptions made in this 

method might not be very restrictive. In fact, it is rational to think that the 𝑥 variables affect the 

selection process through the implied potential trade (𝑥𝛽). Therefore, putting 𝑥𝛽 in the selection 

equation 𝑦2 instead of estimating new coefficients (𝑥𝛼) seems to be very intuitive. Obviously, we 

need to maximize the log-likelihood function. Estimating these nonlinear, non-smooth with a 

relatively high number of coefficient is very challenging. Another contribution of this paper is the 

MATLAB code we use to run this maximization problem.  



We estimate our two equations models (ETobit, standard Heckman and New Heckman) using 

different specifications of the distribution of the error terms (Normal Vs Lognormal) and different 

variance process scenarios. In total, four (4) scenarios were considered:15  

 Scenario 1: 𝜂~𝑁(1, 1𝛼[exp(𝑥𝛽)]2) which is equivalent to 𝑦~𝑁(exp(𝑥𝛽) , 1𝛼) where 𝛼 is a 

constant . 

 Scenario 2: 𝜂~𝑁(1, 𝛼) which is equivalent to 
𝑦exp(𝑥𝛽)~𝑁(1, 𝛼).  

 Scenario 3: 𝜂~𝑙𝑜𝑔𝑁(1, 1𝛼[exp(𝑥𝛽)]2) which is equivalent to 𝑦~𝑙𝑜𝑔𝑁(exp(𝑥𝛽) , 1𝛼). 
 Scenario 4: 𝜂~𝐿𝑜𝑔𝑁(1, 𝛼) which is equivalent to 𝑙𝑜𝑔 𝑦exp(𝑥𝛽)~𝑁(m, v), with 𝑚 and 𝑣 are 

given below.   𝑚 = 𝑙𝑜𝑔 ( 1√𝛼+1) , 𝑎𝑛𝑑𝑣 = 𝑙𝑜𝑔 ( 𝛼√2),  (17) 

For each of those scenarios, we propose an estimator that would be the most efficient given the 

error distribution and the variance process assumption. In fact, the estimators of scenarios 1 and 3 

would be the first choice if y has constant variance (i.e 𝜂 has an inversely proportional variance to 

the square of exp(𝑥𝛽)). While, estimators of scenarios 2 and 4 would the best choice if 𝜂 

(𝑖. 𝑒. 𝑦exp(𝑥𝛽)) has a constant variance. 

Given that the previous four estimators assume constant variance, we propose a new set of 

estimators, where the variance process is endogenously estimated in the probability density 

function. To do so, we assume that the variance has the following functional form: 16   𝜎2 = |𝜔0| + |𝜔1| exp(𝑥𝛽) + |𝜔2|[exp(𝑥𝛽)]2   (18) 

Therefore, 𝛽 and 𝜔 are simultaneously estimated. To the best of our knowledge, this is a novel 

contribution.  

Table 2 describes the two-equation estimators (ET-Tobit, standard and New Heckman estimators).  

Table 2. Two-equation estimators 

  Notation 

Model 𝑦 = {exp(𝑥𝛽) 𝜂 − 𝑉, 𝑖𝑓𝑦 + 𝑉 > 00, 𝑖𝑓𝑦 + 𝑉 ≤ 0 ETtobit (all versions) 

 {𝑦 = 𝑦1, 𝑦2 > 0𝑦 = 0, 𝑦2 ≤ 0           
𝑦1=exp(𝑥𝛽)𝜂𝑦2=𝑥𝛼+𝜈  Heckman (all versions) {𝑦 = 𝑦1, 𝑦2 > 0𝑦 = 0, 𝑦2 ≤ 0           

𝑦1=𝑒𝑥𝑝(𝑥𝛽)𝜂𝑦2=𝑒𝑥𝑝(𝑥𝛽)−𝑘+𝛼𝑧+𝜇 New Heckman (all versions) 

                                                           

15 For ETobit case, we need to add the threshold the parameter V. i.e: ((𝑦+ 𝑉)~𝑁(exp(𝑥𝛽) , 1𝛼)) 
16 For scenarios 2 and 4, 𝑉𝑎𝑟 = 1/|𝜔0| + 1/[|𝜔1| exp(𝑥𝛽)] + 1/[|𝜔2|[exp(𝑥𝛽)]2] 



Estimated Probability Function17  𝑁𝑜𝑟𝑚𝑎𝑙 (y − exp(𝑥𝛽)𝜎 ) 
heckmanml, 

heckmanml_New, ETtobit  𝑁𝑜𝑚𝑟𝑎𝑙 ( 𝑦exp(𝑥𝛽) − 1𝜎 ) 

n_heckmanml, 

n_heckmanml_New, 

n_ETtobit  𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (y − exp(𝑥𝛽)𝜎 ) 
 heckmanml_L, 

heckmanml_L_New, 

ETtobit_L 𝑁𝑜𝑟𝑚𝑎𝑙 (Log(y) − 𝑥𝛽 −𝑚𝜎 ) 
heckmanml_LOG, 

heckmanml_LOG_New, 

ETtobit_LOG 

 

Each estimator has a Generalized version (G_heckman, G_heckmanml_New…) where the 
variance is endogenously estimated (eq(18)). 

4.2 Computational challenges 

Note that it was challenging to estimate those versions since standard econometrics software do 

not allow to estimate nonlinear versions whether in the measure equation or selection equation. 

Moreover, the estimation of the variance process makes the computations more challenging. Our 

simulations are conducted using MATLAB. The fminsearch and fminunc commands were 

particularly helpful. fminsearch is very efficient in getting good starting values for the estimations 

when minimizing a non-smooth nonlinear objective function. Once, we get good starting values 

(especially for the variance process and selection equation: 𝛼s and 𝛾s), we use fminunc to reach 

the global minimum. Then we use a combination of fminsearch and fminunc to make sure that we 

reached the global minimum (usually, we do not need to run the loop more than one time). 

Another challenge is how to estimate the standard errors. We use the scoring method proposed by 

Berndt, Hall, Hall, and Hausman’s in 1974 (BHHH), for the maximization of log-likelihood 

functions. This method consists in using the cross product of the matrix of first derivatives to 

estimate the Hessian matrix.  𝑉𝐴𝑅 = (𝐺𝑇𝐺)−1                 (19) 

when G is the gradient matrix (numerically computed). When using this method to estimate the 

standard errors for standard ET-Tobit, we get very similar results (standard errors) to the ones 

reports in STATA, which increases the credibility of the BHHH technique used in this paper to 

report standards errors of the estimated coefficients 

                                                           
17 For the ET_tobit estimators versions, we need to  add the threshold parameter V to y. For instance, for ETtobit, 

the estimated probability function is:  𝑁𝑜𝑟𝑚𝑎𝑙 (y + V − exp(𝑥𝛽)𝜎 ) 

 



5. Simulations 

5.1 Data Generating Processes 

We conduct different sets of experiments to allow for different data generating processes (DGP).  

In fact, we consider three dimensions in our data generating process, the distribution of the errors 

(normal vs. lognormal) and the censuring frequency (different values of 𝑘), and different patterns 

of the heteroscedasticity (5 cases). The multiplicative model adopted by SST (2006) which consists 

in the following specification: 𝐸[𝑦𝑖|𝑥] = 𝑒𝑥𝑝(𝑥𝑖𝛽) = exp(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖) ; 𝑖 = 1, … . . ,10000   (20) 

was used for all experiments. 𝑥1𝑖 is a standard normal variable designed to capture the behavior of 

continuous explanatory variables such as income levels and distance while 𝑥2𝑖 is a binary dummy 

that equals 1 with probability of 0.4 and designed to capture dummy variables such as boarder and 

free trade agreements. Any set of observations of all variables is generated in each replication 

using 𝛽0 = 0, 𝛽1 = 𝛽2 = 1. Data on bilateral trade, 𝑦, are generated as  𝑦𝑖 = 𝜇(𝑥𝑖𝛽)𝜂𝑖,               (21) 

where 𝜂𝑖 is a lognormal random (and normal) error with mean 1 and variance 𝜎𝑖2.  

In addition to the four patterns of Heteroscedasticity used by SST (2006), we introduce an 

additional pattern in our sensitivity analysis.  The five cases are:  

i. Case 1: 𝜎𝑖2 = [𝑒𝑥𝑝(𝑥𝑖𝛽)]−2; 𝑉[𝑦𝑖|𝑥] = 1. 
ii. Case 2:  𝜎𝑖2 = [𝑒𝑥𝑝(𝑥𝑖𝛽)]−1; 𝑉[𝑦𝑖|𝑥] = exp(𝑥𝑖𝛽).  
iii. Case 3: 𝜎𝑖2 = 1; 𝑉[𝑦𝑖|𝑥] = [exp(𝑥𝑖𝛽)]2. 
iv. Case 4: 𝜎𝑖2 = [exp(𝑥𝑖𝛽)]−1 + exp(𝑥2𝑖) ; 𝑉[𝑦𝑖|𝑥] = exp(𝑥𝑖𝛽) + exp(𝑥2𝑖) ×[exp(𝑥𝑖𝛽)]2. 
v. Case 5: 𝜎𝑖2 = 1 + [𝑒𝑥𝑝(𝑥𝑖𝛽)]−2; 𝑉[𝑦𝑖|𝑥] = 1 + 1exp(𝑥𝑖𝛽)2. 

 

5.1.1 First Data Generating  

In the First Data Generating (FDG) process we incorporated a negative constant term, −𝑘, to 

ensure the prevalence of a significant number of zero trade values. That is,  𝑦𝑖 = exp(𝑥𝑖𝛽) 𝜂𝑖 − 𝑘 ,  (22) 

This is the data generating process underlying the Eaton and Tamura (1994) estimator, which 

ensures that the trade actually occurs only if a threshold level of potential trade is exceeded. In our 

simulations, we consider all possible combinations between the values of 𝑘 = (0, 1) and the 

distribution of the error terms (normal vs. lognormal).  



The equation (22) is equivalent to  𝑦𝑖 = exp(𝑥𝛽) − 𝑘 + 𝜀𝑖  
5.1.2 Second Data Generating 

In the Second Data Generating (SDG) process, data is generated using the following specifications.  𝑦1 = exp(𝑥1𝛽)𝜂 𝑦2 = exp(𝑥1𝛽) − 𝑘 + 𝜇 

 

We also allow for correlation between the error terms of the selection and correction equations. 

That is, 𝑐𝑜𝑟𝑟(𝜂, 𝜀) = 𝜌. Depending on the model specification (single equations, ETobit, Standard 

Heckman and New Heckman), different values for k are considered; 𝑘 = 0, 0.5, 1, 1.25. 

5.1.3 Third Data Generating 

In the Third Data Generating (TDG) process we have  𝑦1 = exp(𝑥1𝛽)𝜂 𝑦2 = exp(𝑥1𝛽) − 𝑘 + 𝑧𝛼 + 𝜇 

As in SDG, we allow for correlation between the error terms of the selection and correction 

equations. That is, 𝑐𝑜𝑟𝑟(𝜂, 𝜀) = 𝜌. We consider only one value of 𝑘 = 1. We conduct simulations 

for the newly introduced Hackman equations only.  

5.2 Simulation Results 

5.2.1 FDG 

Single Equations 

Table A1-1 and Table A1-2 in the Appendix summarize the simulation results of the FDG process 

of single equations when the estimation errors follow normal and lognormal distributions, 

respectively. For every case of the variance process we report the bias and the standard error of 

the estimators of the two parameters of interest (𝛽1 and 𝛽2) obtained using the different estimation 

techniques.  

Our first estimation task was to match the results of cases 1 to 4 of the experiments conducted by 

SST (2006) and to confirm their findings in relation to the superiority of PPML. Our findings are 

indeed consistent with SST (2006). When𝑘 = 1, all estimators are biased, except the PPML for 

lognormal errors (all cases of the variance process), and the new PPML that we introduced, 

Optimal_PPML for normal errors (all cases of the variance process). Note, however, that although 



these two estimators are relatively good, they are not very efficient. The poor performance of the 

other estimators (i.e., high bias) is due to their misspecifications. In fact, the models used to 

generate those estimators (OLS, NLS, Heckman_2SLS, etc.) do not assume any 𝑘 in the gravity 

equation. Note that this issue becomes more pronounced when the estimation requires a log 

transformation (OLS, Heckman_2sls_Log, etc.) as the biases reach high levels.   

When 𝑘 = 0, many estimators do very well, especially in case of lognormal (Gheckmans2sls, 

Gnnls, Gnnls_C, PPML, PPML_C). Moreover, for the lognormal case, when 𝑘 = 0, the censored 

and non-censored NLS and PPML (i.e. NLS vs. NLS_C and PPML vs. PPML_C) are exactly the 

same. For the case of normal errors, generalized estimators (Gheckman2sls, heckman2sls_Log, 

and Gheckman2sls_Log) are the best estimators. It is worth noting that in this case (normal 

distribution), even for 𝑘 = 0, a degree of censoring is needed as 𝑦 = exp(𝑥𝛽) + 𝜀 can be negative 

(in this case, y =0).18  

Three takeaways from the single equations experiments. First, none of the estimators is robust to 

the censoring. Second, OLS yields consistent results only in the case of constant variance ([𝑦𝑖|𝑥] =1) when 𝑘 = 0. Moreover, since log(𝜂) has a constant variance, the only bias will be on 𝛽0 (not 

on 𝛽1and 𝛽2). Third, and most importantly, the new PPML estimator we introduced, 

Optimal_PPML, outperforms SST (2006) PPML estimator for normal errors where 𝑘 = 1. 

Two-equation (Maximum likelihood) Techniques 

As discussed earlier, our two-equation techniques are based on different methods to determine the 

measure and the selection equations.  

Eaton-Tamura Tobit (ET-Tobit) 

We estimate the Eaton-Tamura Tobit (ET-Tobit) model using different specifications of the 

distribution of error term. Table A2-1 and Table A2-2 in the Appendix report the results of the ET-

Tobit estimators with the different variance scenarios described above. As can be seen, the E_ET-

Tobit is perfectly consistent with the FDG. In particular, it yields consistent estimators for both 𝑘 = 0 and 𝑘 = 1 in the case of constant variance (case 1) and errors normally distributed. When 

error terms are normally distributed, GET-Tobit and Gn_ET-Tobit are the most efficient estimators 

for both 𝑘 = 0 and 𝑘 = 1, and they are robust for the other specifications of the variance process 

(cases 2-5). Table 3 below indicates the efficient ET_Toibit estimators for the different patterns of 

heteroscedasticity. 

 Table 3: Most Efficient Estimators of the FDG ET-Tobit Models (𝒌 = 𝟎 , 𝒌 = 𝟏) 

 Case 1 Case 2 Case 3 Case 4 Case 5 

                                                           
18 This is because if the error term is a large negative number with absolute value bigger than exp(𝑥𝛽) then y will 

be negative. 



Normal 

E_ET-Tobit, 

GETtobit & 

Gn_ETtobit 

GET-Tobit & 

Gn_ET-Tobit 

GET-Tobit & 

Gn_ET-Tobit 

GET-Tobit* 

& Gn_ET-

Tobit* 

GET-Tobit 

& Gn_ET-

Tobit 

Log-

normal 

GET-Tobit_L 

& GET-

Tobit_LOG 

G_ET-Tobit_L 

& GET-

Tobit_LOG 

ETtobit_LOG, 

GET-Tobit_L 

& GET-

Tobit_LOG 

GET-

Tobit_L* & 

G_ET-

Tobit_LOG*   

GET-

Tobit_L & 

GET-

Tobit_LOG 

* Efficient for  𝛽1𝑏𝑢𝑡𝑛𝑜𝑡𝑓𝑜𝑟𝛽2 . 

When the errors are log-normally distributed, G_ET-Tobit_L and G_ET-Tobit_LOG yield the 

most efficient estimators for all specifications of the variance process. Note that for the 4th case, 𝛽2 estimator is more efficient using the ET-Tobit and GETtobit model, for the normal and 

lognormal distributions, respectively.  

Standard Heckman Model 

As highlighted above, we estimate two versions of the Heckman model, standard and new. In both 

versions we have y1 = exp(xβ)η(ory1 = exp((x1β) + u).  
In the standard Heckman model, 𝑦2 = 𝑥1𝛼 + 𝜖 ; and  𝑦 = {𝑦1, 𝑦2 > 00, 𝑦2 ≤ 0 

Table A3-1 and Table A3-2 in the Appendix report the simulation results for the standard Heckman 

model. When 𝑘 = 0, Gheckmanml and Gn_heckmanml yield very efficient estimators for the 

normal error case while Gn_heckmanml, Gheckmanml_L and Ghecmanml_LOG are the most 

efficient estimators when the errors follow lognormal distribution. Two exceptions are to highlight 

in each type of distributions of the error terms. For the normal errors, in the 4th specification of the 

heteroscedasticity the Gheckmanml and Gn_heckmanml are not the best estimators for 𝛽2 as the 

bias is quite significant. Similarly, Gn_heckmanml, Gheckmanml_L and Ghecmanml_LOG are 

not the best estimators for 𝛽2 in the 4th specification of the heteroscedasticity. Table 4 below 

summarizes the most efficient estimators of the standard Heckman equations in the FDG exercise.  

Table 4: Most Efficient Estimators of the FDG Heckman Models (𝒌 = 𝟎) 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Normal 

Gheckmanml & 

Gn_heckmanml  

Gheckmanml & 

Gn_heckmanml & 

heckmanml 

Gheckmanml & 

Gn_heckmanml & 

n_heckmanml & 

heckmanml_LOG 

heckmanml & 

Gheckmanml*, 

Gn_heckmanml* &  

Gheckmanml_L, 

Gheckmanml_LOG 

Gheckmanml & 

Gn_heckmanml 

Log-

normal 

Gn_heckmanml, 

Gheckmanml_L & 

Ghecmanml_LOG 

& heckmanml 

Gn_heckmanml, 

Gheckmanml_L & 

Ghecmanml_LOG 

& heckmanml 

Gn_heckmanml, 

Gheckmanml_L & 

Ghecmanml_LOG, 

& heckmanml 

heckmanml, & 

Gheckmanml*, 

Gn_heckmanml*, 

Gheckmanml_L* & 

Ghecmanml_LOG* 

Gn_heckmanml, 

Gheckmanml_L & 

Ghecmanml_LOG 

& heckmanml 



* Efficient for  𝛽1𝑏𝑢𝑡𝑛𝑜𝑡𝑓𝑜𝑟𝛽2 . 

When 𝑘 = 1, for all patterns of heteroscedasticity, none of the estimators is efficient under the 

assumption of normally distributed errors. But, when the errors are lognormally distributed, 

heckmanml_L, Gheckmanml_L and Gheckmanml_LOG for case 2 and n_heckmanml for case 3 

are relatively efficient.   

Like E_ET-Tobit, generalized versions of the Heckman model of the same error type yield the 

same estimators. More generally, generalized versions of the maximum likelihood estimators are 

very successful in dealing with the heteroscedasticity in its different forms (except for 𝛽2 with the 

4th pattern of the variance process).  

New Heckman Model 

In the new Heckman model  𝑦2 = exp(𝑥1𝛽) − 𝑘 + 𝑧𝛼 + 𝜇, and,  𝑦 = {𝑦1, 𝑦2 > 00, 𝑦2 ≤ 0 

Table A4 in the Appendix reports the simulation results of the New Heckman model. 

Independently of the distribution of the error terms or the heteroscedasticity process, none of the 

Heckman models yield good estimator. However, G_nheckmanml_New yields estimator with 

relatively acceptable bias for the lognormal errors case.    

5.2.2 Second data generating Process 

In the SDG process we have  𝑦1 = exp(𝑥1𝛽)𝜂 𝑦2 = exp(𝑥1𝛽) − 𝑘 + 𝜇 

In the SDG process we allow for correlation between the error terms of the selection and correction 

equations. That is, 𝑐𝑜𝑟𝑟(𝜂, 𝜇) = 𝜌.  

We also consider different values of 𝑘 = 0.5 and 𝑘 = 1.25 

Single Equations  

Depending on the pattern of heteroscedasticity and on the distribution of the error terms, some 

estimators seem to be more efficient than others are. For the normally distributed errors (Table 

A5-1 in Appendix), Heckman_2SLS is the most efficient for all patterns of heteroscedasticity with 

small bias and robust to the degree of censoring. For lognormally distributed errors (Table A5-2 

in Appendix), however, Heckman_2SLS is the most efficient for the first and second patterns of 

heteroscedasticity only. For  heteroscedasticity patterns 3, 4 and 5, NNLS estimators are 

reasonably good (small bias) but have large standard deviations. Note that the generalized versions 



do not improve the results. In contrary, it could worsen them. Therefore, when the censuring 

process is not well captured, considering different specifications of the variance process does not 

seem to ameliorate the quality of the estimators. Note also that heckman2SLS_LOG and 

Gheckman2SLS_LOG yield smaller variance for cases 2, 3 & 5. It is important to note as well that 

the PPML introduced by SST (2006) and the new PPML we introduced in this paper yield biased 

estimators. However, the censored PPML yields a slightly better results than the uncensored 

(complete data) counterpart while the new PPML is much better for the uncensored data than for 

the censored case. In other words, when working with censored data SST (2006) PPML 

outperforms the newly introduced PPML but when complete data is considered, the new PPML 

yields better estimation results.           

Two-equation (maximum Likelihood) Techniques 

ET-Tobit Equations 

Results are reported in Table A6 in Appendix. As expected, the E_ET-Tobit estimators yield 

substantial bias. Except for the 3rd specification of the heteroscedasticity (constant variance), 

GETobit and Gn_ET-Tobit (for both type of error distributions, normal and lognormal) where the 

estimators are quite efficient, all other estimators yield very bad results.  

Standard Heckman Equations 

Results are reported in Table A7 in Appendix. Many estimators did reasonably well in terms of 

efficiency and standard deviations. When the errors are normally distributed, Gn_heckmanml is 

the best estimator in cases 1, 2 and 3 but none of the estimators is efficient for the variance 

processes described by cases 4 and 5. For the lognormal errors, however, Gheckmanml_L is the 

best estimator for case 1 and heckmanml_LOG is the best estimator for case 2, but no efficient 

estimators can be obtained for cases 3, 4 and 5. Note that although heckman_LOG model yields 

the best results, it has relatively high variance. It is important to note, however, that despite its 

superiority relative to other estimators, heckman_Log deteriorates the estimations, like the FDG 

case.19  

Table 5: Efficient Standard Heckman Estimators 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Normal Gn_heckmanml Gn_heckmanml Gn_heckmanml None none 

Log-

normal 
Gheckmanml_L heckmanml_LOG    

 

                                                           
19 In fact, in our simulations results of FDG process, when k = 1 , heckman_Log yields widely 

biased estimators. 



To deal with the shortcomings of this estimator, we introduce a new version of the Heckman 

estimator.    

New Heckman Equations 

Under the new Heckman specification, data is generated as 𝑦2 = exp(𝑥𝛽) − 𝑘 + 𝑧𝛼 + 𝜇 . When 

errors are lognormal (Table 8B), regardless of the value of 𝑘 (i.e., degree of censoring), 

Gheckmanml_L_New and Gheckmanml_LOG_New yield the best estimators for all patterns of 

heteroscedasticity, except for case 1 where heckmanml_New and Gn_heckmanml_New yield  the 

best estimators. With high degree of censoring (k=1.25), however, heckmanml_New and 

heckmanml_LOG_New yield even better estimators. Again Heckman_Log gives very good results 

for high censoring data (k=1.25), but less accurate results for k = 0.5. Results are reported in Table 

A8-1 & Table A8-2 in the Appendix. Table 6 below summarizes the most efficient estimators. 

Table 6: Efficient New Heckman Estimators 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Normal 

(k=0.5) 

Gheckman

ml_New, 

Gn_heckma

nml_New, 

heckmanml

_New 

Gheckmanml_Ne

w, 

Gn_heckmanml_

New 

Gheckmanml_Ne

w 

Gheckmanml_Ne

w 

Gheckmanml_Ne

w, 

Gn_heckmanml_

New 

Log-

normal 

heckmanml

_New & 

Gn_heckma

nml_New 

Gheckmanml_L_

New & 

Gheckmanml_LO

G_New 

Gheckmanml_L_

New & 

Gheckmanml_LO

G_New 

Gheckmanml_L_

New & 

Gheckmanml_LO

G_New 

Gheckmanml_L_

New & 

Gheckmanml_LO

G_New 

 

For normal errors (Table A8-1), with low degree of censoring (k=0.5), Gheckmanml_New is the 

only successful estimator for all cases of heteroscedasticity. Gn_heckmanml_New is efficient for 

cases 1, 2 & 5 while heckmanml_New is relatively efficient for case 1 only. For high censoring 

(k=1.25), however, only the 1st and 2nd cases of the variance process result in successful estimators. 

Gn_hechamnml_New are not very successful with high censoring (k=1.25) as compared to low 

censoring (k=0.5) especially for  the 3rd, 4th and 5th specifications of the variance process. 

Similarly, Gheckmanml_New yield relatively good results with low degree of censoring (k=0.5), 

yet relatively higher bias for the 3rd, 4th and 5th cases of heteroscedasticity.  

It is interesting to note that G_heckmanml_New and Gn_heckmanml_New do not always coincide. 

This could be explained by the convergence problems. In fact, it seems that when data is simulated 

from normal errors, convergence issue can occur when using G_heckmanml_New and 

Gn_heckmanml_New. Yet, this problem does not exist for Gheckmanml_L_New and 

Ghemanml_LOG_New even for the normal error case. 



According to FDG and SDG results Heckmanml_Log efficiency is not robust to the censoring rate. 

Hence, we cannot really rely on Heckmanml_Log results. Indeed, when there is a significant 

difference  between Heckmanml_Log and generalized versions, we should take the latter ones. 

5.2.3 Third data generating Process 

Results are reported in Table A9 in the Appendix. In the TDG process we run the simulations for 

the New Heckman specification only.  Data is generated according to the following measure and 

selection equations:  𝑦1 = exp(𝑥1𝛽)𝜂 𝑦2 = exp(𝑥1𝛽) + 𝑥2𝛼 + 𝜇 

As in SDG, we allow for correlation between the error terms of the selection and correction 

equations. That is, 𝑐𝑜𝑟𝑟(𝜂, 𝜇) = 𝜌. We consider only one value of 𝑘 = 1.  

For lognormal errors, Gheckmanml_L_New and Ghemanml_LOG_New give the best (and very 

similar) results, for the 2nd, 3rd and 5th patterns of heteroscedasticity. Moreover, both estimators 

give relatively good results for case 1 but they are not the most efficient (as compared to 

heckmanml_New, Gheckmanml_New and Gn_heckmanml_New). For the 4th pattern of 

heteroscedasticity, heckmanml_LOG_New is the most efficient while Gheckmanml_L_New and 

Ghemanml_LOG_New are reasonably good estimators for  𝛽1 but not 𝛽2.  

Table 7: TDG process - Efficient New Heckman Estimators 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Nor

mal  

G_heckmanml_

New & 

Gn_hechamnml

_New 

G_heckmanml_

New & 

Gn_hechamnml_

New 

G_heckmanml_

New & 

Gn_hechamnml_

New 

G_heckmanml_

New* & 

Gn_hechamnml_

New* 

G_heckmanml_

New & 

Gn_hechamnml_

New 

Log-

nor

mal 

heckmanml_Ne

w, 

Gheckmanml_N

ew & 

Gn_heckmanml

_New 

Gheckmanml_L

_New & 

Ghemanml_LO

G_New 

Gheckmanml_L

_New & 

Ghemanml_LO

G_New 

heckmanml_LO

G_New 

Gheckmanml_L

_New & 

Ghemanml_LO

G_New 

* Estimator of 𝛽1 only. 

For normal errors, G_heckmanml_New and Gn_hechamnml_New yield good results for all 

patterns of heteroscedasticity (only estimator of  𝛽1 for case 4), but not as good as 

Heckmanml_L_New and Gchemanml_LOG_New  for the lognromal errors case. Note also that 

the problem of convergence arises here again for the 3rd and 4th specifications of the variance 

process. Another important remark here is related to the estimator heckmanml_New characterized 

with unstable efficiency with high bias for the 3rd and 5th patterns of heteroscedasticity.  



Based on the above simulations results, five important remarks worth highlighting. First, for both 

the SDG and TDG processes, Gheckman_L_New and Gheman_LOG_New are efficient for 

lognormal errors. Yet, it is obvious that those results are very good for heteroscedasticity of type 

1 and 2 (regardless of the censoring rate). For heteroscedasticity of type 3, 4 and 5, they still yield 

good results but less efficient than the heteroscedasticity of type 1 & 2. Second, for all data 

generating processes, we notice that for almost all maximum likelihood estimators (i.e. two 

equation models), there is a high bias for the experiments where the heteroscedasticity is of type 

4. Third, as mentioned by, the variance is most likely to be proportional to the trade level; that is, 

type 2. Fourth, for the single equations estimators, when the data is non-censored (k=0) and 

lognormal errors, the PPML estimator is very outstandingly efficient, which is consistent with the 

finding of SST (2006). Which is also the case for GNLS and Gheckman_2SLS. But, the non-

censored data with normal errors, PPML yield large bias. Fifth, overall, Gheckmanml_L_New and 

Gheckmanml_LOG_New seem to be the best estimators when errors are lognormally distributed.  

6. New Estimates of the Gravity Equation (Results) 

In this section, we use the most efficient estimators identified in the simulation exercise to quantify 

the effect of the conventional variables used in gravity models on the bilateral trade flows between 

countries.  We compare our estimators with the predictions related to the same variables and the 

main contributions in the literature, namely SST (2006). Two estimation techniques are performed: 

single equations and two equations. In each technique, we consider the various specifications 

discussed earlier. This allows us to compare the predictions of models (ie., our estimates) with the 

predictions of other models who used different approaches to deal with heteroscedasticity and the 

prevalence of zero trade values. We structure this section into three subsections. We start with a 

brief description of the data, then we discuss the single equations results and we conclude with the 

two equations findings.  

6.1.   Data 

 As our model builds on the findings of important contributions in the literature and proposes 

refinements of existent estimators, we thought that using the database of SST (2006), the most 

significant contribution in the literature dealing with heteroscedasticity and the prevalence of zero 

trade values, is essential to validate our results and our comparative analysis. The data consists of 

a cross section bilateral export flows of 136 countries in 1990. A detailed description of the data, 

including the list of countries, variables, sources, etc. can be found in SST (2006). Briefly, the 

dependent variable consists of the ‘bilateral exports’ while explanatory variables are ‘real GDP 
per capita’, ‘population’, ‘location’, ‘distance’, ‘remoteness’, ‘preferential trade agreements’. 
Moreover, the explanatory variables includes a set of dummy variables constructed to capture 

‘contiguity’, ‘common language’, ‘colonial ties’, and ‘access to water’.20   

                                                           
20 See SST (2006) for a detailed description of data sources and summary statistics of the variables.   



6.2 Single equations results  

Table 8 presents the results of the traditional estimators widely used in the literature and discussed 

in the methodology and simulation sections. For instance, we report the estimates of the OLS 

model excluding the pairs of countries with zero bilateral trade. For the NLS, GNLS, and PPML 

are estimated using the whole sample (including the pairs of countries with zero bilateral trade 

values) while NLS_C, GNLS_C, and PPML_C represent the censored version of the 

corresponding models.  

It is important to note that our findings are perfectly consistent with SST (2006) results. In 

particular, our estimates match both the whole sample and subsample PPML estimators. We were 

also able to find the same results for the other linear and nonlinear estimators. The same 

conclusions of SST (2006) are valid. In fact, compared with other estimators, the PPML estimator 

deals better with the heteroscedasticity. Moreover, the PPML estimates indicate that the importer’s 
and exporter’s GDP explain just above 70 percent of trade between countries, as opposed to higher 

values that other models suggest (e.g., OLS GDP estimated elasticities  are above 90% and around 

80% for the exporter’s GDP and importer’s GDP, respectively). Estimates of the other variables 

such as distance, remoteness, access to water and preferential-trade agreements are also consistent 

with the findings of SST (2006) and same conclusions apply. That is, the PPML estimates are 

different from other models as it deals with the heteroscedasticity and zero trade values differently.  

[Table 8-1 here]    

Our second exercise related to the single equations techniques consists of the estimation of the 

new set of estimators that we introduced in this paper. Table 8-2 reports the outcome of the 

estimates of the improved versions (whole sample and subsample of positive trade values only) of 

the Poisson model (Optimal_PPML and Optoimal_PPML_C), two versions of the standard two-

stage least square regressions (2SLS) of Heckman model (one in level, Heckman_2SLS, and one 

in log, Heckman_Log_2SLS) and two generalized versions of the 2SLS Heckman model 

(GHeckman_2SLS and GHeckman_Log_2SLS).  

[Table 8-2 here] 

The first important observation is that, except for the two log versions of the two-stage Heckman 

model (Heckman_Log_2SLS and GHeckman_Log_2SLS), the estimates of the key parameters are 

relatively close. For instance, estimates of the log of exporter’s GDP ranges from 0.6326 to .7376 

and the estimates of the log of importer’s GDP are between .6619 and .8617. The second 

observation is that the estimated coefficients of the improved Poisson models (Optimal_PPML 

and Optimal_PPML_C) that we introduced, although close to the PPML estimators of SST (2006) 

are lower for the key parameters. For example, the estimated coefficients of the log exporter’s 
GDP and log importer’s GDP are around 73% in the standard PPML while they are around 65% 

in the PPML improved versions. This suggests that exporter’s and importer’s GDP in the improved 
Poisson model have less weight than in the standard Poisson coefficients. Other variables such as 



the distance, exporter’s and importer’s per capita GDP, common language, contiguity, landlocked 

exporter and importer, remoteness, and preferential-trade agreements continue to be significant 

and with relatively same importance in the improved versions of the PPML estimators. Despite 

the differences in the weights of the coefficients estimates, our findings confirm the power, 

robustness and superiority of the Poisson estimator proposed by SST (2006) when the bilateral 

trade is estimated using single equations techniques.   

Finally, we notice that the estimations of Heckman_Log _2SLS yield higher coefficients compared 

to the Heckman_level_2SLS. This may be due to the Jenson inequality bias (variance depending 

on the explanatory variables) faced when using Heckman_Log_2SLS. 

Explanation of the results similarity between PPML and Truncated_PPML  

If we look at the data used in SST(2006) and in the present paper, we will notice that the real trade 

values, once sorted, have an exponential shape (where half of non zeros trade observations are less 

than 1% of the mean value). It is also obvious to notice that the Log exporter’s GDP and Log 
importer’s GDP are the main two variables that contribute the most in explaining this exponential 
shape of trade data, as they are the variables with highest mean values and the highest variances 

out of all significant variables. The mean values of two key variables are around 22 for the zero 

trade observations, while they are around 28 for the right upper tail of the distribution (sorted as 

function of trade). This means that zeros are highly correlated with the main variables that can 

match the exponential distribution of trade. The fact that estimating the gravity equation would 

consist in mainly matching the upper part of the trade exponential distribution, including zeros in 

the estimation will not change much the numerical results, and the biases discussed  in subsection 

3.2 (systematic and correlation biases) will be significantly attenuated. This explains the similarity 

of estimations results of truncated and non-truncated data. It is worthy to note that this would not 

be the case if we have to deal with a data set where zeros trade values are not positively correlated 

with 𝑥 (zeros trade explained by other omitted variables), or if the minimum non-zero trade value 

is high.  

We can conclude that zeros trade values should be included in the estimation of the gravity model, 

but we should be careful when dealing with them. In fact, we cannot be assured that we will always 

be avoiding the biases discusses above. 

6.3 Two-equations results 

Our two equations techniques consisted in estimating the bilateral trade between countries using 

three methods: two conventional approaches (the ET-Tobit & the standard Heckman models) and 

a new approach of the Heckman model that we introduced early. In each of these three methods, 

we add to the body of the existent literature with new specifications of the selection equation, the 

variance process and the distribution of the error terms. In fact, we consider nonlinear form of the 



selection equation, lognormally distributed errors and we estimate the variance process 

simultaneously. In what follows, we discuss the results of standard and new Heckman models.21  

In the Heckman model, we used three selection equation specifications:  

i. Standard, where same set of variables used in measure equation are used in the selection 

equation in a linear manner. That is, 𝑦2 = 𝑥𝛼 + 𝜇, 

ii. New Heckman: 𝑦2 = exp(𝑥1𝛽) − 𝑘 + 𝑧𝛼 + 𝜇, where 𝛽 is endogenously estimated in the 

measure equation, and 

iii. New Heckman without common language variable in the measure equation but it is in the 

selection equation. 22   

Table 9 reports the results related to the efficient estimates of the standard Heckman model. The 

log likelihood functions confirm the findings of the simulations exercise and suggest that 

Gehckmanml_Log and Gehckmanml_L are the most efficient. These two maximum likelihood 

estimators suggest that the coefficients on exporter GDP and importer GDP are 0.50 and 0.44, 

respectively, estimates that are significantly lower that their counterparts in most studies in the 

literature, which are close to one.   

Note that it is not surprising that these two estimators yield very similar coefficients estimates, as 

they are asymptotically equivalent, suggesting that our heteroscedasticity modelling is consistent 

in both cases. 23 

[Table 9 here] 

Compared with the PPML estimates for the key variables, which are substantially below one 

(0.733 and 0.741 for exporter and importer GDP, respectively), the standard Heckman models we 

estimate provide lower coefficients (0.503 and 0.44). Furthermore, considering our improved 

PPML estimates (0.64 and 0.66 for the exporter and importer GDP, respectively), even though the 

differences with the standard Heckman estimates are smaller, they remain significant.  Similarly, 

for all other explanatory variables, standard Heckman model provides lower estimates, compared 

to PPML and the improved PPML. The more significant differences, though, are related to 

(exporter’s and importer’s) remoteness, landlocked (exporter and importer) and common language 

variables. These results indicate that the bias of PPML estimator is significant. The improved 

                                                           
21 Results of all versions of the ET-Tobit model are available upon request. Note that for the standard ET-Tobit 

model (i.e., estimation of the ln(𝑎 + 𝑇𝑖𝑗) model), we get the same results as SST (2006), especially for the key 

variables (with estimated coefficients of 1.0587 and 0.8475 for the log of exporter’s GDP and log of importer’s 
GDP, respectively), but our generalized versions give less weight for these variables (with estimated coefficients of 

.8186 and 0.6637 for the log of exporter’s GDP and log of importer’s GDP, respectively). 
22 Estimates of the New Heckman model without the common-language variable are available upon request.  
23 The differences between the coefficients of the key variables (i.e., exporter GDP and importer GDP) are 

insignificant (0.0012 for exporter GDP and -0.0001 for importer GDP). 

 



PPML estimator, even though has smaller difference with the standard Heckman estimator, its bias 

remains important.  

Table 10-1 and Table 10-2 present the results of the regular and generalized versions of the New 

Heckman model, respectively. The likelihood ratio test confirms the superiority of the generalized 

versions of the new Heckman model. In fact, based on LR tests, for all of the estimators considered, 

the generalized versions yield the most efficient results, more specifically Gheckmanml_Log_new 

and Gheckmanml_L_new. Note, however, that despite the differences in performance of the 

different estimators, the results are very close and report significantly lower coefficients of the key 

variables, namely exporter and importer GDP (around 0.5 and 0.4, respectively). It is important to 

note here that, even though the new Heckman models are estimated in log, our proposed sample 

selection equation corrects for the bias caused by the heteroscedasticity issue (i.e., Jensen’s 
inequality problem).  This represents, indeed, one of our main contributions and consists in a novel 

finding in the literature as previous empirical studies results might be overestimating the 

contribution of the GDPs of both import and export countries in determining the bilateral trade. 

[Table 10-1 here] 

[Table 10-2 here] 

 

7. Conclusion  

Estimation of trade flows between countries using gravity equations has been used extensively in 

the international trade literature. The prevalence of zero trade values and the presence of 

heteroscedasticity, however, raised many questions related to many specifications and estimation 

methods. Indeed, the way the log-linearized models treated the zero trade values and the 

approaches considered to handle the heteroscedasticity problems have led to efficiency and 

optimality issues. This paper proposes corrections for biases identified in some of the estimators 

used in the literature. We revisit the theoretical foundations and estimation practices of many 

specifications of the gravity equation and show that improving the consistency and efficiency of 

the estimates is possible.. Our contribution is threefold. First, we derive an improved optimal 

version of the well known  the Poisson Pseudo Maximum Likelihood (PPML) estimator. Although 

the PPML is robust to different patterns of heteroscedasticity, deals with the Jensen’s inequality, 
resolves the inefficiency problem, and tractability in the international trade literature, some issues 

related to the zero trade values and heteroscedasticity persist. In fact, using all data (i.e., including 

the zeros) in the estimation sample forces the estimated gravity model to predict a trade level that 

should be as close as possible to zero. But, zero trade values does not necessarily mean that the 

absence of potential for trade. Moreover, the derivation of the PPML estimator assumes that the 

variance is proportional to the mean, which may raise the questions about its optimality. While we 

start from the same assumption made by SST (2006), namely, the conditional variance propose is 

proportional to the mean, we derive a new FOC from a modified version of the objective function 



where error terms are divided by the corresponding standard errors, resulting in a new estimator. 

Second, we propose various Heckman estimators based on a new specification of both the measure 

and selection equations, different distributions of the error terms and various processes of the 

variance. We add to the existent literature alternative estimation methods taking into account the 

non-linearity of both the variance and selection equations, allow for lognormal distribution of the 

errors terms, and specify the selection equation in way it determines whether a bilateral trade can 

occur or not and treat the trade frictions differently. The considerations we included in our 

estimations led us to conclude that previous empirical studies might be overestimating the 

contribution of the GDP of both import and export countries in determining the bilateral trade. In 

fact, the estimates of the coefficients on the income of exporting and importing countries are more 

than 0.7 in the existent literature while our model predicts suggests that those estimates are in the 

range of  0.4 to 0.5.. Third, to perform the estimation of the above-mentioned Heckman versions 

(non-linear forms, lognormal distribution and simultaneous variance estimation) computational 

and technical challenges arise. In fact, no pre-set package in the econometric software (Stata, 

Eviews, etc.) can deal with these three dimension to estimate our augmented model. We had to 

code in Matlab using a combination of fminsearch and fminunc functions. Moreover, using 

numerical gradient matrix G, we report standard errors based on the BHHH technique. 

  



Table 8-1: Single Equations Traditional Estimators 

  

  

OLS_C NLS GNLS NLS_C GNLS_C PPML PPML_C 

coeficient s.e coeficient s.e robust coeficient s.e coeficient s.e robust coeficient s.e coef s.e coef s.e 

Constant -28.4920 1.0880 -45.0989 0.2391 3.3792 -31.1494 0.4411 -45.0850 0.3306 3.3832 -23.5902 0.7634 -32.3261 2.0595 -31.5296 2.1610 

Log exporter's GDP 0.9378 0.0116 0.7378 0.0044 0.0384 0.7204 0.0060 0.7376 0.0060 0.0384 0.8045 0.0101 0.7325 0.0268 0.7213 0.0268 

Log importer's GDP 0.7978 0.0111 0.8619 0.0045 0.0410 0.7619 0.0060 0.8617 0.0062 0.0410 0.6708 0.0099 0.7411 0.0274 0.7319 0.0279 

Log exporter's per capita GDP 0.2073 0.0166 0.3957 0.0097 0.1157 0.1996 0.0088 0.3953 0.0134 0.1158 0.0805 0.0097 0.1567 0.0533 0.1544 0.0527 

Log importer's per capita GDP 0.1061 0.0167 -0.0325 0.0067 0.0619 0.1241 0.0075 -0.0325 0.0092 0.0619 0.3543 0.0125 0.1350 0.0449 0.1327 0.0445 

Log of distance -1.1660 0.0339 -0.9237 0.0085 0.0725 -0.8022 0.0122 -0.9234 0.0117 0.0725 -0.7099 0.0206 -0.7838 0.0546 -0.7763 0.0553 

Contiguity dummy 0.3140 0.1425 -0.0813 0.0099 0.1004 0.0769 0.0389 -0.0811 0.0136 0.1005 0.8606 0.0379 0.1929 0.1043 0.2024 0.1052 

Common-language dummy 0.6780 0.0640 0.6894 0.0159 0.0850 0.5789 0.0294 0.6894 0.0220 0.0851 1.5307 0.0312 0.7460 0.1347 0.7513 0.1342 

Colonial-tie dummy 0.3968 0.0681 0.0358 0.0178 0.1254 0.1283 0.0266 0.0355 0.0246 0.1255 -0.8086 0.0470 0.0250 0.1498 0.0200 0.1500 

Landlocked exporter dummy -0.0620 0.0646 -1.3671 0.0305 0.2022 -0.6364 0.0264 -1.3670 0.0422 0.2023 -1.2966 0.0918 -0.8635 0.1572 -0.8724 0.1573 

Landlocked importer dummy -0.6645 0.0631 -0.4715 0.0223 0.1838 -0.6247 0.0283 -0.4716 0.0308 0.1839 -1.5345 0.0820 -0.6964 0.1408 -0.7035 0.1409 

Exporter's remoteness 0.4671 0.0778 1.1878 0.0183 0.1821 0.6070 0.0311 1.1876 0.0252 0.1822 -0.1093 0.0517 0.6598 0.1338 0.6472 0.1352 

Importer's remoteness -0.2050 0.0808 1.0097 0.0179 0.1541 0.4505 0.0329 1.0094 0.0247 0.1542 0.1732 0.0534 0.5615 0.1185 0.5493 0.1197 

Preferential-trade agreement 

dummy 
0.4908 0.1053 0.4425 0.0137 0.1090 0.1410 0.0211 0.4426 0.0190 0.1091 -0.6770 0.0539 0.1811 0.0886 0.1794 0.0903 

Openness dummy -0.1696 0.0490 0.9280 0.0238 0.1912 -0.1956 0.0274 0.9270 0.0329 0.1915 -0.8274 0.0378 -0.1068 0.1312 -0.1394 0.1329 



Table 8-2: Single Equations New Estimators 

  

Optimal_PPML Optimal_PPML_C Heckman_Log_2s2 GHeckman_Log_2s2 Heckman_2s2 GHeckman_2s2 

coef s.e robust coef s.e robust coef s.e coef s.e coef s.e robust coef s.e 

Constant 

-

27.4317 
2.4322 2.4734 

-

26.9171 
2.9409 2.5984 

-

33.6901 
1.2430 -33.3712 1.2253 

-

45.0810 
0.3307 3.3851 

-

30.8733 
0.6044 

Log of exporter's GDP 0.6409 0.0511 0.0404 0.6326 0.0625 0.0399 1.0537 0.0174 1.0485 0.0172 0.7376 0.0060 0.0384 0.7259 0.0083 

Log of importer's GDP 0.6682 0.0636 0.0392 0.6619 0.0788 0.0392 0.8781 0.0143 0.8748 0.0141 0.8617 0.0062 0.0410 0.7624 0.0082 

Log of exporter's per capita GDP 0.1337 0.0450 0.0801 0.1321 0.0534 0.0785 0.2281 0.0169 0.2269 0.0167 0.3950 0.0134 0.1158 0.1792 0.0118 

Log of importer's per capita GDP 0.1594 0.0523 0.0676 0.1562 0.0632 0.0658 0.1309 0.0171 0.1292 0.0169 -0.0325 0.0092 0.0619 0.1142 0.0102 

Log of distance -0.6546 0.0649 0.0618 -0.6492 0.0780 0.0617 -1.2641 0.0360 -1.2603 0.0354 -0.9233 0.0117 0.0725 -0.7996 0.0172 

Contiguity dummy 0.3525 0.1065 0.1499 0.3548 0.1288 0.1474 0.1548 0.1455 0.1613 0.1429 -0.0810 0.0136 0.1005 0.0971 0.0537 

Common-language dummy 0.9090 0.1465 0.1945 0.9060 0.1750 0.1912 0.7673 0.0653 0.7661 0.0644 0.6894 0.0220 0.0851 0.5193 0.0407 

Colonial-tie dummy -0.2045 0.1591 0.2062 -0.2042 0.1927 0.2035 0.4384 0.0688 0.4345 0.0680 0.0355 0.0246 0.1255 0.1863 0.0356 

Landlocked exporter dummy -0.8249 0.3104 0.1861 -0.8297 0.3674 0.1845 -0.0607 0.0650 -0.0589 0.0643 -1.3667 0.0422 0.2023 -0.6004 0.0366 

Landlocked importer dummy -0.7550 0.2936 0.1842 -0.7561 0.3454 0.1824 -0.6866 0.0636 -0.6876 0.0629 -0.4716 0.0308 0.1839 -0.6064 0.0394 

Exporter's remoteness 0.5045 0.2621 0.1725 0.5002 0.3230 0.1728 0.5187 0.0790 0.5143 0.0776 1.1875 0.0252 0.1823 0.5999 0.0423 

Emporter's remoteness 0.6126 0.2515 0.1450 0.6061 0.3100 0.1452 -0.2004 0.0817 -0.2062 0.0804 1.0093 0.0247 0.1542 0.4361 0.0445 

Preferential-trade agreement dummy 0.1195 0.1578 0.1019 0.1257 0.1923 0.1022 0.4565 0.1076 0.4496 0.1050 0.4426 0.0190 0.1091 0.1556 0.0302 

Openness dummy -0.4671 0.1950 0.1535 -0.4807 0.2362 0.1537 -0.0585 0.0508 -0.0716 0.0504 0.9268 0.0329 0.1915 -0.1828 0.0388 



Table 9. Standard Heckman estimators 

 

  Gheckmanml Gehckmanml_Log Gehckmanml_L Gn_Hekcmanml 

  coeficient s.e coeficient s.e coeficient s.e coeficient s.e 

Constant 
-22.7696 0.1962 -9.8237 0.4992 -9.9481 0.4938 -22.7696 0.1964 

Log exporter's 

GDP 
0.5922 0.0025 0.5029 0.0045 0.5017 0.0045 0.5922 0.0025 

Log importer's 

GDP 
0.6720 0.0028 0.4411 0.0043 0.4412 0.0042 0.6720 0.0028 

Log exporter's 

per capita GDP 
0.2073 0.0019 0.1179 0.0061 0.1172 0.0060 0.2073 0.0019 

Log importer's 

per capita GDP 
0.2430 0.0017 0.0895 0.0062 0.0900 0.0061 0.2430 0.0017 

Log of distance -0.8068 0.0054 -0.5935 0.0158 -0.5895 0.0155 -0.8068 0.0054 

Contiguity 

dummy 
0.4011 0.0179 0.4682 0.0359 0.4861 0.0351 0.4011 0.0179 

Common-

language dummy 
0.8959 0.0078 0.5033 0.0278 0.5000 0.0274 0.8959 0.0078 

Colonial-tie 

dummy 
-0.0015 0.0084 0.0188 0.0290 0.0230 0.0287 -0.0015 0.0084 

Landlocked 

exporter dummy 
-0.7246 0.0080 -0.0658 0.0512 -0.0650 0.0511 -0.7246 0.0080 

Landlocked 

importer dummy 
-0.6082 0.0080 -0.3100 0.0500 -0.3077 0.0500 -0.6082 0.0080 

Exporter's 

remoteness 
0.1947 0.0118 0.2109 0.0408 0.2144 0.0402 0.1947 0.0118 

Importer's 

remoteness 
0.4584 0.0098 0.0389 0.0391 0.0496 0.0389 0.4584 0.0098 

Preferential-trade 

agreement 

dummy 

0.0774 0.0161 0.1694 0.0538 0.1746 0.0538 0.0774 0.0161 

Openness 

dummy 
-0.6613 0.0057 -0.1386 0.0211 -0.1366 0.0208 -0.6613 0.0056 

                  

Log likelihood 123864.71   106948.97   106947.95   123864.71   



Table 10-1: Two-equation estimators - New Heckman, regular 

  Heckmanml_New Hekcmanml_L_New Heckmanml_Log_New n_Heckman_New 

  coeficient s.e coeficient s.e coeficient s.e coeficient s.e 

Constant -36.2899 0.0837 -7.2588 0.5083 -10.1691 0.6197 -20.3133 0.1328 

Log of exporter's GDP 0.6561 0.0012 0.4480 0.0048 0.5391 0.0061 0.5111 0.0012 

Log of importer's GDP 0.6826 0.0013 0.3564 0.0047 0.4247 0.0055 0.5190 0.0011 

Log of exporter's per capita 

GDP 
0.1994 0.0026 0.0934 0.0064 0.1182 0.0075 0.1685 0.0013 

Log of importer's per capita 

GDP 
0.0612 0.0018 0.0830 0.0066 0.0972 0.0076 0.2132 0.0013 

Log of distance -0.7135 0.0025 -0.5018 0.0128 -0.6041 0.0146 -0.6959 0.0035 

Contiguity dummy 0.0961 0.0024 0.0834 0.0327 -0.0459 0.0603 0.4635 0.0094 

Common-language dummy 0.0130 0.0047 0.2891 0.0233 0.3581 0.0275 0.5878 0.0056 

Colonial-tie dummy 0.5438 0.0054 0.1948 0.0256 0.2271 0.0292 0.0543 0.0065 

Landlocked exporter dummy -0.3532 0.0059 -0.0566 0.0233 0.0126 0.0296 -0.4542 0.0056 

Landlocked importer dummy -0.0626 0.0057 -0.1952 0.0250 -0.2236 0.0293 -0.3400 0.0065 

Exporter's remoteness 1.0375 0.0057 0.2397 0.0365 0.2355 0.0427 0.4819 0.0087 

Emporter's remoteness 0.9609 0.0055 0.0624 0.0355 -0.0826 0.0408 0.4765 0.0071 

Preferential-trade agreement 

dummy 
0.5450 0.0045 0.3863 0.0337 1.3830 0.0795 0.5620 0.0099 

Openness dummy 0.5480 0.0058 0.1319 0.0198 0.1500 0.0219 -0.2636 0.0036 

Log likelihood 153419.54   107706.72   108922.00   125491.48   

 

  



Table 10-2: Two-equation estimators: New Heckman, generalized.  

  Gheckmanml_New Gehckmanml_Log_New Gehckmanml_L_New Gn_Hekcmanml_New 

  coeficient s.e coeficient s.e coeficient s.e coeficient s.e 

Constant -20.3128 0.1335 -9.2200 0.3747 -9.3684 0.3756 -20.3129 0.1088 

Log of exporter's GDP 0.5111 0.0013 0.4760 0.0034 0.4770 0.0034 0.5111 0.0008 

Log of importer's GDP 0.5190 0.0012 0.3841 0.0033 0.3848 0.0034 0.5190 0.0007 

Log of exporter's per capita 

GDP 
0.1685 0.0013 0.1052 0.0052 0.1049 0.0052 0.1685 0.0013 

Log of importer's per capita 

GDP 
0.2132 0.0013 0.0931 0.0052 0.0929 0.0052 0.2132 0.0012 

Log of distance -0.6959 0.0036 -0.5290 0.0118 -0.5324 0.0118 -0.6959 0.0034 

Contiguity dummy 0.4635 0.0096 0.2755 0.0294 0.2710 0.0295 0.4635 0.0093 

Common-language dummy 0.5878 0.0057 0.3797 0.0215 0.3785 0.0215 0.5878 0.0054 

Colonial-tie dummy 0.0543 0.0065 0.1239 0.0226 0.1237 0.0226 0.0543 0.0065 

Landlocked exporter dummy -0.4542 0.0057 -0.0236 0.0268 -0.0237 0.0268 -0.4542 0.0056 

Landlocked importer dummy -0.3401 0.0066 -0.1989 0.0259 -0.1983 0.0259 -0.3401 0.0065 

Exporter's remoteness 0.4819 0.0092 0.2402 0.0313 0.2471 0.0313 0.4819 0.0084 

Emporter's remoteness 0.4764 0.0072 0.0688 0.0297 0.0776 0.0297 0.4764 0.0070 

Preferential-trade agreement 

dummy 
0.5620 0.0135 0.4023 0.0359 0.4017 0.0359 0.5620 0.0096 

Openness dummy -0.2636 0.0037 0.1015 0.0167 0.1035 0.0167 -0.2636 0.0035 

Log likelihood 125491.48   107433.23   107433.15   125491.48   
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Appendix 

1) FDG Single equations 

Table A1-1 

Errors Normally Distributed k=0 k=1 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

FDG Single equations                 

case 1 

OLS -0.196099 0.028879 -0.161366 0.049473 0.023479 0.041546 0.058334 0.070431 

Heckman 2SLS 0.000261 0.010139 -0.000137 0.020185 0.127080 0.011912 0.127514 0.023972 

GHeckman 2SLS -0.000121 0.010249 -0.000645 0.020465 0.147301 0.014717 0.147528 0.025587 

heckman2sls_Log -0.019114 0.033089 0.014148 0.055113 0.379170 0.046678 0.425799 0.075712 

Gheckman2sls_Log -0.018797 0.033062 0.014366 0.055117 0.374869 0.091425 0.415272 0.115795 

NNLS -0.022986 0.009802 -0.026749 0.019325 0.117217 0.011373 0.116009 0.023531 

Gnnls -0.028699 0.010706 -0.032876 0.020077 0.128466 0.013116 0.126289 0.024757 

nnls_C -0.022986 0.009802 -0.026749 0.019325 0.149097 0.011213 0.153677 0.024106 

Gnnls_C -0.028699 0.010706 -0.032876 0.020077 0.193703 0.021461 0.198924 0.031888 

PPML -0.124846 0.012473 -0.123438 0.022290 0.086472 0.015449 0.085241 0.029410 

PPML_C -0.124846 0.012473 -0.123438 0.022290 0.231669 0.016629 0.245720 0.032690 

Optimal_PPML -0.216352 0.015935 -0.211279 0.022181 -0.030102 0.024559 -0.031896 0.032000 

Optimal_PPML_C -0.189830 0.016785 -0.182467 0.023258 0.040586 0.027320 0.048911 0.034303 

case 2 

OLS -0.105356 0.025890 -0.094027 0.057883 0.168961 0.041443 0.172169 0.075936 

Heckman 2SLS -0.013369 0.036735 -0.016955 0.060524 0.084405 0.044126 0.081808 0.073303 

GHeckman 2SLS -0.056072 0.022896 -0.061612 0.041653 0.087218 0.027448 0.081922 0.052258 

heckman2sls_Log 0.028376 0.031208 0.043105 0.065995 0.272549 0.080166 0.276058 0.103259 

Gheckman2sls_Log 0.028994 0.030300 0.043765 0.065766 0.272700 0.079514 0.275979 0.101415 

NNLS -0.032683 0.031909 -0.038758 0.055679 0.081452 0.039031 0.078523 0.069632 

Gnnls -0.100966 0.023702 -0.106076 0.040388 0.075017 0.022999 0.068921 0.049679 

nnls_C -0.032683 0.031909 -0.038758 0.055679 0.142418 0.037905 0.145455 0.073001 

Gnnls_C -0.100966 0.023702 -0.106076 0.040388 0.229963 0.034358 0.235574 0.063682 

PPML -0.092457 0.017172 -0.098181 0.037970 0.073418 0.022434 0.067722 0.048877 

PPML_C -0.092457 0.017172 -0.098181 0.037970 0.254988 0.023664 0.263316 0.056814 

Optimal_PPML -0.144901 0.015578 -0.149469 0.032430 0.004084 0.021415 -0.001508 0.042718 

Optimal_PPML_C -0.116357 0.015724 -0.118643 0.033319 0.108022 0.020685 0.109615 0.045046 

case 3 

OLS 0.002244 0.030700 0.006043 0.071415 0.260502 0.054979 0.263740 0.096668 

Heckman 2SLS 0.010259 0.127420 0.009494 0.171189 0.052020 0.152695 0.056064 0.202497 

GHeckman 2SLS 0.000273 0.040058 0.000611 0.052400 0.080191 0.056622 0.079576 0.077325 

heckman2sls_Log 0.004381 0.033469 0.007444 0.083293 -0.056831 0.087225 -0.044759 0.123284 

Gheckman2sls_Log 0.003383 0.033329 0.007197 0.083549 -0.061149 0.094021 -0.049458 0.127348 

NNLS 0.008428 0.098625 0.007028 0.146092 0.073983 0.115998 0.079550 0.173924 

Gnnls 0.000168 0.025736 0.000803 0.047652 0.150864 0.052426 0.151866 0.074261 

nnls_C 0.008428 0.098625 0.007028 0.146092 0.144665 0.141628 0.152544 0.216254 

Gnnls_C 0.000168 0.025736 0.000803 0.047652 0.307932 0.114812 0.313139 0.134037 

PPML 0.001328 0.038143 -0.000645 0.065411 0.111266 0.051526 0.113930 0.086712 

PPML_C 0.001328 0.038143 -0.000645 0.065411 0.264010 0.055522 0.273620 0.109295 

Optimal_PPML -0.001226 0.035463 -0.003864 0.057976 0.092258 0.048755 0.093923 0.077408 

Optimal_PPML_C -0.001417 0.037847 -0.003700 0.062998 0.179382 0.045103 0.185134 0.078402 

case 4 

OLS -0.109181 0.034464 0.113723 0.072513 0.092147 0.054887 0.387417 0.097672 

Heckman 2SLS 0.002217 0.167117 0.284995 0.196706 0.030968 0.190879 0.343026 0.233789 

GHeckman 2SLS -0.029991 0.053761 0.220240 0.069170 0.030790 0.058947 0.339595 0.083248 

heckman2sls_Log -0.099222 0.060203 0.123223 0.105190 -0.013960 0.202183 0.301103 0.186908 

Gheckman2sls_Log -0.097456 0.059583 0.125572 0.106720 -0.016705 0.206160 0.298041 0.189819 

NNLS -0.011025 0.134052 0.269991 0.164096 0.034585 0.150482 0.350621 0.188960 

Gnnls -0.103031 0.040032 0.153179 0.059376 0.042947 0.042948 0.353521 0.070287 

nnls_C -0.011025 0.134052 0.269991 0.164096 0.106065 0.187123 0.308853 0.239775 

Gnnls_C -0.103031 0.040032 0.153179 0.059376 0.194854 0.078650 0.421702 0.114398 

PPML -0.054276 0.046248 0.208100 0.069238 0.033451 0.057857 0.346193 0.089176 

PPML_C -0.054276 0.046248 0.208100 0.069238 0.166316 0.065501 0.392535 0.114948 
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Optimal_PPML -0.061662 0.042108 0.217946 0.061460 0.018410 0.053389 0.345916 0.078611 

Optimal_PPML_C -0.050993 0.045592 0.170142 0.068416 0.087105 0.052068 0.373561 0.082400 

case 5 

OLS -0.234880 0.035789 -0.203404 0.076002 -0.044927 0.047332 -0.022552 0.095804 

Heckman 2SLS 0.014609 0.121959 0.013174 0.167363 0.061534 0.151760 0.065790 0.205260 

GHeckman 2SLS -0.009806 0.116451 -0.001760 0.106332 0.099058 0.226382 0.083459 0.489654 

heckman2sls_Log -0.136704 0.040879 -0.111648 0.088104 0.210685 0.052987 0.233838 0.109937 

Gheckman2sls_Log -0.136536 0.040881 -0.111516 0.088080 0.215916 0.082847 0.236830 0.124394 

NNLS -0.019203 0.100565 -0.023210 0.144284 0.051168 0.116053 0.053809 0.172384 

Gnnls -0.310293 0.216619 -0.272210 0.207657 -0.083536 0.201532 -0.062999 0.174836 

nnls_C -0.019203 0.100565 -0.023210 0.144284 0.127802 0.141660 0.133166 0.213375 

Gnnls_C -0.310293 0.216619 -0.272210 0.207657 0.173574 0.110114 0.182916 0.122883 

PPML -0.104393 0.040160 -0.104476 0.064300 0.024750 0.049408 0.022625 0.082720 

PPML_C -0.104393 0.040160 -0.104476 0.064300 0.172506 0.054858 0.177775 0.104043 

Optimal_PPML -0.137068 0.035720 -0.134232 0.057395 -0.011418 0.044544 -0.012332 0.072263 

Optimal_PPML_C -0.119493 0.036864 -0.115216 0.061516 0.060233 0.043205 0.064680 0.074411 
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Table A1-2 

Errors Lognormally Distributed k=0 k=1 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

FDG Single equations                 

case 1 

OLS 0.390174 0.034754 0.354656 0.050923 0.195054 0.059256 0.225888 0.088609 

Heckman 2SLS 0.000092 0.009777 -0.001151 0.020299 0.139065 0.013628 0.142010 0.025236 

GHeckman 2SLS 0.000346 0.009862 -0.000904 0.020582 0.146573 0.016835 0.148969 0.027213 

heckman2sls_Log 0.390174 0.034754 0.354656 0.050923 0.566820 0.051194 0.603837 0.082126 

Gheckman2sls_Log 0.174967 0.073055 0.174138 0.071020 0.561676 0.061538 0.597218 0.088986 

NNLS 0.000092 0.009777 -0.001151 0.020299 0.125074 0.011964 0.125549 0.024640 

Gnnls 0.000346 0.009862 -0.000904 0.020582 0.129395 0.015062 0.129379 0.026382 

nnls_C 0.000092 0.009777 -0.001151 0.020299 0.156634 0.011474 0.162301 0.024918 

Gnnls_C 0.000346 0.009862 -0.000904 0.020582 0.178746 0.026331 0.183997 0.035827 

PPML -0.001140 0.019069 -0.000966 0.030545 0.098231 0.033798 0.099699 0.048577 

PPML_C -0.001140 0.019069 -0.000966 0.030545 0.273547 0.028834 0.290752 0.046500 

Optimal_PPML -0.181495 0.100943 -0.179886 0.116196 -0.159823 0.143600 -0.165088 0.160869 

Optimal_PPML_C -0.181495 0.100943 -0.179886 0.116196 -0.063794 0.143962 -0.059267 0.168756 

case 2 

OLS 0.211405 0.027346 0.200551 0.049285 0.185778 0.058600 0.202092 0.093877 

Heckman 2SLS 0.002652 0.031416 -0.000507 0.058176 0.125617 0.043994 0.123536 0.077602 

GHeckman 2SLS 0.000712 0.019848 -0.002459 0.044425 0.160714 0.037427 0.157816 0.066022 

heckman2sls_Log 0.211405 0.027346 0.200551 0.049285 0.558242 0.060763 0.585536 0.094290 

Gheckman2sls_Log 0.176842 0.025757 0.173866 0.047125 0.552399 0.068402 0.578154 0.101733 

NNLS 0.002652 0.031416 -0.000507 0.058176 0.113988 0.040893 0.110003 0.074869 

Gnnls 0.000707 0.019850 -0.002491 0.044471 0.118574 0.031737 0.110773 0.061754 

nnls_C 0.002652 0.031416 -0.000507 0.058176 0.158032 0.038225 0.161758 0.075359 

Gnnls_C 0.000707 0.019850 -0.002491 0.044471 0.230651 0.034965 0.236076 0.067296 

PPML 0.000708 0.019592 -0.001869 0.043993 0.087160 0.030707 0.078740 0.062515 

PPML_C 0.000708 0.019592 -0.001869 0.043993 0.286378 0.028359 0.298563 0.065830 

Optimal_PPML -0.127158 0.046611 -0.129649 0.070018 -0.104810 0.071308 -0.115978 0.100112 

Optimal_PPML_C -0.127158 0.046611 -0.129649 0.070018 0.011936 0.074030 0.012193 0.107203 

case 3 

OLS 0.001929 0.024262 0.002181 0.057526 0.064549 0.067521 0.058874 0.120852 

Heckman 2SLS 0.047786 0.323882 0.024478 0.276366 0.086508 0.207032 0.085054 0.283903 

GHeckman 2SLS -0.004541 0.044072 -0.011450 0.082331 0.055103 0.100984 0.037045 0.141603 

heckman2sls_Log 0.001929 0.024262 0.002181 0.057526 0.302370 0.138351 0.301375 0.174700 

Gheckman2sls_Log 0.001356 0.024405 0.001726 0.057813 0.301762 0.139825 0.300961 0.174110 

NNLS 0.019830 0.145841 0.007972 0.211330 0.084620 0.195316 0.076484 0.269281 

Gnnls -0.004681 0.043149 -0.010916 0.081170 -0.000349 0.081262 -0.017527 0.129727 

nnls_C 0.019830 0.145841 0.007972 0.211330 0.175338 0.183032 0.174121 0.269021 

Gnnls_C -0.004681 0.043149 -0.010916 0.081170 0.301510 0.101093 0.301984 0.147965 

PPML 0.002928 0.056386 -0.006466 0.098592 0.037693 0.085354 0.021038 0.139457 

PPML_C 0.002928 0.056386 -0.006466 0.098592 0.292494 0.072739 0.294846 0.143516 

Optimal_PPML -0.015046 0.080756 -0.017528 0.146491 -0.032298 0.115177 -0.037163 0.194416 

Optimal_PPML_C -0.015046 0.080756 -0.017528 0.146491 0.118802 0.097435 0.123157 0.186344 

case 4 

OLS 0.132504 0.035675 -0.121275 0.079575 -0.191509 0.074097 -0.153559 0.139552 

Heckman 2SLS 0.012510 0.192370 -0.007420 0.260508 0.005874 0.339230 0.101992 0.371598 

GHeckman 2SLS -0.013542 0.068080 -0.020179 0.122767 -0.079348 0.188153 0.084279 0.211043 

heckman2sls_Log 0.132504 0.035675 -0.121275 0.079575 0.217489 0.137406 0.146956 0.167269 

Gheckman2sls_Log 0.116172 0.035501 -0.135192 0.080579 0.278756 0.247168 0.159068 0.233357 

NNLS 0.013927 0.194697 -0.002161 0.261645 -0.018859 0.308919 0.081082 0.352854 
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Gnnls -0.013274 0.065926 -0.020706 0.121002 -0.234909 0.230711 -0.055840 0.210848 

nnls_C 0.013927 0.194697 -0.002161 0.261645 0.177659 0.346839 0.160177 0.349581 

Gnnls_C -0.013274 0.065926 -0.020706 0.121002 0.210839 0.113896 0.245534 0.183971 

PPML 0.000236 0.083652 -0.013409 0.135289 -0.132300 0.125993 0.015620 0.177909 

PPML_C 0.000236 0.083652 -0.013409 0.135289 0.227392 0.105890 0.257798 0.179698 

Optimal_PPML -0.095336 0.136626 0.131402 0.236740 -0.223184 0.180296 0.115381 0.280065 

Optimal_PPML_C -0.095336 0.136626 0.131402 0.236740 -0.027261 0.154907 0.257223 0.272356 

case 5 

OLS 0.301283 0.038704 0.263431 0.069434 -0.090553 0.070607 -0.087257 0.129669 

Heckman 2SLS 0.019800 0.144135 0.003068 0.217906 0.102449 0.216071 0.098410 0.294665 

GHeckman 2SLS -0.008053 0.100406 -0.022835 0.125567 0.065668 0.175797 0.056253 0.204103 

heckman2sls_Log 0.301283 0.038704 0.263431 0.069434 0.350662 0.077612 0.366259 0.138218 

Gheckman2sls_Log 0.203544 0.042572 0.187062 0.072246 0.366104 0.120786 0.372423 0.184545 

NNLS 0.020262 0.144409 0.002267 0.217364 0.064407 0.196657 0.057107 0.271371 

Gnnls -0.003510 0.059653 -0.015613 0.095815 -0.178339 0.308172 -0.191440 0.309387 

nnls_C 0.020262 0.144409 0.002267 0.217364 0.165920 0.177973 0.164562 0.268095 

Gnnls_C -0.003510 0.059653 -0.015613 0.095815 0.239703 0.084540 0.234614 0.146029 

PPML 0.002144 0.058430 -0.011990 0.103886 -0.049592 0.089490 -0.070367 0.142749 

PPML_C 0.002144 0.058430 -0.011990 0.103886 0.239796 0.074936 0.239873 0.145160 

Optimal_PPML -0.126306 0.118093 -0.125434 0.177859 -0.196775 0.148040 -0.203934 0.217489 

Optimal_PPML_C -0.126306 0.118093 -0.125434 0.177859 -0.045974 0.142454 -0.040781 0.217909 
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2) FDG ETtobit equations 

3) Table A2-1 

Errors Normally Distributed k=0 k=1 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

FDG ETtobit equations                 

case 1 

Etobit -0.004700 0.012300 -0.005500 0.021700 0.000128 0.015900 -0.000326 0.024500 

GETtobit -0.005100 0.012200 -0.006000 0.021900 0.000700 0.016000 0.000200 0.024700 

n_ETtobit -0.530400 0.024800 -0.489300 0.028800 -0.494100 0.040300 -0.458400 0.041200 

Gn_ETtobit -0.006000 0.012100 -0.006900 0.021900 0.000800 0.016000 0.000300 0.024700 

Ettobit_L -0.125600 0.011800 -0.128900 0.020600 -0.003300 0.017300 -0.004100 0.025300 

GETtobit_L -0.167000 0.030200 -0.169000 0.034400 -0.004400 0.017800 -0.005200 0.025900 

Ettobit_LOG -0.522300 0.013600 -0.499400 0.019800 -0.400600 0.020800 -0.379600 0.028600 

GEttobit_LOG -0.167000 0.030200 -0.169000 0.034400 -0.004500 0.017800 -0.005400 0.025900 

case 2 

Etobit -0.030200 0.049700 -0.032900 0.068900 -0.159100 0.055200 -0.165300 0.067900 

GETtobit -0.006500 0.020600 -0.008500 0.043100 -0.007800 0.035700 -0.009700 0.053000 

n_ETtobit -0.331300 0.019600 -0.311800 0.034200 -0.318200 0.026000 -0.312100 0.038200 

Gn_ETtobit -0.007000 0.020400 -0.009000 0.043100 -0.007700 0.035700 -0.009700 0.053000 

Ettobit_L -0.369300 0.035700 -0.368300 0.050800 -0.111100 0.035000 -0.122000 0.060000 

GETtobit_L -0.439600 0.019500 -0.420700 0.032300 -0.299200 0.035400 -0.300900 0.046800 

Ettobit_LOG -0.450200 0.019000 -0.427700 0.031800 -0.346000 0.026800 -0.343300 0.037000 

GEttobit_LOG -0.439500 0.019600 -0.420600 0.032300 -0.298900 0.035400 -0.300600 0.046900 

case 3 

Etobit 0.014700 0.192300 0.007900 0.236900 -0.549200 0.169200 -0.558900 0.178100 

GETtobit 0.000700 0.022600 -0.000500 0.040200 0.009100 0.038700 0.007100 0.056600 

n_ETtobit -0.003700 0.021900 -0.003800 0.040300 -0.000700 0.034700 -0.001900 0.051600 

Gn_ETtobit 0.002000 0.022600 0.000600 0.040400 0.007400 0.035500 0.005300 0.053400 

Ettobit_L -0.775700 0.031600 -0.777000 0.066400 -0.436600 0.049700 -0.445700 0.092800 

GETtobit_L -0.443100 0.028600 -0.427600 0.065000 -0.254400 0.042100 -0.261200 0.065400 

Ettobit_LOG -0.442900 0.028600 -0.427400 0.065000 -0.253900 0.042100 -0.260600 0.065400 

GEttobit_LOG -0.442900 0.028600 -0.427400 0.065000 -0.253900 0.042100 -0.260600 0.065400 

case 4 

Etobit -0.007700 0.267400 0.071300 0.315400 -0.461000 0.213500 -0.431200 0.236500 

GETtobit -0.035700 0.036800 0.241600 0.057000 -0.004800 0.049800 0.266300 0.081200 

n_ETtobit -0.142300 0.027500 0.132000 0.046300 -0.078800 0.035600 0.183000 0.061800 

Gn_ETtobit -0.036500 0.038000 0.240600 0.058100 -0.004700 0.049900 0.266400 0.081400 

Ettobit_L -0.801100 0.032100 -0.913900 0.064800 -0.547800 0.044100 -0.618600 0.089900 

GETtobit_L -0.525900 0.032500 -0.544700 0.069000 -0.344000 0.041500 -0.311200 0.072600 

Ettobit_LOG -0.525700 0.032500 -0.544600 0.069000 -0.343500 0.041500 -0.310700 0.072700 

GEttobit_LOG -0.525700 0.032500 -0.544600 0.069000 -0.343500 0.041500 -0.310700 0.072700 

case 5 

Etobit -0.053700 0.198500 -0.057400 0.242300 -0.271500 0.168100 -0.279600 0.191900 

GETtobit 0.003000 0.037400 0.002300 0.057500 0.029700 0.058400 0.027600 0.076100 

n_ETtobit -0.340300 0.036800 -0.287600 0.051500 -0.286400 0.054400 -0.240900 0.064500 

Gn_ETtobit 0.003500 0.037300 0.002800 0.057300 0.029800 0.058300 0.027700 0.076000 

Ettobit_L -0.771000 0.033300 -0.774000 0.056100 -0.563100 0.044400 -0.561400 0.078900 

GETtobit_L -0.562900 0.027600 -0.551300 0.049000 -0.415900 0.037600 -0.404300 0.061100 

Ettobit_LOG -0.562700 0.027600 -0.551100 0.049000 -0.418300 0.036900 -0.405700 0.060800 

GEttobit_LOG -0.562700 0.027600 -0.551100 0.049000 -0.416100 0.037600 -0.404300 0.061100 
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Table A2-2 

Errors Lognormally Distributed k=0 k=1 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

FDG ETtobit equations                 

case 1 

Etobit -0.003500 0.011700 -0.006100 0.020700 -0.095300 0.032000 -0.097700 0.036200 

GETtobit -0.012200 0.025100 -0.014300 0.032000 -0.093800 0.025800 -0.095800 0.030700 

n_ETtobit -0.464800 0.129000 -0.444700 0.148900 -0.685300 0.092700 -0.683600 0.094700 

Gn_ETtobit -0.014900 0.058500 -0.013900 0.038300 -0.099000 0.040700 -0.101400 0.043900 

Ettobit_L 0.008487 0.009000 -0.007482 0.017900 -0.000900 0.017800 -0.000800 0.022800 

GETtobit_L 0.001900 0.009200 0.000300 0.018100 -0.005800 0.017700 -0.009800 0.024100 

Ettobit_LOG 0.031900 0.031500 0.047500 0.038400 -0.336300 0.030800 -0.331000 0.036600 

GEttobit_LOG 0.002000 0.009200 0.000300 0.018100 -0.005800 0.017700 -0.009700 0.024200 

case 2 

Etobit -0.004200 0.039900 -0.010300 0.062900 -0.245300 0.054200 -0.255900 0.063000 

GETtobit 0.004400 0.035400 -0.008400 0.079900 -0.219100 0.045800 -0.229200 0.059000 

n_ETtobit -0.317100 0.094700 -0.311100 0.117100 -0.582000 0.074200 -0.581700 0.083000 

Gn_ETtobit -0.000900 0.054100 -0.013400 0.084700 -0.218900 0.045800 -0.229000 0.059000 

Ettobit_L -0.175300 0.018300 -0.183700 0.031300 0.017000 0.032200 0.015900 0.041800 

GETtobit_L 0.001500 0.016600 -0.000600 0.035200 0.005500 0.041500 0.004800 0.047100 

Ettobit_LOG 0.056000 0.028600 0.066100 0.043100 -0.245200 0.045400 -0.240500 0.047300 

GEttobit_LOG 0.001500 0.016600 -0.000600 0.035100 0.005700 0.041500 0.004900 0.047100 

case 3 

Etobit -0.009300 0.171900 -0.021000 0.223200 -0.710600 0.121500 -0.719500 0.118100 

GETtobit 0.019800 0.071400 -0.005700 0.144200 -0.085200 0.125800 -0.111100 0.159700 

n_ETtobit -0.004700 0.073800 -0.023600 0.145400 -0.250800 0.095600 -0.264400 0.132100 

Gn_ETtobit 0.021200 0.071000 -0.005200 0.144000 -0.084900 0.125700 -0.110800 0.159800 

Ettobit_L -0.507500 0.019600 -0.506500 0.038000 -0.166900 0.046900 -0.163900 0.064000 

GETtobit_L -0.004900 0.026800 -0.003200 0.057600 0.016800 0.070700 0.016200 0.078000 

Ettobit_LOG -0.001500 0.026200 -0.000300 0.057600 0.009000 0.069900 0.009200 0.079500 

GEttobit_LOG -0.004200 0.026600 -0.002500 0.057800 0.017400 0.070900 0.016800 0.078100 

case 4 

Etobit -0.019200 0.256100 -0.033100 0.309300 -0.801500 0.117100 -0.826900 0.101000 

GETtobit -0.014300 0.142900 0.187000 0.271500 -0.135100 0.197900 0.042000 0.283400 

n_ETtobit -0.129100 0.146400 0.085600 0.287400 -0.393900 0.123700 -0.219600 0.243500 

Gn_ETtobit -0.019000 0.144800 0.185700 0.272100 -0.133900 0.199200 0.044000 0.287600 

Ettobit_L -0.469100 0.022500 -0.671500 0.045200 -0.204500 0.054300 -0.444400 0.089400 

GETtobit_L 0.036700 0.045300 -0.208300 0.079800 0.035000 0.082800 -0.138100 0.109900 

Ettobit_LOG 0.104300 0.038800 -0.140900 0.077200 0.014900 0.085800 -0.138700 0.109400 

GEttobit_LOG 0.036600 0.045300 -0.208500 0.079800 0.035700 0.082900 -0.137500 0.110100 

case 5 

Etobit -0.021100 0.176600 -0.032800 0.221400 -0.657200 0.119200 -0.662400 0.122800 

GETtobit -0.032100 0.141900 -0.055100 0.235500 -0.166800 0.132700 -0.186600 0.163400 

n_ETtobit -0.285100 0.161500 -0.299700 0.253100 -0.523800 0.140100 -0.521000 0.155900 

Gn_ETtobit -0.041800 0.150800 -0.059600 0.237300 -0.166500 0.132700 -0.186300 0.163400 

Ettobit_L -0.342300 0.023500 -0.350900 0.042300 -0.189400 0.046600 -0.179500 0.077800 

GETtobit_L 0.006000 0.038600 0.007000 0.059000 0.002800 0.071000 0.003900 0.095300 

Ettobit_LOG 0.267100 0.042300 0.256200 0.072300 -0.065300 0.076500 -0.058300 0.095900 

GEttobit_LOG 0.006000 0.038600 0.007000 0.059000 0.003200 0.071000 0.004300 0.095300 
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3) FDG Heckman equations 

Table A3-1 

Errors Normally Distributed k=0 k=1 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

FDG Heckman equations                 

case 1 

heckmanml (selectioneq: beta=alpha) 0.001800 0.010300 0.001900 0.020700 0.135400 0.012800 0.135900 0.024400 

Gheckmanml 0.000300 0.010500 0.000500 0.021000 0.165700 0.014600 0.167600 0.027300 

n_heckmanml -0.419000 0.029200 -0.376700 0.032000 -0.298600 0.051500 -0.271200 0.052300 

Gn_heckmanml 0.000600 0.010400 0.000700 0.020900 0.162600 0.020200 0.164400 0.030700 

 heckmanml_L -0.071300 0.017000 -0.071300 0.029800 -0.079200 0.190200 -0.079300 0.195100 

Gheckmanml_L -0.071200 0.017100 -0.071100 0.029700 -0.073100 0.189600 -0.073900 0.192300 

 heckmanml_LOG -0.132900 0.028900 -0.102100 0.045600 0.194900 0.046200 0.230800 0.070600 

 Gheckmanml_LOG -0.089600 0.018800 -0.086000 0.030300 0.086600 0.041700 0.089000 0.057100 

case 2 

heckmanml (selection equation: beta=alpha) -0.010900 0.036400 -0.013200 0.063300 0.105539 0.075740 0.101197 0.096443 

Gheckmanml -0.023000 0.021200 -0.025700 0.040500 0.130886 0.063104 0.127684 0.079637 

n_heckmanml -0.255100 0.018100 -0.250700 0.032800 -0.109774 0.023562 -0.118168 0.047814 

Gn_heckmanml -0.023500 0.021600 -0.026100 0.040400 0.130491 0.062421 0.127293 0.079129 

 heckmanml_L -0.373800 0.026800 -0.386600 0.049000 -0.324056 0.028699 -0.336859 0.047450 

Gheckmanml_L -0.190900 0.029500 -0.193200 0.063300 -0.318899 0.026661 -0.329375 0.048579 

 heckmanml_LOG -0.086500 0.048100 -0.079400 0.072700 0.392213 0.043459 0.391481 0.078914 

 Gheckmanml_LOG -0.294200 0.044700 -0.288600 0.073700 -0.240836 0.041557 -0.251309 0.059724 

case 3 

heckmanml (selection eq: beta=alpha) 0.006200 0.144000 0.005600 0.193800 0.037704 0.263307 0.038376 0.313153 

Gheckmanml 0.006000 0.020100 0.001800 0.037500 0.235309 0.251351 0.229815 0.253978 

n_heckmanml 0.001200 0.020000 -0.001900 0.037200 0.119290 0.039316 0.114846 0.059025 

Gn_heckmanml 0.004000 0.020500 0.000000 0.037000 0.122427 0.038204 0.117813 0.058154 

 heckmanml_L -0.438000 0.039900 -0.449600 0.060900 -0.396221 0.043750 -0.396453 0.066449 

Gheckmanml_L -0.012100 0.033900 -0.011200 0.062100 -0.202190 0.046071 -0.197240 0.070723 

 heckmanml_LOG 0.003200 0.029900 0.001600 0.066400 0.556873 0.052978 0.541624 0.097438 

 Gheckmanml_LOG -0.005500 0.031300 -0.003700 0.066000 -0.079487 0.051430 -0.069641 0.079654 

case 4 

heckmanml (selectioneq: beta=alpha) -0.016500 0.303100 0.171200 0.301000 0.050612 0.281423 0.350950 0.345067 

Gheckmanml -0.033100 0.041200 0.234000 0.061300 0.633924 0.223993 1.110065 0.308847 

n_heckmanml -0.132600 0.026200 0.131400 0.045400 0.063285 0.053960 0.370274 0.069821 

Gn_heckmanml -0.073900 0.030700 0.184000 0.049000 0.226453 0.252662 0.579291 0.334638 

 heckmanml_L -0.474300 0.032300 -0.348400 0.053000 -0.445753 0.041052 -0.287810 0.063871 

Gheckmanml_L -0.146800 0.045400 0.109200 0.076200 -0.205735 0.048293 0.101729 0.085133 

 heckmanml_LOG -0.092100 0.038700 0.098200 0.072000 0.350288 0.054172 0.575937 0.098907 

 Gheckmanml_LOG -0.115900 0.040900 0.095800 0.073600 -0.137478 0.044966 0.192682 0.077184 

case 5 

heckmanml (selectioneq: beta=alpha) -0.045900 0.169200 -0.040400 0.222300 0.127225 0.219928 0.139055 0.301881 

Gheckmanml 0.020600 0.043700 0.018000 0.066200 0.369827 0.061450 0.373936 0.096250 

n_heckmanml -0.382100 0.035900 -0.335200 0.052400 -0.276299 0.052770 -0.238572 0.066767 

Gn_heckmanml -0.012500 0.040800 -0.016700 0.061200 0.214047 0.087810 0.210933 0.114008 

 heckmanml_L -0.571300 0.037000 -0.569400 0.053600 -0.519983 0.032932 -0.520559 0.055781 

Gheckmanml_L -0.366700 0.042900 -0.351100 0.075000 -0.410348 0.050146 -0.390076 0.076840 

 heckmanml_LOG -0.269900 0.039100 -0.242100 0.069500 0.006636 0.051609 0.031156 0.090850 

 Gheckmanml_LOG -0.383900 0.077700 -0.363300 0.101600 -0.344804 0.073616 -0.327595 0.102404 
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Table A3-2 

Errors Lognormally Distributed 
k=0 k=1 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

FDG Heckman equations                 

case 1 

heckmanml (selectioneq: beta=alpha) 0.0004431 0.0099000 -0.0006477 0.0207000 0.140300 0.015100 0.143800 0.028900 

Gheckmanml -0.0015000 0.0183000 -0.0015000 0.0301000 0.139800 0.073600 0.150600 0.037800 

n_heckmanml -0.3453000 0.1329000 -0.3548000 0.2028000 -0.426500 0.147300 -0.459300 0.231800 

Gn_heckmanml -0.0072000 0.0173000 -0.0102000 0.0330000 0.114500 0.063400 0.117900 0.079700 

 heckmanml_L 0.0006810 0.0092000 -0.0002488 0.0180000 0.153400 0.014100 0.171400 0.032400 

Gheckmanml_L 0.0018000 0.0093000 0.0009000 0.0182000 0.156800 0.015100 0.174300 0.032700 

 heckmanml_LOG 0.3892000 0.0358000 0.3516000 0.0510000 0.384100 0.059400 0.418000 0.088600 

 Gheckmanml_LOG 0.0388000 0.1114000 0.0342000 0.1006000 0.146400 0.020900 0.163500 0.036200 

case 2 

heckmanml (selectioneq: beta=alpha) 0.0030000 0.0314000 0.0008000 0.0592000 0.147100 0.052100 0.148000 0.087600 

Gheckmanml 0.0132000 0.0291000 0.0031000 0.0773000 0.197100 0.049000 0.195300 0.098900 

n_heckmanml -0.2351000 0.0953000 -0.2423000 0.1398000 -0.330800 0.106600 -0.357100 0.170000 

Gn_heckmanml 0.0133000 0.0289000 0.0034000 0.0770000 0.151000 0.072400 0.144100 0.119200 

 heckmanml_L -0.1755000 0.0183000 -0.1829000 0.0311000 -0.054100 0.081200 -0.059300 0.096200 

Gheckmanml_L 0.0018000 0.0164000 0.0003000 0.0350000 0.052700 0.146600 0.051200 0.163500 

 heckmanml_LOG 0.2110000 0.0283000 0.1979000 0.0485000 0.441400 0.067900 0.460200 0.102300 

 Gheckmanml_LOG 0.0216000 0.0633000 0.0194000 0.0671000 0.033400 0.108800 0.031100 0.121800 

case 3 

heckmanml (selectioneq: beta=alpha) 0.0197000 0.1412000 0.0156000 0.2138000 0.223200 0.299700 0.255900 0.409800 

Gheckmanml 0.0242000 0.0660000 0.0052000 0.1364000 0.493800 0.328200 0.479500 0.422200 

n_heckmanml 0.0013000 0.0682000 -0.0114000 0.1397000 -0.066500 0.114000 -0.085300 0.201000 

Gn_heckmanml 0.0244000 0.0661000 0.0057000 0.1371000 0.319800 0.370900 0.297500 0.424400 

 heckmanml_L -0.5069000 0.0205000 -0.5079000 0.0372000 -0.517300 0.048900 -0.526700 0.072900 

Gheckmanml_L -0.0020000 0.0264000 -0.0035000 0.0561000 -0.377500 0.110900 -0.386200 0.151900 

 heckmanml_LOG 0.0025000 0.0251000 0.0003000 0.0559000 0.492800 0.077100 0.487600 0.133500 

 Gheckmanml_LOG -0.0024000 0.0262000 -0.0037000 0.0561000 -0.276200 0.084000 -0.289700 0.125500 

case 4 

heckmanml (selectioneq: beta=alpha) 0.0254000 0.2125000 0.0027000 0.2838000 0.303000 0.528000 0.489500 0.987300 

Gheckmanml -0.0045000 0.1315000 0.2012000 0.2554000 0.384900 0.417400 0.872000 0.586300 

n_heckmanml -0.1174000 0.1366000 0.0988000 0.2755000 -0.238700 0.160600 0.090600 0.292100 

Gn_heckmanml -0.0100000 0.1315000 0.1925000 0.2630000 0.388500 0.449000 1.158400 4.416600 

 heckmanml_L -0.4683000 0.0224000 -0.6728000 0.0450000 -0.660800 0.071500 -0.577500 0.094300 

Gheckmanml_L 0.0358000 0.0441000 -0.2106000 0.0783000 -0.513800 0.140600 -0.221000 0.245300 

 heckmanml_LOG 0.1334000 0.0357000 -0.1250000 0.0763000 0.388000 0.102400 0.266200 0.162200 

 Gheckmanml_LOG 0.0374000 0.0456000 -0.2043000 0.0790000 -0.457700 0.127000 -0.247600 0.187000 

case 5 

heckmanml (selectioneq: beta=alpha) 0.0241000 0.1451000 0.0063000 0.2198000 0.286900 0.245300 0.335700 0.371200 

Gheckmanml 0.0213000 0.1073000 -0.0260000 0.2292000 0.555700 0.178600 0.550100 0.350200 

n_heckmanml -0.2577000 0.1727000 -0.2981000 0.2978000 -0.335600 0.161800 -0.351300 0.263400 

Gn_heckmanml 0.0044000 0.1248000 -0.0410000 0.2301000 0.500500 0.239900 0.512700 0.402000 

 heckmanml_L -0.3399000 0.0240000 -0.3520000 0.0437000 -0.612500 0.068500 -0.614700 0.089100 

Gheckmanml_L 0.0093000 0.0375000 0.0063000 0.0593000 -0.524500 0.156200 -0.533000 0.185600 

 heckmanml_LOG 0.3927000 0.0423000 0.3523000 0.0744000 0.346400 0.132400 0.349300 0.173100 

 Gheckmanml_LOG 0.0052000 0.0370000 0.0030000 0.0589000 -0.397000 0.156600 -0.401000 0.174200 
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4) FDG Heckman_New equations (k=1) 

Table 4A 

 Errors Lognormally Distributed Errors Normally Distributed 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

FDG Heckman_New equations                 

case 1  heckmanml_New 0.1051645 0.0177979 0.1020574 0.0271954 0.1474483 0.0242358 0.1515898 0.0352009 

Gheckmanml_New 0.1134649 0.0237337 0.1113514 0.0335982 0.1618608 0.0268892 0.1641362 0.0347838 

n_heckmanml_New -0.4407339 0.1206466 -0.4445395 0.1439046 

-

0.3097255 0.0477075 

-

0.2894354 0.0459534 

Gn_heckmanml_New 0.1093478 0.0234268 0.1065589 0.0319956 0.1537632 0.0189221 0.1551650 0.0291044 

 heckmanml_L_New 0.1142010 0.0129079 0.1233716 0.0301763 0.1081790 0.0135750 0.1098425 0.0353737 

Gheckmanml_L_New 0.1141924 0.0129093 0.1233606 0.0301743 0.1098295 0.0170151 0.1119816 0.0387504 

 heckmanml_LOG_New 0.1683703 0.0349560 0.1725191 0.0518956 0.0504444 0.0346720 0.0731051 0.0526355 

 Gheckmanml_LOG_New 0.1142637 0.0129131 0.1234324 0.0301797 0.1116753 0.0180350 0.1139662 0.0389828 

case 2  heckmanml_New 0.0653139 0.0467078 0.0565494 0.0680626 0.1906376 0.1037579 0.1947218 0.1330444 

Gheckmanml_New 0.0879373 0.0582558 0.0776510 0.0865373 0.0291372 0.0871875 0.0193026 0.0949631 

n_heckmanml_New -0.3425345 0.0911376 -0.3499148 0.1090748 

-

0.1392668 0.0244590 

-

0.1494869 0.0423050 

Gn_heckmanml_New 0.0859773 0.0544027 0.0754181 0.0806206 0.0283588 0.0866443 0.0184600 0.0941573 

 heckmanml_L_New -0.1131180 0.0391016 -0.1188260 0.0514405 

-

0.4932877 0.1300610 

-

0.4944335 0.1269576 

Gheckmanml_L_New -0.1021326 0.0510591 -0.1079961 0.0614657 

-

0.4182524 0.1212188 

-

0.4208555 0.1206756 

 heckmanml_LOG_New 0.1510390 0.0366482 0.1508526 0.0597620 

-

0.0187624 0.1851020 

-

0.0362179 0.1899963 

 Gheckmanml_LOG_New -0.0791443 0.0787824 -0.0843768 0.0903990 

-

0.4146893 0.1224339 

-

0.4174794 0.1212445 

case 3  heckmanml_New 0.3043070 0.5660993 0.2519512 0.5654774 2.5993300 4.5170941 2.1381827 7.2300229 

Gheckmanml_New 0.3212235 0.3881788 0.2864554 0.4286031 0.1970178 0.0365249 0.1938200 0.0617270 

n_heckmanml_New -0.0680456 0.1033382 -0.0929285 0.1657961 0.1969591 0.0367707 0.1937348 0.0617141 

Gn_heckmanml_New -0.0639607 0.1758323 -0.0905667 0.1873459 0.1965825 0.0363258 0.1934147 0.0616182 

 heckmanml_L_New -0.7283151 0.1103671 -0.7309193 0.1114052 

-

0.9765264 0.0060786 

-

0.9768663 0.0063984 

Gheckmanml_L_New -0.7324449 0.1276009 -0.7348477 0.1286752 

-

0.9770393 0.0059290 

-

0.9774126 0.0062200 

 heckmanml_LOG_New -0.7588123 0.2084236 -0.7608336 0.2056740 

-

0.9567682 0.0076415 

-

0.9572758 0.0079068 

 Gheckmanml_LOG_New -0.7388126 0.1348711 -0.7413294 0.1357117 

-

0.9772858 0.0056891 

-

0.9776608 0.0059692 

case 4 

 heckmanml_New 0.2932249 1.1650845 -0.2420139 0.7853144 0.8877846 2.8549708 

-

4.9919401 7.7923822 

Gheckmanml_New 0.0377612 0.2978128 0.4100827 0.4754297 0.0832135 0.1734528 0.4119990 0.2496062 

n_heckmanml_New -0.2620667 0.1445128 0.0427514 0.2890251 0.0473959 0.0358388 0.3652111 0.0616529 

Gn_heckmanml_New 0.0429849 0.4374145 0.3829275 0.6583539 0.2140011 0.4028977 0.5797304 0.5194255 

 heckmanml_L_New -0.9697667 0.0720616 -0.9759762 0.0546349 

-

0.9937753 0.0015051 

-

0.9935302 0.0018389 

Gheckmanml_L_New -0.9704137 0.0723883 -0.9765614 0.0544459 

-

0.9938554 0.0014965 

-

0.9936519 0.0018510 

 heckmanml_LOG_New -0.9388774 0.0207314 -0.9479375 0.0163830 

-

0.9839469 0.0034058 

-

0.9802728 0.0043075 

 Gheckmanml_LOG_New -0.9742202 0.0662823 -0.9792925 0.0503757 

-

0.9938651 0.0014663 

-

0.9936580 0.0018009 

case 5  heckmanml_New 0.4513706 0.4848255 0.3865275 0.4748339 4.7538940 4.8890449 4.9480261 8.7972943 

Gheckmanml_New 0.3266703 0.3979702 0.2968351 0.4446286 0.1623431 0.2946069 0.1601291 0.3073835 

n_heckmanml_New -0.3282809 0.1394866 -0.3439494 0.2099681 

-

0.1606979 0.0553970 

-

0.1288501 0.0673285 

Gn_heckmanml_New 0.0151054 0.2672389 -0.0083687 0.3018288 0.2668820 0.4356768 0.2682926 0.4279863 

 heckmanml_L_New -0.8303721 0.1294735 -0.8302651 0.1310152 

-

0.9923375 0.0019679 

-

0.9917323 0.0023473 

Gheckmanml_L_New -0.8649739 0.1373338 -0.8647736 0.1385397 

-

0.9924622 0.0019668 

-

0.9918700 0.0022959 

 heckmanml_LOG_New -0.6219982 0.2389182 -0.6239701 0.2393787 

-

0.9708853 0.0060742 

-

0.9700206 0.0066772 

 Gheckmanml_LOG_New -0.8347032 0.1828181 -0.8348146 0.1821333 

-

0.9924790 0.0019399 

-

0.9919138 0.0023767 
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5) SDG Single equations  

Table A5-1 

Errors Normally Distributed k=0.5 k=1.25 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

SDG Single equations                 

case 1 

OLS -0.209610 0.032099 -0.178106 0.051180 -0.201849 0.035994 -0.185044 0.051391 

Heckman 2SLS 0.002772 0.010608 0.001240 0.020374 0.003650 0.011066 0.002995 0.021289 

GHeckman 2SLS 0.002730 0.010779 0.001056 0.020605 0.003732 0.011108 0.002972 0.021514 

heckman2sls_Log 0.065578 0.041816 0.088171 0.058593 0.078555 0.052743 0.098025 0.063843 

Gheckman2sls_Log 0.065438 0.041486 0.088096 0.059287 0.077401 0.052361 0.096312 0.063350 

NNLS -0.027348 0.010023 -0.031616 0.018485 -0.028538 0.010643 -0.033613 0.019195 

Gnnls -0.031092 0.010951 -0.035549 0.019206 -0.031470 0.011635 -0.036773 0.019820 

nnls_C 0.030872 0.010055 0.033348 0.020026 0.071138 0.010807 0.078251 0.021493 

Gnnls_C 0.033241 0.010743 0.035576 0.020654 0.085454 0.018611 0.092499 0.027420 

PPML -0.121526 0.013696 -0.123897 0.023785 -0.110729 0.014617 -0.118718 0.025064 

PPML_C 0.085155 0.017084 0.087718 0.030952 0.203966 0.017909 0.213294 0.035608 

Optimal_PPML -0.208050 0.017534 -0.207966 0.024201 -0.192381 0.019460 -0.198311 0.026110 

Optimal_PPML_C -0.152718 0.018773 -0.147563 0.025707 -0.086087 0.022856 -0.082829 0.031018 

case 2 

OLS -0.162594 0.029406 -0.147640 0.061768 -0.178807 0.035901 -0.174478 0.064978 

Heckman 2SLS -0.014937 0.037414 -0.018387 0.060832 -0.014304 0.039257 -0.017551 0.063040 

GHeckman 2SLS -0.061925 0.023557 -0.068884 0.045100 -0.061945 0.027049 -0.069213 0.049959 

heckman2sls_Log 0.047124 0.053011 0.055083 0.073160 0.046366 0.057192 0.052031 0.076028 

Gheckman2sls_Log 0.047302 0.052699 0.055151 0.072925 0.047086 0.056828 0.052668 0.075313 

NNLS -0.041590 0.034412 -0.048531 0.054339 -0.044916 0.036944 -0.052623 0.056839 

Gnnls -0.130313 0.038230 -0.134604 0.047686 -0.138288 0.044837 -0.147483 0.055383 

nnls_C 0.029970 0.032122 0.030569 0.056424 0.067211 0.032935 0.072146 0.059206 

Gnnls_C 0.079662 0.022852 0.080365 0.047996 0.150488 0.033763 0.158170 0.057888 

PPML -0.112361 0.020225 -0.119062 0.038861 -0.116658 0.023549 -0.127706 0.042572 

PPML_C 0.096657 0.021289 0.096662 0.046829 0.205958 0.023374 0.212657 0.052432 

Optimal_PPML -0.154815 0.017135 -0.160723 0.033794 -0.159041 0.018728 -0.167425 0.036080 

Optimal_PPML_C -0.085830 0.016852 -0.088313 0.034726 -0.036497 0.017991 -0.037351 0.038024 

case 3 

OLS -0.097458 0.036871 -0.090018 0.073155 -0.140861 0.045369 -0.142495 0.081829 

Heckman 2SLS 0.013748 0.134028 0.013752 0.176147 0.013223 0.139739 0.013294 0.183565 

GHeckman 2SLS -0.024973 0.038981 -0.025182 0.055888 -0.048362 0.047680 -0.050697 0.062914 

heckman2sls_Log 0.012717 0.067603 0.013913 0.089374 0.014688 0.090144 0.016657 0.105653 

Gheckman2sls_Log 0.011607 0.067733 0.012760 0.089340 0.014627 0.090407 0.016357 0.105805 

NNLS -0.007755 0.105299 -0.014652 0.147805 -0.016302 0.112728 -0.024424 0.155316 

Gnnls -0.061050 0.031977 -0.058642 0.052342 -0.091052 0.039365 -0.094136 0.060652 

nnls_C 0.044822 0.156767 0.040020 0.217665 0.077982 0.158468 0.077695 0.225973 

Gnnls_C 0.135869 0.067746 0.129963 0.100637 0.238594 0.095877 0.238475 0.125065 

PPML -0.035508 0.046900 -0.039719 0.071364 -0.054047 0.054877 -0.062498 0.080243 

PPML_C 0.098594 0.063267 0.095479 0.107228 0.198622 0.066905 0.201850 0.116742 

Optimal_PPML -0.020471 0.039472 -0.023553 0.061404 -0.035161 0.044003 -0.040301 0.066621 

Optimal_PPML_C 0.028134 0.036531 0.026637 0.061204 0.066647 0.037178 0.067755 0.063823 

case 4 

OLS -0.178179 0.042678 0.048960 0.081330 -0.207733 0.052701 0.015174 0.089899 

Heckman 2SLS 0.009758 0.176397 0.295281 0.203195 0.010183 0.181614 0.297824 0.211219 

GHeckman 2SLS -0.057416 0.058018 0.199657 0.074210 -0.077329 0.064525 0.184099 0.080755 

heckman2sls_Log -0.047261 0.079050 0.119165 0.088047 -0.021788 0.106212 0.154017 0.110677 

Gheckman2sls_Log -0.047575 0.079521 0.119296 0.088073 -0.022104 0.106581 0.154242 0.110398 

NNLS -0.021391 0.139217 0.256561 0.166969 -0.027309 0.147513 0.250556 0.176249 

Gnnls -0.145847 0.047504 0.115650 0.067014 -0.164749 0.053141 0.096438 0.073251 

nnls_C 0.054049 0.272773 0.052558 0.305227 0.081270 0.266670 0.090288 0.308170 

Gnnls_C 0.083692 0.072925 0.123127 0.128709 0.184153 0.095521 0.231189 0.147509 

PPML -0.077133 0.055177 0.185574 0.076686 -0.088686 0.064138 0.173362 0.086501 

PPML_C 0.052432 0.097872 0.077404 0.148852 0.146683 0.102357 0.188374 0.157744 

Optimal_PPML -0.072761 0.046456 0.207396 0.065271 -0.080931 0.051668 0.199926 0.071275 

Optimal_PPML_C -0.020050 0.040686 0.244062 0.062300 0.022113 0.041694 0.291606 0.065628 

case 5 OLS -0.264000 0.042728 -0.240116 0.080010 -0.267044 0.052456 -0.259886 0.088884 
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Heckman 2SLS 0.018273 0.128118 0.018539 0.172400 0.017263 0.134953 0.017858 0.180072 

GHeckman 2SLS -0.021186 0.267953 -0.010039 0.165875 -0.027282 0.090899 -0.027415 0.102749 

heckman2sls_Log -0.062141 0.069716 -0.050477 0.102582 -0.011085 0.096050 -0.003253 0.117000 

Gheckman2sls_Log -0.061742 0.069681 -0.050162 0.102255 -0.010487 0.096287 -0.002884 0.116757 

NNLS -0.029495 0.106378 -0.038350 0.146537 -0.033916 0.113335 -0.043698 0.154299 

Gnnls -0.302273 0.187291 -0.271865 0.161800 -0.275647 0.150376 -0.260418 0.136717 

nnls_C 0.037883 0.157358 0.032268 0.217146 0.071950 0.158742 0.070582 0.225352 

Gnnls_C 0.069584 0.061659 0.070627 0.100871 0.190227 0.079252 0.191826 0.115273 

PPML -0.111641 0.048026 -0.116650 0.070722 -0.111262 0.055487 -0.122140 0.079701 

PPML_C 0.059634 0.063798 0.057350 0.107328 0.167221 0.067024 0.168760 0.116745 

Optimal_PPML -0.134642 0.039456 -0.135708 0.060426 -0.128251 0.044130 -0.134438 0.065582 

Optimal_PPML_C -0.084267 0.036034 -0.081840 0.059355 -0.026391 0.038289 -0.024614 0.062931 
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Table A5-2 

Errors Lognormally Distributed k=0.5 k=1.25 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

SDG Single equations                 

case 1 

OLS 0.166734 0.051249 0.156000 0.058886 0.011376 0.059907 0.009033 0.069182 

Heckman 2SLS 0.000290 0.011386 -0.002056 0.020976 0.002703 0.013013 0.001817 0.022714 

GHeckman 2SLS 0.000244 0.011426 -0.002132 0.021139 0.002730 0.013041 0.001818 0.022797 

heckman2sls_Log 0.165859 0.059334 0.154695 0.071817 0.091313 0.064938 0.083099 0.080910 

Gheckman2sls_Log 0.060749 0.052588 0.060206 0.055900 0.051675 0.051787 0.050984 0.057500 

NNLS -0.015237 0.010448 -0.018389 0.020811 -0.024494 0.011175 -0.028781 0.020500 

Gnnls -0.015393 0.010424 -0.018590 0.020866 -0.024576 0.011137 -0.028875 0.020515 

nnls_C 0.036494 0.010310 0.039191 0.021521 0.073587 0.011055 0.081308 0.022060 

Gnnls_C 0.037744 0.011455 0.040291 0.022114 0.077921 0.016253 0.085510 0.025426 

PPML -0.064338 0.024769 -0.065535 0.035166 -0.098656 0.030377 -0.104149 0.040662 

PPML_C 0.113716 0.022776 0.115949 0.037657 0.211753 0.026047 0.223780 0.042452 

Optimal_PPML -0.216316 0.105348 -0.215830 0.117829 -0.243394 0.111016 -0.247537 0.123203 

Optimal_PPML_C -0.162030 0.106751 -0.159961 0.122588 -0.134955 0.115637 -0.130700 0.132490 

case 2 

OLS 0.049644 0.040628 0.054181 0.057552 -0.056241 0.048577 -0.051303 0.069378 

Heckman 2SLS 0.001255 0.035536 -0.001179 0.062385 0.001764 0.038285 -0.000618 0.065560 

GHeckman 2SLS -0.009183 0.023649 -0.013558 0.049297 -0.011494 0.028564 -0.016053 0.054378 

heckman2sls_Log 0.137940 0.047792 0.134746 0.064862 0.117344 0.055013 0.119646 0.074087 

Gheckman2sls_Log 0.128581 0.045369 0.127954 0.061521 0.114476 0.050405 0.117522 0.067722 

NNLS -0.013660 0.034092 -0.018900 0.060016 -0.027233 0.037103 -0.034234 0.059593 

Gnnls -0.048279 0.026306 -0.054107 0.047738 -0.075525 0.033552 -0.083941 0.054863 

nnls_C 0.037829 0.031624 0.038455 0.060755 0.071812 0.032793 0.076780 0.060324 

Gnnls_C 0.081719 0.026509 0.081174 0.051939 0.134811 0.034382 0.143076 0.058483 

PPML -0.059724 0.024228 -0.064380 0.048209 -0.096925 0.028928 -0.105011 0.051788 

PPML_C 0.117201 0.022692 0.115939 0.051133 0.212527 0.026112 0.221895 0.055246 

Optimal_PPML -0.164694 0.049252 -0.167903 0.071765 -0.195985 0.052713 -0.203228 0.075405 

Optimal_PPML_C -0.107552 0.050141 -0.109446 0.073858 -0.080750 0.055389 -0.080841 0.080396 

case 3 

OLS -0.115802 0.035446 -0.104963 0.070129 -0.185978 0.045457 -0.182788 0.085320 

Heckman 2SLS 0.047896 0.349383 0.030236 0.298963 0.045924 0.351654 0.028510 0.306683 

GHeckman 2SLS -0.040969 0.056242 -0.050995 0.092073 -0.070919 0.070382 -0.084294 0.105459 

heckman2sls_Log 0.007545 0.046710 0.007803 0.073868 0.013564 0.060844 0.015397 0.089640 

Gheckman2sls_Log 0.007887 0.046595 0.008415 0.073861 0.014245 0.061179 0.016223 0.089694 

NNLS -0.003547 0.159314 -0.018679 0.214639 -0.018906 0.170412 -0.037168 0.225042 

Gnnls -0.099345 0.055289 -0.098126 0.091178 -0.170685 0.074673 -0.174198 0.109170 

nnls_C 0.048663 0.149161 0.038251 0.212786 0.091337 0.198495 0.081692 0.239368 

Gnnls_C 0.143960 0.078773 0.134700 0.108930 0.238694 0.104029 0.237772 0.131575 

PPML -0.057709 0.071303 -0.065064 0.107390 -0.096144 0.083156 -0.110063 0.121044 

PPML_C 0.118087 0.061540 0.112859 0.106497 0.212765 0.065189 0.215622 0.116961 

Optimal_PPML -0.052693 0.089334 -0.055602 0.153526 -0.087840 0.098593 -0.093573 0.162722 

Optimal_PPML_C 0.003751 0.082186 0.001852 0.149198 0.028363 0.084157 0.028332 0.154009 

case 4 

OLS -0.029225 0.052632 -0.281717 0.094019 -0.140715 0.067418 -0.401432 0.114319 

Heckman 2SLS 0.093097 0.544207 0.056481 0.427599 0.089549 0.545221 0.054255 0.434528 

GHeckman 2SLS -0.052001 0.088895 -0.058287 0.136940 -0.082514 0.112665 -0.085961 0.152480 

heckman2sls_Log 0.072186 0.067796 -0.189140 0.097870 0.061012 0.084193 -0.203198 0.116662 

Gheckman2sls_Log 0.073252 0.066549 -0.187466 0.097105 0.065199 0.084396 -0.198034 0.116346 

NNLS -0.009338 0.229345 -0.022135 0.286642 -0.029598 0.247347 -0.045379 0.297235 

Gnnls -0.139782 0.107057 -0.126574 0.146295 -0.242296 0.159999 -0.221778 0.182288 

nnls_C 0.041063 0.207323 0.031265 0.267677 0.076727 0.223887 0.073655 0.281307 

Gnnls_C 0.108100 0.099063 0.107178 0.139522 0.185153 0.121691 0.197202 0.162899 

PPML -0.078905 0.108589 -0.082686 0.148948 -0.134554 0.127810 -0.139274 0.166984 

PPML_C 0.100822 0.092026 0.099473 0.143466 0.187077 0.097313 0.198648 0.154309 

Optimal_PPML -0.140938 0.149251 0.085708 0.242881 -0.186393 0.162918 0.038689 0.251688 

Optimal_PPML_C -0.083788 0.138764 0.146904 0.239437 -0.067804 0.141590 0.169290 0.244438 

case 5 

OLS 0.082313 0.055698 0.074478 0.084824 -0.067865 0.068883 -0.072013 0.104536 

Heckman 2SLS 0.050171 0.358768 0.032276 0.303604 0.050166 0.358977 0.033185 0.310259 

GHeckman 2SLS -0.034175 0.073007 -0.044087 0.115777 -0.064013 0.105415 -0.072968 0.137927 

heckman2sls_Log 0.108803 0.065855 0.090467 0.093642 0.056001 0.082668 0.043894 0.111704 

Gheckman2sls_Log 0.082633 0.064159 0.072847 0.092484 0.060160 0.078473 0.055076 0.106677 
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NNLS 0.000996 0.204957 -0.016955 0.236390 -0.023926 0.171275 -0.041510 0.225496 

Gnnls -0.126998 0.092059 -0.124622 0.127504 -0.250682 0.242606 -0.235877 0.255517 

nnls_C 0.053556 0.195005 0.040447 0.233175 0.079593 0.153475 0.072149 0.220221 

Gnnls_C 0.120459 0.079400 0.113463 0.114221 0.207143 0.108367 0.144585 1.386992 

PPML -0.075535 0.074073 -0.081826 0.111602 -0.126590 0.087714 -0.139934 0.126485 

PPML_C 0.104198 0.063369 0.099324 0.110006 0.193281 0.067887 0.196142 0.120722 

Optimal_PPML -0.167999 0.125211 -0.167608 0.182948 -0.206992 0.132899 -0.211042 0.190834 

Optimal_PPML_C -0.112202 0.121621 -0.110935 0.181977 -0.092810 0.126851 -0.089931 0.188767 
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6) SDG ETtobit equations (k=1) 

Table A6 

 Errors Lognormally Distributed Errors Normally Distributed 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

SDG ETtobit equations                 

case 1 

Etobit -0.142799 0.021151 -0.147914 0.026957 -0.124229 0.016296 -0.128593 0.022156 

GETtobit -0.142942 0.021150 -0.148093 0.026918 -0.124344 0.016297 -0.128715 0.022165 

n_ETtobit -0.662000 0.092323 -0.652870 0.096850 -0.660081 0.026641 -0.648705 0.027303 

Gn_ETtobit -0.143028 0.021160 -0.148156 0.026973 -0.124444 0.016296 -0.128830 0.022168 

Ettobit_L -0.157308 0.015995 -0.162616 0.022572 -0.222390 0.014985 -0.229586 0.021633 

GETtobit_L -0.159062 0.016650 -0.164404 0.023054 -0.234203 0.018353 -0.241667 0.024865 

Ettobit_LOG -0.513547 0.023576 -0.509309 0.028648 -0.634041 0.012584 -0.631030 0.017323 

GEttobit_LOG -0.159176 0.016619 -0.164520 0.023025 -0.234090 0.018283 -0.241551 0.024807 

case 2 

Etobit                 

GETtobit                 

n_ETtobit                 

Gn_ETtobit                 

Ettobit_L                 

GETtobit_L                 

Ettobit_LOG                 

GEttobit_LOG                 

case 3 

Etobit -0.451147 0.138165 -0.467634 0.147206 -0.371174 0.155275 -0.383105 0.169576 

GETtobit -0.027887 0.106662 -0.048050 0.146760 0.003943 0.067287 -0.004942 0.078872 

n_ETtobit -0.280461 0.077496 -0.263577 0.121335 -0.222890 0.032275 -0.200595 0.044702 

Gn_ETtobit -0.027787 0.106628 -0.047955 0.146725 0.003967 0.067278 -0.004919 0.078863 

Ettobit_L -0.345912 0.032472 -0.355190 0.050224 -0.586325 0.044753 -0.599536 0.071320 

GETtobit_L -0.208809 0.041042 -0.220668 0.057502 -0.477611 0.032884 -0.480958 0.049083 

Ettobit_LOG -0.255341 0.040575 -0.258500 0.056207 -0.478990 0.032133 -0.481836 0.048864 

GEttobit_LOG -0.208638 0.041054 -0.220504 0.057510 -0.477793 0.032853 -0.480991 0.049016 

case 4 

Etobit                 

GETtobit                 

n_ETtobit                 

Gn_ETtobit                 

Ettobit_L                 

GETtobit_L                 

Ettobit_LOG                 

GEttobit_LOG                 

case 5 

Etobit -0.465142 0.136856 -0.482124 0.145368 -0.400363 0.153059 -0.412453 0.165504 

GETtobit -0.085941 0.120118 -0.110345 0.159055 -0.106674 0.048147 -0.121088 0.060446 

n_ETtobit -0.450239 0.130089 -0.433638 0.165090 -0.445622 0.043269 -0.416878 0.049018 

Gn_ETtobit -0.085647 0.120160 -0.110054 0.159105 -0.106306 0.048153 -0.120720 0.060460 

Ettobit_L -0.297116 0.034445 -0.305223 0.053575 -0.613527 0.044098 -0.624711 0.067935 

GETtobit_L -0.096317 0.042395 -0.111280 0.062967 -0.553224 0.034903 -0.557041 0.047499 

Ettobit_LOG -0.162150 0.046450 -0.165541 0.064500 -0.560453 0.032268 -0.562735 0.045716 

GEttobit_LOG -0.095820 0.042478 -0.110854 0.063078 -0.553945 0.034796 -0.557549 0.047376 
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7) SDG Standard Heckman equations (k=1.25) 

Table A7 

 Errors Lognormally Distributed Errors Normally Distributed 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

SDG Old Heckman equations                 

case 1 

heckmanml (heckman when alpha =4 and beta=3 (one 

more variable in the selection 

% equation)) 
0.006245 0.018937 0.005095 0.026809 0.005339 0.011551 0.003825 0.021386 

Gheckmanml 0.006258 0.019000 0.005167 0.026879 0.004903 0.011655 0.003131 0.021740 

n_heckmanml -0.494049 0.121006 -0.511605 0.173246 -0.368773 0.047064 -0.356524 0.041617 

Gn_heckmanml 0.006250 0.019019 0.005159 0.026889 0.004889 0.011649 0.003120 0.021745 

 heckmanml_L -0.004871 0.010694 -0.007213 0.020187 0.006064 0.012744 0.004745 0.027650 

Gheckmanml_L -0.004175 0.010749 -0.006534 0.020445 0.006951 0.012626 0.005578 0.027808 

 heckmanml_LOG 0.022920 0.046527 0.022594 0.062253 -0.142628 0.029705 -0.125863 0.048424 

 Gheckmanml_LOG -0.005354 0.011208 -0.007456 0.020449 -0.019421 0.012151 -0.022190 0.027569 

case 2 

heckmanml (heckman when alpha =4 and beta=3 (one 

more variable in the selection 

% equation)) 
0.029330 0.045921 0.028872 0.070881 0.015117 0.043452 0.014471 0.067993 

Gheckmanml 0.016797 0.041118 0.011947 0.069545 -0.010108 0.033553 -0.014698 0.051361 

n_heckmanml -0.412435 0.079344 -0.420038 0.120937 -0.257712 0.023704 -0.259976 0.038525 

Gn_heckmanml 0.016836 0.041141 0.011990 0.069550 -0.009920 0.033526 -0.014503 0.051343 

 heckmanml_L -0.211181 0.059877 -0.224911 0.065973 -0.494229 0.043579 -0.510311 0.062137 

Gheckmanml_L -0.011399 0.027023 -0.015942 0.048682 -0.454833 0.051931 -0.464402 0.069261 

 heckmanml_LOG -0.009996 0.036359 -0.003244 0.060623 -0.105459 0.033689 -0.104708 0.061407 

 Gheckmanml_LOG -0.035450 0.027083 -0.038962 0.047494 -0.129682 0.033918 -0.139519 0.071394 

case 3 

heckmanml (heckman when alpha =4 and beta=3 (one 

more variable in the selection 

% equation)) 
0.115246 0.258101 0.115309 0.313127 0.076581 0.210539 0.085089 0.266613 

Gheckmanml 0.190556 0.225794 0.176457 0.279832 0.020573 0.072555 0.014505 0.077618 

n_heckmanml -0.157807 0.090277 -0.168064 0.168160 -0.017554 0.032560 -0.021325 0.052386 

Gn_heckmanml 0.146219 0.226361 0.130954 0.291963 0.014985 0.062278 0.009348 0.070326 

 heckmanml_L -0.608493 0.028624 -0.613757 0.050500 -0.581961 0.043072 -0.597188 0.064591 

Gheckmanml_L -0.051081 0.148603 -0.059717 0.169075 -0.341580 0.039565 -0.346587 0.070554 

 heckmanml_LOG -0.035318 0.061359 -0.035338 0.099460 -0.263816 0.308468 -0.259230 0.297677 

 Gheckmanml_LOG -0.076905 0.058689 -0.076972 0.097657 -0.346435 0.307930 -0.342195 0.298437 

case 4 

heckmanml (heckman when alpha =4 and beta=3 (one 

more variable in the selection 

% equation)) 
0.150189 0.341933 0.171518 0.430867 0.086475 0.264161 0.393921 0.320980 

Gheckmanml 0.118448 0.315258 0.425088 0.395321 0.235792 0.209888 0.572379 0.261034 

n_heckmanml -0.322752 0.139636 -0.058975 0.271910 -0.118103 0.041027 0.154573 0.059056 

Gn_heckmanml 0.109317 0.313154 0.520381 2.184166 0.121416 0.216483 0.433220 0.264022 

 heckmanml_L -0.593876 0.037194 -0.779883 0.059318 -0.614486 0.044602 -0.488507 0.062915 

Gheckmanml_L -0.134504 0.237685 -0.392119 0.224702 -0.422918 0.042947 -0.112731 0.076223 

 heckmanml_LOG -0.004964 0.081512 -0.266626 0.123634 -0.160600 0.170289 0.054467 0.158280 

 Gheckmanml_LOG -0.136228 0.080913 -0.404532 0.127969 -0.220190 0.196787 0.005186 0.172363 

case 5 

heckmanml (heckman when alpha =4 and beta=3 (one 

more variable in the selection 

% equation)) 
0.141394 0.245994 0.145994 0.305010 0.128960 0.181104 0.140961 0.245920 

Gheckmanml 0.124095 0.178250 0.120030 0.285527 0.180142 0.088376 0.177448 0.111439 

n_heckmanml -0.392356 0.140935 -0.400901 0.231391 -0.244287 0.062713 -0.226180 0.064933 

Gn_heckmanml 0.123705 0.181577 0.113859 0.275992 0.176072 0.092374 0.173571 0.115284 

 heckmanml_L -0.542954 0.036503 -0.548133 0.057704 -0.658978 0.039847 -0.666152 0.059669 

Gheckmanml_L -0.058748 0.098408 -0.065990 0.121886 -0.518893 0.044960 -0.505962 0.075825 

 heckmanml_LOG -0.019102 0.057872 -0.025034 0.105154 -0.194292 0.167131 -0.186034 0.180825 

 Gheckmanml_LOG -0.129573 0.054958 -0.134338 0.090636 -0.251072 0.212484 -0.241226 0.216729 

8) SDG Heckman_New equations 
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Table A8-1 

Errors Normally Distributed k=0.5 k=1.25 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

SDG Heckman_New equations                 

case 1 

 heckmanml_New 0.003658 0.010565 0.002980 0.020298 0.002255 0.011133 0.001485 0.020309 

Gheckmanml_New 0.003259 0.010658 0.002399 0.020534 0.001944 0.011194 0.000954 0.020550 

n_heckmanml_New -0.401001 0.035977 -0.380622 0.033310 -0.372314 0.045408 -0.362259 0.042329 

Gn_heckmanml_New 0.003245 0.010658 0.002380 0.020537 0.001886 0.011202 0.000880 0.020529 

 heckmanml_L_New -0.013549 0.011056 -0.013125 0.027175 -0.001245 0.012173 -0.002319 0.025535 

Gheckmanml_L_New -0.013594 0.011129 -0.013116 0.027311 -0.000717 0.012000 -0.001840 0.025691 

 heckmanml_LOG_New -0.173036 0.027196 -0.151052 0.043740 -0.158315 0.030228 -0.146115 0.041295 

 Gheckmanml_LOG_New -0.013619 0.011229 -0.013121 0.027259 -0.003980 0.050528 -0.004579 0.052224 

case 2 

 heckmanml_New 0.062254 0.040021 0.068179 0.065588 0.031200 0.042271 0.032776 0.062115 

Gheckmanml_New 0.000391 0.031929 -0.003009 0.048539 -0.003820 0.033522 -0.006851 0.048460 

n_heckmanml_New -0.266988 0.020523 -0.262651 0.033637 -0.260036 0.023001 -0.258915 0.034546 

Gn_heckmanml_New 0.000533 0.031891 -0.002868 0.048518 -0.003628 0.033494 -0.006647 0.048465 

 heckmanml_L_New -0.648895 0.108652 -0.635025 0.110319 -0.505764 0.173958 -0.504002 0.171417 

Gheckmanml_L_New -0.113583 0.172619 -0.112028 0.177034 -0.004681 0.105640 -0.011904 0.114685 

 heckmanml_LOG_New -0.149526 0.036250 -0.141203 0.059025 -0.128374 0.040651 -0.125686 0.056649 

 Gheckmanml_LOG_New -0.074222 0.132171 -0.076909 0.138217 -0.003669 0.096381 -0.011292 0.107138 

case 3 

 heckmanml_New 1.206839 1.739992 0.502445 1.530139 0.337733 1.282930 0.064340 1.167908 

Gheckmanml_New -0.066414 0.025797 -0.066652 0.047337 -0.089081 0.030344 -0.083207 0.055135 

n_heckmanml_New -0.067914 0.025129 -0.067820 0.046904 -0.090023 0.029667 -0.083951 0.054479 

Gn_heckmanml_New 0.313422 0.443931 0.313011 0.447075 -0.085641 0.067240 -0.079634 0.084587 

 heckmanml_L_New -0.985941 0.005204 -0.984707 0.005830 -0.965523 0.014279 -0.959967 0.074811 

Gheckmanml_L_New -0.986319 0.004987 -0.985125 0.005476 -0.965351 0.014812 -0.964072 0.015474 

 heckmanml_LOG_New -0.932193 0.009356 -0.932440 0.010007 -0.947086 0.008487 -0.947079 0.009026 

 Gheckmanml_LOG_New -0.986491 0.004939 -0.985310 0.005501 -0.963811 0.062892 -0.971452 0.093170 

case 4 

 heckmanml_New -0.216786 0.662983 -1.230724 0.845225 -0.268464 0.803449 -0.822075 0.954532 

Gheckmanml_New -0.078502 0.075406 0.198127 0.107271 -0.136926 0.042357 0.129158 0.071033 

n_heckmanml_New -0.160666 0.029349 0.105158 0.053211 -0.170004 0.033316 0.093335 0.062402 

Gn_heckmanml_New 0.251132 0.451074 0.629080 0.581399 -0.134285 0.076245 0.132658 0.111113 

 heckmanml_L_New -0.994215 0.001475 -0.993798 0.001816 -0.991203 0.002732 -0.990613 0.002934 

Gheckmanml_L_New -0.994228 0.001474 -0.993966 0.002034 -0.991227 0.002713 -0.990649 0.002913 

 heckmanml_LOG_New -0.976319 0.003994 -0.971074 0.005096 -0.980042 0.004042 -0.975751 0.004925 

 Gheckmanml_LOG_New -0.994243 0.001460 -0.993845 0.001791 -0.991434 0.002785 -0.990877 0.002981 

case 5 

 heckmanml_New 1.040751 1.622837 0.342244 1.392660 0.046772 1.063652 -0.160319 0.979606 

Gheckmanml_New -0.095608 0.047491 -0.096153 0.066187 -0.164716 0.049458 -0.158580 0.071118 

n_heckmanml_New -0.295515 0.041884 -0.271668 0.053931 -0.277585 0.047118 -0.259642 0.060090 

Gn_heckmanml_New 0.029389 0.347163 0.025400 0.335824 -0.162268 0.085215 -0.156105 0.101214 

 heckmanml_L_New -0.986221 0.004458 -0.985082 0.004904 -0.967488 0.036821 -0.967609 0.017732 

Gheckmanml_L_New -0.985931 0.004712 -0.984708 0.005798 -0.968654 0.011873 -0.967558 0.012219 

 heckmanml_LOG_New -0.957116 0.007062 -0.955884 0.007712 -0.958134 0.008137 -0.957105 0.008817 

 Gheckmanml_LOG_New -0.986487 0.004372 -0.985426 0.004821 -0.969509 0.012480 -0.968442 0.012851 
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Table A8-2 

Errors Lognormally Distributed k=0.5 k=1.25 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

SDG Heckman_New equations                 

case 1 

 heckmanml_New 0.003659 0.019902 0.003793 0.028687 0.000420 0.013802 0.000371 0.022971 

Gheckmanml_New 0.003614 0.019899 0.003699 0.028728 0.000391 0.013789 0.000310 0.022983 

n_heckmanml_New -0.455881 0.109233 -0.444804 0.130779 -0.491683 0.114607 -0.487355 0.128146 

Gn_heckmanml_New 0.003590 0.019860 0.003675 0.028688 0.000387 0.013797 0.000305 0.022993 

 heckmanml_L_New -0.007038 0.010062 -0.008119 0.018715 -0.006502 0.010613 -0.008110 0.019339 

Gheckmanml_L_New -0.006273 0.010156 -0.007302 0.018813 -0.005858 0.010643 -0.007460 0.019541 

 heckmanml_LOG_New 0.167911 0.049449 0.164459 0.057907 0.030637 0.051297 0.034364 0.059814 

 Gheckmanml_LOG_New -0.006229 0.010154 -0.007249 0.018815 -0.005824 0.010641 -0.007418 0.019542 

case 2 

 heckmanml_New 0.058060 0.044364 0.063883 0.067215 0.021028 0.040999 0.021966 0.058932 

Gheckmanml_New 0.034560 0.049461 0.033066 0.067075 0.013414 0.036046 0.011874 0.054840 

n_heckmanml_New -0.361354 0.075991 -0.355352 0.094490 -0.408845 0.078291 -0.404606 0.085653 

Gn_heckmanml_New 0.034452 0.049401 0.032954 0.067058 0.013451 0.036067 0.011912 0.054850 

 heckmanml_L_New -0.206770 0.034229 -0.210566 0.040845 -0.165651 0.039972 -0.172496 0.047073 

Gheckmanml_L_New -0.020803 0.021519 -0.020373 0.038728 -0.017508 0.023506 -0.019200 0.040856 

 heckmanml_LOG_New 0.070871 0.037839 0.076617 0.051730 -0.007898 0.039152 -0.001992 0.053614 

 Gheckmanml_LOG_New -0.020832 0.021515 -0.020402 0.038720 -0.017513 0.023510 -0.019207 0.040853 

case 3 

 heckmanml_New 0.446555 0.222556 0.484405 0.313042 0.027261 0.131575 0.028120 0.139783 

Gheckmanml_New 0.370786 0.139650 0.359418 0.203238 0.131020 0.136771 0.120970 0.159920 

n_heckmanml_New -0.091448 0.078477 -0.094251 0.124818 -0.156948 0.077345 -0.158332 0.108180 

Gn_heckmanml_New 0.332572 0.193901 0.321278 0.245776 0.115497 0.145800 0.105546 0.174453 

 heckmanml_L_New -0.587034 0.024406 -0.577654 0.032705 -0.621261 0.028221 -0.614477 0.034967 

Gheckmanml_L_New -0.051191 0.060661 -0.045521 0.076294 -0.030254 0.045434 -0.028170 0.065594 

 heckmanml_LOG_New -0.010827 0.041902 -0.004559 0.061926 -0.020565 0.049572 -0.015619 0.066638 

 Gheckmanml_LOG_New -0.047624 0.050393 -0.041741 0.068498 -0.030129 0.045395 -0.028022 0.065559 

case 4 

 heckmanml_New 0.565311 0.226829 0.632866 0.332912 -0.006916 0.157018 -0.005237 0.160805 

Gheckmanml_New 0.428123 0.268322 0.733318 0.381578 0.090465 0.192267 0.237206 0.248128 

n_heckmanml_New -0.225244 0.124744 -0.009147 0.240377 -0.280270 0.127112 -0.153866 0.198069 

Gn_heckmanml_New 0.432421 0.299161 0.769316 0.534979 0.084898 0.196183 0.224868 0.288065 

 heckmanml_L_New -0.579681 0.031873 -0.616430 0.034591 -0.618097 0.034921 -0.639161 0.036244 

Gheckmanml_L_New -0.072432 0.120270 -0.167715 0.114755 -0.044711 0.086893 -0.104748 0.091961 

 heckmanml_LOG_New 0.017799 0.059648 -0.067783 0.075135 -0.017747 0.067886 -0.059343 0.079329 

 Gheckmanml_LOG_New -0.062805 0.102660 -0.158983 0.103029 -0.039351 0.067982 -0.099284 0.078622 

case 5 

 heckmanml_New 0.436780 0.223880 0.469458 0.303406 0.014134 0.128018 0.014706 0.134897 

Gheckmanml_New 0.353395 0.196440 0.349202 0.266796 0.093860 0.126534 0.086710 0.148201 

n_heckmanml_New -0.315333 0.134341 -0.314356 0.195225 -0.383851 0.132411 -0.378951 0.144677 

Gn_heckmanml_New 0.311011 0.233593 0.302767 0.292257 0.094510 0.126730 0.087471 0.147941 

 heckmanml_L_New -0.496321 0.032253 -0.488606 0.039658 -0.543351 0.038665 -0.536921 0.045205 

Gheckmanml_L_New -0.038430 0.047232 -0.034832 0.064317 -0.036654 0.050731 -0.035474 0.066676 

 heckmanml_LOG_New 0.111666 0.056409 0.111546 0.071987 0.014908 0.062148 0.017191 0.075613 

 Gheckmanml_LOG_New -0.039152 0.049477 -0.035571 0.065640 -0.036615 0.050724 -0.035436 0.066671 
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9) Third DG Heckman equations (k=1) 

Table 9 

 Errors Lognormally Distributed Errors Normally Distributed 

  b1 b2 b1 b2 

  bias std bias std bias std bias std 

Third DG Heckman equations                 

case 1 

 heckmanml_New 0.004017 0.022358 0.004195 0.030869 0.003538 0.010496 0.003178 0.020426 

Gheckmanml_New 0.004016 0.022471 0.004174 0.031082 0.003151 0.010519 0.002621 0.020748 

n_heckmanml_New -0.451445 0.117874 -0.445835 0.133210 -0.398256 0.036427 -0.379662 0.036943 

Gn_heckmanml_New 0.003217 0.023274 0.003457 0.031833 0.003134 0.010520 0.002600 0.020746 

 heckmanml_L_New -0.007006 0.010260 -0.008534 0.018712 -0.013142 0.011284 -0.013230 0.024951 

Gheckmanml_L_New -0.006167 0.010307 -0.007730 0.018920 -0.013280 0.011480 -0.013187 0.025032 

 heckmanml_LOG_New 0.166197 0.048134 0.163099 0.056918 -0.170060 0.027899 -0.157160 0.039260 

 Gheckmanml_LOG_New -0.006120 0.010301 -0.007674 0.018917 -0.013184 0.011671 -0.013207 0.025126 

case 2 

 heckmanml_New 0.057609 0.045755 0.065432 0.069339 0.061916 0.040290 0.068639 0.065867 

Gheckmanml_New 0.031113 0.047918 0.029330 0.072212 0.001188 0.031239 -0.001056 0.046854 

n_heckmanml_New -0.359891 0.080321 -0.357282 0.095277 -0.265703 0.019823 -0.262063 0.032820 

Gn_heckmanml_New 0.031036 0.047924 0.029250 0.072218 0.001334 0.031192 -0.000908 0.046859 

 heckmanml_L_New -0.206414 0.034365 -0.210950 0.040712 -0.650036 0.110492 -0.640020 0.113736 

Gheckmanml_L_New -0.019160 0.020186 -0.020586 0.038150 -0.169056 0.224907 -0.172692 0.220246 

 heckmanml_LOG_New 0.069518 0.037316 0.072547 0.051703 -0.147794 0.036877 -0.144697 0.057208 

 Gheckmanml_LOG_New -0.019195 0.020187 -0.020621 0.038149 -0.112725 0.201151 -0.117658 0.201398 

case 3 

 heckmanml_New 0.443617 0.188988 0.497312 0.294359 3.640689 4.380717 7.186315 23.707644 

Gheckmanml_New 0.400216 0.149246 0.385686 0.192757 -0.061971 0.026769 -0.060535 0.045345 

n_heckmanml_New -0.089806 0.078477 -0.096886 0.125240 -0.063925 0.025816 -0.061966 0.045232 

Gn_heckmanml_New 0.307191 0.233155 0.291715 0.256731 -0.057667 0.065552 -0.056094 0.078344 

 heckmanml_L_New -0.587564 0.026323 -0.579200 0.032754 -0.986598 0.005108 -0.985031 0.005821 

Gheckmanml_L_New -0.056790 0.073952 -0.054020 0.087252 -0.986475 0.012517 -0.984862 0.014257 

 heckmanml_LOG_New -0.013059 0.041030 -0.009455 0.061850 -0.931511 0.009942 -0.931562 0.010731 

 Gheckmanml_LOG_New -0.056856 0.074103 -0.054055 0.087408 -0.986588 0.012429 -0.984966 0.014170 

case 4 

 heckmanml_New 0.554571 0.222700 0.622611 0.328915 0.172674 1.413135 -2.835240 4.409085 

Gheckmanml_New 0.442377 0.267335 0.756016 0.431469 -0.067930 0.089128 0.212507 0.113621 

n_heckmanml_New -0.219220 0.134523 -0.004184 0.250679 -0.157699 0.030900 0.111143 0.052037 

Gn_heckmanml_New 0.347679 0.322370 0.642027 0.497115 0.092817 0.387264 0.429613 0.501591 

 heckmanml_L_New -0.578919 0.033040 -0.618900 0.032561 -0.994483 0.001382 -0.994112 0.001738 

Gheckmanml_L_New -0.069058 0.120339 -0.172195 0.114166 -0.994546 0.001408 -0.994412 0.002039 

 heckmanml_LOG_New 0.018459 0.056954 -0.075575 0.071321 -0.976205 0.004249 -0.970774 0.005587 

 Gheckmanml_LOG_New -0.066944 0.117164 -0.170323 0.111690 -0.994514 0.001367 -0.994164 0.001712 

case 5 

 heckmanml_New 0.434083 0.192660 0.481991 0.292560 2.794524 4.174175 2.276350 7.631794 

Gheckmanml_New 0.397521 0.186292 0.393441 0.278725 -0.090488 0.048818 -0.087273 0.065709 

n_heckmanml_New -0.306056 0.147258 -0.309007 0.206701 -0.292004 0.044276 -0.264456 0.056083 

Gn_heckmanml_New 0.317301 0.246939 0.308937 0.310758 -0.090490 0.048825 -0.087085 0.065631 

 heckmanml_L_New -0.496789 0.033530 -0.490046 0.039544 -0.987106 0.003762 -0.985749 0.004575 

Gheckmanml_L_New -0.039594 0.051521 -0.038265 0.068246 -0.986865 0.004081 -0.985613 0.004822 

 heckmanml_LOG_New 0.108825 0.055086 0.107846 0.072352 -0.957380 0.006601 -0.955701 0.007893 

 Gheckmanml_LOG_New -0.038329 0.046834 -0.036903 0.066195 -0.987300 0.003670 -0.985968 0.004495 

 

 


