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1 Introduction

High dimensional factor models where a large number of time series are simultaneously

driven by a small number of latent factors provide a powerful framework to analyze

high dimensional data. Accompanied by an ever-increasing data size, the literature

for this model recently experienced a wave of development. For example, Bai and Ng

(2002) and Bai (2003) respectively show that utilizing the high dimensionality, we

are able to consistently determine the number of factors and establish the asymptotic

normality of the estimated factors and loadings. High dimensional factor models have

also been successfully used in macroeconomic monitoring and forecasting, business

cycle analysis, asset pricing, risk measurement, see for example Stock and Watson

(2002, 2016), Bernanke, Boivin and Eliasz (2005), Ross (1976) and Campbell, Lo and

Mackinlay (1997), to name a few.

So far the literature only considers linear factor models. However, in many macro-

economic or financial applications and in most microeconomic applications, the rela-

tionship between the dependent variable and the factors could be nonlinear. Repre-

sentative examples include but not limited to the case where the dependent variable

is categorical. Direct extension of existing theory, e.g., Bai (2003) and Bai and Li

(2012, 2016), to categorical data is not feasible because essentially both methods are

based on the covariance matrix of the continuously distributed dependent variable.

This paper seeks to establish a new estimation and inferential theory for high dimen-

sional nonlinear factor models. More specifically, this paper considers the following

single-index factor model: For i = 1, ..., N and t = 1, ..., T ,

xit ∼ git(·
∣∣π0it ). (1)

xit is the observed data for the i-th subject at time t. git(· |·) is some known probability
(density or mass) function of xit allowed to vary across i and t. Note that git(· |·) is
the conditional probability function. Weak cross-sectional and serial dependence of

xit is allowed. π
0
it = f

0′
t λ

0
i , and f

0
t and λ

0
i is an r dimensional vector of factors and

loadings respectively. Both factors and loadings are unobservable. Both N and T are

large. The number of factors r is known. How to determine the number of factors is
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studied in a separate paper.

For engineering, this model has been successfully used in data compression, visu-

alization, pattern recognition and machine learning. For social sciences, this model

also plays important role in psychology and education. For economics and finance,

possible applications are partially listed below:

(1) Macroeconomic forecasting, factor-augmented vector autoregression and busi-

ness cycle analysis: In these areas, common factors are predominantly estimated by

principal components using continuous data, see Stock and Watson (2002), Bernanke,

Boivin and Eliasz (2005) and Bai and Ng (2006). Little attention has been paid to the

treatment of categorical or mixed measurement data even though many data sets are

of this type. For example, let x1t be the GDP, x2t be the consumer confidence index

(categorical), x3t be the interest rate announcement of FOMC, etc, at time t. Let

f 0t denote some macroeconomic factors, then xit is nonlinearly linked to π
0
it = f

0′
t λ

0
i

through some known link function. While mixed measurement data are quite infor-

mative, they cannot be directly handled by principal components estimation. This

paper provides a rigorous solution to this issue.

(2) Credit risk analysis: Default correlation modelling has direct implications

for CDO (collateralized debt obligations) pricing, bond portfolio management and

commercial bank risk management. Intuitively, default correlation originates from

common exposures to business cycle, monetary policy, market sentiment and other

financial or sector factors. Factor models provide a parsimonious way for analyzing

default correlation and underlies many risk models used in practice. In a representa-

tive case, π0it + eit is the value of company i at time t, eit is the idiosyncratic error

term, f 0t is the common factors and xit is nonlinearly linked to π
0
it. xit could be rating

category company i belongs to, or the binary variable describing the default event, or

the credit spread of its bond, or its stock return, or its stock volatility at time t. For

more details on default correlation modelling and estimation, see Schonbucher (2000),

McNeil and Wendin (2007), Koopman and Lucas (2008), Koopman, Lucas and Mon-

teiro (2008), Koopman, Lucas and Schwaab (2011), Creal, Schwaab, Koopman and

Lucas (2014) and the references therein.

(3) Socio-economic status measurement: In development economics, health eco-
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nomics, welfare economics and economics of education, researchers frequently en-

counter the problem of measuring the socio-economic status (more specifically the

wealth or consumption) of a household or an individual. A good measure, serving as

either the explanatory or the dependent variable, is crucial for these studies. Direct

accurate measures of household wealth or consumption usually are not available or

not reliable. Instead, the survey data contains many reliable yet categorically distrib-

uted proxies, such as living conditions and ownership of durables or assets. Treating

these proxies as the dependent variables and household wealth as the latent explana-

tory factor, household wealth could be estimated from the data of these proxies. For

example, let xit be the i-th proxy of household t and let f
0
t be the wealth of house-

hold t, then xit is nonlinearly linked to π
0
it = f

0′
t λ

0
i through some known link function

implied by economic theory. Filmer and Pritchett (2001) follows this approach to

construct wealth index for estimating the effect of wealth on educational enrollments

in India. The Filmer-Pritchett procedure simply extracts the factor from the binary

proxies directly by principal component. Rigorously speaking, this procedure is lack

of theoretical support and may lead to misleading results.

For all the above and future applications, it is in urgent need to develop a theoret-

ically justified method for estimating the factors and loadings from high dimensional

nonlinear/mixed data. It is also necessary to establish the asymptotic properties of

the proposed estimator under the high dimensional setup. Such asymptotic prop-

erties are needed to characterize the conditions under which the estimation error is

negligible when estimated factors are used as regressors and to construct confidence

intervals when estimated factors represent economic indices.

This paper considers maximum likelihood for estimating the factors and loadings

from nonlinear/mixed data. Both factors and loadings are treated as parameters to be

estimated and a penalty function is added to the log-likelihood function to guarantee

the uniqueness of the solution of the likelihood maximization problem. This paper

establishes the convergence rates of the estimated factor space and loading space, and

asymptotic normality of the estimated factors and loadings, given that the probability

function satisfies some regularity conditions. These regularity conditions allow for

linear models, Logit, Probit, Tobit, Poisson and some other nonlinear models. Thus
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Bai (2003) is a special case of this paper. The probability function is also allowed to

vary across i and t, thus a mixture of these models is allowed for. This paper also

establishes the limit distributions of the parameter estimates, the conditional mean

as well as the forecast for factor-augmented regression models when the estimated

factors are used as proxies for the true factors. This result generalizes Bai and Ng

(2006) to allow us using factors extracted from nonlinear/mixed data.

In the statistics literature, classic factor analysis has been successfully extended

to categorical data and mixed data, see for example, Bartholomew (1980), Moustaki

(1996), Bartholomew and Knott (1999), Moustaki (2000), Moustaki and Knott (2000)

and Joreskog and Moustaki (2001), to name a few. All these papers assume N

is fixed and much smaller than T . While factors are typically of primary interest

in economic applications, factors can not be consistently estimated under the fixed

N large T setup. This limitation and the urgent need to handle high dimensional

mixed data recently has motivated researchers to explore possible solution. Ng (2015)

reviews alternative methods of constructing factors that can potentially be extended

to categorical data and explores their numerical properties.

This paper provides a general theory for factor analysis of high dimensional non-

linear data. Since factors and loadings are treated as parameters to be estimated,

the number of parameters tend to infinity as N and T tends to infinity jointly. This

paper solves this problem by utilizing the fact that for factor model, the Hessian is as-

ymptotically block diagonal and the tensor of third order derivatives is sparse. More

specifically, elements in the diagonal blocks of the Hessian are Op(N) or Op(T ) while

elements in the off-diagonal blocks are Op(1). This paper shows that under relevant

regularity conditions, the presence of these nonzero off-diagonal blocks has no effect

on the asymptotic properties of the estimated factors and loadings. Asymptotic block

diagonality of the Hessian also provides explanation for Bai (2003)’s results from the

perspective of extremum estimation.

This paper’s solution is reminiscent of the diagonalization approaches discussed

in Cox and Reid (1987) and Lancaster (2000, 2002). The difference is that in this

paper the diagonality comes from the factor structure and high dimensionality and

holds only when N and T tend to infinity jointly, while in those papers the diag-
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onality comes from artificial reparametrization. More recently, Fernandez-Val and

Weidner (2016) and Chen, Fernandez-Val and Weidner (2014, 2018) utilize asymp-

totic diagonality of the incidental parameter Hessian to derive the limit distributions

of the regression coefficients and the average partial effects in nonlinear panel mod-

els. For the estimated factors and loadings, Chen et al. (2014, 2018) establishes the

average consistency, while this paper also establishes the convergence rates, the limit

distributions and the effect of using estimated factors in factor-augmented regression.

The rest of the paper is organized as follows. Section 2 introduces notations and

preliminaries. Section 3 discusses the assumptions. Section 4 presents the limit theory.

Section 5 presents results for factor-augmented regressions. Section 6 introduces

computation algorithms. Section 7 presents simulation results. Section 8 concludes.

All proofs are relegated to the appendix.

2 Notations and Preliminaries

The log-likelihood1 function is

L(X |f, λ) =
∑N

i=1

∑T

t=1
lit(f

′
tλi), (2)

where lit(πit) = log git(xit |πit ) and πit = f ′tλi, X is the T × N matrix of observed

data and xit is the element on the t-th row and the i-th column, f = (f
′
1, ..., f

′
T )
′ a

Tr dimensional vector and λ = (λ′1, ..., λ
′
N)

′ is a Nr dimensional vector. git(· |·) is
allowed to vary across i and t, thus data following different models (e.g., discretely

and continuously distributed time series) can be merged directly to extract common

factors. We consider the following representative examples.

Example 1 (Linear): lit(f
′
tλi) = −1

2
(xit − f ′tλi)2.

Example 2 (Probit): lit(f
′
tλi) = xit log Φ(f

′
tλi) + (1 − xit) log(1 − Φ(f ′tλi)), where

Φ(·) is the CDF of the standard normal distribution.
1When xit is cross sectionally or serially dependent, L(X |f, λ ) is the quasi-likelihood function.
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Example 3 (Logit): lit(f
′
tλi) = xit log Ψ(f

′
tλi)+(1−xit) log(1−Ψ(f ′tλi)), where Ψ(·)

is the CDF of the logistic distribution.

Example 4 (Tobit): Suppose xit = x∗it if x
∗
it > 0 and xit = 0 if x∗it ≤ 0, where

x∗it = f ′tλi + eit and eit is N(0, 1). The likelihood function is lit(f
′
tλi) = −1

2
(xit −

f ′tλi)
2
1(xit > 0) + log(1− Φ(f ′tλi))1(xit = 0), where 1(·) is the indicator function.

Example 5 (Poisson): lit(f
′
tλi) = −ef ′tλi + kf ′tλi − log k!, because P (xit = k) =

p(k, λ) = e−λλk/k! and λ = ef
′

tλi.

Let φ = (λ′, f ′)′, F = (f1, ..., fT )
′, Λ = (λ1, ..., λN)

′. Similarly, for the true values of

the factors and the loadings, let f 0 = (f 0′1 , ..., f
0′
T )

′, λ0 = (λ0′1 , ..., λ
0′
N)

′, φ0 = (λ0′, f0′)′,

F 0 = (f 01 , ..., f
0
T )
′ and Λ0 = (λ01, ..., λ

0
N)

′. Also, let ∂πlit(πit), ∂π2lit(πit) and ∂π3lit(πit)

be the first, second and third order derivative of lit(·) evaluated at πit, respectively.
When these derivatives are evaluated at π0it, we suppress the argument and simply

write ∂πlit, ∂π2lit and ∂π3lit.

Both factors and loadings are treated as parameters. Note that for any F , Λ and

any r × r invertible matrix G, FG and Λ(G′)−1 has the same likelihood as F and Λ.
To uniquely fix F and Λ, we impose the normalization such that (1) F ′F is diagonal,

(2) Λ′Λ is diagonal, (3) 1
T
F ′F = 1

N
Λ′Λ, i.e., the estimated factors and loadings are the

solution of maximizing L(X |f, λ) under constraints (1)-(3). As explained in Remark
1 below, the solution of this constraint maximization problem is always the same as

the solution of maximizing Q(f, λ) = L(X |f, λ)+P (f, λ), where

P (f, λ) = − c
8
NT

∑r

p=1
(
1

N

∑N

i=1
λ2ip −

1

T

∑T

t=1
f 2tp)

2

− c
2

T

N

∑r

p=1

∑r

q=p+1
(
∑N

i=1
λipλiq)

2

− c
2

N

T

∑r

p=1

∑r

q=p+1
(
∑T

t=1
ftpftq)

2, (3)

is a penalty function, 0 < c < bL and bL is lower bound of |∂π2lit(πit)| as presented in
Assumption 2(ii) below. Thus we can consider the estimated factors and loadings as

the solution of maximizing Q(f, λ) in asymptotic analysis. For numerical computa-

tion, the algorithms in Section 6 still solves the constraint maximization problem. The
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normalization (1)-(3) is slightly different from the classical normalization 1
T
F ′F = Ir

and Λ′Λ being diagonal. We choose this normalization because with penalty (3), the

Hessian matrix of Q(f, λ) has some convenient structure for analyzing its asymptotic

behavior. If we choose another normalization, all results of this paper still hold,

except for a different rotation matrix2.

Let B(D) denote the neighborhood ‖f‖∞ ≤ D and ‖λ‖∞ ≤ D for some large

D > 0, and let f̂ = (f̂ ′1, ..., f̂
′
T )
′ and λ̂ = (λ̂

′

1, ..., λ̂
′

N)
′ be the solution of maximizing

Q(f, λ) within B(D). We will explain why taking f̂ and λ̂ within B(D) in Remark
2 below. Let π̂it = f̂

′
tλ̂i, φ̂ = (λ̂

′
, f̂ ′)′, F̂ = (f̂1, ..., f̂T )

′ and Λ̂ = (λ̂1, ..., λ̂N)
′. The r

columns of F̂ are ordered according to their Euclidean norm, from the largest to the

smallest. The r columns of Λ̂ are ordered in the same way.

Throughout the paper, let (N, T )→∞ denote N and T going to infinity jointly,

δNT = min{N
1

2 , T
1

2}, DNT =

[
N × INr 0

0 T × ITr

]

, DTN =

[
T × INr 0

0 N × ITr

]

.

d→ denotes convergence in distribution. "w.p.a.1" denotes "with probability approach-

ing 1". For matrix A, let ρmin(A) denote its smallest eigenvalue and ‖A‖, ‖A‖F , ‖A‖1,
‖A‖∞ and ‖A‖max denote its spectral norm, Frobenius norm, 1-norm, infinity norm
and max norm respectively. When A has Nr rows, divide A into N blocks with

each block containing r rows and let [A]iq denote the q-th row in the i-th block and

[A]i = ([A]
′
i1, ..., [A]

′
ir)

′ denote the i-th block.

Remark 1 First note that for any F and Λ, there exists a unique matrix G such that

P (FG,Λ(G′)−1) = 0, and P (FG,Λ(G′)−1) < 0 for other G. If F and Λ maximizes

Q(F,Λ), then P (F,Λ) = 0 because otherwise P (F,Λ) < 0 and we can find the appro-

priate G such that L(X |F,Λ) = L(X |FG,Λ(G′)−1 ) and P (FG,Λ(G′)−1) = 0, which
implies Q(F,Λ) < Q(FG,Λ(G′)−1), a contradiction. Thus the solution of maximiz-

ing Q(F,Λ) is the same as the solution of maximizing Q(F,Λ) under the constraints

P (F,Λ) = 0. The latter is the same as the solution of maximizing L(X |F,Λ) un-
der the constraints P (F,Λ) = 0, which is the same as the solution of maximizing

L(X |F,Λ) under the constraints (1)-(3).
2To show this, we first prove the results for this normalization, and then prove the results still

hold after changing the rotation.
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3 Assumptions

Assumption 1 (i) T−1F 0′F 0
p→ ΣF for some positive definite ΣF . There exists

M > 0 such that ‖f 0t ‖ ≤M for all t.

(ii) N−1Λ0′Λ0
p→ ΣΛ for some positive definite ΣΛ. There exists M > 0 such that

∥∥λ0i
∥∥ ≤M for all i.

Assumption 2 (i) lit(·) is three times differentiable.
(ii) There exists bU > bL > 0 such that bL ≤ −∂π2lit(πit) ≤ bU within a compact

space of πit.

(iii) |∂π3lit(πit)| ≤ bU within a compact space of πit.

Assumption 3 There exists M > 0 such that for all N and T :

(i) E( |∂πlit|ξ) ≤M for some ξ > 14 and all i and t.

(ii) T−1
∑T

s=1

∑T
t=1(γN(s, t))

2 ≤M , where γN(s, t) = N−1
∑N

i=1 E(∂πlis∂πlit).

(iii) For every (t, s), E(N− 1

2

∑N
i=1[∂πlis∂πlit − E(∂πlis∂πlit)])2 ≤M .

Assumption 4 There exists M > 0 such that for some ζ > 2 and for all N and T ,

E(N−1
∑N

i=1

∥∥∥T−
1

2

∑T
t=1 ∂πlitf

0
t

∥∥∥
ζ

) ≤M ,

E(T−1
∑T

t=1

∥∥∥N− 1

2

∑N
i=1 ∂πlitλ

0
i

∥∥∥
ζ

) ≤M .

Assumption 5 (i) E
∥∥∥N− 1

2T−
1

2

∑N
i=1

∑T
t=1(T

−1
∑T

t=1 ∂π2litf
0
t f

0′
t )

−1f 0t ∂πlit∂πlis

∥∥∥
2

≤
M for any s and

E

∥∥∥N− 1

2T−
1

2

∑N
i=1

∑T
t=1(N

−1
∑N

i=1 ∂π2litλ
0
iλ
0′
i )
−1λ0i∂πlit∂πljt

∥∥∥
2

≤M for any j.

(ii) E
∥∥∥N− 1

2T−
1

2

∑N
i=1

∑T
t=1(T

−1
∑T

t=1 ∂π2litf
0
t f

0′
t )

−1∂πlitf
0
t λ

0′
i

∥∥∥
2

≤M and

E

∥∥∥N− 1

2T−
1

2

∑N
i=1

∑T
t=1(N

−1
∑N

i=1 ∂π2litλ
0
iλ
0′
i )
−1∂πlitλ

0
i f
0′
t

∥∥∥
2

≤M .

E

∥∥∥N− 1

2T−
1

2

∑N
i=1

∑T
t=1(T

−1
∑T

t=1 ∂π2litf
0
t f

0′
t )

−1∂πlitf
0
t λ

0′
i ∂π2lis

∥∥∥
2

≤ M for any s

and

E

∥∥∥N− 1

2T−
1

2

∑N
i=1

∑T
t=1(N

−1
∑N

i=1 ∂π2litλ
0
iλ
0′
i )
−1∂πlitλ

0
i f
0′
t ∂π2ljt

∥∥∥
2

≤M for any j.

(iii) for any i, −T−1∑T
t=1 ∂π2litf

0
t f

0′
t

p→ ΣiF and T
− 1

2

∑T
t=1 ∂πlitf

0
t

d→ N (0,ΩiF )
for some positive definite ΣiF and ΩiF .
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(iv) for any t, −N−1
∑N

i=1 ∂π2litλ
0
iλ
0′
i → ΣtΛ and N

− 1

2

∑N
i=1 ∂πlitλ

0
i

d→ N (0,ΩtΛ)
for some positive definite ΣtΛ and ΩtΛ.

Assumption 6 The eigenvalues of the r × r matrix (ΣF · ΣΛ) are different.

Assumption 7 N
3
ξ T

3
ξ (N+T )

1
ζ

δNT
→ 0 as (N, T )→∞.

Assumption 1(i) corresponds to Assumption A in Bai (2003). Factors are allowed

to be dynamic with arbitrary dynamics. Assumption 1(ii) is exactly the same as As-

sumption B in Bai (2003), and ensures each factor has a nontrivial contribution. Note

that here ‖f 0t ‖ and
∥∥λ0i
∥∥ are assumed to be uniformly bounded. This assumption is

the same as Bai and Li (2016), but stronger than Bai (2003), which only assumes

uniform boundedness of E ‖f 0t ‖
4
and E

∥∥λ0i
∥∥4. In general, compactness of parameter

space is quite common for nonlinear models, e.g., Newey and McFadden (1994), Jen-

nrich (1969) and Wu (1981). Under the current setup, this assumption is necessary

because the convergence rate (and hence limit distribution) of f̂t is not uniform over

the parameter space of f 0t if
∣∣∂π2lit(f 0′t λ

0
i )
∣∣→ 0 as ‖f 0t ‖ → ∞. In other words, in such

cases the convergence rates of f̂t will not be the same
3 for all t.

Assumption 2(i) imposes smoothness condition on the log-likelihood function. As-

sumption 2(ii) and (iii) assumes that the log-likelihood function is concave, the second

order derivatives are bounded below and above, and the third order derivatives are

bounded above. The boundedness of the second and third order derivatives is needed

to control the remainder term in the expansion of the first order condition4. The

boundedness from below of the second order derivatives together with boundedness

of πit are used to show consistency of the estimated factors and loadings. We ver-

ify in Appendix D that Logit, Probit, Poisson and Tobit all satisfy Assumption 2.

3For example, consider the case f0t is one dimensional and
∣∣∂π2 lit(f0′t λ

0

i )
∣∣ converges to zero

monotonically as f0t → ∞. Let t∗ = argmax ft and t
∗∗ = argmin ft. Then convergence rate of

f̂t∗ would be slower than f̂t∗∗ as (N,T )→∞.
4Newey and McFadden (1994) only requires two times continuously differentiable because it

expands the first order condition only to the second order and utilizes Lemma 2.4 to establish the
convergence of the Hessian. In this paper we expand the first order condition to the third order and
utilize the uniform boundedness of the third order derivatives to explicitly calculate the magnitude
the third order term. Lemma 2.4 in Newey and McFadden (1994) is no longer applicable here because
the dimension of the parameter space and the dimension of the Hessian also tend to infinity.
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These are most frequently used nonlinear models. For other models, readers can check

accordingly.

Assumptions 3-5 are generalization of Assumptions C, D and F in Bai (2003) in

the nonlinear setup. When the model is linear, ∂πlit is the error term "eit" and ∂π2lit

is a constant, and Assumptions 3-5 reduce to Assumptions C, D and F in Bai (2003)

respectively (with slight modification on the value of ξ and ζ and the statement of

Assumption F1). As Bai (2003), distribution of xit is allowed to be heterogeneous

over i and t, and limited cross-sectional and serial dependence of xit is also allowed.

If xit is independent over i and t conditional on the factors and loadings, Assumption

3(ii) and (iii), Assumption 4 and Assumption 5 can be easily verified. If there is

no conditional independence, these assumptions still can be verified provided certain

weak dependence conditions are imposed on. We follow Bai (2003)’s treatment in

presenting Assumptions 3-5.

Assumption 6 is a crucial identification condition and is the same as Assumption G

in Bai (2003). It guarantees that there exists unique F and Λ such that FΛ′ = F 0Λ0′,

F ′F and Λ′Λ are diagonl and F ′F/T = Λ′Λ/N . Assumption 7 is quite weak if ξ and

ζ are large. Note that except for some well-designed mathematical counterexamples,

Assumptions 3(i) and 5 indeed hold with very large ξ and ζ.

4 Limit Theory for Estimated Factors and Load-

ings

For any F 0 and Λ0, let ρ21 > ... > ρ
2
r be the eigenvalues ofN

−1T−1(Λ0′Λ0)
1

2F 0′F 0(Λ0′Λ0)
1

2

and Υ be the matrix of corresponding eigenvectors, and let V = diag(ρ21, ..., ρ2r). As-
sumption 1 implies that V converges in probability to the diagonal matrix of eigen-
values of Σ

1

2

ΛΣFΣ
1

2

Λ and Υ converges in probability to the matrix of eigenvectors of

Σ
1

2

ΛΣFΣ
1

2

Λ. Let G = (
Λ0′Λ0

N
)
1

2ΥV− 1

4 , G converges in probability to a constant matrix.

Assumption 6 guarantees G is unique for N and T large enough. Relationship of

G and Bai (2003)’s rotation matrix will be discussed later in Proposition 5. Let
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FG = F 0G and ΛG = Λ0(G−1)′. It can be easily verified that FGΛG′ = F 0Λ0′ and

1

T
FG′FG =

1

N
ΛG′ΛG = V 1

2 . (4)

Similar to the notation in Section 2, let FG = (fG1 , ..., f
G
T )

′, ΛG = (λG1 , ..., λ
G
N)

′,

fG = (fG′1 , ..., f
G′
T )

′, λG = (λG′1 , ..., λ
G′
N )

′ and φG = (λG′, fG′)′. By definition of FG, it

is easy to see that fGt = G′f 0t and λ
G
i = G−1λ0i . We consider φ

G because G is the

unique rotation such that P (λG, fG) = 0.

Let S(φ) = ∂φQ(φ), Sλ(φ) = ∂λQ(φ) and Sf (φ) = ∂fQ(φ) denote the score, it

follows that S(φ) = (S ′λ(φ), S
′
f (φ))

′. Let H(φ) = ∂φφ′Q(φ) be the Hessian matrix.

Decomposition of H(φ) and the expression of each component is presented in Appen-

dix A. We suppress the argument when S(φ) and H(φ) are evaluated at φG, i.e., S =

S(φG) and H = H(φG).

Remark 2 B(D) is designed such that (1) f̂ ′tλ̂i is uniformly bounded over i and t,
(2) φG lies in5 B(D

2
) w.p.a.1. Fact (1) is crucial for proving average consistency of

φ̂, see Proposition 1 below. Fact (2) guarantees that φG lies in the interior of B(D).

4.1 Consistency

There are two difficulties in establishing consistency. First, the number of parameters

tends to infinity jointly with N and T . Thus the classical procedure for extremum

estimators, e.g., Newey and McFadden (1994), is no longer applicable. Second, the

parameters are present in both dimensions and the likelihood function is nonconcave

with respect to the parameters. Thus it is not feasible to extend the proof strategy of

large dimensional nonlinear panels to the current setup, because they either require

there is only individual effects or time effects (see for example, Hahn and Newey

(2004) and Hahn and Kuersteiner (2011)), or require global concavity of the likelihood

function (Fernandez-Val and Weidner (2016)). Inspired by Lemma 1 of Chen et al.

(2014), this paper solves the difficulties by utilizing the boundedness from below of

−∂π2lit(πit) over the compact parameter space.
5Note that

∥∥fG
∥∥
∞
and

∥∥∥λG
∥∥∥
∞
are bounded w.p.a.1, because f0t and λ

0

i are uniformly bounded

and ‖G‖ is bounded w.p.a.1. Thus φG lies in B(D
2
) w.p.a.1 when D is large enough.
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Proposition 1 (Average Consistency) Under Assumptions 1-3 and 6, as (N, T )→
∞,

∥∥∥f̂ − fG
∥∥∥ = Op(

√
T
δNT
) and

∥∥∥λ̂− λG
∥∥∥ = Op(

√
N
δNT
).

A remaining issue is that S(φ̂) is not necessarily zero, because the criterion func-

tion is not globally concave. If S(φ̂) 6= 0, then we can not utilize the first order

conditions to move forward. We next show that S(φ̂) = 0 w.p.a.1. First, Propo-

sition 1 implies that φ̂ lies in the neighborhood
∥∥∥D

− 1

2

NT (φ− φG)
∥∥∥ ≤ m w.p.a.1. By

definition, φ̂ maximizes the likelihood within B(D). Thus φ̂ maximizes the likelihood
within B(D)∩

∥∥∥D
− 1

2

NT (φ− φG)
∥∥∥ ≤ m w.p.a.1. Second, we show in the Appendix that

within the region B(D)∩
∥∥∥D

− 1

2

NT (φ− φG)
∥∥∥ ≤ m, w.p.a.1, the criterion function is con-

cave (see Lemma 3) and there exists a zero point of S(φ). This implies that the zero

point should maximize the likelihood within B(D)∩
∥∥∥D

− 1

2

NT (φ− φG)
∥∥∥ ≤ m w.p.a.1.

Thus φ̂ must be the zero point w.p.a.1.

Proposition 2 Under Assumptions 1-4, 6 and 7, S(φ̂) = 0 w.p.a.1.

All subsequent results do not rely on Assumption 7 directly. They rely on As-

sumption 7 purely because they rely on Proposition 2. Bai and Ng (2002) and Bai

(2003) do not need any condition on the relative magnitude of N and T because in

the linear setup the principal component estimator is just the global maximum, i.e.,

Bai and Ng (2002) and Bai (2003) do not have the difficulty6 we encounter here.

An intermediate step for Proposition 2 is the following uniform rates.

Proposition 3 (Uniform Consistency) Under Assumptions 1-4 and 6,

(i)
∥∥∥λ̂− λG

∥∥∥
∞
= Op(

N
2
ξ T

2
ξ (N+T )

1
ζ

T
1
2

), (ii)
∥∥∥f̂ − fG

∥∥∥
∞
= Op(

N
3
ξ T

3
ξ (N+T )

1
ζ

N
1
2

).

Note that normally ξ and ζ could be large, and in such case
∥∥∥λ̂− λG

∥∥∥
∞
and

∥∥∥f̂ − fG
∥∥∥
∞
is approximately Op(T

− 1

2 ) and Op(N
− 1

2 ), respectively. Thus these rates

are more accurate than Bai (2003)’s Proposition 2 when ξ and ζ are large.

6If we can find a better strategy to handle this difficulty, then we may get rid of Assumption 7.
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4.2 Convergence Rates

Now we can utilize the first order conditions S(φ̂) = 0 to move forward. Using

the integral form of the mean value theorem for vector-valued functions7 to expand

the first order conditions, we have 0 = ∂φQ(φ̂) = S + H̃ × (φ̂ − φG), where H̃ =
∫ 1
0
H(φG + s(φ̂− φG))ds ≡

∫ 1
0
H(s)ds. It follows that φ̂− φG = −H̃−1S and

(
N− 1

2 (λ̂− λG)
T−

1

2 (f̂ − fG)

)

= D
− 1

2

NT (φ̂− φG) = N− 1

2T−
1

2 (−D− 1

2

TNH̃D
− 1

2

TN)
−1D

− 1

2

TNS, (5)

where DNT and DTN are normalization matrices defined in Section 2. Given Assump-

tion 4, it is easy to see that
∥∥∥D

− 1

2

TNS
∥∥∥ = Op((N+T )

1

2 ). Utilizing the structure of H(φ)

and eigenvalue perturbation technique, we show in the Appendix (Lemma 3) that the

largest eigenvalue of (−D− 1

2

TNH(φ)D
− 1

2

TN)
−1 is Op(1) uniformly within the neighborhood

B(D)∩
∥∥∥D

− 1

2

NT (φ− φG)
∥∥∥ ≤ m for somem > 0. Since φ̂ lies inB(D)∩

∥∥∥D
− 1

2

NT (φ− φG)
∥∥∥ ≤

m w.p.a.1, this implies that
∥∥∥(−D− 1

2

TNH̃D
− 1

2

TN)
−1
∥∥∥ is Op(1). Thus we have the following

result:

Theorem 1 (Average Rate) Under Assumptions 1-4, 6 and 7,
∥∥∥f̂ − fG

∥∥∥ = Op( T
1
2

δNT
)

and
∥∥∥λ̂− λG

∥∥∥ = Op( N
1
2

δNT
).

Theorem 1 establishes the convergence rate of the estimated factor space and the

estimated loading space. In applications where estimated factors are used as proxies

for the true factors, e.g., forecasting, portfolio construction, Theorem 1 provides the

foundation for characterizing the effect of using estimated factors. In this paper, we

shall use Theorem 1 to show the limit distributions of λ̂i− λGi and f̂t− fGt , and limit
distribution of the parameter estimates in factor-augmented regressions.

Remark 3 The key step for Theorem 1 is to show that
∥∥∥(−D− 1

2

TNH(φ)D
− 1

2

TN)
−1
∥∥∥ is

Op(1) uniformly within B(D)∩
∥∥∥D

− 1

2

NT (φ− φG)
∥∥∥ ≤ m. Lemma 5 of Chen et al. (2014)

proves similar result for the case of one factor. To generalize from one factor to

multiple factors, there are some purely mathematical difficulties. This paper solves

7Note that the standard mean value theorem does not hold for vector-valued functions. For more
details, also see Feng, Wang, Han, Xia and Tu (2013).
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the difficulties in step (2) of Lemma 2 and Lemma 3. Step (1) of Lemma 2 is similar

to (and inspired by) Lemma 5 of Chen et al. (2014).

4.3 Limit Distributions

Now we proceed to to establish the limit distributions of the estimated factors and

loadings. First, it is not feasible to extend Bai (2003)’s method of deriving the limit

distribution of f̂t − fGt to the nonlinear setup, because Bai (2003)’s method relies on
expression A.1 in Appendix A of Bai (2003), a crucial decomposition identity that

does not hold in nonlinear setup. Second, noting that λ̂i can be regarded as the

maximum likelihood estimator when f̂ is used for fG and vice versa, another choice

is to expand the first order conditions
∑T

t=1 ∂πlit(f̂
′
tλ̂i)f̂t = 0 at λ

G
i and use Theorem

1 to study the effect of using f̂ for fG and λ̂ for λG. When the model is linear, Bai

(2003) uses this method to establish the limit distributions of λ̂i − λGi . However,
as explained in Remark 4 below, this method is not promising when the model is

nonlinear.

Remark 4 Using the integral form of the mean value theorem, the expansion of the

first order conditions is

0 =
∑T

t=1
∂πlit(f̂

′
tλ
G
i )f̂t +

∑T

t=1
[

∫ 1

0

∂π2lit(f̂
′
t(λ

G
i + s(λ̂i − λGi )))ds]f̂tf̂ ′t(λ̂i − λGi ). (6)

The first term on the right hand side equals

∑T

t=1
(∂πlit)f

G
t +

∑T

t=1
[∂πlit(f̂

′
tλ
G
i )− ∂πlit]fGt

+
∑T

t=1
(∂πlit)(f̂t − fGt ) +

∑T

t=1
[∂πlit(f̂

′
tλ
G
i )− ∂πlit](f̂t − fGt ). (7)

When the model is linear, without loss of generality, suppose lit(πit) = −1
2
(xit −

πit)
2. Then ∂π2lit(·) always equals −1 and fGt , λGi , f̂t, λ̂i, ∂πlit and ∂πlit(f̂ ′tλGi ) can

be replaced by "H ′F 0t ", "H
−1λ0i ", "F̃t", "λ̃i", "eit" and "−(F̃t − H ′F 0t )

′H−1λ0i +

eit" in Bai (2003) respectively. It follows that the four terms in expression (7) be-

comes "
∑T

t=1H
′F 0t eit", "−

∑T
t=1H

′F 0t (F̃t−H ′F 0t )
′H−1λ0i ", "

∑T
t=1(F̃t−H ′F 0t )eit" and

"−∑T
t=1(F̃t −H ′F 0t )(F̃t −H ′F 0t )

′H−1λ0i " in Bai (2003) respectively, and the second
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term on the right hand side of equation (6) becomes "−∑T
t=1 F̃tF̃

′
t(λ̃i − H−1λ0i )" in

Bai (2003). "T−
1

2

∑T
t=1H

′F 0t eit" is normally distributed in the limit. Lemma B.2,

Lemma B.1 and Lemma A.1 in Bai (2003) shows respectively that the last three terms

of expression (7) are Op(
T
δ2NT
), which is dominated by the first term if T

1

2/N → 0.

Lemma B.2 and Lemma A.1 in Bai (2003) also shows that "T−1
∑T

t=1 F̃tF̃
′
t" converges

in probability to some constant matrix. These together shows that "T
1

2 (λ̃i −H−1λ0i )"

is normally distributed in the limit.

When the model is nonlinear, we have already reestablished Lemma A.1 of Bai

(2003) in Theorem 1. It is also feasible to reestablish Lemma B.1 and Lemma B.2 of

Bai (2003), as shown in Lemma 11 in the Appendix. The difficulty is that we can not

get the accurate rate of the magnitude of
∑T

t=1[∂πlit(f̂
′
tλ
G
i ) − ∂πlit]fGt , because we do

not have an analytical expression for ∂πlit(f̂
′
tλ
G
i )− ∂πlit.

To solve this problem, we expand the first order conditions S(φ̂) = 0 at φG.

0 = S(φ̂) = S +H × (φ̂− φG) + 1
2
R,

where R = (R′λ, R
′
f )
′. Rλ and Rf is Nr and Tr dimensional with element Rλ,iq =

(φ̂−φG)′∂φφ′λiqQ(φ∗iq)(φ̂−φG) and Rf,tq = (φ̂−φG)′∂φφ′ftqQ(φ∗tq)(φ̂−φG) respectively.
φ∗iq and φ

∗
tq are linear combinations of φ̂ and φ

G. Thus

φ̂− φG = −H−1S − 1
2
H−1R, (8)

and λ̂i − λGi = [φ̂− φG]i = −[H−1S]i −
1

2
[H−1R]i. (9)

Utilizing the structure of H, we show in Appendix C.5 that

[H−1S]i = (
∑T

t=1
∂π2litf

G
t f

G′
t )

−1
∑T

t=1
∂πlitf

G
t +Op(N

− 1

2T−
1

2 ). (10)

The intuition behind equation (10) is that H is approximately block diagonal. If

the Hessian is block diagonal, asymptotic behavior of the estimates for parameters

within different blocks will not affect each other. Thus as long as the dimension of

each block is fixed, whether the dimension of the whole Hessian tends to infinity
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does not matter. In current context, H is not block diagonal, but the elements in its

diagonal blocks are much larger than the elements in its off-diagonal blocks (Op(N
1

2 )

or Op(T
1

2 ) versus Op(1)). Based on this observation and the structure of H, we

show that in the expansion of [H−1S]i, the extra terms resulting from those nonzero

off-diagonal blocks together have order Op(N
− 1

2T−
1

2 ).

Based on the structure of H, Theorem 1 and Proposition 4 presented below, we

show in Appendix C.5 that

∥∥[H−1R]i
∥∥ = Op(

N
3

ξT
3

ξ

δ2NT
). (11)

Thus if T
1
2

δ2NT
N

3

ξT
3

ξ → 0, ‖[H−1R]i‖ would be op(T−
1

2 ) and hence dominated by the

first term on the right hand side of equation (10).

Proposition 4 (Individual Rate) Under Assumptions 1-4, 6 and 7,
∥∥∥λ̂i − λGi

∥∥∥ =

Op(
1

δNT
) for each i and

∥∥∥f̂t − fGt
∥∥∥ = Op( 1

δNT
) for each t.

Remark 5 The proof of Proposition 4 is based on expression (7) and utilizes Cauchy-

Schwarz inequality and Theorem 1. The rate Op(
1

δNT
) is not sharp, but enough for

calculating the order of [H−1R]i.

Remark 6 The reason that the remainder term [H−1R]i is asymptotically negligible

is because the tensor of third order derivatives is sparse. For example, it’s easy to see

that
∑N

i=1

∑T
t=1 ∂λkλjfslit(·) = 0 if k 6= j, and

∑N
i=1

∑T
t=1 ∂λkflfslit(·) = 0 if l 6= s.

From equations (10) and (11), and the symmetry between λ̂i and f̂t, we have the

the following theorem.

Theorem 2 (Individual Limit Distribution) Under Assumptions 1-7,

T
1

2 (λ̂i − λGi )
d→ N (0, Ḡ−1Σ−1iF ΩiFΣ−1iF Ḡ′−1) if

T
1

2

δ2NT
N

3

ξT
3

ξ → 0,

N
1

2 (f̂t − fGt )
d→ N (0, Ḡ′Σ−1tΛΩtΛΣ−1tΛ Ḡ) if

N
1

2

δ2NT
N

3

ξT
3

ξ → 0,
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where Ḡ = plimG, and ΣiF , ΩiF , ΣtΛ and ΩtΛ are defined in Assumption 5. Asymp-

totic variance of λ̂i and f̂t can be estimated by

varλ = T (
∑T

t=1
∂π2lit(f̂

′
tλ̂i)f̂tf̂

′
t)
−1(
∑T

t=1
(∂πlit(f̂

′
tλ̂i))

2f̂tf̂
′
t)(
∑T

t=1
∂π2lit(f̂

′
tλ̂i)f̂tf̂

′
t)
−1,

varf = N(
∑N

i=1
∂π2lit(f̂

′
tλ̂i)λ̂iλ̂

′

i)
−1(
∑N

i=1
(∂πlit(f̂

′
tλ̂i))

2λ̂iλ̂
′

i)(
∑N

i=1
∂π2lit(f̂

′
tλ̂i)λ̂iλ̂

′

i)
−1.

Theorem 2 not only allows discrete dependent variables but also allows the prob-

ability function to differ across individuals and time. The huge amount of discrete

data in macroeconomic and financial studies thus can be utilized, either by them-

selves or merged with continuous data, to extract information on common shocks or

the state of the economy or other relevant variables. In real applications, we may

simply choose normal density for continuous xit. For discrete xit, specific parametric

model is needed.

Theorem 2 allows us to construct confidence intervals for the true factor process.

This is useful since in various applications factors represent economic indices. The-

orem 2 also has implication for factor-augmented forecasting. Since the estimated

factors will be used as proxies for true factors, the estimation error f̂t − fGt will be

reflected in the forecasting error. We shall study this in Section 5.

Remark 7 To have limit normal distribution, Bai (2003) assumes T
1

2/N → 0 for

estimated loadings and N
1

2/T → 0 for estimated factors. It is not difficult to see that

when ξ is large, our condition is approximately the same as Bai (2003)’s condition.

Remark 8 ”N
3

ξT
3

ξ ” appears because we choose to calculate ‖R‖1 rather than ‖R‖. If
we choose to calculate ‖R‖, then due to the presence of the term ”L1i” in Lemma 9 in
the Appendix, we need to calculate the exact rate of

∥∥∥λ̂− λG
∥∥∥
4
, which seems infeasible

(Note that unlike the linear case, we do not have accurate analytical expression of

λ̂i − λGi ). If the model is linear, then ∂π3lit(·) = 0 and ”L1i” would disappear, then
there is no need to calculate ‖R‖1 and ”N

3

ξT
3

ξ ” in all results of this paper except for

Proposition 3 would also disappear.

Remark 9 Let V̄ =plimV. If the model is linear, Ḡ′ΣiF Ḡ = V̄
1

2 and Ḡ−1ΣtΛḠ
′−1 =

V̄ 1

2 , and the limit variance of λ̂i − λGi and f̂t − fGt become V̄− 1

2 Ḡ′ΩiF ḠV̄−
1

2 and
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V̄− 1

2 Ḡ−1ΩtΛḠ
′−1V̄− 1

2 respectively. If ΣiF = ΩiF and ΣtΛ = ΩtΛ, the limit variance

of λ̂i − λGi and f̂t − fGt becomes Ḡ−1Σ−1iF Ḡ′−1 and Ḡ′Σ−1tΛ Ḡ respectively.

4.4 Relationship of G and Bai (2003)’s Rotation Matrix

Bai (2003)’s rotation matrix is HBai ≡ Λ0′Λ0

N
F 0′F̃
T
V−1NT , where F̃ = F̂V−

1

4

NT , VNT =
diag(ρ̂21, ..., ρ̂

2
r) and ρ̂1 > ... > ρ̂r are the singular values of N

− 1

2T−
1

2 F̂ Λ̂′. G depends

only on f 0 and λ0, whileHBai depends not only on f
0 and λ0 but also on the dependent

variable. Moreover, we show in Appendix C.6 that

Proposition 5 Under Assumptions 1-4, 6 and 7,

‖VNT − V‖ = Op(
N

3

ξT
3

ξ

δ2NT
) (12)

∥∥∥GV−
1

4

NT −HBai
∥∥∥ = Op(

N
3

ξT
3

ξ

δ2NT
). (13)

Theorem 1 in Bai and Ng (2002) and Lemma A.1 in Bai (2003) shows
∥∥∥F̃ − F 0HBai

∥∥∥

is Op(
T
1
2

δNT
), while Theorem 1 shows

∥∥∥F̂ − F 0G
∥∥∥ is Op( T

1
2

δNT
). Given expressions (12)-

(13) and F̃ = F̂V−
1

4

NT , it’s easy to see that
∥∥∥F̃ − F 0HBai

∥∥∥ ≤
∥∥∥F̂ − F 0G

∥∥∥
∥∥∥V−

1

4

NT

∥∥∥ +

T
1

2Op(
N
3
ξ T

3
ξ

δ2NT
). Under Assumption 7, Op(

N
3
ξ T

3
ξ

δNT
) = op(1), thus the result of Bai and

Ng is a corollary (and thus special case) of Theorem 1.

Corollary 1 Under Assumptions 1-4, 6 and 7,
∥∥∥F̃ − F 0HBai

∥∥∥ = Op( T
1
2

δNT
).

Theorem 1 and Theorem 2 in Bai (2003) shows that N
1

2 (f̃t−H ′
Baif

0
t ) and T

1

2 (λ̃i−
H−1
Baiλ

0
i ) has limit normal distribution, while Theorem 2 shows that N

1

2 (f̂t − G′f 0t )
and T

1

2 (λ̂i − G−1λ0i ) has limit normal distribution. Since f̃t − H ′
Baif

0
t = V−

1

4

NT (f̂t −
G′f 0t ) + (GV

− 1

4

NT − HBai)′f 0t , expressions (12)-(13) and the condition N
1
2

δ2NT
N

3

ξT
3

ξ → 0

implies that Bai’s result is a corollary (and thus special case) of Theorem 2.
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Corollary 2 Under Assumptions 1-7,

T
1

2 (λ̃i −H−1
Baiλ

0
i )

d→ N (0, V̄ 1

4 Ḡ−1Σ−1iF ΩiFΣ
−1
iF Ḡ

′−1V̄ 1

4 ) if
T

1

2

δ2NT
N

3

ξT
3

ξ → 0,

N
1

2 (f̃t −H ′
Baif

0
t )

d→ N (0, V̄− 1

4 Ḡ′Σ−1tΛΩtΛΣ
−1
tΛ ḠV̄−

1

4 ) if
N

1

2

δ2NT
N

3

ξT
3

ξ → 0.

5 Inference and Forecasting for Factor-augmented

Regressions

In this section we shall use the results and techniques developed in Section 4 to study

the effect of using estimated factors on factor-augmented regressions. Consider the

following factor-augmented regression model:

yt+h = α
′f 0t + β

′Wt + εt+h, (14)

where f 0t is a r dimensional vector of factors, Wt is a q dimensional vector of other

variables and h is the lead time between the dependent variable and information

available. Wt and yt+h are both observable. f
0
t is unobservable, but a large number

of predictors xit(i = 1, ..., N ; t = 1, ..., T ) are observable and can be used to estimate

f 0t . The probability function of xit is git(·
∣∣f 0′t λ

0
i ), as introduced in Section 1. git(· |·)

satisfies the regularity conditions listed in Assumption 2.

When yt+h is a scalar and xit = f
0′
t λ

0
i + eit, this is the "diffusion index forecasting

model" of Stock and Watson (2002). When h = 1 and yt+1 = (f 0′t+1,W
′
t+1)

′, this is

the FAVAR of Bernanke et al. (2005). When h = 0, yt is a scalar and xit is discretely

distributed, this is the model considered in Filmer and Pritchett (2001). When yt+h

is a scalar and xit is discretely distributed for some i and continuously distributed for

the other i, this model can be used to analyze and forecast credit risk.

We shall use F̂ as proxy for F 0. The objective is to characterize the effect of using

F̂ for F 0 on the limit distributions of the parameter estimates, the conditional mean

as well as the forecast. Bai and Ng (2006) studies this effect when the factors are

estimated by principal components and xit = f
0′
t λ

0
i + eit. The results in this section
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generalize Bai and Ng (2006)’s results to allow xit to have nonlinear relationship with

the factors for all or some i.

Assumption 8 Let zt = (f
0′
t ,W

′
t)
′. E ‖Wt‖ξ ≤ M and E(εξt ) ≤ M for some ξ > 14

and all t. E(εt+h |yt, zt, yt−1, zt−1, ... ) = 0 for all h > 0. εt is independent with xis for
all i and s. Furthermore,

(i) T−1
∑T

t=1 ztz
′
t

p→ Σzz,

(ii) T−
1

2

∑T
t=1 ztεt+h

d→ N (0,Σzzε), where Σzzε = plimT−1
∑T

t=1 ε
2
t+hztz

′
t.

(iii) E
∥∥∥N− 1

2T−
1

2

∑N
i=1

∑T
t=1(N

−1
∑N

i=1 ∂π2litλ
0
iλ
0′
i )
−1∂πlitλ

0
iW

′
t

∥∥∥
2

≤M ,

E

∥∥∥N− 1

2T−
1

2

∑N
i=1

∑T
t=1(N

−1
∑N

i=1 ∂π2litλ
0
iλ
0′
i )
−1∂πlitλ

0
i εt+h

∥∥∥
2

≤M .

Assumption 8 corresponds to Assumption E in Bai and Ng (2006). Part (i) and

part (ii) are exactly the same as part (1) and (2) of Assumption E in Bai and Ng

(2006). Bai and Ng (2006) also assumes that Wt and εt are independent with "eis"

for all i and s, where "eis" is the error term. The independence between εt and xis

here corresponds to their independence between εt and "eis". The second condition of

Assumption 8(iii) is not difficult to verify using the independence between εt and xis.

The first condition of Assumption 8(iii) corresponds to the independence between Wt

and "eis" in Bai and Ng (2006).

We shall only consider the case where yt is a scalar. When yt is a vector, the results

are conceptually the same. Let ẑt = (f̂
′
t ,W

′
t)
′ and δ = ((G−1α)′, β′)′. Let δ̂ = (α̂′, β̂

′
)′

be the least squares estimator of regressing yt+h on ẑt, i.e., α̂ is an estimates of G
−1α.

Theorem 3 (Inference) Under Assumptions 1-4, 6-8, and assume T
1
2

δ2NT
N

3

ξT
4

ξ → 0

as (N, T ) →∞,
T

1

2 (δ̂ − δ) d→ N(0,Σδ),

where Σδ = Ξ̄
−1Σ−1zz ΣzzεΣ

−1
zz Ξ̄

′−1 and Ξ̄ = diag(Ḡ, Iq). A consistent estimator of Σδ

is Σ̂δ = (T
−1
∑T−h

t=1 ẑtẑ
′
t)
−1(T−1

∑T−h
t=1 ε̂

2
t+hẑtẑ

′
t)(T

−1
∑T−h

t=1 ẑtẑ
′
t)
−1.

Theorem 3 implies that using the estimated factors does not affect the limit distri-

bution of δ̂ when the factors are estimated by maximum likelihood and the probability

function of xit satisfy Assumptions 2. Theorem 3 generalizes Theorem 1 of Bai and
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Ng (2006) to allow factors to be extracted from discrete or some other nonlinear data.

This generalization should be valuable as in many factor-augmented regressions the

information about the common factors are contained in discrete or mixed data. The-

orem 3 provides theoretical support and guidance for exploiting these information.

For factor-augmented vector autoregression (FAVAR), the result and proof is con-

ceptually the same. We do not repeat here. Thus Theorem 2 of Bai and Ng (2006) is

also a special case of this paper.

Remark 10 Theorem 1 of Bai and Ng (2006) requires T
1

2/N → 0. When ξ is large,

the condition T
1
2

δ2NT
N

3

ξT
4

ξ → 0 are close to T
1

2/N → 0.

Now consider forecasting for factor-augmented regression models. By Assumption

8, E(εt+h |yt, zt, yt−1, zt−1, ... ) = 0. Thus the conditional mean yT+h|T equals α′f 0T +
β′WT . Let ŷT+h|T = δ̂

′
ẑT be the forecast of yT+h|T .

Theorem 4 (Forecasting) Under Assumptions 1-8 and assume T
1
2

δ2NT
N

3

ξT
4

ξ → 0 and

N
1
2

δ2NT
N

3

ξT
3

ξ → 0 as (N, T ) →∞,

(ŷT+h|T − yT+h|T )/BT d→ N (0, 1),

where B2T = T
−1z′TΣ

−1
zz ΣzzεΣ

−1
zz zT +N

−1α′Σ−1tΛΩtΛΣ
−1
tΛ α. A consistent estimator of B

2
T

is B̂2T = T
−1ẑ′T Σ̂δẑT +N

−1α̂′var−1f α̂.

Theorem 4 generalizes Theorem 3 of Bai and Ng (2006) to allow factors to be

extracted from discrete or some other nonlinear data. The variance of the estimated

conditional mean has two components, one from the estimated parameters δ̂ and

the other one from the estimated factors f̂T . Compared to cases where factors are

observable, the presence of the latter component is the effect of using estimated factors

on the estimated conditional mean.

Since yT+h = yT+h|T + εT+h, the forecasting error is

ε̂T+h = ŷT+h|T − yT+h|T − εT+h.
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Given Theorem 4 and assume εt is i.i.d.N (0, σ2ε), we have ε̂T+h ∼ N (0, σ2ε+var(ŷT+h|T )).
σ2ε can be consistency estimated by T

−1
∑T

t=1 ε̂
2
t and var(ŷT+h|T ) can be consistently

estimated by B̂2T . Prediction intervals can be constructed correspondingly.

Remark 11 Theorem 3 of Bai and Ng (2006) requires T
1

2/N → 0 and N
1

2/T → 0.

When ξ is large, the conditions T
1
2

δ2NT
N

3

ξT
4

ξ → 0 and N
1
2

δ2NT
N

3

ξT
3

ξ → 0 are close to

T
1

2/N → 0 and N
1

2/T → 0.

6 Algorithms

We shall introduce two algorithms, alternating maximization and minorization max-

imization, to numerically calculate the maximum likelihood estimator. The latter is

computationally simpler, but so far we can only show it applies to Probit, Logit and

Tobit. Whether it applies to more general models is unknown.

6.1 Alternating Maximization (AM)

Algorithm:

Step 1 (Initial values): Randomly generate initial values of the factors, f̂ (0).

Step 2 (Iterate): For k = 0, ..., calculate

λ̂
(k)

= argmaxL(X
∣∣∣f̂ (k), λ),

f̂ (k+1) = argmaxL(X
∣∣∣f, λ̂

(k)
).

Iterate until L(X
∣∣∣f̂ (k+1), λ̂

(k+1)
) − L(X

∣∣∣f̂ (k), λ̂
(k)
) ≤ error, where error is the level

of tolerated numerical error.

Step 3 (Repeat): Repeat step 1 and step 2 many times to get many local maximum.

Take the one with the largest likelihood.

Step 4 (Normalize): Suppose f̂ (s) and λ̂
(s)
be the estimator from step 3. Let F̂ (s) =

(f̂
(s)
1 , ..., f̂

(s)
T )

′ and Λ̂(s) = (λ̂
(s)

1 , ..., λ̂
(s)

N )
′. Let V̂ (s) be the diagonal matrix of eigenvalues

of N−1T−1(Λ̂(s)′Λ̂(s))
1

2 F̂ (s)′F̂ (s)(Λ̂(s)′Λ̂(s))
1

2 and Υ̂(s) be the corresponding matrix of

22



eigenvectors, and let Ĝ(s) = ( 1
N
Λ̂(s)′Λ̂(s))

1

2 Υ̂(s)(V̂ (s))−
1

4 . Choose F̂ = F̂ (s)Ĝ(s) and

Λ̂ = Λ̂(s)((Ĝ(s))−1)′ as the solution of the likelihood maximization problem.

This algorithm is not totally new. In the machine learning literature, similar

algorithm has been proposed in Collins, Dasgupta and Schapire (2001) and Schein,

Saul and Ungar (2003). The name "Alternating Maximization" comes from step 2,

where we choose λ̂
(k)
to maximize the likelihood for given f̂ (k) and then choose f̂ (k+1)

to maximize the likelihood for given λ̂
(k)
. This is based on the fact that L(X |f, λ)

is globally concave with respect to λ for given f and vice versa. Because the like-

lihood is maximized alternately, we have L(X
∣∣∣f̂ (k+1), λ̂

(k+1)
) ≥ L(X

∣∣∣f̂ (k+1), λ̂
(k)
) ≥

L(X
∣∣∣f̂ (k), λ̂

(k)
). Thus convergence of step 2 to a local maximum is guaranteed.

Whether the local maximum is global depends on the initial values (f̂ (0), λ̂
(0)
). To

search the global maximum, a common practice is to randomly choose initial values

many times and take the one with the largest likelihood among all local maximum.

We follow this common practice in step 3. Step 4 normalizes the estimator from step

3 so that F̂ ′F̂ equals Λ̂′Λ̂ and both are diagonal.

6.2 Minorization Maximization (MM)

Algorithm:

Step 1 (Initial values): Randomly generate initial values of the factors and the

loadings, (f̂ (0), λ̂
(0)
).

Step 2 (Iterate): For k = 0, ..., first calculate x̂
(k)
it = f̂

(k)′
t λ̂

(k)

i +
1
bU
∂πlit(f̂

(k)′
t λ̂

(k)

i ) for

i = 1, ..., N and t = 1, ..., T , then (f̂ (k+1), λ̂
(k+1)

) = argmin
∑N

i=1

∑T
t=1(x̂

(k)
it − f ′tλi)2.

Iterate until L(X
∣∣∣f̂ (k+1), λ̂

(k+1)
) − L(X

∣∣∣f̂ (k), λ̂
(k)
) ≤ error, where error is the level

of tolerated numerical error.

Step 3 (Repeat): Repeat step 1 and step 2 many times to get many local maximum.

Take the one with the largest likelihood.

Step 4 (Normalize): Suppose f̂ (s) and λ̂
(s)
be the estimator from step 3. De-

fine F̂ (s), Λ̂(s) and Ĝ(s) in the same way as step 4 of the AM algorithm. Choose

F̂ = F̂ (s)Ĝ(s) and Λ̂ = Λ̂(s)((Ĝ(s))−1)′ as the solution of the likelihood maximization

problem.
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In the econometrics literature, Chen (2016) first proposes this algorithm for non-

linear panel models. This algorithm is also studied by de Leeuw (2006) in the statistics

literature. Minorization maximization is a class of algorithm more general than the

expectation maximization (EM). A function h(x|y) is said to minorize a function l(x)
at y if h(x|y) ≤ l(x) for all x and h(y|y) = l(y), i.e., h(x|y) lies below l(x) and is
tangent to l(x) at the point y. To maximize l(x), the MM algorithm starts from an ini-

tial value x(0) and iteratively maximizes h(x|x(k)) until convergence. By definition of
h(x|y), it is not difficult to see that l(x(k)) = h(x(k)|x(k)) ≤ h(x(k+1)|x(k)) ≤ l(x(k+1)).
Thus convergence to local maximum is guaranteed. In applications, how to choose

h(x|y) mainly depends on computational simplicity. If there exists a function w(y)
such that l(x)− l(y) ≥ l′(y)(x−y)+ 1

2
w(y)(x−y)2 for all x and y, a popular choice is

h(x|y) = l(y) + l′(y)(x− y) + 1
2
w(y)(x− y)2. For more details on the MM algorithm,

see Bohning and Lindsay (1988), Hunter and Lange (2004) and Lange, Hunter and

Young (2000), to name a few.

In current context, in view of the fact ∂π2lit(πit) ≥ −bU (As shown in Appendix
D, bU = 1 for Probit model and bU =

1
4
for Logit model.), we choose hit(x|y) =

lit(y) + l
′
it(y)(x− y)− 1

2
bU(x− y)2 for each (i, t). Let π̂(k)it = f̂ (k)′t λ̂

(k)

i , it follows that

lit(π̂
(k+1)
it ) ≥ lit(π̂

(k)
it ) + ∂πlit(π̂

(k)
it )(π̂

(k+1)
it − π̂(k)it )−

1

2
bU(π̂

(k+1)
it − π̂(k)it )2

= lit(π̂
(k)
it )−

1

2
bU(π̂

(k+1)
it − π̂(k)it −

∂πlit(π̂
(k)
it )

bU
)2 +

(∂πlit(π̂
(k)
it ))

2

2bU
.

Take sum over i and t, then L(X
∣∣∣f̂ (k+1), λ̂

(k+1)
)−L(X

∣∣∣f̂ (k), λ̂
(k)
) is not smaller than

−1
2
bU
∑N

i=1

∑T

t=1
(x̂
(k)
it − π̂(k+1)it )2 +

1

2bU

∑N

i=1

∑T

t=1
(∂πlit(π̂

(k)
it ))

2.

If π̂
(k+1)
it = π̂

(k)
it , this term is zero. Since f̂

(k+1)
t and λ̂

(k+1)

i minimizes
∑N

i=1

∑T
t=1(x̂

(k)
it −

f ′tλi)
2, this term must be nonnegative, and consequently L(X

∣∣∣f̂ (k+1), λ̂
(k+1)

) is not

smaller than L(X
∣∣∣f̂ (k), λ̂

(k)
). This guarantees convergence of step 2 to a local maxi-

mum. Step 3 and Step 4 are the same as the AM algorithm discussed above.

Unlike the AM algorithm, for MM algorithm we do not need to do alternation.
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We only need to calculate the eigenvectors, which can be very fast using standard

software package.

7 Simulations

The main purpose of this section is to access the adequacy of the asymptotic dis-

tributions in approximating their finite sample counterparts. To allow graphically

presenting the distribution of the estimated factors and loadings, we consider the case

with one factor. For i = 1, ..., N and t = 1, ..., T , ft and λi are i.i.d.N (0, 1) and once
generated, they are normalized to fGt and λ

G
i such that

1
T

∑T
t=1(f

G
t )

2 = 1
N

∑N
i=1(λ

G
i )
2.

fGt and λ
G
i are fixed down for each simulation. For the given f

G
t and λ

G
i , we consider

three data generating processes (DGPs) for xit. Results for more DGPs, e.g. Poisson,

Tobit or others, can be provided if requested.

DGP 1 (Logit): For i = 1, ..., N and t = 1, ..., T , xit is a binary random variable

and P (xit = 1) = Ψ(f
G
t λ

G
i ), where Ψ(z) = 1/(1 + e

−z).

DGP 2 (Probit): For i = 1, ..., N and t = 1, ..., T , xit is a binary random variable

and P (xit = 1) = Φ(fGt λ
G
i ), where Φ(·) is the cumulative distribution function of

standard normal distribution.

DGP 3 (Mixed): For i = 1, ..., 2N/5 and t = 1, ..., T , xit is a binary random

variable and P (xit = 1) = Ψ(f
G
t λ

G
i ); for i = 2N/5 + 1, ..., 4N/5 and t = 1, ..., T , xit

is binary random variable and P (xit = 1) = Φ(fGt λ
G
i ); for i = 4N/5 + 1, ..., N and

t = 1, ..., T , xit is normally distributed with mean f
G
t λ

G
i and variance 1.

Once {xit; i = 1, ..., N, t = 1, ..., T} is generated, we use the MM algorithm8 to

calculate the maximum likelihood estimators, {f̂t, t = 1, ..., T} and {λ̂i, i = 1, ..., N}.
For step 1, the initial values of the factors and loadings, (f̂

(0)
t , λ̂

(0)

i ) are randomly gen-

erated from standard normal distribution for DGP1 and Uniform(−2, 2) for DGP2
and DGP39. For step 2, we choose bU =

1
4
for DGP1 and bU = 1 for DGP2 and

DGP3. This is because −∂π2lit(·) is bounded by 1
4
for the Logit case, by 1 for the

Probit case and equals 1 for the Gaussian case. For step 3, the maximum number

8We choose the MM algorithm because it is computationally simpler than the AM algorithm.
9We choose U(−2, 2) for DGP2 and DGP3 partly because Matlab’s default computational accu-

racy is limited.
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of iteration is 20. In simulations, we find the convergence speed is very fast at the

beginning. The difference between the fourth iteration and the twentieth iteration is

not large. The number of simulations is 2000.

Due to limited space, we only present results for (N, T ) = (50, 50) and (100, 100).

According to Theorem 2, N
1

2Σ
1

2

tΛ(f̂t − fGt ) follows standard normal distribution10 for
each t and so does T

1

2Σ
1

2

iF (λ̂i − λGi ) for each i. Figure 1 displays the histograms
of N

1

2Σ
1

2

T/2,Λ(f̂T/2 − fGT/2) for the three DGPs. Figure 2 displays the histograms of
T

1

2Σ
1

2

N/2,F (λ̂N/2 − λGN/2) for DGP1 and DGP2. For DGP3, Figure 3 displays the his-
tograms of T

1

2Σ
1

2

i,F (λ̂i − λGi ) for i = N/5, 3N/5 and 9N/10. The histograms are

normalized to be a density function and the standard normal density curve is over-

laid on them for comparison. It is easy to see that in all subfigures, the standard

normal density curve provides good approximation to the normalized histograms.

Note that for different subfigures, the variance of the unnormalized estimation error,

i.e., f̂t − fGt and λ̂i − λGi , varies with N , T and DGP of xit. But once normalized,
the estimation errors always approximately follow the standard normal distribution.

Also, the approximation is better asN and T increases from 50 to 100. These together

lend strong support to the theoretical results.

Now we consider the factor-augmented regression, yt+1 = α′f 0t + β
′Wt + εt+1.

We already have f 0t and f̂t. Wt is i.i.d.N (0, 1) and is fixed down once generated.
{εt+1, t = 1, ..., T} is i.i.d.N (0, 1) and generated 2000 times. For the regression co-
efficients, we choose α = β = 1. According to Theorem 4, (ŷT+1|T − yT+1|T )/BT
should follow standard normal distribution. Figure 4 displays its histograms for the

three DGPs. As Figures 1-3, the standard normal density curve is overlaid on the

normalized histograms. On the whole, standard normal distribution provides rea-

sonable approximation. The slight skewness of the histograms for the Logit case

disappears if we further increase N and T . Theorem 4 also allows constructing con-

fidence intervals for the conditional mean yT+1|T and the one step ahead forecast.

The 95% confidence interval is (ŷT+1|T − 1.96BT , ŷT+1|T + 1.96BT ) for yT+1|T and

10Note that here ΣiF = ΩiF , ΣtΛ = ΩtΛ, and since ft and λi are i.i.d.N (0, 1) and N = T , we
have Ḡ = 1.
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Table 1: Coverage Rates of Confidence Intervals

Logit Probit Mixed
N T ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h
50 50 0.954 0.947 0.946 0.948 0.959 0.950
50 100 0.955 0.951 0.961 0.950 0.943 0.952
100 50 0.931 0.943 0.961 0.951 0.954 0.952
100 100 0.962 0.944 0.941 0.950 0.948 0.951

(ŷT+1|T − 1.96
√
B2T + σ

2
ε , ŷT+1|T + 1.96

√
B2T + σ

2
ε) for the one step ahead forecast.

Table 1 reports the coverage rates for the three DGPs. In all cases, the coverage rate

is close to the nominal level 95%.

8 Conclusions

This paper studies maximum likelihood estimation of factor models with high dimen-

sional nonlinear/mixed data. Convergence rates of the estimated factor space and

loading space and asymptotic normality of the estimated factors and loadings are

established under mild conditions that allows for linear models, Logit, Probit, Tobit,

Poisson and some other nonlinear models. This paper also establishes the limit distri-

butions of the parameter estimates, the conditional mean as well as the forecast when

these estimated factors are used as proxies in factor-augmented regressions. These re-

sults provide a rigorous treatment of high dimensional nonlinear/mixed data in factor

analysis and factor-augmented regressions. Given the prevalence of nonlinear/mixed

data, empirical applications of the results developed in this paper should be fairly

fruitful, especially to the topics discussed in the Introduction. For example, it would

be interesting to apply this paper’s method to real credit default data. We hope

this paper would trigger further developments in the analysis of high dimensional

nonlinear data.
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Figure 1: Distribution of the Estimated Factors

Logit, N = 50, T = 50. Logit, N = 100, T = 100.

Probit, N = 50, T = 50. Probit, N = 100, T = 100.

Mixed, N = 50, T = 50. Mixed, N = 100, T = 100.

Notes: These histograms are for the standardized estimated factors. The curve overlaid on the

histograms is the standard normal density function.
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Figure 2: Distribution of the Estimated Loadings (Logit and Probit)

Logit, N = 50, T = 50. Logit, N = 100, T = 100.

Probit, N = 50, T = 50. Probit, N = 100, T = 100.

Notes: These histograms are for the standardized estimated loadings. The curve overlaid on the

histograms is the standard normal density function.
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Figure 3: Distribution of the Estimated Loadings (Mixed)

Mixed (logit part), N = 50, T = 50. Mixed (logit part), N = 100, T = 100.

Mixed (probit part), N = 50, T = 50. Mixed (probit part), N = 100, T = 100.

Mixed (Gaussian part), N = 50, T = 50. Mixed (Gaussian part), N = 100, T = 100.

Notes: These histograms are for the standardized estimated loadings. The curve overlaid on the

histograms is the standard normal density function.30



Figure 4: Distribution of the Estimated Conditional Mean

Logit, N = 50, T = 50. Logit, N = 100, T = 100.

Probit, N = 50, T = 50. Probit, N = 100, T = 100.

Mixed, N = 50, T = 50. Mixed, N = 100, T = 100.

Notes: These histograms are for the standardized estimated conditional mean. The curve overlaid

on the histograms is the standard normal density function.
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Appendix

A Structure of the Hessian

Since ∂φP (λ
G, fG) = 0, the score is

S = (
∑T

t=1
∂πl1tf

G′
t , ...,

∑T

t=1
∂πlNtf

G′
t ,
∑N

i=1
∂πli1λ

G′
i , ...,

∑N

i=1
∂πliTλ

G′
i )

′. (15)

For the Hessian, define

HL(φ) =

[
HLλλ′(φ) HLλf ′(φ)

HLfλ′(φ) HLff ′(φ)

]

. (16)

and

JL(φ) =

[
0 JLλf ′(φ)

JLfλ′(φ) 0

]

. (17)

HLλλ′(φ) is of dimension Nr×Nr and block-diagonal. Each block is r×r and the i-th
diagonal block is

∑T
t=1 ∂π2lit(πit)ftf

′
t . HLff ′(φ) is of dimension Tr × Tr and block-

diagonal. Each block is r × r and the t-th diagonal block is ∑N
k=1 ∂π2lkt(πkt)λkλ

′
k.

HLλf ′(φ) is of dimension Nr × Tr. Each block is r × r and the (i, t) block is

∂π2lit(πit)ftλ
′
i. HLfλ′(φ) is the transpose ofHLλf ′(φ). JLλf ′(φ) is of dimensionNr×Tr.

Each block is r × r and the (i, t) block is ∂πlit(πit)Ir. JLfλ′(φ) is the transpose of
JLλf ′(φ). It follows that

∂φφ′L(φ) = HL(φ) + JL(φ). (18)

Let HP (φ) = ∂φφ′P (φ), then

H(φ) = HL(φ) + JL(φ) +HP (φ). (19)

Next, for p = 1, ..., r and q = p + 1, ..., r, define vp, upq and uqp as follows. Let vp

be a Nr + Tr dimensional vector. For the first Nr elements, in the i-th block, the

1



p-th element is λip and all the other elements are zeros. For the last Tr elements, in

the t-th block, the p-th element is −ftp and all the other elements are zeros. Let upq
be a Nr + Tr dimensional vector. The last Tr elements are all zeros. For the first

Nr elements, in the i-th block, the p-th element is λiq, the q-th element is λip and all

the other elements are zeros. Let uqp be a Nr+ Tr dimensional vector. The first Nr

elements are all zeros. For the last Tr elements, in the t-th block, the p-th element is

ftq, the q-th element is ftp and all the other elements are zeros. Also, when λ = λ
G

and f = fG, vp, upq and uqp are denoted as v
G
p , u

G
pq and u

G
qp respectively. It can be

verified that

∂φ[(

∑N
i=1 λ

2
iq

N
−
∑T

t=1 f
2
tq

T
)2] = 4(

∑N
i=1 λ

2
iq

N
−
∑T

t=1 f
2
tq

T
)D−1

NTvq,

∂φφ′ [(

∑N
i=1 λ

2
iq

N
−
∑T

t=1 f
2
tq

T
)2] = 8D−1

NTvqv
′
qD

−1
NT

+4(

∑N
i=1 λ

2
iq

N
−
∑T

t=1 f
2
tq

T
)D−1

NT (IN+T ⊗ ιq),(20)

where ιq is an r× r matrix with the q-th diagonal element being one and all the other
elements being zero. Also,

∂φφ′ [(
∑N

i=1
λipλiq)

2] = 2[upqu
′
pq + (

∑N

i=1
λipλiq)D1], (21)

∂φφ′ [(
∑T

t=1
ftpftq)

2] = 2[uqpu
′
qp + (

∑T

t=1
ftpftq)D2], (22)

where D1 =

[
IN ⊗ ιpq 0

0 0

]

, D2 =

[
0 0

0 IT ⊗ ιpq

]

and ιpq is an r × r matrix with

the (p, q) element and the (q, p) element being one and all the other elements being

zero. Since 1
T
FG′FG = 1

N
ΛG′ΛG and both are diagonal, the second term on the right

hand side of (20), (21) and (22) are all zero when fG and λG are plugged in. Thus

HP = −c(
∑r

p=1
NTD−1

NTv
G
p v

G′
p D

−1
NT

+
T

N

∑r

p=1

∑r

q=p+1
uGpqu

G′
pq +

N

T

∑r

p=1

∑r

q=p+1
uGqpu

G′
qp). (23)
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B Lemmas and Their Proofs

Lemma 1 Under Assumptions 2 and 3, ‖∂πl‖ = Op(N
1

4T
1

2 +N
1

2T
1

4 ).

Proof. Let ∂πl denote the N × T matrix with ∂πlit in the i-th row and t-th column.
We shall show E ‖∂πl‖4 = O(NT 2 +N2T ). First note that

‖∂πl‖4 = ‖(∂πl)′∂πl‖2 ≤ ‖(∂πl)′∂πl‖2F =
∑T

s=1

∑T

t=1
(
∑N

i=1
∂πlis∂πlit)

2.

It is easy to see that E(
∑N

i=1 ∂πlis∂πlit)
2 is not larger than the sum of 2E(

∑N
i=1[∂πlis∂πlit−

E(∂πlis∂πlit)])
2 and 2(

∑N
i=1 E(∂πlis∂πlit))

2. Under Assumption 3, the former is not

larger than NT 2M while the latter is not larger than N2TM .

Note that the order Op(N
1

4T
1

2 + N
1

2T
1

4 ) is not sharp. Results in random matrix

theory show that if ∂πlit is independent over i and t and its fourth moment is uniformly

bounded over i and t, then ‖∂πl‖ = Op(max{N
1

2 , T
1

2}). But random matrix theory

has not established this result under weak dependence over i and t. Lemma 1 allows

for serial and cross-sectional dependence. Although not sharp, its order is enough for

proving Proposition 1.

Lemma 2 Under Assumptions 1, 2 and 6,
∥∥∥(D

− 1

2

TNHD
− 1

2

TN)
−1
∥∥∥ = Op(1) as (N, T ) →

∞.

Proof. Step (1): We first introduce wGpq and w
G
qp. For p = 1, ..., r and q = p+ 1, ..., r,

wGpq is a Nr+Tr dimensional vector. For the first Nr elements, in the i-th block, the

p-th element is λGiq and all the other elements are zero. For the last Tr elements, in

the t-th block, the q-th element is −fGtp and all the other elements are zero. wGqp is a
Nr + Tr dimensional vector. For the first Nr elements, in the i-th block, the q-th

element is λGip and all the other elements are zero. For the last Tr elements, in the

t-th block, the p-th element is −fGtq and all the other elements are zero. It can be
verified that under condition (4),

1. for p = 1, ..., r and q = p+1, ..., r, D
− 1

2

NTv
G
p , D

− 1

2

NTw
G
pq and D

− 1

2

NTw
G
qp are all orthog-

onal to the space spanned by eigenvectors of D
− 1

2

TNHLD
− 1

2

TN ,

3



2. for any p1 = 1, ..., r, p2 = 1, ..., r, p3 = 1, ..., r, q2 = p2 + 1, ..., r and q3 =

p3 + 1, ..., r, D
− 1

2

NTv
G
p1
, D

− 1

2

NTw
G
p2q2

and D
− 1

2

NTw
G
q3p3

are orthogonal to each other.

Let V = (vG1 , ..., v
G
r ) = (V

′
λ, V

′
f )
′ and

W = (wG12, ..., w
G
1r, w

G
23, ..., w

G
2r, ..., w

G
(r−1)r;w

G
21, ..., w

G
r1, w

G
32, ..., w

G
r2, ..., w

G
r(r−1))

= (W ′
λ,W

′
f )
′.

Note that V , Vλ, Vf , W , Wλ and Wf are of dimension (Nr + Tr) × r, Nr × r,
Tr × r,(Nr + Tr)× r(r − 1), Nr × r(r − 1), Tr × r(r − 1) respectively. Next, define
H̆ such that

D
− 1

2

TNH̆D
− 1

2

TN = D
− 1

2

TNHLD
− 1

2

TN − cD
− 1

2

NT (
∑r

p=1
vGp v

G′
p +

∑r

p=1

∑r

q=p+1
wGpqw

G′
pq +

∑r

p=1

∑r

q=p+1
wGqpw

G′
qp )D

− 1

2

NT ,

and let H̆λλ′ , H̆λf ′ , H̆fλ′ and H̆ff ′ be the upper-left, upper-right, lower-left and lower-

right block of H̆. It can be verified that H̆λf ′ is of dimension Nr × Tr and the (i, t)
block is (∂π2lit + c)× fGt λG′i , and

H̆λλ′ = HLλλ′ − c
T

N
(Vλ,Wλ)(Vλ,Wλ)

′, (24)

H̆ff ′ = HLff ′ − c
N

T
(Vf ,Wf )(Vf ,Wf )

′. (25)

−D− 1

2

TNH̆D
− 1

2

TN can be written as

D
− 1

2

TN [
∑N

i=1

∑T

t=1
(−∂π2lit − c)

[
1
(N)
i ⊗ fGt
1
(T )
t ⊗ λGi

][
1
(N)
i ⊗ fGt
1
(T )
t ⊗ λGi

]′
D
− 1

2

TN (26)

+

[
IN ⊗ c 1T

∑T
t=1 f

G
t f

G′
t 0

0 IT ⊗ c 1N
∑N

i=1 λ
G
i λ

G′
i

]

(27)

+

[
c 1
N
(Vλ,Wλ)(Vλ,Wλ)

′ 0

0 c 1
T
(Vf ,Wf )(Vf ,Wf )

′

]

, (28)

where 1
(y)
x is an y dimensional vector with the x-th element being one and all the

other elements being zero. Expressions (26) and (28) are positive semi-definite.
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Since 1
T

∑T
t=1 f

G
t f

G′
t = 1

N

∑N
i=1 λ

G
i λ

G′
i = V 1

2 and V converges in probability to the

diagonal matrix of eigenvalues of Σ
1

2

ΛΣFΣ
1

2

Λ, the minimum eigenvalue of (27) is posi-

tive and bounded away from zero w.p.a.1. Thus there exists some b > 0 such that

ρmin(−D
− 1

2

TNH̆D
− 1

2

TN) ≥ b w.p.a.1.
Step (2): The positive definiteness of −D− 1

2

TNH̆D
− 1

2

TN implies that eigenvectors of

D
− 1

2

TNHLD
− 1

2

TN together with { D
−
1
2

NT
vGp∥∥∥∥D

−
1
2

NT
vGp

∥∥∥∥
, p = 1, ..., r}, { D

−
1
2

NT
wGpq∥∥∥∥D

−
1
2

NT
wGpq

∥∥∥∥
, p = 1, ..., r, q = p +

1, ..., r} and { D
−
1
2

NT
wGqp∥∥∥∥D

−
1
2

NT
wGqp

∥∥∥∥
, p = 1, ..., r, q = p+ 1, ..., r} constitutes an orthonormal basis.

Under this basis, for j = 1, ..., r and k = j + 1, ..., r, let (uGjk,1, ..., u
G
jk,(N+T )r−r(r−1)) be

the coordinates of uGjk corresponding to eigenvectors of D
− 1

2

TNHLD
− 1

2

TN and
D
−
1
2

NT
vGp∥∥∥∥D

−
1
2

NT
vGp

∥∥∥∥
, and

let uGjk,pq and u
G
jk,qp be the coordinate of u

G
jk corresponding to

D
−
1
2

NT
wGpq∥∥∥∥D

−
1
2

NT
wGpq

∥∥∥∥
and

D
−
1
2

NT
wGqp∥∥∥∥D

−
1
2

NT
wGqp

∥∥∥∥

respectively. Coordinates of uGkj are defined in the same way.

To prove the Lemma, it suffices to show that there exists C > 0 such that for any

vector a with ‖a‖ = 1, a′(−D− 1

2

TNHD
− 1

2

TN)a ≥ C > 0 w.p.a.1 as (N, T )→∞. Let

(a1, ..., a(N+T )r−r(r−1); a12, ..., a1r, a23, ..., a2r, ..., a(r−1)r; a21, ..., ar1, a32, ..., ar2, ..., ar(r−1))

be the coordinates of a. Plug in equations (19) and (23), we have

a′(−D− 1

2

TNHD
− 1

2

TN)a = a′(−D− 1

2

TNHLD
− 1

2

TN + c
∑r

p=1
D
− 1

2

NTv
G
p v

G′
p D

− 1

2

NT )a

+ca′[
∑r

j=1

∑r

k=j+1
(
uGjku

G′
jk

N
+
uGkju

G′
kj

T
)]a

−N− 1

2T−
1

2a′JLa. (29)

The first term on the right hand side of (29) is not smaller than b
∑(N+T )r−r(r−1)

l=1 a2l

w.p.a.1 because the smallest nonzero eigenvalue of−D− 1

2

TNHLD
− 1

2

TN+c
∑r

p=1D
− 1

2

NTv
G
p v

G′
p D

− 1

2

NT

is not smaller than ρmin(−D
− 1

2

TNH̆D
− 1

2

TN). The second term on the right hand side of

(29) is not smaller than c1
∑r

j=1

∑r
k=j+1[

(a′uG
jk
)2

N
+

(a′uG
kj
)2

T
] for some 0 < c1 < c. How

5



to choose c1 will be discussed later. For a
′uGjk, we have

(a′uGjk)
2 = [

∑(N+T )r−r(r−1)

l=1
alu

G
jk,l +

∑r

p=1

∑r

q=p+1
(apqu

G
jk,pq + aqpu

G
jk,qp)]

2

= (
∑(N+T )r−r(r−1)

l=1
alu

G
jk,l)

2 + [
∑r

p=1

∑r

q=p+1
(apqu

G
jk,pq + aqpu

G
jk,qp)]

2

+2(
∑(N+T )r−r(r−1)

l=1
alu

G
jk,l)[

∑r

p=1

∑r

q=p+1
(apqu

G
jk,pq + aqpu

G
jk,qp)]

≥ [
∑r

p=1

∑r

q=p+1
(apqu

G
jk,pq + aqpu

G
jk,qp)]

2 − 2(
∑(N+T )r−r(r−1)

l=1
a2l )

1

2

∥∥uGjk
∥∥2 ,

where the last inequality follows from
∣∣∣
∑r

p=1

∑r
q=p+1(apqu

G
jk,pq + aqpu

G
jk,qp)

∣∣∣ ≤ ‖a‖
∥∥uGjk

∥∥.

Similarly, for a′uGkj, we have

(a′uGkj)
2 ≥ [

∑r

p=1

∑r

q=p+1
(apqu

G
kj,pq + aqpu

G
kj,qp)]

2 − 2(
∑(N+T )r−r(r−1)

l=1
a2l )

1

2

∥∥uGkj
∥∥2 .

Thus the second term on the right hand side of (29) is not smaller than

c1
∑r

j=1

∑r

k=j+1
{ 1
N
[
∑r

p=1

∑r

q=p+1
(apqu

G
jk,pq + aqpu

G
jk,qp)]

2

+
1

T
[
∑r

p=1

∑r

q=p+1
(apqu

G
kj,pq + aqpu

G
kj,qp)]

2} (30)

−2c1(
∑(N+T )r−r(r−1)

l=1
a2l )

1

2

∑r

j=1

∑r

k=j+1
(
1

N

∥∥uGjk
∥∥2 +

1

T

∥∥uGkj
∥∥2). (31)

By Assumption 1, expression (31) is not smaller than−2c1r(r−1)M(
∑(N+T )r−r(r−1)

l=1 a2l )
1

2

for some 0 < M <∞ w.p.a.1. To evaluate expression (30), let

u∗jk = (u
G
jk,12, ..., u

G
jk,1r;u

G
jk,23, ..., u

G
jk,2r; ...;u

G
jk,(r−2)(r−1), u

G
jk,(r−2)r;u

G
jk,(r−1)r)

′

and define u∗kj similarly. Let

U∗ = [N− 1

2 (u∗12, ..., u
∗
1r;u

∗
23, ..., u

∗
2r; ...;u

∗
(r−2)(r−1), u

∗
(r−2)r;u

∗
(r−1)r);

T−
1

2 (u∗21, ..., u
∗
r1;u

∗
32, ..., u

∗
r2; ...;u

∗
(r−1)(r−2), u

∗
r(r−2);u

∗
r(r−1))],

then expression (30) is not smaller than c1ρmin(U
∗U∗′)

∑r
p=1

∑r
q=p+1(a

2
pq + a

2
qp). Un-

der Assumptions 1 and 6, plimU∗ is full rank (We shall prove this later). Thus

plimU∗U∗′ is positive definite. This implies that there exists d > 0 such that

6



ρmin(U
∗U∗′) ≥ d w.p.a.1 as (N, T ) → ∞. It follows that expression (30) is not

smaller than c1d
∑r

p=1

∑r
q=p+1(a

2
pq + a

2
qp) w.p.a.1.

The third term on the right hand side of (29) is Op(N
− 1

4 + T−
1

4 ). This follows

from Lemma 1 and N− 1

2T−
1

2a′JLa ≤ 2N− 1

2T−
1

2 ‖JLλf ′‖ ≤ 2N− 1

2T−
1

2 ‖∂πl‖. Thus
N− 1

2T−
1

2a′JLa ≤ c1d
3
w.p.a.1. The above analysis together shows that w.p.a.1,

a′(−D− 1

2

TNHD
− 1

2

TN)a

≥ b
∑(N+T )r−r(r−1)

l=1
a2l + c1d

∑r

p=1

∑r

q=p+1
(a2pq + a

2
qp)

−2c1r(r − 1)M(
∑(N+T )r−r(r−1)

l=1
a2l )

1

2 − c1d
3

= (b− c1d)
∑(N+T )r−r(r−1)

l=1
a2l + c1d− 2c1r(r − 1)M(

∑(N+T )r−r(r−1)

l=1
a2l )

1

2 − c1d
3

≥ c1d−
c21r

2(r − 1)2M2

b− c1d
− c1d

3
=
c1(bd− c1d2 − c1r2(r − 1)2M2)

b− c1d
− c1d

3
. (32)

When c1 is small enough, c1d
2 − c1r2(r − 1)2M2 is smaller than bd

2
. Thus when c1 is

small enough, the last term of expression (32) is not smaller than c1d
6
. Take C = c1d

6
,

we have proved that a′(−D− 1

2

TNHD
− 1

2

TN)a ≥ C w.p.a.1.
Now we prove the full rankness of plimU∗. We shall prove for the case r = 3,

other cases can be shown similarly. When r = 3, after some calculation, U∗ equals

1

N

∑N
i=1(λ

G
i2)

2

∥∥∥∥D
−
1
2

NT
wG
12

∥∥∥∥
0 0

− 1

T

∑T
t=1(f

G
t1)

2

∥∥∥∥D
−
1
2

NT
wG
12

∥∥∥∥
0 0

0
1

N

∑N
i=1(λ

G
i3)

2

∥∥∥∥D
−
1
2

NT
wG
13

∥∥∥∥
0 0

− 1

T

∑T
t=1(f

G
t1)

2

∥∥∥∥D
−
1
2

NT
wG
13

∥∥∥∥
0

0 0
1

N

∑N
i=1(λ

G
i3)

2

∥∥∥∥D
−
1
2

NT
wG
23

∥∥∥∥
0 0

− 1

T

∑T
t=1(f

G
t2)

2

∥∥∥∥D
−
1
2

NT
wG
23

∥∥∥∥
1

N

∑N
i=1(λ

G
i1)

2

∥∥∥∥D
−
1
2

NT
wG
21

∥∥∥∥
0 0

− 1

T

∑T
t=1(f

G
t2)

2

∥∥∥∥D
−
1
2

NT
wG
21

∥∥∥∥
0 0

0
1

N

∑N
i=1(λ

G
i1)

2

∥∥∥∥D
−
1
2

NT
wG
31

∥∥∥∥
0 0

− 1

T

∑T
t=1(f

G
t3)

2

∥∥∥∥D
−
1
2

NT
wG
31

∥∥∥∥
0

0 0
1

N

∑N
i=1(λ

G
i2)

2

∥∥∥∥D
−
1
2

NT
wG
32

∥∥∥∥
0 0

− 1

T

∑T
t=1(f

G
t3)

2

∥∥∥∥D
−
1
2

NT
wG
32

∥∥∥∥

.

Note that 1
T

∑T
t=1(f

G
tp)

2 = 1
N

∑N
i=1(λ

G
ip)

2 for p = 1, 2, 3. Now consider (plimU∗)g = 0

for any vector g. If plim 1
N

∑N
i=1(λ

G
i1)

2 6= plim 1
N

∑N
i=1(λ

G
i2)

2, then g1 = g4 = 0. If
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plim 1
N

∑N
i=1(λ

G
i1)

2 6= plim 1
N

∑N
i=1(λ

G
i3)

2, then g2 = g5 = 0. And if plim
1
N

∑N
i=1(λ

G
i2)

2 6=
plim 1

N

∑N
i=1(λ

G
i3)

2, then g3 = g6 = 0. Thus by Assumption 6, g = 0.

Lemma 3 Under Assumptions 1, 2 and 6, for any D > 0, there exists C > 0 and

m > 0 such that as (N, T ) → ∞, P ( min
B(D)∩

∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

ρmin(−D
− 1

2

TNH(φ)D
− 1

2

TN) ≥

C)→ 1.

Proof. The proof is similar to proof of Lemma 2 with some modifications. The intu-

ition behind this lemma is that given we have proved Lemma 2, a small perturbation

of φ will not affect the order of the largest eigenvalue.

First note that when f and λ are plugged in, the second term on the right hand

side of (20), (21) and (22) are no longer zeros. For any vector a with ‖a‖ = 1,

a′(−D− 1

2

TNH(φ)D
− 1

2

TN)a

= a′(−D− 1

2

TNHL(φ)D
− 1

2

TN + c
∑r

p=1
D
− 1

2

NTvpv
′
pD

− 1

2

NT )a

+ca′[
∑r

j=1

∑r

k=j+1
(
1

N
ujku

′
jk +

1

T
ukju

′
kj)]a

−N− 1

2T−
1

2a′JL(φ)a

+a′D
− 1

2

TN(
∑r

q=1

c

2
NT (

∑N
i=1 λ

2
iq

N
−
∑T

t=1 f
2
tq

T
)D−1

NT (IN+T ⊗ ιq)D
− 1

2

TNa

+a′(
∑r

p=1

∑r

q=p+1
c(
1

N

∑N

i=1
λipλiq)D1)a

+a′(
∑r

p=1

∑r

q=p+1
c(
1

T

∑T

t=1
ftpftq)D2)a

≡ K1 +K2 −K3 +K4 +K5 +K6.

Also, using Cauchy-Schwarz inequality, it is easy to show that

max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

∣∣∣∣
1

N

∑N

i=1
λ2iq −

1

N

∑N

i=1
(λGiq)

2

∣∣∣∣ ≤ 2mN− 1

2

∥∥λG
∥∥+m2 for any q, (33)

max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

∣∣∣∣
1

N

∑N

i=1
λipλiq

∣∣∣∣ ≤ 2mN− 1

2

∥∥λG
∥∥+m2 for any p 6= q, (34)
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max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

∣∣∣∣
1

T

∑T

t=1
f 2tq −

1

T

∑T

t=1
(fGtq )

2

∣∣∣∣ ≤ 2mT−
1

2

∥∥fG
∥∥+m2 for any q, (35)

max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

∣∣∣∣
1

T

∑T

t=1
ftpftq

∣∣∣∣ ≤ 2mT−
1

2

∥∥fG
∥∥+m2 for any p 6= q. (36)

Now we evaluate K1, ..., K6.

(1) Within the neighborhood B(D), πit = f ′tλi is bounded, thus |∂π2lit(πit)| is
bounded away from zero uniformly. Then similar to the counterpart in the proof of

Lemma 2, the smallest nonzero eigenvalue of −D− 1

2

TNHL(φ)D
− 1

2

TN+c
∑r

p=1D
− 1

2

NTvpv
′
pD

− 1

2

NT

is not smaller than ρmin(
c
N

∑N
i=1 λiλ

′
i) and ρmin(

c
T

∑T
t=1 ftf

′
t). By Weyl’s inequality,

ρmin(
c
N

∑N
i=1 λiλ

′
i) − ρmin( cN

∑N
i=1 λ

G
i λ

G′
i ) lies between the smallest and the largest

eigenvalues of c
N

∑N
i=1 λiλ

′
i− c

N

∑N
i=1 λ

G
i λ

G′
i . This together with (33) and (34) implies

that

max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

∣∣∣ρmin(
c

N

∑N

i=1
λiλ

′
i)− ρmin(

c

N

∑N

i=1
λGi λ

G′
i )
∣∣∣

≤ max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

∥∥∥
c

N

∑N

i=1
λiλ

′
i −

c

N

∑N

i=1
λGi λ

G′
i

∥∥∥
F

≤ cr(2mN− 1

2

∥∥λG
∥∥+m2).

It follows that min∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

ρmin(
c
N

∑N
i=1 λiλ

′
i) is not smaller than ρmin(

c
N

∑N
i=1 λ

G
i λ

G′
i )−

cr(2mN− 1

2

∥∥λG
∥∥ + m2). Similarly, using Weyl’s inequality, (35) and (36), we can

show that min∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

ρmin(
c
T

∑T
t=1 ftf

′
t) is not smaller than ρmin(

c
T

∑T
t=1 f

G
t f

G′
t )−

cr(2mT−
1

2

∥∥fG
∥∥ +m2). Note that N− 1

2

∥∥λG
∥∥ = T−

1

2

∥∥fG
∥∥ = [tr( 1

T

∑T
t=1 f

G
t f

G′
t )]

1

2 =

tr(V 1

4 ). Thus if m is small enough, then there exists b > 0 such that w.p.a.1,

min∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

ρmin(
c
N

∑N
i=1 λiλ

′
i) ≥ b and min∥∥∥∥D

−
1
2

NT
(φ−φG)

∥∥∥∥≤m

ρmin(
c
T

∑T
t=1 ftf

′
t) ≥ b. It

follows that min
B(D)∩

∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

K1 ≥ b
∑(N+T )r−r(r−1)

l=1 a2l w.p.a.1.
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(2) Similar to the counterpart in the proof of Lemma 2, for some 0 < c1 < c, K2

is not smaller than

c1ρmin(U
∗(φ)U∗(φ)′)

∑r

p=1

∑r

q=p+1
(a2pq + a

2
qp)

−2c1(
∑(N+T )r−r(r−1)

l=1
a2l )

1

2

∑r

j=1

∑r

k=j+1
(
1

N
‖ujk‖2 +

1

T
‖ukj‖2),

where U∗(φ) is defined the same as U∗, with uGjk replaced by ujk. Similar to part (1),

using Weyl’s inequality, (33) and (35), we can show there exists someM > 0 such that

min∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

ρmin(U
∗(φ)U∗(φ)′) is not smaller than ρmin(U

∗U∗′)−Mm w.p.a.1. Take

m small enough, then there exists d > 0 such that min∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

ρmin(U
∗(φ)U∗(φ)′) ≥

d w.p.a.1. Next, sinceN− 1

2

∥∥λG
∥∥ and T−

1

2

∥∥fG
∥∥ are bounded, both max∥∥∥∥D

−
1
2

NT
(φ−φG)

∥∥∥∥≤m

1
N
‖ujk‖2

and max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

1
T
‖ukj‖2 are bounded by some large M . Thus min∥∥∥∥D

−
1
2

NT
(φ−φG)

∥∥∥∥≤m

K2

is not smaller than c1d
∑r

p=1

∑r
q=p+1(a

2
pq + a

2
qp) − 2c1r(r − 1)M(

∑(N+T )r−r(r−1)
l=1 a2l )

1

2

w.p.a.1.

(3) Since |∂π2lit(πit)| ≤ bU within B(D) and ‖∂πl(φ)− ∂πl‖ ≤ ‖∂πl(φ)− ∂πl‖F , we
have

‖∂πl(φ)‖ ≤ ‖∂πl‖+ bU [
∑N

i=1

∑T

t=1
(πit − π0it)2]

1

2 .

∑N
i=1

∑T
t=1(πit−π0it)2 is not larger than the sum of 3

∥∥f − fG
∥∥2 ∥∥λG

∥∥2, 3
∥∥fG

∥∥2 ∥∥λ− λG
∥∥2

and 3
∥∥f − fG

∥∥2 ∥∥λ− λG
∥∥2, thus max∥∥∥∥D

−
1
2

NT
(φ−φG)

∥∥∥∥≤m

∑N
i=1

∑T
t=1(πit − π0it)2 is not larger

than 3(m2T
∥∥λG

∥∥2 +m2N
∥∥fG

∥∥2 +m4NT ). Thus under Assumption 1, there exists

M > 0 such that max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

[
∑N

i=1

∑T
t=1(πit − π0it)2]

1

2 ≤MmN 1

2T
1

2 w.p.a.1. Since

|K3| ≤ 2N− 1

2T−
1

2 ‖JLλf ′(φ)‖ ≤ 2N− 1

2T−
1

2 ‖∂πl(φ)‖, we have max
B(D)∩

∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

|K3| ≤

2N− 1

2T−
1

2 ‖∂πl‖+ 2Mm w.p.a.1.

(4) First note that D
− 1

2

TNNTD
−1
NT (IN+T ⊗ ιq)D

− 1

2

TN = (IN+T ⊗ ιq). Using(33),

(35) and a′(IN+T ⊗ ιq)a ≤ ‖a‖2 = 1 for any q, after some calculation, we have
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max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

|K4| ≤ cr(mN− 1

2

∥∥λG
∥∥+mT−

1

2

∥∥fG
∥∥+m2).

(5) Using (34) and a′D1a ≤ 2 ‖a‖2 = 2 for any p 6= q, after some calculation, we
have max∥∥∥∥D

−
1
2

NT
(φ−φG)

∥∥∥∥≤m

|K5| ≤ 2cr(r − 1)(2mN− 1

2

∥∥λG
∥∥+m2).

(6) Using (36) and a′D2a ≤ 2 ‖a‖2 = 2 for any p 6= q, after some calculation, we
have max∥∥∥∥D

−
1
2

NT
(φ−φG)

∥∥∥∥≤m

|K6| ≤ 2cr(r − 1)(2mT−
1

2

∥∥fG
∥∥+m2).

By Assumption 1, max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

|K4|, max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

|K5| and max∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

|K6|

are all bounded by Mm w.p.a.1. Finally, using the algebra in expression (32) again

and taking m small enough, the lemma is proved.

Lemma 4 Let U = (uG12, ..., u
G
1r, u

G
23, ..., u

G
2r, ..., u

G
(r−1)r;u

G
21, ..., u

G
r1, u

G
32, ..., u

G
r2, ..., u

G
r(r−1)),

where uGpq is defined in Appendix A. Also, let U = (U
′
λ, U

′
f )
′, U , Uλ, Uf are of dimen-

sion (Nr+ Tr)× r(r− 1), Nr× r(r− 1), Tr× r(r− 1) respectively. Let Hλλ′, Hλf ′,
Hfλ′, Hff ′ be the upper-left, upper-right, lower-left and lower-right block of H. Under

Assumptions 1, 2 and 3(i), as (N, T )→∞,
(i) ‖[(Vλ, Uλ)]i‖1 = Op(1), (ii) ‖(Vλ, Uλ)′‖1 = Op(1),
(iii) ‖(Vλ, Uλ)‖ = Op(N

1

2 ), (iv) ‖(Vλ, Uλ)‖1 = Op(N),
(v)

∥∥[H−1
Lλλ′

]i
∥∥
1
= Op(

1
T
), (vi)

∥∥H−1
Lλλ′

∥∥
1
= Op(

1
T
), (vii)

∥∥H−1
Lλλ′

∥∥ = Op( 1T ),

(viii)
∥∥H−1

λλ′

∥∥
1
= Op(

1
T
), (ix)

∥∥H−1
λλ′

∥∥ = Op( 1T ),

(x)
∥∥H−1

ff ′

∥∥
1
= Op(

1
N
), (xi)

∥∥H−1
ff ′

∥∥ = Op( 1N ),

(xii) max
i
‖[Hλf ′ ]i‖ = Op(N

1

ξT
1

2
+ 1

ξ ),(xiii) ‖[Hλf ′ ]i‖ = Op(T
1

2 ),

(xiv) ‖[Hλf ′ ]i‖1 = Op(T
1

ξ ), (xv) ‖Hλf ′‖1 = Op(N
1+ 1

ξT
1

ξ ),(xvi) ‖Hλf ′‖ = Op(N
1

2T
1

2 ).

Proof. Parts (i)-(iv): Obvious.

Parts (v)-(vii): Noting that HLλλ′ is block diagonal, we have

∥∥H−1
Lλλ′

∥∥
1
= max

i

∥∥∥(
∑T

t=1
∂π2litf

0
t f

0′
t )

−1
∥∥∥
1
≤ max

i

√
r
∥∥∥(
∑T

t=1
∂π2litf

0
t f

0′
t )

−1
∥∥∥

≤
√
r

bL

∥∥∥(
∑T

t=1
f 0t f

0′
t )

−1
∥∥∥ = Op(

1

T
). (37)

From expression (37), we can see that
∥∥[H−1

Lλλ′
]i
∥∥
1
and

∥∥H−1
Lλλ′

∥∥ are also Op( 1T ).
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Parts (viii)-(ix): By equations (19) and (23), Hλλ′ = HLλλ′ − c TN (Vλ, Uλ)(Vλ, Uλ)′.
Thus by Woodbury identity,

H−1
λλ′
= H−1

Lλλ′
−H−1

Lλλ′
(Vλ, Uλ)[−

N

cT
Ir2+(Vλ, Uλ)

′H−1
Lλλ′

(Vλ, Uλ)]
−1(Vλ, Uλ)

′H−1
Lλλ′

. (38)

By positive definiteness of −(Vλ, Uλ)′H−1
Lλλ′

(Vλ, Uλ), we have

∥∥∥∥[−
N

cT
Ir2 + (Vλ, Uλ)

′H−1
Lλλ′

(Vλ, Uλ)]
−1

∥∥∥∥
1

≤ r

∥∥∥∥[−
N

cT
Ir2 + (Vλ, Uλ)

′H−1
Lλλ′

(Vλ, Uλ)]
−1

∥∥∥∥ ≤ rc
T

N
. (39)

Part (viii) follows from part (ii), part (iv), part (vi) and expression (39). Part (ix)

follows from part (iii), part (vii) and expression (39).

Parts (x)-(xi): The proof is similar to parts (viii)-(ix).

Parts (xii)-(xvi): First note that Hλf ′ = HLλf ′ +HPλf ′ + JLλf ′ .

For (xii) and (xiii), we have ‖[HLλf ′ ]i‖ ≤ bU
∥∥λGi

∥∥∥∥fG
∥∥, ‖[HPλf ′ ]i‖ ≤ c

∥∥λGi
∥∥∥∥fG

∥∥

and ‖[JLλf ′ ]i‖ ≤ (r
∑T

t=1(∂πlit)
2)

1

2 .

For (xiv), we have ‖[JLλf ′ ]i‖1 ≤ maxt |∂πlit|, ‖[HLλf ′ ]i‖1 ≤ rbU
∥∥λGi

∥∥max
t

∥∥fGt
∥∥ and

‖[HPλf ′ ]i‖1 ≤ cr
∥∥λGi

∥∥max
t

∥∥fGt
∥∥.

For (xv), we have ‖JLλf ′‖1 ≤ maxt
∑N

i=1 |∂πlit|, ‖HLλf ′‖1 ≤ rbU
∑N

i=1

∥∥λGi
∥∥max

t

∥∥fGt
∥∥

and ‖HPλf ′‖1 ≤ cr
∑N

i=1

∥∥λGi
∥∥max

t

∥∥fGt
∥∥.

For (xvi), we have ‖HPλf ′‖ ≤ c
∥∥λG

∥∥∥∥fG
∥∥, ‖HLλf ′‖ ≤ bU

∥∥λG
∥∥∥∥fG

∥∥ and by

Lemma 1, ‖JLλf ′‖ ≤ ‖∂πl‖ = Op(N
1

2T
1

4 +N
1

4T
1

2 ).

Also note that by Assumption 3(i), max
t
|∂πlit| is Op(T

1

ξ ), max
i
|∂πlit| is Op(N

1

ξ )

and max
i,t
|∂πlit| is Op(N

1

ξT
1

ξ ).

Lemma 5 Under Assumptions 1, 2, 3(i) and 6, as (N, T ) → ∞, the 1-norm of

the upper-left, lower-right, upper-right and lower-left block of H−1 is Op(
N
2
ξ T

2
ξ

T
),

Op(
N
2
ξ T

2
ξ

N
), Op(

N
3
ξ T

3
ξ

T
) and Op(

N
3
ξ T

3
ξ

N
) respectively.

Proof. (1) The upper-left block of H−1 is:

[Hλλ′ −Hλf ′H−1
ff ′Hfλ′ ]

−1 = H−1
λλ′
+H−1

λλ′
Hλf ′ [Hff ′ −Hfλ′H−1

λλ′
Hλf ′ ]

−1Hfλ′H
−1
λλ′
. (40)

12



From Lemma 4(viii), we have
∥∥H−1

λλ′

∥∥
1
= Op(

1
T
). We next show

∥∥Hλf ′ [Hff ′ −Hfλ′H−1
λλ′
Hλf ′ ]

−1Hfλ′
∥∥
1
= Op(N

2

ξT 1+
2

ξ ). (41)

Let ‖A‖max be the max norm of matrix A. It suffices to show

∥∥Hλf ′ [Hff ′ −Hfλ′H−1
λλ′
Hλf ′ ]

−1Hfλ′
∥∥
max

= Op(
T

N
N

2

ξT
2

ξ ). (42)

The (ip, jq) element is [Hλf ′ ]ip[Hff ′−Hfλ′H−1
λλ′
Hλf ′ ]

−1[Hλf ′ ]
′
jq. [Hff ′−Hfλ′H−1

λλ′
Hλf ′ ]

−1

equals the lower right block of D
− 1

2

TN(D
− 1

2

TNHD
− 1

2

TN)
−1D

− 1

2

TN , thus by Lemma 2,

∥∥[Hff ′ −Hfλ′H−1
λλ′
Hλf ′ ]

−1
∥∥ ≤ 1

N

∥∥∥(D
− 1

2

TNHD
− 1

2

TN)
−1
∥∥∥ = Op(

1

N
). (43)

This together with Lemma 4(xii) proves (42). Thus the 1-norm of the upper-left block

is Op(
N
2
ξ T

2
ξ

T
).

(2) The lower-right block is [Hff ′ −Hfλ′H−1
λλ′
Hλf ′ ]

−1, thus by symmetry, its mag-

nitude is Op(
N
2
ξ T

2
ξ

N
).

(3) The upper-right block is −[Hλλ′ − Hλf ′H−1
ff ′Hfλ′ ]

−1Hλf ′H
−1
ff ′ . Part (1), parts

(x) and (xv) of Lemma 4 together implies this term is Op(
N
3
ξ T

3
ξ

T
).

(4) The lower-left block is the transpose of the upper-right block and
∥∥Hfλ′

∥∥
1
=

Op(N
1

ξT 1+
1

ξ ), thus is Op(
N
3
ξ T

3
ξ

N
).

Lemma 6 Under Assumptions 1, 2, 4 and 6, as (N, T )→∞,
∥∥∥H̃−1

λλ′

∥∥∥
1
= Op(

1
T
) and

∥∥∥H̃−1
ff ′

∥∥∥
1
= Op(

1
N
).

Proof. For V and U defined in the proof of Lemma 2, when φG + s(φ̂
∗ − φG) is

plugged in, use notation V (s), Vλ(s), Vf (s), U(s), Uλ(s) and Uf (s). It follows that

Vλ(s) = Vλ(0) + s(Vλ(1)− Vλ(0)) and

H̃λλ′ =

∫ 1

0

Hλλ′(s)ds =

∫ 1

0

HLλλ′(s)ds+

∫ 1

0

HPλλ′(s)ds

= H̃Lλλ′ − c
T

N

∫ 1

0

(Vλ(s), Uλ(s))(Vλ(s), Uλ(s))
′ds.

13



Since
∫ 1
0
sds = 1/2 and

∫ 1
0
s2ds = 1/3, we have

∫ 1

0

Vλ(s)Vλ(s)
′ds = Vλ(0)Vλ(0)

′ +
1

3
(Vλ(1)− Vλ(0))(Vλ(1)− Vλ(0))′

+
1

2
Vλ(0)(Vλ(1)− Vλ(0))′ +

1

2
(Vλ(1)− Vλ(0))Vλ(0)′

= Vλ(
1

2
)Vλ(

1

2
)′ +

1

12
(Vλ(1)− Vλ(0))(Vλ(1)− Vλ(0))′.

Similarly, we also have

∫ 1

0

Uλ(s)Uλ(s)
′ds = Uλ(

1

2
)Uλ(

1

2
)′ +

1

12
(Uλ(1)− Uλ(0))(Uλ(1)− Uλ(0))′.

It follows that H̃λλ′ = H̃Lλλ′ − c TNBB′, where

B ≡ (Vλ(
1

2
), Uλ(

1

2
), (Vλ(1)− Vλ(0))/2

√
3, (Uλ(1)− Uλ(0))/2

√
3). (44)

Thus by Woodbury identity,

H̃−1
λλ′
= H̃−1

Lλλ′
+ H̃−1

Lλλ′
B[
N

cT
I2r2 −B′H̃−1

Lλλ′
B]−1B′H̃−1

Lλλ′
.

Consider H̃−1
Lλλ′

first. H̃Lλλ′ is block-diagonal with H̃Lλiλ′i as the i-th block. Thus

H̃−1
Lλλ′

is also block-diagonal and the i-th block is H̃−1
Lλiλ

′

i
. It follows that

∥∥∥H̃−1
Lλλ′

∥∥∥
1
= max

i

∥∥∥H̃−1
Lλiλ

′

i

∥∥∥
1
≤ max

i
r
1

2

∥∥∥H̃−1
Lλiλ

′

i

∥∥∥ .

Due to the four facts listed below, min
i
ρmin(−H̃Lλiλ′i) ≥ TCbL/2 w.p.a.1. This implies

max
i

∥∥∥H̃−1
Lλiλ

′

i

∥∥∥ ≤ 2/TCbL w.p.a.1, thus
∥∥∥H̃−1

Lλλ′

∥∥∥
1
is Op(

1
T
).

1. ρmin(−H̃Lλiλ′i) ≥
∫ 1
0
ρmin(−HLλiλ′i(s))ds ≥ min

0≤s≤1
ρmin(−HLλiλ′i(s)), where the

first inequality follows from continuity of the smallest eigenvalues and Weyl’s

inequality.

2. ρmin(−HLλiλ′i(s)) ≥ bLρmin(
∑T

t=1 f
G
t f

G′
t )−2bLs(

∑T
t=1

∥∥fGt
∥∥2∑T

t=1

∥∥∥f̂ ∗t − fGt
∥∥∥
2

)
1

2−

bLs
2
∑T

t=1

∥∥∥f̂ ∗t − fGt
∥∥∥
2

for any i, because ρmin(A) ≥ ρmin(B)−‖A−B‖F for sym-
metric matrices A and B, and −∂π2lit(πit) is uniformly bounded below by bL

14



within the neighborhood B(D) and φ̂∗ lies in B(D).

3. By Assumption 1, there exists some C > 0 such that ρmin(
∑T

t=1 f
G
t f

G′
t ) ≥ TC

w.p.a.1, and there exists some M > 0 such that
∑T

t=1

∥∥fGt
∥∥2 ≤MT .

4. Because φ̂
∗
lies in B(D)∩

∥∥∥D
− 1

2

NT (φ− φG)
∥∥∥ ≤ m,

∑T
t=1

∥∥∥f̂ ∗t − fGt
∥∥∥
2

≤ m2T . Take

m small enough.

Next, by expression (44) and the fact that both λG and λ̂
∗
lie in B(D), we have

‖B‖1 ≤
∥∥λG

∥∥
1
+
∥∥∥λ̂

∗ − λG
∥∥∥
1
= O(N),

‖B′‖1 = ‖B‖∞ ≤
∥∥λG

∥∥
∞
+
∥∥∥λ̂

∗ − λG
∥∥∥
∞
= O(1).

When −H̃−1
Lλλ′

is positive definite, ρmin(
N
cT
I2r2 − B′H̃−1

Lλλ′
B) is not smaller than N

cT

and
∥∥∥[ NcT I2r2 −B′H̃−1

Lλλ′
B]−1

∥∥∥
1
is not larger than

√
2r2
∥∥∥[ NcT I2r2 −B′H̃−1

Lλλ′
B]−1

∥∥∥ ≤
√
2r2 cT

N
. Since−H̃−1

Lλλ′
is positive definite w.p.a.1,

∥∥∥[ NcT I2r2 −B′H̃−1
Lλλ′

B]−1
∥∥∥
1
≤
√
2r2 cT

N

also holds w.p.a.1.

Taking all above together,
∥∥∥H̃−1

λλ′

∥∥∥
1
= Op(

1
T
). By symmetry,

∥∥∥H̃−1
ff ′

∥∥∥
1
= Op(

1
N
).

Lemma 7 Under Assumptions 1, 2, 3(i), 4 and 6, as (N, T ) → ∞, the 1-norm
of the upper-left, lower-right, upper-right and lower-left block of H̃−1 is Op(

N
2
ξ T

2
ξ

T
),

Op(
N
2
ξ T

2
ξ

N
), Op(

N
3
ξ T

3
ξ

T
) and Op(

N
3
ξ T

3
ξ

N
) respectively.

Proof. Based on the following facts, the proof is similar to the proof of Lemma 5.

(1)
∥∥∥H̃−1

λλ′

∥∥∥
1
= Op(

1
T
).

(2)
∥∥∥H̃−1

ff ′

∥∥∥
1
= Op(

1
N
).

(3)
∥∥∥[H̃ff ′ − H̃fλ′H̃−1

λλ′
H̃λf ′ ]

−1
∥∥∥ = Op( 1N ).

(4) max
i

∥∥∥[H̃λf ′ ]i
∥∥∥ = Op(N

1

ξT
1

2
+ 1

ξ ).

(5)
∥∥∥H̃λf ′

∥∥∥
1
= Op(N

1+ 1

ξT
1

ξ ).

(1) and (2) follow from Lemma 6. For (3),
∥∥∥[H̃ff ′ − H̃fλ′H̃−1

λλ′
H̃λf ′ ]

−1
∥∥∥ is not

larger than 1
N

∥∥∥(D
− 1

2

TNH̃D
− 1

2

TN)
−1
∥∥∥ because [H̃ff ′ − H̃fλ′H̃−1

λλ′
H̃λf ′ ]

−1 is the lower-right

block of H̃−1, which equals 1
N
times the lower right block of (D

− 1

2

TNH̃D
− 1

2

TN)
−1. Due
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to continuity of the smallest eigenvalue and Weyl’s inequality, ρmin(−D
− 1

2

TNH̃D
− 1

2

TN) ≥
min
0≤s≤1

ρmin(−D
− 1

2

TNH(s)D
− 1

2

TN). This together with Lemma 3 and the fact that φ̂
∗
lies in

B(D)∩
∥∥∥D

− 1

2

NT (φ− φG)
∥∥∥ ≤ m implies that

∥∥∥(−D− 1

2

TNH̃D
− 1

2

TN)
−1
∥∥∥ is Op(1).

For (4) and (5), note that max
i

∥∥∥[H̃λf ′ −Hλf ′ ]i
∥∥∥ ≤ max

i
max
0≤s≤1

‖[Hλf ′(s)−Hλf ′ ]i‖ ≤

T
1

2 max
0≤s≤1

‖Hλf ′(s)−Hλf ′‖max and
∥∥∥H̃λf ′ −Hλf ′

∥∥∥
1
≤ N max

0≤s≤1
‖Hλf ′(s)−Hλf ′‖max. Since

φ̂
∗
lies in B(D)∩

∥∥∥D
− 1

2

NT (φ− φG)
∥∥∥ ≤ m and |∂π2lit(·)|, |∂π3lit(·)| and f ′tλi are all

bounded within the neighborhood B(D), max
0≤s≤1

‖Hλf ′(s)−Hλf ′‖max is Op(1). It fol-

lows that max
i

∥∥∥[H̃λf ′ −Hλf ′ ]i
∥∥∥ is Op(T

1

2 ) and
∥∥∥H̃λf ′ −Hλf ′

∥∥∥
1
is Op(N). These to-

gether with parts (xii) and (xv) of Lemma 4 proves (4) and (5).

Lemma 8 Under Assumptions 1-5, as (N, T )→∞,
(i)
∥∥(Vλ, Uλ)′H−1

Lλλ′
Sλ
∥∥ = Op(N

1

2T−
1

2 ), and
∥∥(Vf , Uf )′H−1

Lff ′Sf
∥∥ = Op(N− 1

2T
1

2 ),

(ii)
∥∥(HLfλ′ +HPfλ′)H−1

λλ′
Sλ
∥∥ = Op(N

1

2 ), and
∥∥(HLλf ′ +HPλf ′)H−1

ff ′Sf
∥∥ = Op(T

1

2 ),

(iii)
∥∥[(HLfλ′ +HPfλ′)H−1

λλ′
Sλ]s

∥∥ = Op(N
1

2T−
1

2 ), and
∥∥[(HLλf ′ +HPλf ′)H−1

ff ′Sf ]i
∥∥ =

Op(N
− 1

2T
1

2 ),

(iv)
∥∥[JLfλ′H−1

λλ′
Sλ]s

∥∥ = Op(N
1

2T−
1

2 ), and
∥∥[JLλf ′H−1

ff ′Sf ]i
∥∥ = Op(N− 1

2T
1

2 ),

(v)
∥∥JLfλ′H−1

λλ′
Sλ
∥∥ = Op(N

1

2 ), and
∥∥JLλf ′H−1

ff ′Sf
∥∥ = Op(T

1

2 ).

Proof. Part (i): It suffices to show the first half. (Vλ, Uλ)
′H−1

Lλλ′
Sλ is a r

2 dimensional

vector. From the definition of Vλ and Uλ, we need to show that for any p and

q,
∑N

i=1 λ
G
ip1

(r)′
q (
∑T

t=1 ∂π2litf
G
t f

G′
t )

−1(
∑T

t=1(∂πlit)f
G
t ) is Op(N

1

2T−
1

2 ). Thus it suffices

to show that
∥∥∥
∑N

i=1

∑T
t=1(
∑T

t=1 ∂π2litf
G
t f

G′
t )

−1fGt λ
G′
i ∂πlit

∥∥∥
F
is Op(N

1

2T−
1

2 ). This is

equivalent to Assumption 5(ii) because fGt = G
′f 0t , λ

G
i = G

−1λ0i , and the Frobenius

norm and spectral norm are equivalent for fixed dinensional matrices.

Parts (ii) and (iii): It suffices to show the first half. From equation (38) we have

[HLfλ′ +HPfλ′)H
−1
λλ′
Sλ]s = [(HLfλ′ +HPfλ′)H

−1
Lλλ′

Sλ]s − [HLfλ′ +HPfλ′ ]sH−1
Lλλ′

(Vλ, Uλ)[−
N

cT
Ir2 + (Vλ, Uλ)

′H−1
Lλλ′

(Vλ, Uλ)]
−1(Vλ, Uλ)

′H−1
Lλλ′

Sλ. (45)

Consider the first term on the right hand side. Consider HPfλ′H
−1
Lλλ′

Sλ first. The q-th

element in the s-th block is −cfGsq
∑N

i=1 λ
G
iq1

(r)′
q (
∑T

t=1(∂π2lit)f
G
t f

G′
t )

−1(
∑T

t=1 ∂πlitf
G
t ).
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Part (i) shows that
∑N

i=1 λ
G
iq1

(r)′
q (
∑T

t=1(∂π2lit)f
G
t f

G′
t )

−1(
∑T

t=1 ∂πlitf
G
t ) is Op(N

1

2T−
1

2 ).

Since
∑T

s=1

∥∥fGs
∥∥2 is Op(T ) and

∥∥fGs
∥∥ is Op(1),

∥∥[HPfλ′H−1
Lλλ′

Sλ]s
∥∥ is Op(N

1

2T−
1

2 ) and
∥∥HPfλ′H−1

Lλλ′
Sλ
∥∥ is Op(N

1

2 ). Next consider HLfλ′H
−1
Lλλ′

Sλ.

G[HLfλ′H
−1
Lλλ′

Sλ]s = G
∑N

i=1
∂π2lisλ

G
i f

G′
s (
∑T

t=1
∂π2litf

G
t f

G′
t )

−1(
∑T

t=1
∂πlitf

G
t )

=
∑N

i=1
∂π2lisλ

0
i f
0′
s (
∑T

t=1
∂π2litf

0
t f

0′
t )

−1(
∑T

t=1
∂πlitf

0
t )

= [f 0′s
∑N

i=1

∑T

t=1
(
∑T

t=1
∂π2litf

0
t f

0′
t )

−1∂πlitf
0
t λ

0′
i ∂π2lis]

′

Thus by Assumption 5(ii),
∥∥[HLfλ′H−1

Lλλ′
Sλ]s

∥∥ is Op(N
1

2T−
1

2 ) and
∥∥HLfλ′H−1

Lλλ′
Sλ
∥∥ is

Op(N
1

2 ).

Now consider the second term on the right hand side of (45). By Assumptions 1

and 2(ii),
∥∥[HLfλ′ +HPfλ′ ]s

∥∥ = Op(N
1

2 ) and
∥∥HLfλ′ +HPfλ′

∥∥ is Op(N
1

2T
1

2 ). These

together with Lemma 4(iii), Lemma 4(vii), inequality (39) and part (i) finishes the

proof.

Parts (iv) and (v): It suffices to show the first half. Similar to expression (45),

[JLfλ′H
−1
λλ′
Sλ]s = [JLfλ′H

−1
Lλλ′

Sλ]s − [JLfλ′ ]sH−1
Lλλ′

(Vλ,

Uλ)[−
N

cT
Ir2 + (Vλ, Uλ)

′H−1
Lλλ′

(Vλ, Uλ)]
−1(Vλ, Uλ)

′H−1
Lλλ′

Sλ. (46)

The second term on the right hand side of (46) is Op(N
1

2T−
1

2 ). The proof is the

same as the second term on the right hand side of (45) except that here we use
∥∥[JLfλ′ ]s

∥∥ = Op(N
1

2 ). Now consider the first term.

G[JLfλ′H
−1
Lλλ′

Sλ]s =
∑N

i=1

∑T

t=1
(
∑T

t=1
∂π2litf

0
t f

0′
t )

−1∂πlis∂πlitf
0
t .

Thus by Assumption 5(i),
∥∥[JLfλ′H−1

Lλλ′
Sλ]s

∥∥ is Op(N
1

2T−
1

2 ) and
∥∥JLfλ′H−1

Lλλ′
Sλ
∥∥ is

Op(N
1

2 ).

Lemma 9 Following the definitions of R, Rλ, Rf , Rλ,iq, Rf,tq, φ
∗
iq and φ

∗
tq in Section

4, under Assumptions 1-4, 6 and 7, as (N, T )→∞,
‖[Rλ]i‖1 = Op( T

δ2NT
) for each i, and ‖Rλ‖1 = Op( NTδ2NT ),

‖[Rf ]t‖1 = Op( N
δ2NT
) for each t, and ‖Rf‖1 = Op( NTδ2NT ).
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Proof. Note that Rλ,iq = (φ̂−φG)′∂φφ′λiqL(φ∗iq)(φ̂−φG)+ (φ̂−φG)′∂φφ′λiqP (φ∗iq)(φ̂−
φG).

The first term on the right hand side equals (λ̂i − λGi )′∂λiλ′iλiqL(φ
∗
iq)(λ̂i − λGi ) +

2
∑T

t=1(λ̂i−λGi )′∂λif ′tλiqL(φ
∗
iq)(f̂t−fGt )+

∑T
t=1(f̂t−fGt )′∂ftf ′tλiqL(φ

∗
iq)(f̂t−fGt ) ≡ L1i+

L2i+L3i. Based on the expressions of ∂λiλ′iL(φ), ∂λif ′tL(φ) and ∂ftf ′tL(φ) in equations

(16) and (17), it can be verified that

∂λiλ′iλiqL(φ) =
∑T

t=1
∂π3lit(πit)ftf

′
tftq,

∂λif ′tλiqL(φ) = ∂π3lit(πit)ftλ
′
iftq + ∂π2lit(πit)Irftq + ∂π2lit(πit)ft1

(r)′
q ,

∂ftf ′tλiqL(φ) = ∂π3lit(πit)λiλ
′
iftq + ∂π2lit(πit)1

(r)
q λ

′
i + ∂π2lit(πit)λi1

(r)′
q .

Since φ̂ (consequently φ∗iq and φ
∗
tq) lies in B(D) w.p.a.1 and ‖ft‖, ‖λi‖, |∂π2lit(πit)|

and |∂π3lit(πit)| are all bounded within B(D), we have

|L1i| ≤ T
∥∥∥λ̂i − λGi

∥∥∥
2

M,

|L2i| ≤ T
1

2

∥∥∥λ̂i − λGi
∥∥∥
∥∥∥f̂ − fG

∥∥∥M,

|L3i| ≤
∥∥∥f̂ − fG

∥∥∥
2

M,

for some large M w.p.a.1. Thus by Proposition 4 and Theorem 1, |L1i|, |L2i| and
|L3i| are all Op( T

δ2NT
), and

∑N
i=1 |L1i|,

∑N
i=1 |L2i| and

∑N
i=1 |L3i| are all Op( NTδ2NT ).

Now consider (φ̂−φG)′∂φφ′λiqP (φ∗iq)(φ̂−φG). From equations (20), (21) and (22),
it can be verified that

∂φφ′λiq [(

∑N
i=1 λ

2
iq

N
−
∑T

t=1 f
2
tq

T
)2] = 8D−1

NT (1iqv
′
q + vq1

′
iq)D

−1
NT

+
8

N
λiqD

−1
NT (IN+T ⊗ ιq),

∂φφ′λiq [
∑r

p=1

∑r

q=p+1
(
∑T

t=1
ftpftq)

2] = 0,

∂φφ′λiq [
∑r

p=1

∑r

q=p+1
(
∑N

i=1
λipλiq)

2] = 2(
∑

p6=q
λipD1 +

∑
p6=q
1ipu

′
pq)

+2
∑

p6=q
upq1

′
ip.

18



1iq is an Nr + Tr dimensional vector with the q-th element in the i-th block being

one and all the other elements being zero. Thus (φ̂−φG)′∂φφ′λiqP (φ∗iq)(φ̂−φG) equals

cNT (φ̂− φG)′D−1
NT (1iqv

′
q + vq1

′
iq)D

−1
NT (φ̂− φG)

+cT (φ̂− φG)′λiqD−1
NT (IN+T ⊗ ιq)(φ̂− φG)

+
cT

N
(φ̂− φG)′

∑
p6=q
λipD1(φ̂− φG) +

cT

N
(φ̂− φG)′

∑
p6=q
(1ipu

′
pq + upq1

′
ip)(φ̂− φG)

≡ P1i+ P2i+ P3i+ P4i.

It follows that

|P1i| = 2cNT

∣∣∣∣
1

N
(λ̂iq − λGiq)[

1

N

∑N

j=1
λjq(λ̂jq − λGjq)−

1

T

∑T

t=1
ftq(f̂tq − fGtq )]

∣∣∣∣

≤ MT
∥∥∥λ̂i − λGi

∥∥∥ (
1

N
‖λ‖

∥∥∥λ̂− λG
∥∥∥+

1

T
‖f‖

∥∥∥f̂ − fG
∥∥∥),

|P2i| ≤ MT ‖λi‖ (
1

N

∥∥∥λ̂− λG
∥∥∥
2

+
1

T

∥∥∥f̂ − fG
∥∥∥
2

),

|P3i| ≤ cT

N

∥∥∥
∑

p6=q
λipιpq

∥∥∥
∥∥∥λ̂− λG

∥∥∥
2

≤M T

N
‖λi‖

∥∥∥λ̂− λG
∥∥∥
2

,

|P4i| = 2cT

N

∣∣∣
∑

p6=q
(λ̂ip − λGip)(

∑N

j=1
λjq(λ̂jp − λGjp) +

∑N

j=1
λjp(λ̂jq − λGjq))

∣∣∣

≤ M
T

N

∥∥∥λ̂i − λGi
∥∥∥ ‖λ‖

∥∥∥λ̂− λG
∥∥∥ .

Thus by Proposition 4, Theorem 1, |P1i|, ..., |P4i| are all Op( T
δ2NT
), while

∑N
i=1 |P1i|,

...,
∑N

i=1 |P4i| are all Op( NTδ2NT ).
Taking together, we have shown ‖[Rλ]i‖1 = Op( T

δ2NT
) and ‖Rλ‖1 = Op( NTδ2NT ). The

other half of the Lemma follows from symmetry.

Lemma 10 Under Assumptions 1-4 and 6-8, as (N, T )→∞,
(i) (F̂ − FG)′z = Op( T

δ2NT
N

3

ξT
4

ξ ),

(ii) (F̂ − FG)′ε = Op( T
δ2NT
N

3

ξT
4

ξ ).

Proof. Part (i): From equation (8), we have f̂t− fGt = [φ̂−φG]N+t = −[H−1S]N+t−
1
2
[H−1R]N+t. It follows that

−(F̂ − FG)′z =
∑T

t=1
[H−1S]N+tz

′
t +

1

2

∑T

t=1
[H−1R]N+tz

′
t.
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First consider the second term on the right hand side. The (q, j)-th element is
∑T

t=1[H
−1R](N+t)qztj and its magnitude is bounded by ‖[H−1R]f‖1maxt,j |ztj|, where

[H−1R]f is the vector that contains the last Tr elements of H
−1R. From Assumption

8, it’s easy to see that max
t,j
|ztj| is Op(T

1

ξ ). By Lemma 5 and Lemma 9, ‖[H−1R]f‖1
is Op(

T
δ2NT
N

3

ξT
3

ξ ). Thus the second term on the right hand side is Op(
T
δ2NT
N

3

ξT
4

ξ ).

The first term on the right hand side is Op(N
− 1

2T
1

2 ). From equation (57) and by

symmetry, the first term equals

∑T

t=1
[H−1

ff ′Sf ]tz
′
t +
∑T

t=1
[H−1

ff ′Hfλ′(Hλλ′ −Hλf ′H−1
ff ′Hfλ′)

−1Hλf ′H
−1
ff ′Sf ]tz

′
t

−
∑T

t=1
[H−1

ff ′Hfλ′H
−1
λλ′
Sλ]tz

′
t

−
∑T

t=1
[H−1

ff ′Hfλ′(Hλλ′ −Hλf ′H−1
ff ′Hfλ′)

−1Hλf ′H
−1
ff ′Hfλ′H

−1
λλ′
Sλ]tz

′
t. (47)

Similar to expression (43),
∥∥(Hλλ′ −Hλf ′H−1

ff ′Hfλ′)
−1
∥∥ is Op(T−1). From Assumption

8, it’s easy to see that ‖z‖ = Op(T
1

2 ). These together with parts (xi) and (xvi) of

Lemma 4 and parts (ii) and (v) of Lemma 8 implies that the second to the fourth

terms of expression (47) are all Op(N
− 1

2T
1

2 ).

From equation (38) and by symmetry, the first term of expression (47) equals

∑T

t=1
[H−1

Lff ′Sf ]tz
′
t −

∑T

t=1
[H−1

Lff ′(Vf , Uf )[−
T

cN
Ir2 + (Vf , Uf )

′H−1
Lff ′(Vf , Uf )]

−1(Vf , Uf )
′H−1

Lff ′Sf ]tz
′
t.(48)

Similar to parts (iii) and (vii) of Lemma 4, ‖(Vf , Uf )‖ is O(T
1

2 ) and
∥∥H−1

Lff ′

∥∥ is

Op(N
−1). Similar to expression (39),

∥∥[− T
cN
Ir2 + (Vf , Uf )

′H−1
Lff ′(Vf , Uf )]

−1
∥∥ isO(NT−1).

By Assumption 8, ‖z‖F is Op(T
1

2 ). These together with Lemma 8(i) implies that the

second term of expression (48) is Op(N
− 1

2T
1

2 ).

Now consider the first term of (48). Its (q, j)-th element is
∑T

t=1 ztj[H
−1
Lff ′Sf ]tq,

which equals
∑T

t=1 ztj1
(r)′
q (
∑N

i=1 ∂π2litλ
G
i λ

G′
i )

−1(
∑N

i=1 ∂πlitλ
G
i ). In Lemma 8(i), we

have shown (by symmetry) that
∑T

t=1 f
G
tp1

(r)′
q (
∑N

i=1 ∂π2litλ
G
i λ

G′
i )

−1(
∑N

i=1 ∂πlitλ
G
i ) is

Op(N
− 1

2T
1

2 ). Lemma 8(i) uses Assumption 5(ii). Here from Assumption 8(iii) we

have
∑N

i=1

∑T
t=1(
∑N

i=1 ∂π2litλ
G
i λ

G′
i )

−1λGi z
′
t∂πlit = Op(N

− 1

2T
1

2 ). Thus the first term of
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expression (48) is Op(N
− 1

2T
1

2 ).

Part (ii): The proof is similar to part (i), with zt replaced by εt+h.

Lemma 11 Under Assumptions 1-4 and 6-7, (F̂−FG)′F = Op( T
δ2NT
N

3

ξT
3

ξ ) as (N, T )→
∞.

Proof. The proof is the same as the proof of Lemma 10, with z replaced by FG. The

result still holds if we replace F by ∂πli·, where ∂πli· = (∂πli1, ..., ∂πliT )
′.

C Proof of Propositions and Theorems

C.1 Proof of Proposition 1

Proof. The essence of the following proof is that a low rank matrix can not fit a

high rank matrix, which also underlies the proof of consistency in Bai (2009). The

key technique (using the expansion of L(X
∣∣∣f̂ , λ̂) and boundedness from below of

−∂π2lit(·)) is inspired by Chen et al. (2014).
Expand lit(π̂it) at π

0
it, we have lit(π̂it) = lit(π

0
it)+ ∂πlit× (π̂it−π0it)+ 1

2
∂π2lit(π

∗
it)×

(π̂it − π0it)2. It follows that

L(X
∣∣∣f̂ , λ̂) =

∑N

i=1

∑T

t=1
lit(π̂it) =

∑N

i=1

∑T

t=1
lit(π

0
it)

+
∑N

i=1

∑T

t=1
∂πlit × (π̂it − π0it) (49)

+
1

2

∑N

i=1

∑T

t=1
∂π2lit(π

∗
it)× (π̂it − π0it)2. (50)

|π∗it| is bounded because by design |π̂it| is bounded and by Assumption 1 |π0it| is also
bounded. Thus |∂π2lit(π∗it)| is bounded below by bL. Expression (50) is negative

and its absolute value is not smaller than bL
2

∑N
i=1

∑T
t=1(π̂it − π0it)2. From inequality

|tr(AB′)| ≤ rank(B) ‖A‖ ‖B‖F , the absolute value of expression (49) is not larger
than 2r ‖∂πl‖ [

∑N
i=1

∑T
t=1(π̂it − π0it)2]

1

2 , where ∂πl is N × T matrix with ∂πlit in the
i-th row and t-th column.

Next, since P (f̂ , λ̂) ≤ 0 and P (fG, λG) = 0, we have L(X
∣∣∣f̂ , λ̂) ≥ Q(f̂ , λ̂) and

L(X
∣∣fG, λG ) = Q(fG, λG). By definition, Q(f̂ , λ̂) ≥ Q(fG, λG), thus L(X

∣∣∣f̂ , λ̂) ≥
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L(X
∣∣fG, λG ). It follows that expression (49) must be positive and not smaller than

the absolute value of expression (50). Thus from Lemma 1 we have

[
∑N

i=1

∑T

t=1
(π̂it − π0it)2]

1

2 ≤ 4r

bL
‖∂πl‖ = Op(N

1

2T
1

4 +N
1

4T
1

2 ). (51)

Recall that ρ1, ..., ρr and ρ̂1, ..., ρ̂r are singular values ofN
− 1

2T−
1

2FGΛG′ andN− 1

2T−
1

2 F̂ Λ̂′

respectively. Let e1, ..., er and ê1, ..., êr be the corresponding left-singular vectors.

From Davis-Kahan Theorem (see Stewart and Sun (1990)), for j = 1, ..., r we have,

‖êj − ej‖ ≤
√
2
∥∥∥N− 1

2T−
1

2 F̂ Λ̂′ −N− 1

2T−
1

2FGΛG′
∥∥∥ /η, (52)

where η = min{
∣∣ρj−1 − ρ̂j

∣∣ ∧
∣∣ρj+1 − ρ̂j

∣∣ , j = 1, ..., r}. From equation (51) we have∥∥∥N− 1

2T−
1

2 F̂ Λ̂′ −N− 1

2T−
1

2FGΛG′
∥∥∥ ≤ N− 1

2T−
1

2

∥∥∥F̂ Λ̂′ − FGΛG′
∥∥∥
F
= Op(N

− 1

4 + T−
1

4 ).

Note that ρ1, ..., ρr are all bounded and bounded away from zero in probability. Thus

by Weyl’s inequality, |ρ1 − ρ̂1| , ..., |ρr − ρ̂r| are all Op(N− 1

4 + T−
1

4 ). Thus from As-

sumptions 6 we can conclude η is bounded and bounded away from zero in probability.

It follows that (52) implies ‖êj − ej‖ = Op(N− 1

4 +T−
1

4 ). For j = 1..., r, under penalty

function (3) the j-th estimated factor is
√
T ρ̂j êj. Under condition (4), the j-th factor

is
√
Tρjej. Thus we have

∥∥∥f̂ − fG
∥∥∥ ≤

√
T
∣∣∣
√
ρ̂j −

√
ρj

∣∣∣ ‖êj‖+
√
Tρj ‖êj − ej‖ = T

1

2Op(N
− 1

4 + T−
1

4 ).

By symmetry,
∥∥∥λ̂− λG

∥∥∥ = N
1

2Op(N
− 1

4 + T−
1

4 ).

C.2 Proof of Proposition 2 and Proposition 3

Proof. Let φ̂
∗
be the solution of the problem: min

φ∈B(D)∩

∥∥∥∥D
−
1
2

NT
(φ−φG)

∥∥∥∥≤m

∥∥∥D
− 1

2

TNS(φ)
∥∥∥
ζ
.

ζ is defined in Assumption 4. Expand S(φ̂
∗
) at φG using integral form of the mean

value theorem, we have

φ̂
∗ − φG = H̃−1(S(φ̂

∗
)− S). (53)

(1): By Lemma 7, the infinity norm of the upper-left block of H̃−1 (which equals
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1-norm since H̃−1 is symmetric) is Op(
N
2
ξ T

2
ξ

T
), and the infinity norm of the upper-

right block of H̃−1 (which equals 1-norm of the lower-left block of H̃−1) is Op(
N
3
ξ T

3
ξ

N
).∥∥∥T−

1

2 (Sλ(φ̂
∗
)− Sλ)

∥∥∥
∞
is Op(N

1

ζ + T
1

ζ ) because

∥∥∥T−
1

2 (Sλ(φ̂
∗
)− Sλ)

∥∥∥
∞

≤
∥∥∥T−

1

2 (Sλ(φ̂
∗
)− Sλ)

∥∥∥
ζ

≤
∥∥∥D

− 1

2

TN(S(φ̂
∗
)− S)

∥∥∥
ζ
≤ 2

∥∥∥D
− 1

2

TNS
∥∥∥
ζ
= Op((N + T )

1

ζ ),

where the last equality follows from Assumption 4. Similarly,
∥∥∥N− 1

2 (Sf (φ̂
∗
)− Sf )

∥∥∥
∞

is also Op((N + T )
1

ζ ). Thus by Assumption 7,

∥∥∥λ̂
∗ − λG

∥∥∥
∞

= T−
1

2Op(N
2

ξT
2

ξ (N + T )
1

ζ ) = op(1),
∥∥∥f̂ ∗ − fG

∥∥∥
∞

= N− 1

2Op(N
3

ξT
3

ξ (N + T )
1

ζ ) = op(1).

(2): By equation (53), D
− 1

2

NT (φ̂
∗−φG) = N− 1

2T−
1

2 (D
− 1

2

TNH̃D
− 1

2

TN)
−1[D

− 1

2

TN(S(φ̂
∗
)−S)].

By Holder’s inequality,

∥∥∥D
− 1

2

TN(S(φ̂
∗
)− S)

∥∥∥ ≤ (N + T )
1

2
− 1

ζ

∥∥∥D
− 1

2

TN(S(φ̂
∗
)− S)

∥∥∥
ζ
= Op((N + T )

1

2 ).

This together with Lemma 3 shows that
∥∥∥D

− 1

2

NT (φ̂
∗ − φG)

∥∥∥ = Op(N− 1

2 + T−
1

2 ).

(3): Part (1) implies that φ̂
∗
is an interior point of B(D) w.p.a.1, because φG lies

in B(D
2
) w.p.a.1. Part (2) implies that φ̂

∗
is an interior point of

∥∥∥D
− 1

2

NT (φ− φG)
∥∥∥ ≤ m

w.p.a.1. Thus φ̂
∗
is an interior point of B(D)∩

∥∥∥D
− 1

2

NT (φ− φG)
∥∥∥ ≤ m w.p.a.1. By

definition of φ̂
∗
, this implies that ∂φ

∥∥∥D
− 1

2

TNS(φ)
∥∥∥
ζ

ζ

∣∣∣φ=φ̂∗ = 0.

It follows that [D
− 1

2

TNS(φ̂
∗
)]ζ−1 = 0 since ∂φ

∥∥∥D
− 1

2

TNS(φ)
∥∥∥
ζ

ζ
= ζH(φ)D

− 1

2

TN [D
− 1

2

TNS(φ)]
ζ−1

(here [D
− 1

2

TNS(φ)]
ζ−1 denotes the vector that each element equals the ζ − 1 power of

the corresponding element of D
− 1

2

TNS(φ)), and by Lemma 3, D
− 1

2

TNH(φ)D
− 1

2

TN is negative

definite within B(D)∩
∥∥∥D

− 1

2

NT (φ− φG)
∥∥∥ ≤ m w.p.a.1.

Thus we also have S(φ̂
∗
) = 0 w.p.a.1, and consequently φ̂

∗
is the unique maximizer

of the likelihood within B(D)∩
∥∥∥D

− 1

2

NT (φ− φG)
∥∥∥ ≤ m w.p.a.1.
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(4): By definition, φ̂ maximizes the likelihood within B(D). Proposition 1 shows
that φ̂ lies in the neighborhood

∥∥∥D
− 1

2

NT (φ− φG)
∥∥∥ ≤ m w.p.a.1. Thus φ̂ maximizes the

likelihood within B(D)∩
∥∥∥D

− 1

2

NT (φ− φG)
∥∥∥ ≤ m w.p.a.1.

(5): Part (3) and part (4) together implies that φ̂ = φ̂
∗
w.p.a.1. In the following,

we simply use φ̂ to denote both.

C.3 Proof of Theorem 1

Proof. As explained in the main context, Theorem 1 follows from equation (5),

Lemma 3 and
∥∥∥D

− 1

2

TNS
∥∥∥ = Op((N + T )

1

2 ).

C.4 Proof of Proposition 4

Proof. The first term on the right hand side of equation (6) equals

∑T

t=1
(∂πlit)f

G
t +

∑T

t=1
[∂πlit(f̂

′
tλ
G
i )− ∂πlit]fGt

+
∑T

t=1
(∂πlit)(f̂t − fGt ) +

∑T

t=1
[∂πlit(f̂

′
tλ
G
i )− ∂πlit](f̂t − fGt )

= Op(T
1

2 +
T

δNT
).

By Assumption 5, the first term is Op(T
1

2 ). By Assumption 2(ii), (
∑T

t=1[∂πlit(f̂
′
tλ
G
i )−

∂πlit]
2)

1

2 is not larger than bU

∥∥∥f̂ − fG
∥∥∥
∥∥λGi

∥∥. By Theorem 1,
∥∥∥f̂ − fG

∥∥∥ is Op( T
1
2

δNT
).

By Assumption 1,
∥∥fG

∥∥ is Op(T
1

2 ). Thus the second term is Op(
T
δNT
). (
∑T

t=1(∂πlit)
2)

1

2

is Op(T
1

2 ) because by Assumption 3(i), E(∂πlit)
2 is uniformly bounded. Thus the

third term is Op(
T
δNT
). The fourth term is Op(

T
δ2NT
) because it is not larger than

bU
∥∥λGi

∥∥
∥∥∥f̂ − fG

∥∥∥
2

.

For the second term on the right hand side of equation (6), we have:

ρmin(T
−1
∑T

t=1
[

∫ 1

0

−∂π2lit(f̂ ′t(λGi + s(λ̂i − λGi )))ds]f̂tf̂ ′t)

≥ bLρmin(T
−1
∑T

t=1
f̂tf̂

′
t)

p→ bL(ρmin(ΣFΣΛ))
1

2 > 0.
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The first inequality follows from Assumption 2(ii). "
p→" follows from Theorem 1 and

Assumption 1. Thus w.p.a.1, the norm of second term on the right hand side of

equation (6) is not smaller than 1
2
TbL(ρmin(ΣFΣΛ))

1

2

∥∥∥λ̂i − λGi
∥∥∥. Thus

∥∥∥λ̂i − λGi
∥∥∥ is

T−1Op(T
1

2 + T
δNT
), which is Op(

1
δNT
). By symmetry,

∥∥∥f̂t − fGt
∥∥∥ is also Op( 1

δNT
).

C.5 Proof of Theorem 2

Proof. As presented in the main text, λ̂i − λGi = [φ̂− φG]i = −[H−1S]i − 1
2
[H−1R]i.

First consider [H−1R]i. From equation (40) we have

[H−1R]i = [H
−1
λλ′
Rλ]i + [H

−1
λλ′
Hλf ′(Hff ′ −Hfλ′H−1

λλ′
Hλf ′)

−1Hfλ′H
−1
λλ′
Rλ]i

−[H−1
λλ′
Hλf ′H

−1
ff ′Rf ]i

−[H−1
λλ′
Hλf ′(Hff ′ −Hfλ′H−1

λλ′
Hλf ′)

−1Hfλ′H
−1
λλ′
Hλf ′H

−1
ff ′Rf ]i. (54)

Consider the four terms one by one.

(R1): From equation (38) we have

[H−1
λλ′
Rλ]i = [H−1

Lλλ′
]i[Rλ]i − [H−1

Lλλ′
]i[(Vλ, Uλ)]i[−

N

cT
Ir2 +

(Vλ, Uλ)
′H−1

Lλλ′
(Vλ, Uλ)]

−1(Vλ, Uλ)
′H−1

Lλλ′
Rλ (55)

By Lemma 4(v), and Lemma 9, the 1-norm of the first term on the right hand side

of equation (55) is Op(
1

δ2NT
). By inequality (39), Lemma 9 and parts (i), (ii), (v) and

(vi) of Lemma 4, the 1-norm of the second term on the right hand side of equation

(55) is also Op(
1

δ2NT
). Taking together, we have

∥∥[H−1
λλ′
Rλ]i

∥∥
1
= Op(

1
δ2NT
).

(R2): From equation (38), the second term on the right hand side of (54) equals

[H−1
Lλλ′

]i[Hλf ′(Hff ′ −Hfλ′H−1
λλ′
Hλf ′)

−1Hfλ′ ]iH
−1
λλ′
Rλ

−[H−1
Lλλ′

]i[(Vλ, Uλ)]i[−
N

cT
Ir2 + (Vλ, Uλ)

′H−1
Lλλ′

(Vλ, Uλ)]
−1(Vλ, Uλ)

′H−1
Lλλ′

×Hλf ′(Hff ′ −Hfλ′H−1
λλ′
Hλf ′)

−1Hfλ′H
−1
λλ′
Rλ. (56)

By equation (42),
∥∥[Hλf ′(Hff ′ −Hfλ′H−1

λλ′
Hλf ′)

−1Hfλ′ ]i
∥∥
1
is Op(N

2

ξ
−1T

2

ξ
+1). This

together with parts (v) and (viii) of Lemma 4 and Lemma 9 implies that the 1-norm
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of the first term of expression (56) is Op(
N
2
ξ T

2
ξ

δ2NT
). For the second term of expression

(56), parts (i), (ii), (v), (vi) and (viii) of Lemma 4, equation (41), inequality (39) and

Lemma 9 together implies that the 1-norm of this term is also Op(
N
2
ξ T

2
ξ

δ2NT
). Taking

together, the 1-norm of expression (56) is Op(
N
2
ξ T

2
ξ

δ2NT
).

(R3): The 1-norm of the third term on the right hand side of (54) is N
1
ξ T

1
ξ

δ2NT
. The

calculation procedure is similar to (R1). The difference is that Rλ is replaced by

Hλf ′H
−1
ff ′Rf . Part (R1) uses ‖[Rλ]i‖1 = Op(

T
δ2NT
) and ‖Rλ‖1 = Op(

NT
δ2NT
). Here by

Lemma 9 and parts (x), (xiv) and (xv) of Lemma 4,
∥∥[Hλf ′H−1

ff ′Rf ]i
∥∥
1
is Op(

T
1
ξ
+1

δ2NT
)

and
∥∥Hλf ′H−1

ff ′Rf
∥∥
1
is Op(

N
1
ξ
+1
T
1
ξ
+1

δ2NT
).

(R4): The 1-norm of the fourth term on the right hand side of (54) is Op(
N
3
ξ T

3
ξ

δ2NT
).

The calculation procedure is similar to (R2). The difference is Rλ is replaced by

Hλf ′H
−1
ff ′Rf .

Taking (R1)-(R4) together, we have ‖[H−1R]i‖1 = Op(
N
3
ξ T

3
ξ

δ2NT
). Since [H−1R]i is

a fixed dimensional vector, its 1-norm and Euclidean norm has the same order, thus

‖[H−1R]i‖ is also Op(N
3
ξ T

3
ξ

δ2NT
). Note that here we choose to calculate ‖[H−1R]i‖1 rather

than ‖[H−1R]i‖ directly, because calculating ‖[H−1R]i‖ requires calculating ‖[R]i‖
and ‖R‖. From term "L1i" in Lemma 9, we can see that this requires calculating the
exact rate of

∥∥∥λ̂− λG
∥∥∥
4
, which seems quite difficult and tedious.

Now consider [H−1S]i. From equation (40) we have

[H−1S]i = [H
−1
λλ′
Sλ]i + [H

−1
λλ′
Hλf ′(Hff ′ −Hfλ′H−1

λλ′
Hλf ′)

−1Hfλ′H
−1
λλ′
Sλ]i

− [H−1
λλ′
Hλf ′H

−1
ff ′Sf ]i

−[H−1
λλ′
Hλf ′(Hff ′ −Hfλ′H−1

λλ′
Hλf ′)

−1Hfλ′H
−1
λλ′
Hλf ′H

−1
ff ′Sf ]i. (57)

Consider the four terms one by one.

(S1): From equation (38) we have

[H−1
λλ′
Sλ]i = [H−1

Lλλ′
Sλ]i − [H−1

Lλλ′
]i[(Vλ, Uλ)]i[−

N

cT
Ir2 +

(Vλ, Uλ)
′H−1

Lλλ′
(Vλ, Uλ)]

−1(Vλ, Uλ)
′H−1

Lλλ′
Sλ (58)
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Consider the second term on the right hand side of equation (58). Since [H−1
Lλλ′

]i is

symmetric, we have
∥∥[H−1

Lλλ′
]i
∥∥ ≤ (

∥∥[H−1
Lλλ′

]i
∥∥
1

∥∥[H−1
Lλλ′

]i
∥∥
∞
)
1

2 =
∥∥[H−1

Lλλ′
]i
∥∥
1
. Thus by

Lemma 4(v),
∥∥[H−1

Lλλ′
]i
∥∥ is Op(T−1). ‖[Vλ, Uλ]i‖ is Op(1). These together with equa-

tion (39) and Lemma 8(i) implies that the norm of the second term is Op(N
− 1

2T−
1

2 ).

Thus we have [H−1
λλ′
Sλ]i = [H

−1
Lλλ′

Sλ]i +Op(N
− 1

2T−
1

2 ).

(S2): From equation (38), the second term on the right hand side of (57) equals

[H−1
Lλλ′

]i[Hλf ′ ]i(Hff ′ −Hfλ′H−1
λλ′
Hλf ′)

−1Hfλ′H
−1
λλ′
Sλ

−[H−1
Lλλ′

]i[(Vλ, Uλ)]i[−
N

cT
Ir2 + (Vλ, Uλ)

′H−1
Lλλ′

(Vλ, Uλ)]
−1(Vλ, Uλ)

′H−1
Lλλ′

×Hλf ′(Hff ′ −Hfλ′H−1
λλ′
Hλf ′)

−1Hfλ′H
−1
λλ′
Sλ. (59)

As explained in (S1),
∥∥[H−1

Lλλ′
]i
∥∥ is Op(T−1). This together with Lemma 4(xiii), in-

equality (43) and parts (ii) and (v) of Lemma 8 implies that the norm of the first

term of (59) is Op(N
− 1

2T−
1

2 ).

Next consider the second term of (59). As explained in (S1),
∥∥[H−1

Lλλ′
]i
∥∥ is Op(T−1)

and ‖[Vλ, Uλ]i‖ is Op(1). These together with equation (39), parts (iii), (vii) and (xvi)
of Lemma 4, inequality (43) and parts (ii) and (v) of Lemma 8 implies that the norm

of the second term of (59) is Op(N
− 1

2T−
1

2 ). Taking together, the norm of expression

(59) is Op(N
− 1

2T−
1

2 ).

(S3): The norm of the third term on the right hand side of (57) is Op(N
− 3

4T−
1

4 ).

[H−1
λλ′
Hλf ′H

−1
ff ′Sf ]i = [H

−1
Lλλ′

]i[Hλf ′H
−1
ff ′Sf ]i − [H−1

Lλλ′
]i[(Vλ, Uλ)]i[−

N

cT
Ir2 +

(Vλ, Uλ)
′H−1

Lλλ′
(Vλ, Uλ)]

−1(Vλ, Uλ)
′H−1

Lλλ′
Hλf ′H

−1
ff ′Sf . (60)

As explained in (S1),
∥∥[H−1

Lλλ′
]i
∥∥ is Op(T−1). This together with parts (iii) and (iv)

of Lemma 8 implies the norm of the first term on the right hand side of (60) is

Op(N
− 1

2T−
1

2 ).

The norm of the second term on the right hand side of (60) is also Op(N
− 1

2T−
1

2 ).

The calculation procedure is similar to the second term on the right hand side of

equation (58). The difference is that Sλ is replaced by Hλf ′H
−1
ff ′Sf . (S1) uses

∥∥(Vλ, Uλ)′H−1
Lλλ′

Sλ
∥∥ = Op(N

1

2T−
1

2 ). Here due to parts (iii) and (vii) of Lemma 4
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and parts (ii) and (v) of Lemma 8,
∥∥(Vλ, Uλ)′H−1

Lλλ′
Hλf ′H

−1
ff ′Sf

∥∥ is also Op(N
1

2T−
1

2 ).

(S4): The norm of the fourth term on the right hand side of (57) is Op(N
− 1

2T−
1

2 ).

The calculation procedure is similar to (S2). The difference is that Sλ is replaced by

Hλf ′H
−1
ff ′Sf . (S2) uses

∥∥Hfλ′H−1
λλ′
Sλ
∥∥ = Op(N

1

2 ). Here due to parts (ix) and (xvi) of

Lemma 4 and parts (ii) and (v) of Lemma 8,
∥∥Hfλ′H−1

λλ′
Hλf ′H

−1
ff ′Sf

∥∥ is also Op(N
1

2 ).

Taking (S1)-(S4) together, we have [H−1S]i = [H
−1
Lλλ′

Sλ]i +Op(N
− 1

2T−
1

2 ). Thus

λ̂i − λGi = −[H−1
Lλλ′

Sλ]i +Op(N
− 1

2T−
1

2 ) +Op(
N

3

ξT
3

ξ

δ2NT
).

By Assumption 5(iii), we have T [H−1
Lλλ′

]i
p→ (Ḡ′ΣiF Ḡ)

−1 and T−
1

2 [Sλ]i
d→ N (0, Ḡ′ΩiF Ḡ).

Since T
1
2

δ2NT
N

3

ξT
3

ξ → 0, we have T
1

2 (λ̂i − λGi )
d→ N (0, Ḡ−1Σ−1iF ΩiFΣ−1iF Ḡ′−1). Limit dis-

tribution of estimated factors follows from symmetry. Consistency of varλ and varf

follows from Assumption 2(ii), Assumption 3 and Theorem 1.

C.6 Proof of Proposition 5

Proof. For expression (12): The j-th diagonal element of T−1F̂ ′F̂ and T−1FG′FG is

ρ̂j and ρj respectively.

∥∥∥V
1

2

NT − V
1

2

∥∥∥ = max
j

∣∣ρ̂j − ρj
∣∣ ≤ (

∑r

j=1
(ρ̂j − ρj)2)

1

2 ≤ T−1
∥∥∥F̂ ′F̂ − FG′FG

∥∥∥
F

≤ 2
∥∥∥(F̂ − FG)′FG

∥∥∥
F
+
∥∥∥F̂ − FG

∥∥∥
2

F

Thus by Lemma 11 and Theorem 1,
∥∥∥V

1

2

NT − V
1

2

∥∥∥ is Op(N
3
ξ T

3
ξ

δ2NT
). Since ρ̂j and ρj are all

bounded and bounded away from zero in probability, ‖VNT − V‖,
∥∥∥V

1

4

NT − V
1

4

∥∥∥ and
∥∥V−1NT − V−1

∥∥ are all Op(N
3
ξ T

3
ξ

δ2NT
).

For expression (13): First note that GV−
1

4

NT = (Λ
0′Λ0

N
)
1

2ΥV− 1

4V−
1

4

NT and HBai ≡
Λ0′Λ0

N
F 0′F̃
T
V−1NT . It suffices to show

∥∥∥F
0′F̃
T
− (Λ0′Λ0

N
)−

1

2ΥV 1

2

∥∥∥ = Op(N
3
ξ T

3
ξ

δ2NT
). Noting that

F 0′F 0GV−
1
4

T
= (Λ

0′Λ0

N
)−

1

2ΥV 1

2 , it suffices to show
∥∥∥ 1T F

0′(F̃ − F 0GV− 1

4 )
∥∥∥ = Op(N

3
ξ T

3
ξ

δ2NT
).

This can be proved by the following facts: (1) V−
1

4

NT−V−
1

4 = −V−
1

4

NT (V
1

4

NT−V
1

4 )V− 1

4 , (2)

F̃−F 0GV− 1

4 = (F̂−F 0G)V−
1

4

NT+F
0G(V−

1

4

NT−V−
1

4 ), (3) by Lemma 11, 1
T
F 0′(F̂−FG) =
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Op(
N
3
ξ T

3
ξ

δ2NT
).

C.7 Proof of Theorem 3

Proof. Let Y = (y1+h, ..., yT+h)
′, z = (z1, ..., zT )

′, ẑ = (ẑ1, ..., ẑT )
′, ε = (ε1+h, ..., εT+h)

′.

It follows that Y = ẑδ + ε + (FG − F̂ )G−1α and δ̂ = (ẑ′ẑ)−1ẑ′Y = δ + (ẑ′ẑ)−1(ẑ′ε +
ẑ′(FG− F̂ )G−1α). Let Ξ = diag(G, Iq), then we have ẑ− zΞ = F̂ −FG. Then due to
facts listed below, we have δ̂− δ = (Ξ′z′zΞ+Op( T

δNT
))−1(Ξ′z′ε+Op(

T
δ2NT
N

3

ξT
4

ξ )). By

Assumption 8, T−1z′z
p→ Σzz and T

− 1

2 z′ε
d→ N (0,Σzzε). Thus given T

1
2

δ2NT
N

3

ξT
4

ξ → 0,

we have T
1

2 (δ̂ − δ) d→ N (0, Ξ̄−1Σ−1zz ΣzzεΣ−1zz Ξ̄′−1). The proof for consistency of Σ̂δ is
straightforward and hence omitted.

(1) ε′ẑ = ε′zΞ + ε′(F̂ − FG).
(2) ẑ′(FG − F̂ ) = (F̂ − FG)′(FG − F̂ ) + Ξ′z′(FG − F̂ ).
(3) By Lemma 10, both (F̂ − FG)′z and (F̂ − FG)′ε are Op( T

δ2NT
N

3

ξT
4

ξ ).

(4) By Theorem 1, F̂ − FG is Op( T
1
2

δNT
).

(5) Both ‖Ξ‖ and ‖G−1‖ are Op(1).
(6) By Assumption 8(i), ‖z‖ is Op(T

1

2 ).

C.8 Proof of Theorem 4

Proof. First, ŷT+h|T − yT+h|T = z′TΞ(δ̂ − δ) + (f̂T − fGT )′G−1α+ (ẑT − Ξ′zT )′(δ̂ − δ).
By Theorem 3, T

1

2 z′TΞ(δ̂ − δ)
d→ N (0, z′TΣ−1zz ΣzzεΣ−1zz zT ).

By Theorem 2, under the assumption N
1
2

δ2NT
N

3

ξT
3

ξ → 0, we haveN
1

2 (f̂T−fGT )′G−1α
d→

N (0, α′Σ−1tΛΩtΛΣ−1tΛ α).
(ẑT − Ξ′zT )

′(δ̂ − δ) is Op(
1

T
1
2 δNT

) because (1) by Theorem 4, ‖ẑT − Ξ′zT‖ =
∥∥∥f̂T − fGT

∥∥∥ = Op( 1
δNT
); (2) under the assumption T

1
2

δ2NT
N

3

ξT
4

ξ → 0, Theorem 3 shows

that
∥∥∥δ̂ − δ

∥∥∥ is Op(T−
1

2 ).

By Assumption 8, εt is independent with xis for all i and s, thus z
′
TΞ(δ̂ − δ) is

asymptotically uncorrelated with (f̂T − fGT )′G−1α.
These together implies that (ŷT+h|T − yT+h|T )/BT d→ N (0, 1). The proof for

consistency of B̂2T is straightforward.
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D Verification of Assumption 2

(1) Probit:

The likelihood function is lit(π) = xit log Φ(π) + (1− xit) log(1− Φ(π)). The first
order derivative is ∂πlit(π) = xit

φ(π)
Φ(π)

− (1− xit) φ(π)
1−Φ(π)

. The second order derivative is

∂π2lit(π) = xit(
−πφ(π)
Φ(π)

− φ2(π)
Φ2(π)

)− (1− xit)(−πφ(π)1−Φ(π)
+ φ2(π)

(1−Φ(π))2
). Let m(π) = φ(π)

Φ(π)
be the

inverse mill’s ratio and qit = 2xit − 1. It follows that lit(π) = log Φ(qitπ), ∂πlit(π) =
qitm(qitπ) and ∂π2lit(π) = −qitπm(qitπ)−m2(qitπ). Now consider a standard normal

random variable truncated on the right at qitπ. Its variance is 1 − qitπm(qitπ) −
m2(qitπ). Since |qitπ| = |π| is bounded, the variance must be strictly greater than
zero and less than one. Thus −∂π2lit(π) is also strictly greater than zero and less
than one. The third order derivative is ∂π3lit(π) = −qit[m(qitπ) + qitπm′(qitπ) +

2m(qitπ)m
′(qitπ)]. Since |qitπ| = |π| is bounded, |m(qitπ)| and |m′(qitπ)| are also

bounded. Thus |∂π3lit(π)| is also bounded.
(2) Logit:

The likelihood function is lit(π) = xit log Ψ(π) + (1 − xit) log(1 − Ψ(π)), where
Ψ(π) = eπ

1+eπ
. The first order derivative is ∂πlit(π) = xit

Ψ′(π)
Ψ(π)

− (1− xit) Ψ′(π)
1−Ψ(π)

, which

equals xit − Ψ(π) once we plugging in Ψ′(π) = Ψ(π) − Ψ2(π). The second order
derivative is ∂π2lit(π) = −Ψ(π)(1 − Ψ(π)). The third order derivative is ∂π3lit(π) =
Ψ(π)(2Ψ(π)− 1)(1−Ψ(π)). It is easy to see that given |π| is bounded, −∂π2lit(π) is
less than or equal to 1

4
and strictly greater than zero, and |∂π3lit(π)| is less than 1.

(3) Poisson:

The likelihood function11 is lit(π) = −eπ + kπ − log k! because P (xit = k) =

p(k, λ) = e−λλk/k! where λ = eπ. The first order derivative is ∂πlit(π) = −eπ + k.
Both the second and third order derivatives are ∂π2lit(π) = −eπ. Thus it is easy to
see that given |π| is bounded, −∂π2lit(π) and |∂π3lit(π)| are both bounded away from
zero and bounded above.

(4) Tobit:

Since Tobit represents a class of models, we show through a representative case.

11Note that for Poisson regression, λ = eπ rather than λ = π. λ has to be positive while π could
be negative. In standard Poisson regression, π = x′θ, while here πit = f

0′
t λ

0

i .
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Suppose x∗it = πit + eit, eit is N(0, 1), and xit = x∗it if x
∗
it > 0, xit = 0 if x∗it ≤ 0.

The likelihood function is lit(π) = −1
2
(xit − π)21(xit > 0) + log(1− Φ(π))1(xit = 0),

where 1(·) is the indicator function. The second order derivative is ∂π2lit(π) = −1 if
xit > 0, ∂π2lit(π) = −(−πm(−π) +m2(−π)) if xit = 0. The third order derivative is
∂π3lit(π) = 0 if xit > 0, ∂π3lit(π) = m(−π) − πm′(−π) + 2m(−π)m′(−π) if xit = 0.
These together with the argument in the Probit case shows −∂π2lit(π) is bounded
away from zero and both −∂π2lit(π) and |∂π3lit(π)| are bounded above.
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