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1 Introduction

High dimensional factor models where a large number of time series are simultaneously
driven by a small number of latent factors provide a powerful framework to analyze
high dimensional data. Accompanied by an ever-increasing data size, the literature
for this model recently experienced a wave of development. For example, Bai and Ng
(2002) and Bai (2003) respectively show that utilizing the high dimensionality, we
are able to consistently determine the number of factors and establish the asymptotic
normality of the estimated factors and loadings. High dimensional factor models have
also been successfully used in macroeconomic monitoring and forecasting, business
cycle analysis, asset pricing, risk measurement, see for example Stock and Watson
(2002, 2016), Bernanke, Boivin and Eliasz (2005), Ross (1976) and Campbell, Lo and
Mackinlay (1997), to name a few.

So far the literature only considers linear factor models. However, in many macro-
economic or financial applications and in most microeconomic applications, the rela-
tionship between the dependent variable and the factors could be nonlinear. Repre-
sentative examples include but not limited to the case where the dependent variable
is categorical. Direct extension of existing theory, e.g., Bai (2003) and Bai and Li
(2012, 2016), to categorical data is not feasible because essentially both methods are
based on the covariance matrix of the continuously distributed dependent variable.
This paper seeks to establish a new estimation and inferential theory for high dimen-
sional nonlinear factor models. More specifically, this paper considers the following

single-index factor model: For : =1,...., N andt=1,...,T,

Ty ~ Gir (- ‘ﬂ-?t>' (1)

x; is the observed data for the i-th subject at time t. g;(- |-) is some known probability
(density or mass) function of z;; allowed to vary across ¢ and ¢. Note that g;(-|-) is
the conditional probability function. Weak cross-sectional and serial dependence of

zy is allowed. 79 = f¥A? and f° and )} is an r dimensional vector of factors and

79

loadings respectively. Both factors and loadings are unobservable. Both N and T are

large. The number of factors r is known. How to determine the number of factors is



studied in a separate paper.

For engineering, this model has been successfully used in data compression, visu-
alization, pattern recognition and machine learning. For social sciences, this model
also plays important role in psychology and education. For economics and finance,
possible applications are partially listed below:

(1) Macroeconomic forecasting, factor-augmented vector autoregression and busi-
ness cycle analysis: In these areas, common factors are predominantly estimated by
principal components using continuous data, see Stock and Watson (2002), Bernanke,
Boivin and Eliasz (2005) and Bai and Ng (2006). Little attention has been paid to the
treatment of categorical or mixed measurement data even though many data sets are
of this type. For example, let x1; be the GDP, x9; be the consumer confidence index
(categorical), x3; be the interest rate announcement of FOMC, etc, at time t. Let
f° denote some macroeconomic factors, then z;; is nonlinearly linked to 7% = f¥\)
through some known link function. While mixed measurement data are quite infor-
mative, they cannot be directly handled by principal components estimation. This
paper provides a rigorous solution to this issue.

(2) Credit risk analysis: Default correlation modelling has direct implications
for CDO (collateralized debt obligations) pricing, bond portfolio management and
commercial bank risk management. Intuitively, default correlation originates from
common exposures to business cycle, monetary policy, market sentiment and other
financial or sector factors. Factor models provide a parsimonious way for analyzing
default correlation and underlies many risk models used in practice. In a representa-
tive case, W?t + e is the value of company ¢ at time ¢, e;; is the idiosyncratic error
term, f{ is the common factors and z;; is nonlinearly linked to 7%,. z;; could be rating
category company ¢ belongs to, or the binary variable describing the default event, or
the credit spread of its bond, or its stock return, or its stock volatility at time ¢. For
more details on default correlation modelling and estimation, see Schonbucher (2000),
McNeil and Wendin (2007), Koopman and Lucas (2008), Koopman, Lucas and Mon-
teiro (2008), Koopman, Lucas and Schwaab (2011), Creal, Schwaab, Koopman and
Lucas (2014) and the references therein.

(3) Socio-economic status measurement: In development economics, health eco-



nomics, welfare economics and economics of education, researchers frequently en-
counter the problem of measuring the socio-economic status (more specifically the
wealth or consumption) of a household or an individual. A good measure, serving as
either the explanatory or the dependent variable, is crucial for these studies. Direct
accurate measures of household wealth or consumption usually are not available or
not reliable. Instead, the survey data contains many reliable yet categorically distrib-
uted proxies, such as living conditions and ownership of durables or assets. Treating
these proxies as the dependent variables and household wealth as the latent explana-
tory factor, household wealth could be estimated from the data of these proxies. For
example, let z;; be the i-th proxy of household ¢ and let f? be the wealth of house-
hold ¢, then x;; is nonlinearly linked to 7% = f”\? through some known link function
implied by economic theory. Filmer and Pritchett (2001) follows this approach to
construct wealth index for estimating the effect of wealth on educational enrollments
in India. The Filmer-Pritchett procedure simply extracts the factor from the binary
proxies directly by principal component. Rigorously speaking, this procedure is lack
of theoretical support and may lead to misleading results.

For all the above and future applications, it is in urgent need to develop a theoret-
ically justified method for estimating the factors and loadings from high dimensional
nonlinear /mixed data. It is also necessary to establish the asymptotic properties of
the proposed estimator under the high dimensional setup. Such asymptotic prop-
erties are needed to characterize the conditions under which the estimation error is
negligible when estimated factors are used as regressors and to construct confidence
intervals when estimated factors represent economic indices.

This paper considers maximum likelihood for estimating the factors and loadings
from nonlinear /mixed data. Both factors and loadings are treated as parameters to be
estimated and a penalty function is added to the log-likelihood function to guarantee
the uniqueness of the solution of the likelihood maximization problem. This paper
establishes the convergence rates of the estimated factor space and loading space, and
asymptotic normality of the estimated factors and loadings, given that the probability
function satisfies some regularity conditions. These regularity conditions allow for

linear models, Logit, Probit, Tobit, Poisson and some other nonlinear models. Thus



Bai (2003) is a special case of this paper. The probability function is also allowed to
vary across ¢ and t, thus a mixture of these models is allowed for. This paper also
establishes the limit distributions of the parameter estimates, the conditional mean
as well as the forecast for factor-augmented regression models when the estimated
factors are used as proxies for the true factors. This result generalizes Bai and Ng
(2006) to allow us using factors extracted from nonlinear/mixed data.

In the statistics literature, classic factor analysis has been successfully extended
to categorical data and mixed data, see for example, Bartholomew (1980), Moustaki
(1996), Bartholomew and Knott (1999), Moustaki (2000), Moustaki and Knott (2000)
and Joreskog and Moustaki (2001), to name a few. All these papers assume N
is fixed and much smaller than 7. While factors are typically of primary interest
in economic applications, factors can not be consistently estimated under the fixed
N large T setup. This limitation and the urgent need to handle high dimensional
mixed data recently has motivated researchers to explore possible solution. Ng (2015)
reviews alternative methods of constructing factors that can potentially be extended
to categorical data and explores their numerical properties.

This paper provides a general theory for factor analysis of high dimensional non-
linear data. Since factors and loadings are treated as parameters to be estimated,
the number of parameters tend to infinity as N and 7" tends to infinity jointly. This
paper solves this problem by utilizing the fact that for factor model, the Hessian is as-
ymptotically block diagonal and the tensor of third order derivatives is sparse. More
specifically, elements in the diagonal blocks of the Hessian are O,(N) or O,(T") while
elements in the off-diagonal blocks are O,(1). This paper shows that under relevant
regularity conditions, the presence of these nonzero off-diagonal blocks has no effect
on the asymptotic properties of the estimated factors and loadings. Asymptotic block
diagonality of the Hessian also provides explanation for Bai (2003)’s results from the
perspective of extremum estimation.

This paper’s solution is reminiscent of the diagonalization approaches discussed
in Cox and Reid (1987) and Lancaster (2000, 2002). The difference is that in this
paper the diagonality comes from the factor structure and high dimensionality and

holds only when N and T tend to infinity jointly, while in those papers the diag-



onality comes from artificial reparametrization. More recently, Fernandez-Val and
Weidner (2016) and Chen, Fernandez-Val and Weidner (2014, 2018) utilize asymp-
totic diagonality of the incidental parameter Hessian to derive the limit distributions
of the regression coefficients and the average partial effects in nonlinear panel mod-
els. For the estimated factors and loadings, Chen et al. (2014, 2018) establishes the
average consistency, while this paper also establishes the convergence rates, the limit
distributions and the effect of using estimated factors in factor-augmented regression.

The rest of the paper is organized as follows. Section 2 introduces notations and
preliminaries. Section 3 discusses the assumptions. Section 4 presents the limit theory.
Section 5 presents results for factor-augmented regressions. Section 6 introduces
computation algorithms. Section 7 presents simulation results. Section 8 concludes.

All proofs are relegated to the appendix.

2 Notations and Preliminaries

The log-likelihood! function is

L(X|f,X) Z Z La(fiNi (2)

where [y (7)) = log gi(xy |7 ) and 7wy = f/N;, X is the T x N matrix of observed
data and z;; is the element on the ¢t-th row and the i-th column, f = (fi,..., f;) a
Tr dimensional vector and A = ()}, ..., \y) is a Nr dimensional vector. g;(-|-) is
allowed to vary across i and ¢, thus data following different models (e.g., discretely
and continuously distributed time series) can be merged directly to extract common

factors. We consider the following representative examples.
Example 1 (Linear): Ly(fiN) = —3(xq — fiXi)?

Example 2 (Probit): 1;(f/\) = ziylog ®(fiN) + (1 — zy) log(1 — ®(f/N;)), where
®(-) is the CDF of the standard normal distribution.

"When z;; is cross sectionally or serially dependent, L(X |f,\) is the quasi-likelihood function.



Example 3 (Logit): Lu( f/\) = i log W(fIA) + (1) log(1 — W(fI\,)), where U()
1s the CDF of the logistic distribution.

Example 4 (Tobit): Suppose x4 = xf, if xi, > 0 and x4 = 0 if 2, < 0, where
xf, = fi\i+ ey and ey is N(0,1). The likelihood function is L (fi\;) = —%(mit —
fIN)?1(zy > 0) +log(1 — @(f/\;))1(zy = 0), where 1(-) is the indicator function.

Example 5 (Poisson): Ly(fI\) = —efiM + kfi\; — logk!, because P(xy = k) =
p(k,N) = e Nk and A = efii,

Let o= (N, f"), F = (f1,.., fr)'s A = (A1, ..., Ay)’. Similarly, for the true values of
the factors and the loadings, let fO = (fY, ..., f2), A\ = (AY, ..., A%), ¢ = (\Y, Y,
FO = (f0, .., f2) and A = (A, ..., A})". Also, let Oxli(mit), Op2lis(mi) and Opsliy (i)
be the first, second and third order derivative of l;(-) evaluated at m;;, respectively.
When these derivatives are evaluated at 7%, we suppress the argument and simply
write O;ly, 02l and O,sl;;.

Both factors and loadings are treated as parameters. Note that for any F', A and
any r x r invertible matrix G, FG and A(G’)~! has the same likelihood as F' and A.
To uniquely fix F' and A, we impose the normalization such that (1) F'F is diagonal,
(2) A’A is diagonal, (3) £ F'F = +A’A, i.e., the estimated factors and loadings are the
solution of maximizing L(X |f, A) under constraints (1)-(3). As explained in Remark

1 below, the solution of this constraint maximization problem is always the same as

the solution of maximizing Q(f, \) = L(X |f, A\)+P(f, \), where

PN = —gNTY (% S %Z; 72y
T r N
_gﬁ szl Zq:p+1 ( Zi:l )\ip/\iQ)2
N r r T
_gT Zp:l Zq:p.‘,—l ( thl foofia)?, (3)

is a penalty function, 0 < ¢ < by, and by, is lower bound of |0,20;:(7;;)| as presented in
Assumption 2(ii) below. Thus we can consider the estimated factors and loadings as
the solution of maximizing Q(f,\) in asymptotic analysis. For numerical computa-

tion, the algorithms in Section 6 still solves the constraint maximization problem. The
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normalization (1)-(3) is slightly different from the classical normalization 7 F'F = I,
and A’A being diagonal. We choose this normalization because with penalty (3), the
Hessian matrix of Q(f, ) has some convenient structure for analyzing its asymptotic
behavior. If we choose another normalization, all results of this paper still hold,
except for a different rotation matrix?.

Let B(D) denote the neighborhood || f||., < D and ||A||,, < D for some large
D >0, and let f = (f{, ,f:’p)’ and \ = (;\/1, ,5\,]\,)’ be the solution of maximizing
Q(f,\) within B(D). We will explain why taking f and A within B(D) in Remark
2 below. Let 7t = f'h\i, 6 = (A, '), F = (fi, ..., fr) and A = (Ay, ..., \y)". The r
columns of F' are ordered according to their Euclidean norm, from the largest to the
smallest. The r columns of A are ordered in the same way.

Throughout the paper, let (N,T) — oo denote N and T going to infinity jointly,
N x ]N 0 T x IN 0
Snr =min{ N2, T3}, Dyp = " , - r .
M { b Dy 0  TxlIp ] W 0 NxIp

2 denotes convergence in distribution. "w.p.a.1" denotes "with probability approach-

ing 1". For matrix A, let p,;, (A) denote its smallest eigenvalue and || A||, [| Az, [|All;,
1]l and [[A]]

and max norm respectively. When A has Nr rows, divide A into N blocks with

ax denote its spectral norm, Frobenius norm, 1-norm, infinity norm
each block containing r rows and let [A];, denote the g-th row in the i-th block and
[A]; = ([A]}4, .-+, [A]},)" denote the i-th block.

Remark 1 First note that for any F' and A, there exists a unique matriz G such that
P(FG,A(G")™") =0, and P(FG,AN(G")™1) < 0 for other G. If F and A mazximizes
Q(F,\), then P(F,A) =0 because otherwise P(F,\) < 0 and we can find the appro-
priate G such that L(X |F,\) = L(X |FG,A(G")™') and P(FG,A(G")™') = 0, which
implies Q(F,A) < Q(FG,A(G")™"), a contradiction. Thus the solution of mazimiz-
ing Q(F, ) is the same as the solution of mazimizing Q(F,\) under the constraints
P(F,\) = 0. The latter is the same as the solution of maximizing L(X |F,\) un-
der the constraints P(F,A) = 0, which is the same as the solution of maximizing

L(X |F,\) under the constraints (1)-(3).

2To show this, we first prove the results for this normalization, and then prove the results still
hold after changing the rotation.



3 Assumptions

Assumption 1 (i) T7'FYF° 2 S, for some positive definite Sp. There exists
M > 0 such that || f2|| < M for all t.

(i) NTTAYA® 2 2 for some positive definite $y. There exists M > 0 such that
A7) < M for all i

Assumption 2 (i) l;(-) is three times differentiable.
(ii) There exists by > b, > 0 such that by, < —0x2ly(my) < by within a compact
space of my.

(111) |Ox3lis(mi)| < by within a compact space of .

Assumption 3 There exists M > 0 such that for all N and T':
(i) B(|0414|%) < M for some &€ > 14 and all i and t.
(i) T30y Yo (v (5,1)* < M, where vy (s,8) = N7 300, B(OclisOrlir).
(iii) For every (t,s), BIN~2 SN [0:lis0nlis — B(xlis0xlit)])? < M.

Assumption 4 There exists M > 0 such that for some ¢ > 2 and for all N and T,
1 ¢
BN T2 0 Oalaf?|| ) < M,

E(T— Zthl HNﬁ% Zf\il Orlit Ny

¢
) < M.

2

Assumption 5 (i) EHN*%T*%ZZ S (TS Bl fOF) T 00100 || <

M for any s and
E|N~:T2 Zzzil Zf:l(N_l Zf\il 87r2lit)\?)\?l)_l)\?ﬁﬂlitaﬂljt
(i) B N3 N, S (0 S Ol f2 £ Ol O
B\ N73T73 S S (N ST, Dl ONY) 0l XD

2
< M for any j.

2
< M and

2
<M.

1 1 2
E\N"2T"2 Zfil ZtT=1<T_1 Z;[:I aﬂ litfto tO,)_lawlit 160)‘?/871'217?8
and
E(|N-2T-2 5N ST (NTESN 0,0l AN 10,1, A0 £ D, L,
(iii) for any i, =T-'S°F Ol fO£Y L Sip and T2 S0 04l fO 5 N(0, Qur)

for some positive definite X;p and k.

< M for any s

2
< M for any j.




(iv) for any t, =NV 9l XN — Syp and N7z SN | 9,0, L N0, Qun)

for some positive definite 3yp and 2y .
Assumption 6 The eigenvalues of the r x r matriz (Xp - Xp) are different.

3 3 1
Assumption 7 %]w — 0 as (N,T) — 0.

Assumption 1(i) corresponds to Assumption A in Bai (2003). Factors are allowed
to be dynamic with arbitrary dynamics. Assumption 1(ii) is exactly the same as As-
sumption B in Bai (2003), and ensures each factor has a nontrivial contribution. Note
that here || f?|| and ||A7|| are assumed to be uniformly bounded. This assumption is
the same as Bai and Li (2016), but stronger than Bai (2003), which only assumes
uniform boundedness of E || j‘"to||4 and E H/\?||4. In general, compactness of parameter
space is quite common for nonlinear models, e.g., Newey and McFadden (1994), Jen-
nrich (1969) and Wu (1981). Under the current setup, this assumption is necessary
because the convergence rate (and hence limit distribution) of f, is not uniform over
the parameter space of f; if [Op20;(f¥A])| — 0 as || f?|| — oc. In other words, in such
cases the convergence rates of ft will not be the same?® for all ¢.

Assumption 2(i) imposes smoothness condition on the log-likelihood function. As-
sumption 2(ii) and (iii) assumes that the log-likelihood function is concave, the second
order derivatives are bounded below and above, and the third order derivatives are
bounded above. The boundedness of the second and third order derivatives is needed
to control the remainder term in the expansion of the first order condition*. The
boundedness from below of the second order derivatives together with boundedness
of m;; are used to show consistency of the estimated factors and loadings. We ver-

ify in Appendix D that Logit, Probit, Poisson and Tobit all satisfy Assumption 2.

3For example, consider the case f{ is one dimensional and |On2l;(fA])| converges to zero
monotonically as f0 — co. Let t* = argmax f; and t** = argmin f;. Then convergence rate of
fi= would be slower than fy-- as (N, T) — oc.

*Newey and McFadden (1994) only requires two times continuously differentiable because it
expands the first order condition only to the second order and utilizes Lemma 2.4 to establish the
convergence of the Hessian. In this paper we expand the first order condition to the third order and
utilize the uniform boundedness of the third order derivatives to explicitly calculate the magnitude
the third order term. Lemma 2.4 in Newey and McFadden (1994) is no longer applicable here because
the dimension of the parameter space and the dimension of the Hessian also tend to infinity.



These are most frequently used nonlinear models. For other models, readers can check
accordingly.

Assumptions 3-5 are generalization of Assumptions C, D and F in Bai (2003) in
the nonlinear setup. When the model is linear, 0,[; is the error term "e;;" and Ozl
is a constant, and Assumptions 3-5 reduce to Assumptions C, D and F in Bai (2003)
respectively (with slight modification on the value of ¢ and ¢ and the statement of
Assumption F1). As Bai (2003), distribution of z; is allowed to be heterogeneous
over ¢ and ¢, and limited cross-sectional and serial dependence of z;; is also allowed.
If z;; is independent over ¢ and ¢ conditional on the factors and loadings, Assumption
3(ii) and (iii), Assumption 4 and Assumption 5 can be easily verified. If there is
no conditional independence, these assumptions still can be verified provided certain
weak dependence conditions are imposed on. We follow Bai (2003)’s treatment in
presenting Assumptions 3-5.

Assumption 6 is a crucial identification condition and is the same as Assumption G
in Bai (2003). It guarantees that there exists unique F and A such that FA’ = FOAY,
F'F and A’'A are diagonl and F'F/T = A’A/N. Assumption 7 is quite weak if £ and
¢ are large. Note that except for some well-designed mathematical counterexamples,

Assumptions 3(i) and 5 indeed hold with very large £ and (.

4 Limit Theory for Estimated Factors and Load-
ings

For any F and A%, let p% > ... > p2 be the eigenvalues of N 1T~ (AYA0)z F¥ FO(A”A0)3
and T be the matrix of corresponding eigenvectors, and let V = diag(p?, ..., p?). As-
sumption 1 implies that V converges in probability to the diagonal matrix of eigen-
values of E/%\E FE%\ and T converges in probability to the matrix of eigenvectors of
E/%\EFE/%\. Let G = (%)%TV’? G converges in probability to a constant matrix.
Assumption 6 guarantees G is unique for N and 7T large enough. Relationship of

G and Bai (2003)’s rotation matrix will be discussed later in Proposition 5. Let
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FC¢ = F°G and A® = A°(G~!)'. Tt can be easily verified that FEAY = FOAY and

1 1 1
FFOFC = SAYAC =V (4)
Similar to the notation in Section 2, let F¢ = (fC, .., fS&), A® = (\{, ..., A5,
O =(f% 9y, N = (N, .05 and 9% = (A, Y. By definition of F¢, it
is easy to see that f& = G'f? and \Y = G~1\Y. We consider ¢“ because G is the
unique rotation such that P(\®, f¢) = 0.

Let S(¢) = 0,Q(¢), Sx(¢) = 0,Q(¢) and S¢(¢) = 0rQ(¢) denote the score, it
follows that S(¢) = (S\(¢),S%(¢)). Let H(¢) = J43pQ(¢) be the Hessian matrix.
Decomposition of H(¢) and the expression of each component is presented in Appen-

dix A. We suppress the argument when S(¢) and H(¢) are evaluated at ¢, i.e., S =
S(¢%) and H = H(¢).

Remark 2 B(D) is designed such that (1) f!)\; is uniformly bounded over i and t,
(2) ¢% lies in B(%) w.p.a.1. Fact (1) is crucial for proving average consistency of

¢, see Proposition 1 below. Fact (2) gquarantees that ¢ lies in the interior of B(D).

4.1 Consistency

There are two difficulties in establishing consistency. First, the number of parameters
tends to infinity jointly with N and 7. Thus the classical procedure for extremum
estimators, e.g., Newey and McFadden (1994), is no longer applicable. Second, the
parameters are present in both dimensions and the likelihood function is nonconcave
with respect to the parameters. Thus it is not feasible to extend the proof strategy of
large dimensional nonlinear panels to the current setup, because they either require
there is only individual effects or time effects (see for example, Hahn and Newey
(2004) and Hahn and Kuersteiner (2011)), or require global concavity of the likelihood
function (Fernandez-Val and Weidner (2016)). Inspired by Lemma 1 of Chen et al.
(2014), this paper solves the difficulties by utilizing the boundedness from below of

—0g2ly (i) over the compact parameter space.

’Note that HfGHOO and H)\GH are bounded w.p.a.1, because f° and A are uniformly bounded

and ||G|| is bounded w.p.a.1. Thus ¢“ lies in B(Z) w.p.a.1 when D is large enough.

11



Proposition 1 (Average Consistency) Under Assumptions 1-8 and 6, as (N,T) —
| = 0(/5%) and | A= 29|| = 0, /5%

A remaining issue is that S(¢) is not necessarily zero, because the criterion func-

tion is not globally concave. If S (&5) # 0, then we can not utilize the first order
conditions to move forward. We next show that S (&5) = 0 w.p.a.l. First, Propo-
sition 1 implies that gb lies in the neighborhood HDNT ¢ — ¢° H < m w.p.a.l. By
definition, ¢ maximizes the likelihood within B (D). Thus ¢ maximizes the likelihood
within B(D)N HDNT o— 0 )H < m w.p.a.l. Second, we show in the Appendix that
within the region B(D)N HDX,%F@ — ¢G)H < m, w.p.a.l, the criterion function is con-
cave (see Lemma 3) and there exists a zero point of S(¢). This implies that the zero

_1
point should maximize the likelihood within B(D)N HDN;@ — ¢%)

‘ < m w.p.a.l.
Thus (Aﬁ must be the zero point w.p.a.1.

Proposition 2 Under Assumptions 1-4, 6 and 7, S(&) =0 w.p.a.1l.

All subsequent results do not rely on Assumption 7 directly. They rely on As-
sumption 7 purely because they rely on Proposition 2. Bai and Ng (2002) and Bai
(2003) do not need any condition on the relative magnitude of N and 7' because in
the linear setup the principal component estimator is just the global maximum, i.e.,
Bai and Ng (2002) and Bai (2003) do not have the difficulty® we encounter here.

An intermediate step for Proposition 2 is the following uniform rates.

Proposition 3 (Uniform Consistency) Under Assumptions 1-4 and 6,

i) HA AGH _O(N)ETETN+T (i) Hf fGH N%T%ulvm%)'

N2

Note that normally £ and ¢ could be large, and in such case Hj\ — )\GH

H f- fGHOO is approximately Op(T_%) and O, (N ~2), respectively. Thus these rates

are more accurate than Bai (2003)’s Proposition 2 when ¢ and ( are large.

1f we can find a better strategy to handle this difficulty, then we may get rid of Assumption 7.

12



4.2 Convergence Rates

Now we can utilize the first order conditions S(¢) = 0 to move forward. Using
the integral form of the mean value theorem for vector-valued functions’ to expand
the first order conditions, we have 0 = 8¢Q(q§5) = S+ H x (&S — ¢%), where H =
fol H(¢% + s(¢p — ¢%))ds = fo s)ds. Tt follows that ¢ — ¢“ = —H 1S and

1 .

N_%(S\—AG) 1 11 L. 1 _1
( % = Dyb(6—0%) = NV U D HDA) DS, ()

T=2(f - )
where Dy and Dy are normalization matrices defined in Section 2. Given Assump-

S H = O,((N+T)2). Utilizing the structure of H(¢)

and eigenvalue perturbation technlque, we show in the Appendix (Lemma 3) that the

tion 4, it is easy to see that

largest eigenvalue of (—D,2H(¢)Dy%) ™" is O,(1) uniformly within the neighborhood
B(D)N HD;,%(QS — (/ﬁG)H < m for some m > 0. Since ¢ lies in B(D)N HD;V%W — ¢G)H <

is O,(1). Thus we have the following

1.1
m w.p.a.l, this implies that H (=Dy2HD )™

result:

Theorem 1 (Average Rate) Under Assumptions 1-4, 6 and 7, ” = (ST—)
G (X

and [|A = X6 = 0,22,

Theorem 1 establishes the convergence rate of the estimated factor space and the
estimated loading space. In applications where estimated factors are used as proxies
for the true factors, e.g., forecasting, portfolio construction, Theorem 1 provides the
foundation for characterizing the effect of using estimated factors. In this paper, we
shall use Theorem 1 to show the limit distributions of \; — )\ZG and ft — f& and limit
distribution of the parameter estimates in factor-augmented regressions.

1

Remark 3 The key step for Theorem 1 is to show that H(—D;]%H(gb)D;f,)’lH is
1

O,(1) uniformly within B(D)N HDN%@ — ¢G)H < m. Lemma 5 of Chen et al. (2014)

proves similar result for the case of one factor. To generalize from one factor to

multiple factors, there are some purely mathematical difficulties. This paper solves

"Note that the standard mean value theorem does not hold for vector-valued functions. For more
details, also see Feng, Wang, Han, Xia and Tu (2013).
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the difficulties in step (2) of Lemma 2 and Lemma 3. Step (1) of Lemma 2 is similar
to (and inspired by) Lemma 5 of Chen et al. (2014).

4.3 Limit Distributions

Now we proceed to to establish the limit distributions of the estimated factors and
loadings. First, it is not feasible to extend Bai (2003)’s method of deriving the limit
distribution of ft — fY to the nonlinear setup, because Bai (2003)’s method relies on
expression A.l in Appendix A of Bai (2003), a crucial decomposition identity that
does not hold in nonlinear setup. Second, noting that A\ can be regarded as the
maximum likelihood estimator when f is used for f¢ and vice versa, another choice
is to expand the first order conditions Y, Oxlu(f/\i)f; = 0 at AS and use Theorem
1 to study the effect of using f for f¢ and A for \’. When the model is linear, Bai
(2003) uses this method to establish the limit distributions of Ai — A¢. However,
as explained in Remark 4 below, this method is not promising when the model is

nonlinear.

Remark 4 Using the integral form of the mean value theorem, the expansion of the

first order conditions is

0= 320 a4 S et 08 + 55 = MDAl f = A0 (6)

The first term on the right hand side equals

Zj 8 lzt ft +Z 8 lzt ft)‘G — 0 lit]ftG
Y @)= I+ Y [0(NE) — 0L~ 1E). ()

When the model is linear, without loss of generality, suppose ly(my) = —%(:C,-t —
mit)2. Then Ol (+) always equals —1 and fC, )\Z-G, ft, i, Ol and &rlit(ft'/\?) can
be replaced by "H'FC", "HI\O" vp,n o m\n Moy M and "—(F, — H'FOYH\) 4

"in Bai (2003) respectively. It follows that the four terms in expression (7) be-
comes "N H'Fley ", "= S H'FO(F,—H'FOYH- )\, "SI (F,—H'F?)ey, " and
— S (E, — H'FO)(E, — H'E?YH '\ " in Bai (2003) respectively, and the second

14



term on the right hand side of equation (6) becomes "— ZL EF/(N — H '\ " in
Bai (2003). "I~z ZtT:1 H'FPe;" is normally distributed in the limit. Lemma B.2,
Lemma B.1 and Lemma A.1 in Bai (2003) shows respectively that the last three terms
of expression (7) are OP(%% which is dominated by the first term if T2 /N — 0.
Lemma B.2 and Lemma A.1 in Bai (2003) also shows that "I~ ZtT:1 E,F!" converges
wn probability to some constant matrixz. These together shows that ”T%(S\i —H ’1>\?) "
18 normally distributed in the limit.

When the model is nonlinear, we have already reestablished Lemma A.1 of Bai
(2003) in Theorem 1. It is also feasible to reestablish Lemma B.1 and Lemma B.2 of
Bai (2003), as shown in Lemma 11 in the Appendiz. The difficulty is that we can not
get the accurate rate of the magnitude of Y1, [Oxlit(fING) — Ol £E, because we do

not have an analytical expression for O, ly( ft’ A — Ol
To solve this problem, we expand the first order conditions S (gAb) =0 at ¢°.
- N 1
0=2S(¢) =5+ H x (¢—¢G)+§R,

where R = (R;,R’f)’ . Ry and Ry is Nr and T'r dimensional with element R);, =
(6= 0%) Dporn,, Q(5) (6= 6) and Ry = (=) Dy, Q(87,) (6 — 6°) respectively.

¢;, and ¢y, are linear combinations of ¢ and ¢©. Thus

b-0% = —H'S—HOR, ®)

and 3, =3¢ = 9~ %) = ~[H'S), ~ S[HR): )

Utilizing the structure of H, we show in Appendix C.5 that

T T 1 1
[H'Sli= (Y Oluf O£ Y Onlaff + Op(N72T72). (10)

The intuition behind equation (10) is that H is approximately block diagonal. If
the Hessian is block diagonal, asymptotic behavior of the estimates for parameters
within different blocks will not affect each other. Thus as long as the dimension of

each block is fixed, whether the dimension of the whole Hessian tends to infinity
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does not matter. In current context, H is not block diagonal, but the elements in its
diagonal blocks are much larger than the elements in its off-diagonal blocks (O, (N 2)
or Op(T%) versus O,(1)). Based on this observation and the structure of H, we
show that in the expansion of [H~1S];, the extra terms resulting from those nonzero
off-diagonal blocks together have order O, (N —2T"3).

Based on the structure of H, Theorem 1 and Proposition 4 presented below, we
show in Appendix C.5 that

("R = Op(—5— (11)

Thus if %N%T% — 0, ||[H*R];|| would be o0,(T2) and hence dominated by the
first term on the right hand side of equation (10).

Proposition 4 (Individual Rate) Under Assumptions 1-4, 6 and 7, i — )\ZG =

fi— 18| = Op(ﬁ) for each t.

Op(ﬁ) for each i and ‘

Remark 5 The proof of Proposition 4 is based on expression (7) and utilizes Cauchy-
Schwarz inequality and Theorem 1. The rate Op(ﬁ) is not sharp, but enough for

calculating the order of [H ' R);.

Remark 6 The reason that the remainder term [H'R]; is asymptotically negligible

is because the tensor of third order derivatives is sparse. For example, it’s easy to see
that 301 Y0y Ono () = 0 if ke # j, and 30,0, 300 O lin() = 0 if L # s.

From equations (10) and (11), and the symmetry between \; and f;, we have the

the following theorem.

Theorem 2 (Individual Limit Distribution) Under Assumptions 1-7,

1

1,0 _ _ T2
T35 — A9 S N0, G820 S A if 52_1\7%1% 0,
M
1,2 o d Are—1 1A . N2 3 3
N2 (fo = f7) 5 N0, GTRTHE) if 5 NETE = 0,

NT
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where G = plimG, and L;p, Qir, S and Qi are defined in Assumption 5. Asymp-
totic variance of \i and ft can be estimated by

vary = T3 BelalFM R, Ol FAPREN, Ol FANFf) ™

t=1 t=1

Aa A A N PN PPN N Al oa
vary = Z Dalis (FA)AN)™ QL @l FA)PAN D Oelu(fA)AN) T

Theorem 2 not only allows discrete dependent variables but also allows the prob-
ability function to differ across individuals and time. The huge amount of discrete
data in macroeconomic and financial studies thus can be utilized, either by them-
selves or merged with continuous data, to extract information on common shocks or
the state of the economy or other relevant variables. In real applications, we may
simply choose normal density for continuous z;;. For discrete z;, specific parametric
model is needed.

Theorem 2 allows us to construct confidence intervals for the true factor process.
This is useful since in various applications factors represent economic indices. The-
orem 2 also has implication for factor-augmented forecasting. Since the estimated
factors will be used as proxies for true factors, the estimation error ft — f¢ will be

reflected in the forecasting error. We shall study this in Section 5.

Remark 7 To have limit normal distribution, Bai (2003) assumes T2 /N — 0 for
estimated loadings and N 2 /T — 0 for estimated factors. It is not difficult to see that

when & is large, our condition is approximately the same as Bai (2003)’s condition.

Remark 8 "N¢T¢” appears because we choose to calculate ||R||, rather than ||R||. If
we choose to calculate ||R||, then due to the presence of the term” L1i” in Lemma 9 in

which seems infeasible

the Appendiz, we need to calculate the exact rate of Hj\ -\,
(Note that unlike the linear case, we do not have accurate 4analytical expression of
i — A ). If the model is linear, then Oysly(-) = 0 and ” L1i” would disappear, then
there is no need to calculate |R|, and” N €T in all results of this paper except for

Proposition 3 would also disappear.

Remark 9 Let V =plimV. If the model is linear, G'S;pG = Vi and GG =
V2, and the limit variance of \; — 2 and fi — fE become VGGV and
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V_%G’thAG”*lf/_% respectively. If X;p = Qip and X4 = Qua, the limit variance
of \i — 2 and fi— fE becomes GGt and G'S;'G respectively.
4.4 Relationship of G and Bai (2003)’s Rotation Matrix

/ ’ ~ P §
Bai (2003)’s rotation matrix is Hpa = AONAO FOFVNlT, where F' = FVy+, Vnr =

diag(p?,...,p?) and p; > ... > p, are the singular values of N=:T-:FA. G depends
only on f° and \°, while Hp,; depends not only on f° and A\ but also on the dependent

variable. Moreover, we show in Appendix C.6 that

Proposition 5 Under Assumptions 1-4, 6 and 7,

Ve =V = Op(—5—) (12)

_1
HGVN; ~ Hp,,

(13)

Theorem 1 in Bai and Ng (2002) and Lemma A.1 in Bai (2003) shows ‘ F — F°Hp,,

is O ( 12 —). Given expressions (12)-
< [|7- rec] fva] +

is Op(5 ) while Theorem 1 shows HF F°G ’

(13) and F = FVNT, it’s easy to see that HF FUHBM

3

T:0 (N£T5 ). Under Assumption 7, O (NETs) = 0,(1), thus the result of Bai and

Ng is a corollary (and thus special case) of Theorem 1.

= 0,

Corollary 1 Under Assumptions 1-4, 6 and 7, Fwe

Theorem 1 and Theorem 2 in Bai (2003) shows that Nz (f, — Hly,; f°) and Tz (A; —
Hz1\%) has limit normal distribution, while Theorem 2 shows that N2 (f, — G'f°)
and T2(A; — G\ has limit normal distribution. Since f, — Hl,, ft = ];;( fi —
G'f) + (GVX,% — Hpa)'fP, expressions (12)-(13) and the condition NENETE g

Ot
implies that Bai’s result is a corollary (and thus special case) of Theorem 2.
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Corollary 2 Under Assumptions 1-7,

1
T5 (3 — Hy' A0 5 A0, V3G 18100 1) zf;—2N2T§ =0
NT
1 / d —_1 = _1 1 3 3
N2 (f; — Hpf?) 5 N0,V 10" Sl Q2 GV )f—NfT& — 0.
NT

5 Inference and Forecasting for Factor-augmented

Regressions

In this section we shall use the results and techniques developed in Section 4 to study
the effect of using estimated factors on factor-augmented regressions. Consider the

following factor-augmented regression model:

Yith = a/fto + B'Wi + €ins (14)

where f? is a 7 dimensional vector of factors, W is a ¢ dimensional vector of other
variables and h is the lead time between the dependent variable and information
available. W, and y;,j, are both observable. f? is unobservable, but a large number
of predictors x;;(i = 1,..., N;t = 1,...,T) are observable and can be used to estimate
2. The probability function of z; is g (- | f \?), as introduced in Section 1. gy(-|-)
satisfies the regularity conditions listed in Assumption 2.

When vy, is a scalar and z;; = fY )\? + e, this is the "diffusion index forecasting
model" of Stock and Watson (2002). When h = 1 and w1 = (f21,, W/,,)’, this is
the FAVAR of Bernanke et al. (2005). When h = 0, y; is a scalar and z;; is discretely
distributed, this is the model considered in Filmer and Pritchett (2001). When w4,
is a scalar and z;; is discretely distributed for some ¢ and continuously distributed for
the other ¢, this model can be used to analyze and forecast credit risk.

We shall use F' as proxy for F°. The objective is to characterize the effect of using
F for F° on the limit distributions of the parameter estimates, the conditional mean
as well as the forecast. Bai and Ng (2006) studies this effect when the factors are

estimated by principal components and z;; = f )\? + e;;. The results in this section

19



generalize Bai and Ng (2006)’s results to allow x;; to have nonlinear relationship with

the factors for all or some 1.

Assumption 8 Let z = (f2, W)). B||W,||* < M and E(¢$) < M for some & > 14
and all t. B(ewin |Ye, 26, Yi1, Zt-1,-.- ) = 0 for all h > 0. ¢ is independent with ;s for
all © and s. Furthermore,

() Ty 22 = By

(ii) T2 Zthl 2€iah 4, N(0,%...), where ¥, = plimT* Zthl € n2t7,
N_%T_% Zfil EZ=1<N_1 Zi\il arr?lit)‘z‘o)‘?/)_lawlit)‘gwt, 2 <M,

B HN_%T_% Yoy S (NS Dl AN ) Ol N e

2
<M.

Assumption 8 corresponds to Assumption E in Bai and Ng (2006). Part (i) and
part (ii) are exactly the same as part (1) and (2) of Assumption E in Bai and Ng
(2006). Bai and Ng (2006) also assumes that W; and ¢; are independent with "e;;"

" is the error term. The independence between ¢; and x;,

for all 7 and s, where "e;,
here corresponds to their independence between ¢, and "e;,". The second condition of
Assumption 8(iii) is not difficult to verify using the independence between ¢, and ;.
The first condition of Assumption 8(iii) corresponds to the independence between W,
and "e;s" in Bai and Ng (2006).

We shall only consider the case where y; is a scalar. When , is a vector, the results
are conceptually the same. Let 5 = (f/, W) and 6 = ((G~a),8')". Let & = (&, 3

be the least squares estimator of regressing 1,45, on %, i.e., & is an estimates of G~ ta.

Theorem 3 (Inference) Under Assumptions 1-4, 6-8, and assume 5—N T 0

as (N, T) —

'

T3(5 = 8) 5 N(0,%5),
where Y5 = 1Y% B2 and = = diag(G,1,). A consistent estimator of ¥5

. T—h 4 4 _1x~T—h 2 4 - T—h g 5
is s = (T 2, 228) (T o &) (T 0, 2) ™

Theorem 3 implies that using the estimated factors does not affect the limit distri-
bution of § when the factors are estimated by maximum likelihood and the probability

function of z;; satisfy Assumptions 2. Theorem 3 generalizes Theorem 1 of Bai and
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Ng (2006) to allow factors to be extracted from discrete or some other nonlinear data.
This generalization should be valuable as in many factor-augmented regressions the
information about the common factors are contained in discrete or mixed data. The-
orem 3 provides theoretical support and guidance for exploiting these information.
For factor-augmented vector autoregression (FAVAR), the result and proof is con-
ceptually the same. We do not repeat here. Thus Theorem 2 of Bai and Ng (2006) is

also a special case of this paper.

Remark 10 Theorem 1 of Bai and Ng (2006) requires T> /N — 0. When & is large,
the condition 2> NET% — 0 are close to T%/N — 0.

2
6NT

Now consider forecasting for factor-augmented regression models. By Assumption
8, E(€rsn |Yt, 2t, Yt—1, 21, ... ) = 0. Thus the conditional mean yr,pr equals o' f +

B'Wr. Let §rynr = Slégp be the forecast of yripr.

1
Theorem 4 (Forecasting) Under Assumptions 1-8 and assume g;—zN ST — 0 and
NT

1
NI NETE 0 as (N, T) — oo,

&
(r4+njr — Yrsnr )/ Br < N(0,1),

where B2 = T~ 015, S er + N7 2/S QX . A consistent estimator of B2

is By = T2, %20 + N~ @ var; ' av.

Theorem 4 generalizes Theorem 3 of Bai and Ng (2006) to allow factors to be
extracted from discrete or some other nonlinear data. The variance of the estimated
conditional mean has two components, one from the estimated parameters & and
the other one from the estimated factors fT. Compared to cases where factors are
observable, the presence of the latter component is the effect of using estimated factors
on the estimated conditional mean.

Since yrin = Yrnr + €744, the forecasting error is

€T+h = YT+hT — YT+hT — €T+h-
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Given Theorem 4 and assume ¢, is i.i.d.N(0, 0?), we have ép, ~ N(0, o2 +var(Jrinr)).

2

o2 can be consistency estimated by 7! ZtT:1 ¢ and var(§rinr) can be consistently

estimated by B% Prediction intervals can be constructed correspondingly.

Remark 11 Theorem 3 of Bai and Ng (2006) requires T2 /N — 0 and Nz /T — 0.
When € is large, the conditions L= NETE = 0 and Y2 NET¢ — 0 are close to

ST St
Tz/N — 0 and N2 /T — 0.

6 Algorithms

We shall introduce two algorithms, alternating maximization and minorization max-
imization, to numerically calculate the maximum likelihood estimator. The latter is
computationally simpler, but so far we can only show it applies to Probit, Logit and

Tobit. Whether it applies to more general models is unknown.

6.1 Alternating Maximization (AM)

Algorithm:
Step 1 (Initial values): Randomly generate initial values of the factors, f(o).
Step 2 (Iterate): For k =0, ..., calculate

X(k) = argmaxL(X‘f(k),)\),

flHD = argmaxL(X‘f,j\(k)).

Iterate until L(X f(k:+1)75\(k+1)

) — L(X ‘f(k), S\(k)) < error, where error is the level
of tolerated numerical error.

Step 3 (Repeat): Repeat step 1 and step 2 many times to get many local maximum.
Take the one with the largest likelihood.

Step 4 (Normalize): Suppose f(s) and ;\(S) be the estimator from step 3. Let PG =
(fl(s), o f:(ps))’ and A®) = (jxis), o 5\5{;))’. Let V) be the diagonal matriz of eigenvalues
of NI YA A) 2 PO FE(AGA®)2 and T be the corresponding matriz of
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1

eigenvectors, and let G) = (%/A\(S)'A(S))%Y(S)(V(S))_Z. Choose F' = FOG®) and
A = A© (GO 1Y as the solution of the likelihood mazimization problem.

This algorithm is not totally new. In the machine learning literature, similar
algorithm has been proposed in Collins, Dasgupta and Schapire (2001) and Schein,
Saul and Ungar (2003). The name "Alternating Maximization" comes from step 2,
where we choose S\(k) to maximize the likelihood for given f (k) and then choose f (k+1)
to maximize the likelihood for given 3", This is based on the fact that L(X|f,\)

is globally concave with respect to A for given f and vice versa. Because the like-

lihood is maximized alternately, we have L(X |f®*+1), S\(HU) > L(X | f*+D), S\(k)) >
Ay ok
L(X | f®), )\( )). Thus convergence of step 2 to a local maximum is guaranteed.
Whether the local maximum is global depends on the initial values ( f ©), 5\(0)). To

search the global maximum, a common practice is to randomly choose initial values
many times and take the one with the largest likelihood among all local maximum.
We follow this common practice in step 3. Step 4 normalizes the estimator from step

3 so that F'F equals A’A and both are diagonal.

6.2 Minorization Maximization (MM)

Algorithm:

Step 1 (Initial values): Randomly generate initial values of the factors and the
loadings, (f(o),;\(o)).

Step 2 (Iterate): For k =0, ..., first calculate m(k) /! k)//\ +5- (9 lzt( PR )f or
i=1,...,N and t =1,...T, then (f*+D, P )) — argmin >N 1Zt 1( ft )2
Tterate until L(X |f¢+D /\(k+1)) — L(X |f®), X(k)) < error, where error is the level
of tolerated numerical error.

Step 3 (Repeat): Repeat step 1 and step 2 many times to get many local maximum.
Take the one with the largest likelihood.

Step 4 (Normalize): Suppose f(s) and 5\(8) be the estimator from step 3. De-
ﬁne F®A® and G in the same way as step 4 of the AM algorithm. Choose
F= G(S and A = A (GO as the solution of the likelihood mazimization

problem.
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In the econometrics literature, Chen (2016) first proposes this algorithm for non-
linear panel models. This algorithm is also studied by de Leeuw (2006) in the statistics
literature. Minorization maximization is a class of algorithm more general than the
expectation maximization (EM). A function h(x|y) is said to minorize a function [(x)
at y if h(z|y) < [(x) for all x and h(yly) = I(y), i.e., h(z|y) lies below [(x) and is
tangent to [(x) at the point y. To maximize (), the MM algorithm starts from an ini-
tial value z(*) and iteratively maximizes h(x|z*)) until convergence. By definition of
h(z|y), it is not difficult to see that I(z®)) = h(z®|z®) < h(xF+D|2*)) < [(x-+D),
Thus convergence to local maximum is guaranteed. In applications, how to choose
h(z|y) mainly depends on computational simplicity. If there exists a function w(y)
such that I(z) —(y) > I'(y)(z —y) + 2w(y)(z — y)? for all z and y, a popular choice is
hzly) = 1(y) + ' (y)(z — y) + 3w(y)(x — y)*. For more details on the MM algorithm,
see Bohning and Lindsay (1988), Hunter and Lange (2004) and Lange, Hunter and
Young (2000), to name a few.

In current context, in view of the fact O,2l;(m;) > —by (As shown in Appendix
D, by = 1 for Probit model and by = i for Logit model.), we choose hy(z|y) =
Lie(y) + U, (y)(z — y) — 3bu(z — y)? for each (i,t). Let A = ft(k)’jxgk), it follows that

7

(™) 2 (@) + Oula () (F T = 7)) = Sbu(d T - #)?

~ 1 R N aﬂ_ll ,ﬁ_gk)
) Sl s Pl
2 »

)? +

Take sum over ¢ and ¢, then L(X ‘f‘(k+1)’ S\(k-&-l)

1 N T k) a2, L NoT - (k) )32
_§bU Zi:l thl(zit — Ty )T F %Zi:l thl(aﬂlit<7rit )"

5 < (k1
If frgfﬂ) = 7" this term is zero. Since £V and )\E Y minimizes SV Zthl(i’ff) -

it
f(k+1),5\(k+l)) is not

)— L(X ‘f(k), S\(k)) is not smaller than

fiA\:)?, this term must be nonnegative, and consequently L(X

Aoy o (k
smaller than L(X ’ f®) )\( )). This guarantees convergence of step 2 to a local maxi-
mum. Step 3 and Step 4 are the same as the AM algorithm discussed above.

Unlike the AM algorithm, for MM algorithm we do not need to do alternation.

24



We only need to calculate the eigenvectors, which can be very fast using standard

software package.

7 Simulations

The main purpose of this section is to access the adequacy of the asymptotic dis-
tributions in approximating their finite sample counterparts. To allow graphically
presenting the distribution of the estimated factors and loadings, we consider the case
with one factor. Fori=1,.... N and t =1,...,T, f; and ); are i.i.d.N(0,1) and once
generated, they are normalized to f¢ and Y such that & > (f&)2 = & S8 (A2
f¢ and \S are fixed down for each simulation. For the given f¢ and A, we consider
three data generating processes (DGPs) for x;;. Results for more DGPs, e.g. Poisson,
Tobit or others, can be provided if requested.

DGP 1 (Logit): Fori =1,...., N and t = 1,...,T, z; is a binary random variable
and P(zy; = 1) = U(fS\Y), where U(2) = 1/(1 + e ).

DGP 2 (Probit): Fori=1,..,N and t = 1,...,T, z; is a binary random variable
and P(xy; = 1) = ®(fEAY), where ®(-) is the cumulative distribution function of
standard normal distribution.

DGP 3 (Mixed): For ¢ = 1,...,2N/5 and t = 1,...,T, z; is a binary random
variable and P(z; = 1) = U(fEA\S); fori = 2N/54+1,..,4N/5 and t = 1,....,T, xy
is binary random variable and P(z; = 1) = ®(fCAY); for i = 4N/5 +1,..., N and
t=1,...,T, zy is normally distributed with mean f¢ )\iG and variance 1.

Once {wy;i = 1,...,N,t = 1,...,T} is generated, we use the MM algorithm® to
calculate the maximum likelihood estimators, {ft,t =1,...,T} and {5\1,2 =1,..,N}
For step 1, the initial values of the factors and loadings, ( ft(o), 5\20)) are randomly gen-
erated from standard normal distribution for DGP1 and Uniform(—2,2) for DGP2
and DGP3°. For step 2, we choose by = }1 for DGP1 and by = 1 for DGP2 and
DGP3. This is because —0z20;(-) is bounded by ; for the Logit case, by 1 for the

Probit case and equals 1 for the Gaussian case. For step 3, the maximum number

8We choose the MM algorithm because it is computationally simpler than the AM algorithm.
9We choose U(—2,2) for DGP2 and DGP3 partly because Matlab’s default computational accu-
racy is limited.
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of iteration is 20. In simulations, we find the convergence speed is very fast at the
beginning. The difference between the fourth iteration and the twentieth iteration is
not large. The number of simulations is 2000.

Due to limited space, we only present results for (V,7") = (50,50) and (100, 100).
According to Theorem 2, N %ZEA( ft — f&) follows standard normal distribution!? for
each t and so does T%ZEF(S\Z- — )\ZG) for each i. Figure 1 displays the histograms
of N %Ei /2, Al fT/Q — f$/2> for the three DGPs. Figure 2 displays the histograms of
T%E]%V/Q’F(;\N/g — A§/2) for DGP1 and DGP2. For DGP3, Figure 3 displays the his-
tograms of T%ZEF(X» — %) for i = N/5, 3N/5 and 9N/10. The histograms are
normalized to be a density function and the standard normal density curve is over-
laid on them for comparison. It is easy to see that in all subfigures, the standard
normal density curve provides good approximation to the normalized histograms.
Note that for different subfigures, the variance of the unnormalized estimation error,
ie., ft — f¢ and i — )\iG, varies with N, T and DGP of z;;. But once normalized,
the estimation errors always approximately follow the standard normal distribution.
Also, the approximation is better as N and T increases from 50 to 100. These together
lend strong support to the theoretical results.

Now we consider the factor-augmented regression, y; 1 = o' f) + B'W; + €141-
We already have f? and ft. W, is i.i.d.N(0,1) and is fixed down once generated.
{41, t = 1,...,T} is i.i.d.N(0,1) and generated 2000 times. For the regression co-
efficients, we choose @ = 3 = 1. According to Theorem 4, (§ri1r — yr41yr)/Br
should follow standard normal distribution. Figure 4 displays its histograms for the
three DGPs. As Figures 1-3, the standard normal density curve is overlaid on the
normalized histograms. On the whole, standard normal distribution provides rea-
sonable approximation. The slight skewness of the histograms for the Logit case
disappears if we further increase N and T'. Theorem 4 also allows constructing con-

fidence intervals for the conditional mean yr,i7 and the one step ahead forecast.

The 95% confidence interval is (Jri1r — 1.96Br, §ri1r + 1.96Br) for yryqr and

ONote that here ¥;r = Q;p, Sta = Qia, and since f; and \; are i.i.d. N (0,1) and N = T, we
have G = 1.
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Table 1: Coverage Rates of Confidence Intervals

Logit Probit Mixed
N T grewr  Yren Yrsnr  Yren  Yrinr YT
50 50 0954 0.947 0.946 0.948 0.959 0.950
50 100 0.955 0.951 0.961 0.950 0.943 0.952
100 50 0.931 0943 0.961 0.951 0.954 0.952
100 100 0.962 0.944 0.941 0950 0.948 0.951

(Yr1r — 1.964/BF + 02, griar + 1.964/BF + 02) for the one step ahead forecast.

Table 1 reports the coverage rates for the three DGPs. In all cases, the coverage rate

is close to the nominal level 95%.

8 Conclusions

This paper studies maximum likelihood estimation of factor models with high dimen-
sional nonlinear/mixed data. Convergence rates of the estimated factor space and
loading space and asymptotic normality of the estimated factors and loadings are
established under mild conditions that allows for linear models, Logit, Probit, Tobit,
Poisson and some other nonlinear models. This paper also establishes the limit distri-
butions of the parameter estimates, the conditional mean as well as the forecast when
these estimated factors are used as proxies in factor-augmented regressions. These re-
sults provide a rigorous treatment of high dimensional nonlinear /mixed data in factor
analysis and factor-augmented regressions. Given the prevalence of nonlinear /mixed
data, empirical applications of the results developed in this paper should be fairly
fruitful, especially to the topics discussed in the Introduction. For example, it would
be interesting to apply this paper’s method to real credit default data. We hope
this paper would trigger further developments in the analysis of high dimensional

nonlinear data.
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Figure 2: Distribution of the Estimated Loadings (Logit and Probit)
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Figure 3: Distribution
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Figure 4: Distribution of the Estimated Conditional Mean
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Appendix

A Structure of the Hessian

Since 8¢P()\G, ) =0, the score is

T T N N
S=0Q Oxhef Y Ol Y 0N Y Oelir(T) (15)

For the Hessian, define

. Hpw(0) HL/\f’(¢)
Hilg) = [ Hppn (o) Hrpp(9) ] ‘ 10)
and
e =| O Tl (a7
- Jrn () 0 '

Hiv(¢) is of dimension Nr x Nr and block-diagonal. Each block is r x r and the i-th
diagonal block is 32/, dplip(mi) fuf!. Hpsp(¢) is of dimension Tr x Tr and block-
diagonal. Each block is  x r and the ¢-th diagonal block is Zszl Oz Lot (Tt ) N A -
Hixp(¢) is of dimension Nr x Tr. Each block is r x r and the (i,¢) block is
Or2lip(mit) fiX;. Hp gy (9) is the transpose of Hyxp(¢). Jrap(¢) is of dimension NrxT'r.
Each block is 7 x r and the (i,t) block is Oxliy(mi) .. Jpn(¢) is the transpose of
Jiap (@). It follows that

Ope L(¢) = H(0) + JL(9)- (18)

Let Hp(¢) = Osy P(¢), then

H(¢) = Hp(¢) + Jo(¢) + Hp(0). (19)

Next, for p = 1,...,7 and ¢ = p + 1,...,r, define v,, u,, and uy, as follows. Let v,

be a Nr + T'r dimensional vector. For the first Nr elements, in the i-th block, the



p-th element is \;, and all the other elements are zeros. For the last T elements, in
the ¢-th block, the p-th element is — f;, and all the other elements are zeros. Let u,,
be a Nr + T'r dimensional vector. The last T'r elements are all zeros. For the first
Nr elements, in the i-th block, the p-th element is \;;, the ¢g-th element is A;, and all
the other elements are zeros. Let u,, be a Nr 4 T'r dimensional vector. The first Nr
elements are all zeros. For the last T'r elements, in the ¢-th block, the p-th element is
ftq> the g-th element is f;, and all the other elements are zeros. Also, when \ = A
G G

and f = f v, u,, and u,, are denoted as vy, Uy, and qup respectively. It can be

pq
verified that

N T N T
Zz 1 )\qu Zt:l ft2q 2 Zi:l )\ZZq thl ft2q

SN, S . )
Do [( ]\} - tTl )] = 8Dyhv,vi Dy
SN, Sl
HA(= - = DU (I @ ), (20)

N T

where ¢, is an r X r matrix with the ¢g-th diagonal element being one and all the other

elements being zero. Also,

N N

Do (D Mphia)] = 2lupgig + (Y- Aphig) Dil, (21)
T T

aqﬁqﬁ/[( Zt:l ftpftq)Q] - 2[quu;p + ( Zt:l ftpftq)D2]a (22)
1 0 0 0

where D; = N @ tpg , Dy = and ¢,, is an r X r matrix with

Prq
0 0 0 It ® Ly

the (p,q) element and the (g, p) element being one and all the other elements being
zero. Since %F GIpG = %AG’ A% and both are diagonal, the second term on the right

hand side of (20), (21) and (22) are all zero when f¢ and A are plugged in. Thus

Hp Z  NTDy v Dy

+Nz Zq p+1 131 1?‘1,+ Zp 12,] =p+1 % qu/ (23)



B Lemmas and Their Proofs

Lemma 1 Under Assumptions 2 and 3, ||041|| = Op(N3T2 + N2T4).
Proof. Let 0,1 denote the N x T matrix with 0,l;; in the i-th row and ¢-th column.
We shall show E ||0,1||* = O(NT? + N2T). First note that

4 , 9 , 9 T T N )
HaﬂlH = H(aﬂl) &JH < H(aﬂl) a7rl||F = Zs:l Zt:l(zizl awlisawlit) .

It is easy to see that E(Zf;l OxlisOxl;t)? is not larger than the sum of QE(Z?; [0, l;5O0rlis—
E(0xl;50:1:)])? and Z(Zij\il E(0xl;5s0x1;t))*. Under Assumption 3, the former is not
larger than NT2?M while the latter is not larger than N2TM.

Note that the order O, (N iT2 + N2T+7) is not sharp. Results in random matrix
theory show that if 0,/; is independent over ¢ and ¢ and its fourth moment is uniformly
bounded over i and ¢, then ||0;l|| = O,(max{N 2,T2}). But random matrix theory
has not established this result under weak dependence over ¢ and ¢t. Lemma 1 allows
for serial and cross-sectional dependence. Although not sharp, its order is enough for

proving Proposition 1. m

Lemma 2 Under Assumptions 1, 2 and 6, (D;]%HD;]%)’lH = 0,(1) as (N,T) —

Q.

Proof. Step (1): We first introduce wg] and ng. Forp=1,..,randgq=p+1,.., 1,
wg] is a Nr+T'r dimensional vector. For the first Nr elements, in the i-th block, the

p-th element is )\Z-C; and all the other elements are zero. For the last Tr elements, in

G
ap

the ¢-th block, the ¢-th element is — ftg and all the other elements are zero. w;’ is a
Nr + Tr dimensional vector. For the first Nr elements, in the i-th block, the ¢-th
element is /\g and all the other elements are zero. For the last T'r elements, in the
t-th block, the p-th element is — fg and all the other elements are zero. It can be

verified that under condition (4),

G

4 are all orthog-

1 1 1
L forp=1,..,rand ¢ = p+1,...,7, D25, Dy2ws and DyZw
1

_i _1
onal to the space spanned by eigenvectors of D3 Hr Dz,



-y P3 = 17"'7T7 G2 = P2 + ].,...77“ and q3 —
1

2. for any p; = 1,.. p2:1
ps+1,..,r, D NTvg, Dy NTwp2q2 and D 2wS  are orthogonal to each other.

) 7') (V)\7Vf) and

Let V = (v, ..
— (G a , G a G .G G , G e e
W= (Wry, ey Wy WHG, ooy Wopy ey W 1) WYy ey W5 Way ey Wiy oy Wil 1y)
! 1\/
= (W5, Wy)

Note that V, Vi, Vi, W, Wy and W; are of dimension (Nr + 1r) x r, Nr x r
Tr xr,(Nr+Tr)xr(r—1), Nr xr(r—1), Tr x r(r — 1) respectively. Next, define

H such that
1. 1 1 1 1 r
2 -2 _ -2 -2 -2 E G, Gl
G G/

DD DEIRE T TS S B
p=1 &—q=p+1 “ra'pq p=1 —q=p+1 Yap qp Dy

and let H,,/, H, f H £y and H 7 be the upper-left, upper-right, lower-left and lower-
right block of H. Tt can be verified that H,p is of dimension N7 x Tr and the (4, t)

block is (Dp2li + ¢) x fEAY, and

y T
Hyy = Hpyw _CN(VMW)\)(V)\aWA)/, (24)
y N
Hyp = Hygp = con (Vi W) (Ve W) (25)
1. 1
—D 3 HDp5 can be written as
N) o ¢G N) o G 1’
, M o @it ]
—0,2l; ! D2 26
Dyy Z@ 1 Zt 1 t ) 1§T) ® )\iG 1§T) ® )‘iG TN ( )
In ® C:lr ZtT:1 fthtG, 0
- 1 =N \G\Gr (27)
c=(Va, W) (Via, W 0
[ eAta sy 9
I 0 e (Vi W) (Vi Wy)'
where 1% is an y dimensional vector with the z-th element being one and all the
8) are positive semi-definite.

other elements being zero. Expressions (26) and (2
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1

Since %23:1 e =+ ZN )\G)\G' = Vz and V converges in probability to the
1
diagonal matrix of eigenvalues of ZXE F23, the minimum eigenvalue of (27) is posi-
tive and bounded away from zero w.p.a.l. Thus there exists some b > 0 such that
Puin(~ D3 HD73) = b wp.a.l.
Step (2 ) The positive definiteness of D;;]j] D;i, implies that eigenvectors of

l
1 e
D3 H Dy} together with {#, =1,..,r} {72 NTwW =1,.,rqg=p+
HDNT g H NTqu
.,r} and {H NTw“p ,p=1,....,7,¢=p+1,...,r} constitutes an orthonormal basis.
Dyiws,

Under this basis, for j = 1,...,r and k = j+ 1,...,7, let (u§ ]k 1y "ujc'lc,(N—l—T)r—{(r—l)) be

—2,.G ? G
D N7 wpg DNqup

1 —2..G
. . . -1 -1 D
the coordinates of u¢ corresponding to eigenvectors of D 2 H; D} and —2—, and
jk TN TN —1 )
HDNTUZ?
. . D 2ZwS w8
let uj k.pg and ujk 4 D€ the coordinate of ujcfc corresponding to H NP1 and H Dy T o

respectively. Coordinates of uij are defined in the same way.
To prove the Lemma, it suffices to show that there exists C' > 0 such that for any
1 1
vector a with |la|| =1, /(=D 3 HD;%)a > C > 0 w.p.a.l as (N,T) — oco. Let

(CLl, v QNHTYr—r(r—1)5 @125+« Alry @235 «oy A2y ooy Q(p—1)r; Q215 +-5 Apl, @32, «-5 Ap2, ooy ar(r—l))
be the coordinates of a. Plug in equations (19) and (23), we have

_1 _1 _1
a'(~Dy2HD2)a = d(=Dp3HLD N—i—cz D TUpUGID 3)q
G/ G, Gr

Jkruak Ugj U
ted Z] 1Z —g+1 + T Ja
—N"2T 24 Jya. (29)
The first term on the right hand side of (29) is not smaller than p SN HTIr=r(r=1) al2

w.p.a.l because the smallest nonzero elgenvalue of =D, NH 1 Dpk N+c > -1 Dx NT’U ol D3
is not smaller than pmin(—DTK[H DTN). The second term on the right hand side of

. r r (a'u.G )2 (a’uG4)2
(29) is not smaller than c; > 5, > 7). [—3F— + —

| for some 0 < ¢; < ¢. How



to choose ¢; will be discussed later. For a’ ujc';f, we have

N+T)r—r(r—1) r r
1, G _ § ( G 2 2 G G 2
(a ujk?) - [ =1 alujkl + p=1 g=p+1 apqujk Dq + aqpujk qp)]
(N+T)r—r(r—1)
- (21:1 alu]kl Zp 1 Zq, 11 apqujk pg T aqpuak qp)]
(N4+T)r—r(r—1)
+2<Zl:1 alujk,l)[i :pzl E :q:erl(anujk,pq + a’qpujk,qp)]

r r (N+T)r—r(r—1) 1
> [szl Zq:pﬂ(amuﬁ’pq + aqpujG,g,qp)]2 — Q(lel a%)é HU%W ,

heap)

where the last inequality follows from ’Z;Zl > aepi1 (pgtiSh, g + AgpuSi

S 1,G
Similarly, for a'uy;, we have

(N+T)r—r(r—1)
@ > 1Y 3 (gt e )P =20 b a1

Thus the second term on the right hand side of (29) is not smaller than

r r 1 r r
“ Zj:l Zk:jJrl{N[Zp:l Zq=p+1(apquﬁqu + g gp)]’
1 r r
+T[Z:D 1 Zq p+1 apquij yo& + anU’ij qp)]Q} (30)
(N+T)r—r(r—1)
—20() TOED DD DN 174 Rt 71 DR G

By Assumption 1, expression (31) is not smaller than —2¢;r(r—1) M (3N 7071 42)3

< llaf flusi I

for some 0 < M < oo w.p.a.l. To evaluate expression (30), let

x _ (G G .. G G . .. .G G el /
U = (Ujmza ooy Wik 10 Wik 235 -+ Ujk 2rs -3 Uik (r—2)(r—1)1 Uik, (r—2)r> ujk,(r—l)r)

and define uj; similarly. Let
* —5 (% * %k E R * Lok .
ur = [N 2(“12’ ey Uppy Ugzy -ovy Uy "'7u(r—2)(r—1)7U(T—Q)T’U(T—I)T)’
-1/ % * % * 0, % * Lk
T2 <u217 ey Upp Uggy voey Upgy oo u(rfl)(rfz)v Ur(rfz)v ur(rfl))]a

then expression (30) is not smaller than ¢, p,,, (U*U*) >, 37 (a2, 4+ aZ,). Un-
der Assumptions 1 and 6, plimU* is full rank (We shall prove this later). Thus
plimU*U* is positive definite. This implies that there exists d > 0 such that



Pain(UU) > d w.p.a.l as (N,T) — oo. It follows that expression (30) is not
smaller than ¢;d >, >~ (ap, +aZ,) w.p.a.l.

The third term on the right hand side of (29) is O,(N~ i +T~1). This follows
from Lemma 1 and N 2T 2d'Jpa < 2N 2Tz | Jeapll < 2 ON~2T~z ||9,l||. Thus
N=:T2d Jpa < %d w.p.a.1l. The above analysis together shows that w.p.a.1,

1 1
a/(_DTJ%fHDTJ%f)

(N+T)r—r(r—1) 2
>y drady S (@)

(N+T)r—r(r—1) 1 Cld
—2c17r(r — DM(Z; . a?)Q Y
(N+T)r—r(r—1) (N+T)r—r(r=1) 5 1 1d
= (b—cd) . a? +cyd — 2cy7r(r — 1)M(Zl:1 al)z — 5
> - AP =DM ad _abd—ad - - D'MY) _ad o,
b— Cld 3 b— Cld 3
When ¢; is small enough, c¢;d?> — ¢;r (r — 1)2]\/[ 2 is smaller than . Thus when ¢; is

small enough, the last term of expression (32) is not smaller than “Td. Take C' = C%l,
_1 _1
we have proved that o' (=D, 3 HD 3 )a > C w.p.a.l.
Now we prove the full rankness of plimU*. We shall prove for the case r = 3,

other cases can be shown similarly. When r = 3, after some calculation, U* equals

1 N (G2 1 T G2
LSV (A -:3>T
N 21711( 12) O 0 T %tfl(ftl) O 0
HDN%“’% DN:?““’%
1 N G\2 1 T G\2
LSV (XS -L>T
O N Zi_ll( L3) 0 O T Zitrl(ftl) 0
HDNTQ“U)IS DN%leS
N T
O 0 % 212%1()\%)2 O O 7% XEt;(Gfg)Q
HDNTwzs Dy rwgs
N T
HDNTwQI HDNTw21
O 1{1 fovzl(Azl) 0 0 _% 2311( tG3)2 0
_1 _
HDN%U’M Dy2w§
1 N (G2 1 T G2
< >t (A —m >
O O N Zill( 7,2) O 0 T Z_til( t3)
HDN’ZQ"w?Q DN%“&%

Note that 37 (f$)2 = + S0 (A$)? for p = 1,2, 3. Now consider (plimU*)g = 0
for any vector g. If plim~ Yo% (AG)? # plim+ SN (A\5)?, then g1 = g4 = 0. If



plim~ Zi]\il(/\g)Q # plim+ Zij\il(Ag)Q, then g» = g5 = 0. And if plim Zij\il(Ag)Q +
plim+ Zi]il(/\g)Z, then g3 = g¢ = 0. Thus by Assumption 6, g =0. =

Lemma 3 Under Assumptions 1, 2 and 6, for any D > 0, there exists C' > 0 and

1 1
m > 0 such that as (N,T) — oo, P( min Prnin (=D H(P)Dpgy) >
B(D)ﬂ“D§3(¢—¢G)HSm

C)—1.

Proof. The proof is similar to proof of Lemma 2 with some modifications. The intu-
ition behind this lemma is that given we have proved Lemma 2, a small perturbation
of ¢ will not affect the order of the largest eigenvalue.

First note that when f and A\ are plugged in, the second term on the right hand
side of (20), (21) and (22) are no longer zeros. For any vector a with ||a|| = 1,

a'(=DpyH(d)Dri)a
/ -3 3 " ~3, 132
= d(=DyRHr(®) Dy + Czp:1 D 7oy, Dyr)a
T r 1 1
/ / /
e [ijl Zk:jﬂ(ﬁujkujk + Tukjukj)]a
—N T 2d J(¢)a

th—t

N 2 T 42
-3 roc Dot A doimi . -1
+a/DTJ€7<Zq:1 §NT( ]\; T - tTl tq)Dle(INJrT ® tq) Dria

T r 1
+a/(zp:1 Zqu—»—l C(N Zil Aipig)D1)a

r r 1 T
I —
ta (szl Zquﬂ C(T E :t=1 fipfrg) D2)a
K1+K2_K3+K4+K5+K6.

Also, using Cauchy-Schwarz inequality, it is easy to show that

% Zil )\?q B % 211()\5)2

<2mN~2 H)\GH +m? for any ¢, (33)

_1
HDN%(qsfch)Hgm

%211 Aiphig| < OmN 2 H)\GH +m? for any p # q, (34)

) max
HD&%(WW)H@




<2mT 2 ||fGH +m? for any ¢, (35)

SN DI

. max
HD&%(«ﬁ—qu)HSm

<2mT 2 ||fGH +m? for any p # q. (36)

1 T
T Zt:l ftpftq

X
HD;é(tb—aﬁG)HSm
Now we evaluate K1, ..., Kg.

(1) Within the neighborhood B(D), m; = f/\; is bounded, thus |02l (7)| is
bounded away from zero uniformly. Then similar to the counterpart in the proof of
Lemma 2, the smallest nonzero eigenvalue of —D;]%H £(¢) Dy ]% +ed o D;épv,,v;D;,%T
is not smaller than p,;, (% SV AN and Ponin (7 ST fif]). By Weyl’s inequality,
Prain (£ S0 AN = Prin (£ 08 APAE) lies between the smallest and the largest
eigenvalues of & 3 MM — £ 570 APAY. This together with (33) and (34) implies
that

e IS S
NT m
c N
) H NT(I(? ¢G)H H N i=1 /\i)\; B N Zi:l /\iG/\iG, F
< cr(QmN’5 H)\GH +m?)

It follows that ~  min Prin (£ SO A;N)) is not smaller than pg, (£ S8 AZAF) —
|prdo-0%)|<m
cr(2mN -3 H)\GH + m?). Similarly, using Weyl’s inequality, (35) and (36), we can
show that _ min Prnin (F Zthl fiff) is not smaller than p_ ;. (% Zthl fEfFen —
e
CT(ZmT_% HfG” + m?). Note that N~2 H/\GH =T 3 HfGH = Zt ) )

1

tr(V1). Thus if m is small enough, then there exists b > 0 such that w.p.a.l,
. c N . c T
Cmin | p(E TN AN 2 band  min pu (6 X0 AF) 2 b Tt
e ol
follows that min Ky > b\ g2 b a1,
B[P F 0= |<m

N



(2) Similar to the counterpart in the proof of Lemma 2, for some 0 < ¢; < ¢, Ky

is not smaller than

* * 2
C1Panin (U™ ( Z Zq ot a pa + Ogp)

(N+T)r—r(r—1) 1 1 2 1 2
_201@:1 ST ST el ),

where U*(¢) is defined the same as U*, with ujc‘;g replaced by w;x. Similar to part (1),
using Weyl’s inequality, (33) and (35), we can show there exists some M > 0 such that
min Pinin (U*(0)U*(¢)') is not smaller than p,; (U*U*)— Mm w.p.a.1. Take

HD]‘V%—&’)HSm
m small enough, then there exists d > 0 such that | min Prnin (U (0)U*(9)) >
HD;%(¢—¢G)H§m
d w.p.a.1. Next, since N2 |A9|| and T2 | £¢|| are bounded, both _max ]
|psdo-0%)|<m
and max T || u; || are bounded by some large M. Thus _ min K,
HD;I?‘(¢*¢G)HSW H ~2(6-60) H<m
is not smaller than c;d >, Y7 (a?, +a2) — 2c;r(r — 1)M( (N+T)r—r(r-1) a?)3
1% Lap=1 Lag=p+1\"pq ap 1 =1 aj
w.p.a.l.
(3) Since |02l (i) < by within B(D) and ||01(¢) — O:l|| < [|0:1(¢p) — Oxl|| , We

have
N T 1
[0-L(D) || < [|Ox]] + bU[Z,f Z (i — o) 72

ZZ ST (i —79)? 1snotlargerthanthesumof3Hf fGH H/\GH 3||fGH H)\ )\GH
and 3 || f — fGH A= )\GH , thus ~ max SV ST (i — 7%)? s not larger
H &%(¢—¢G)H<m
than 3(m?T H)\GH +m?N ||fGH + m*NT). Thus under Assumption 1, there exists
M > 0 such that ~ max N S (i — w9,)? ]2 < MmN2T2 w.p.a.l. Since
|pRd-6%) | <m
|Ks| <2N"2T2 |[Jpap(9)|| < 2N~2T2 ||0,1(¢)]], we have max | K| <
B(D)OHD;?<¢>—¢>G)Hgm
IN-2T2 ||0,1| +2Mm w.p.a.l.
(4) First note that D;]%,NTD;,%F(I]\HT ® Lq)D;]% = (Intr ® t4). Using(33),

(35) and o/(Inyr @ tg)a < |ja||*> = 1 for any g, after some calculation, we have

10



max |Ky| < er(mN—2 H)\G” +mT 2 HfGH +m?)
HD&?w—aﬁG)HSm
(5) Using (34) and a’Dya < 2|a||* = 2 for any p # ¢, after some calculation, we
have =~ max |K5| < 2¢r(r — 1)(2mN -~z ||)\GH +m?)
HD&%w—qﬁG)Hgm
(6) Using (36) and a’Daa < 2]a||* = 2 for any p # g, after some calculation, we
have ~ max |Kg| < 2cr(r —1)(2mT 2 |£€]| +m?)
HD;]?(¢>—¢>G)HSWL
By Assumption 1, max | Ky, max | K5| and max | Kg|
D;V;(¢_¢G)Hgm D;%—qﬁ@)Hgm HD;?(¢—¢G)H3m

are all bounded by Mm w.p.a.l. Finally, using the algebra in expression (32) again

and taking m small enough, the lemma is proved. m

G ,G G G .G G ,G G G
Lemma 4 LetU = (u$, ..., u{ u$, ..., Uy ooy Wy 1y,3 Uy s ooy U USs oey Uy ey Uy 1y)5

where u is defined in Appendiz A. Also, let U = (U}, U%)', U, Uy, Uy are of dimen-
sion (Nr +Tr)xr(r—1), Nrxr(r—1), Tr x r(r— 1) respectively. Let Hyy, Hyp,
Hgy, Hyypo be the upper-left, upper-right, lower-left and lower-right block of H. Under
Assumptions 1, 2 and 3(i), as (N,T) — oo,
(1) (VA UN)illy = Op(1), (2) [[(Va, UA)'lly = Op(1),
(iii) || (Va, UMl = Op(N2), (iv) [(Va, U, = Op(N),
() [[IH Wil = Ou(7), i) [|H ||y = 0u(7), (vid) [ Hi || = Op(3),
(viii) HH/\/\, =0 (% (ix) HH/\/\, = 0,(7),
(@) |[Hypll, = On(%), (@i)||H ff’ = Op(%);
(xii) m?XH[HAf’]iH = Op(NET27¢), (i) ||[Haplil| = Op(T3),
(wiv) |[Hplill, = Op(T%), (@o) [|Hapll, = Op(NTETE), (aui) | Hapl| = Op(N3TH).

Proof. Parts (i)-(iv): Obvious.
Parts (v)-(vii): Noting that Hp,y is block diagonal, we have

1 oy

T
= maxH Z Ol fOF2N) 1 S ) 2l [ )7

< %H(ZM 257 =0p<%>. (37)

From expression (37), we can see that ||[H;

Ll ‘ and ”

L/\/\/ are also O,(%).

11



Parts (viii)-(ix): By equations (19) and (23), Hyy = Hpyyv — cx(Va, Ux)(Va, Uy)'.
Thus by Woodbury identity,

N

HA_X - HL/\IA’ HLA,\’(VM Unl= T]r2+<VA7 UA),HL,\X<VA; UN]™ 1(V/\» Uy) HL_)\A" (38)

By positive definiteness of —(Vy, Uy)'H;\,,(Va, Uy), we have

N /
[__IT‘2 + (V/\7 U)\) HL)\)\’(V)U U)\)]
cr 1
N , T

S T [—E[ﬂ + (V,\, U)\) HL)\)\’(V’\’ U)\)] S TCN. (39)

Part (viii) follows from part (ii), part (iv), part (vi) and expression (39). Part (ix)
follows from part (iii), part (vii) and expression (39).

Parts (x)-(xi): The proof is similar to parts (viii)-(ix).

Parts (xii)-(xvi): First note that Hyp = Hpxp + Hpxp + Jagp -

For (xii) and (xiii), we have ||[Hpxp]i]| < by H)\ZG” 7415 IHpasdill < e H/\ZGH 7|
and [[[Jeap )l < (S 0ndi)2.

For (xiv), we have ||[Jrapi||; < max 0xlic]s || [Hoaglill, < mbu H)\ZGH max | /€] and
[Heap il < er 2] max ]| £€]]

For (xv), we have || Jpap [l < max Y70, [0xlicl, [ Hoapll, < oo 350 [|AF]| max || £
and [|Hpap ||, < er 200 [|AF]| max | £

For (xvi), we have |[Hpxp| < c|[X9|[[[£C), 1Hiapll < bu||A9| || £€]| and by
Lemma 1, || Joap | < [|041]] = Op(N2T3 + NiT?z).

Also note that by Assumption 3(i), mtax\a,rlit] is Op(T%), max |0xlit| s Op(N
and max |0rlit| is Op(N%T%). n

M=

)

Lemma 5 Under Assumptions 1, 2, 3(i) and 6, as (N,T) — oo, the 1- -norm_ of

the upper—left lower—mght upper—mght and lower-left block of H™* is O (Nng),

OP(%), Op(NgTE) and O (Nng) respectively.

Proof. (1) The upper-left block of H~! is

[H)\/\/ - H/\le

-1 -1
ff/Hf/\/] wo T HAXHAf’ [Hff’ - HfXH

)\)\'H)\f'] leA’H;,\l" (40)

12



From Lemma 4(viii), we have HH NY ||1 % We next show

2 2
| Hoapr[Hypr — Hiy Hy ) Hyp ] Hpy ||, = Op(NETH). (41)

Let || Al .. be the max norm of matrix A. It suffices to show

T 2 2
HH/\f'[Hff/ — Hf/\/HA)\,H,\f/] 1Hf)\/ max — OP(NNng)' (42)
The (zp,jq) element is [H)\f/]lp[Hff/ Hf)\/H)V\,H)\f/] I[H)\fl];q [Hff/ Hf)\/H)V\,H)\f/]
equals the lower right block of D N(DT fVH D, N) 'D,%, thus by Lemma 2,
_ 1
|[Hypr — Hpn Hy VHap] 7| < = H DTNHDTN) H = Op(ﬁ)- (43)

This together with Lemma 4(xii) proves (42). Thus the 1-norm of the upper-left block
s O (N&TE ).
(2) The lower right block is [Hyp — Hpy Hy,
nitude is O (NETE ).
(3) The upper-right block is —[H,y — H,\f/Hff,
Nérd )

(x) and (xv) of Lemma 4 together implies this term is O, (==

(4) The lower-left block is the transpose of the upper-right block and HH f/\/||1 =
O,(NET'%), thus is O (NﬁTﬁ). n

H, ]!, thus by symmetry, its mag-

Hf)\’] H)\f/H

sp- Part (1), parts

rr—1
;
AN 1

) and

Lemma 6 Under Assumptions 1, 2, 4 and 6, as (N,T) — oo, %

HHff, = 0,(L).

= Op(

Proof. For V and U defined in the proof of Lemma 2, when ¢© + 8(&5* — ¢Y) is
plugged in, use notation V'(s), Vi(s), Vi(s), U(s), Ux(s) and Ug(s). It follows that
V)\(S) = V)\(O) + S(V)\(l) - VA(O)) and

1 1 1
H/\/\/ = / H)\)\/<8)d8 = / HL)\)\/<S)d$+/ Hp)\/\/(S)dS
0 0 0

i — o / (VA(5), Un(5))(Va(s), U (s))'ds.

13



Since fol sds = 1/2 and fol s?ds = 1/3, we have

/OVA(S)VA(S)/dS = VA(O)VA(O)'JF%(VA(U—VA(O))(VA(U—VA(O))'

+3VAO)(VA(1) = VA0)) + 3(VA(1) = VA(0)) VA 0)'
= GG + 150 = )AL~ 1A0).

Similarly, we also have
! !/ ]' ]' !/ ]' /
Ux(s)Ux(s)'ds = UA(§>U>\(§> + E(UA(U — Ux(0))(Ux(1) = Ux(0))".
0
It fOHOWS that ﬁ)\)\/ = HL)\)\’ — C%BB/, where
1 1
B =((35), Un(5), (K(1) — VA(0))/2v/3, (U(1) — Ux(0)) /2V3). (44)
Thus by Woodbury identity,
Hl=Hl, +H} B[ﬁf »— B'H-L,B"'B'H}
AW T How L lpter LA LA

Consider ]:IZAI/\, first. H;,y is block-diagonal with H L, as the i-th block. Thus

1':];/\, is also block-diagonal and the i-th block is H. ! ,,. It follows that

LAN,

Fr—1
|2y

_ -1
1 mzaXHHL’\W\Q

1 ~
5 —1
T2

Due to the four facts listed below, min pmin(—]:l“i,\;) > TCby,/2 w.p.a.l. This implies

max‘ ﬁ;\l,x < 2/TCby, w.p.a.1, thus Hﬁ;/\, is Op(7)-
7 17 1
L. pmin(_ﬁLki/\Q > f()l pmin(_HLAi/\;(S))dS > OIgsigl pmin(_HL)\i)\g(S))a where the

first inequality follows from continuity of the smallest eigenvalues and Weyl’s

inequality.

. 2
fr - 1e|)i-
2

for any 7, because p;, (A) > prin(B)—||A — B||  for sym-

2
2. pmin(_HLM/\;(S)) > prmin(Zf:l fthtG/)_QbLS(Zle HftG“ Zle ‘
brs® ZtT:1 ft* - ftG

metric matrices A and B, and —0,2ly(7;) is uniformly bounded below by by,

14



within the neighborhood B(D) and ¢ lies in B (D).

3. By Assumption 1, there exists some C' > 0 such that p;, (31, fEf¢) > TC
w.p.a.l, and there exists some M > 0 such that Zle HftGH2 < MT.

~k _1 2
4. Because ¢ lies in B(D)N HDN;(qﬁ - ¢G)H <m, ", < m2T. Take

m small enough.

o= 1

Next, by expression (44) and the fact that both A% and \ liein B (D), we have

IBIl, < A%,

H1 = OW),

1B = 1Bl < 129, | _=owm.

When —lf[L_Al)\, is positive definite, pp, (Sl — B,F[L_,\l/\'B) is not smaller than 2%

(X Lo — B'H; L, B! (i L2 — B'H,, B

and ’

is not larger than /272

V 27“2%. Since —HE/\/\, is positive definite w.p.a.1, ” [cﬂTIQrz - B HLM,B H < V2% <

also holds w.p.a.l.

-l

Taking all above together, il =
1

‘ M, :Op(%). By symmetry, p(%). n

Lemma 7 Under Assumptions 1, 2, 3(i), 4 and 6, as (N,T) — oo, the 1- -norm
of the upper-left, lower-right, upper—right and lower-left block of H™* is O (N {ré ),

2 2 3 3
O0,(X5L2), 0,(25L%) and O (NSTg) respectively.

Proof. Based on the following facts, the proof is similar to the proof of Lemma 5.

) ]|, = o).

2) FI;;,H = 0,(2).

(3) ||[Hyp — Hyx Hyy Hopr) H = Op(w)-

(4) max]|[Hyp | = 0, (NETH),

() || = OpN*iT).

(1) and (2) follow from Lemma 6. For ( H Hyp — HfXHM,H)\f/] ' is not

1. 1
larger than H(DTﬁ;I‘IDTJ%fy1

[Hypr — Hpy H

AXH)\f /]7! is the lower-right

block of H~!, which equals + times the lower right block of (D;2HD,2%)~". Due

15



1.1
to continuity of the smallest eigenvalue and Weyl’s inequality, pi.(—DryHDry) >

021121 poin(— D2 H(s)Dy.2). This together with Lemma 3 and the fact that ¢ lies in

Bﬂ‘

D;ép(gb — gbG)H < m implies that H(—D;]%,]j]D;J%)*IH is O,(1).
[Hap = Hapli [ [Hag(s) = Haplill <
and HIZ[,\f/ - H)\f/H < N max HH/\f/< ) H)‘f'Hmax' Since

For (4) and (5), note that max

T2 max HH)\f'( ) H)\f/H

0<s<1 max

0<s<1

1
" lies in B(D)HHDN%(qﬁ—d)G)‘ < m and |9,2lu()], |wsli(-)] and fIX; are all
bounded within the neighborhood B(D), Inax | Hap(s) — Hapll, o 18 Op(1). It fol-

is Op(T%) and ‘f{)\f/ — Hyp|| is Op(N). These to-
1
gether with parts (xii) and (xv) of Lemma 4 proves (4) and (5). m

lows that max H[ﬁ,\f/ — Hypl;

Lemma 8 Under Assumptions 1-5, as (N,T) — oo,

(i) ||[(Va, Un) Hy 3 Sal| = Op(N3T2), and ||(Vy, Up) Hi} 1Sy = O, N—%T%)

(i1) H(HLJ‘/\’ + Hpyy) AA’S/\H = N% ,andH Hpyp + Hpayr) ff/SfH = %),

(i) || [(Hppx + Hppx ) Hy oSl H— (N2T=2), and |[[(Hpap + Hpag) ff’Sf |l =
OP<N_%T%)7

(1) | sy B S = O(VAT4), and |t sl =0 0,(N-T),

0) [T H 5| = Oy(N%), and [ Juag i} | = 0,74,

Proof. Part (i): It suffices to show the first half. (Vy,Ux)H

vector. From the definition of V), and U,, we need to show that for any p and
0, SN N (0, 0l fO ) (1, (alit) £C) is Op(N3T3). Thus it suffices
to show that Hz (S Orelia fEFE N Ol i O,(N3T~%). This is
equivalent to Assumption 5(ii) because f& = G'f°, Y = G\, and the Frobenius

S, is a 7% dimensional

norm and spectral norm are equivalent for fixed dinensional matrices.

Parts (i) and (iii): It suffices to show the first half. From equation (38) we have

[Hypx + Hppx)H0S)s = [(Hppy + Hppn ) H, SN s — [Hppy + HppxlsHp
N
(V)n UA)[_C_TIrz + (v)\ﬂ U/\)/HL)\)\’<V/\’ U)\)] 1(V/\7 U/\) L)\)\’S)‘ (45)

Consider the first term on the right hand side Consider Hpsy H, )\/\,S )\ first. The ¢-th

element in the s-th block is —c¢ ZZ ) Zq (Zt L@l FEFEN (D, Onlit ).

16



Part (i) shows that 3,7, A71¢” (2 ( ﬂzn)ff O, Oelin ) i Op(NET~3),
Since Y7, HfSGH is O,(T) and HfGH is O, ( H HpsvH LS s H is Op( N=2T2) and
HprXHL’/\lA,S,\” is Op(Nz). Next consider Hi sy L)\/\’S/\

N T T
GlHLHSie = GY. 0l XTP (Y 0alafCIE) Y, 0ulafC)
T
= Zl_ anzlls)\OfOI(Z _ Wzlugft ) (Zt— aﬂlitfto)
fO/ ZZ 1 Zt 1 Z 87rzl7,tft 18 lztft /\Olaﬂzlis],

Thus by Assumption 5(ii), H[HLfX L)\XS/\ || is O, NzT ) and ”HLf/\’HL,\X
0,(N2).

Now consider the second term on the right hand side of (45). By Assumptions 1
and 2(ii) || Hpv + Hpypyls H = N2 and ||HLfX + Hpgy|| is O (Nsz). These
together with Lemma 4(iii), Lemma 4(vii), inequality (39) and part (i) finishes the

S)\” is

proof.

Parts (iv) and (v): It suffices to show the first half. Similar to expression (45),

[Tepn HyS\s = [T HpSals = [Ton]sHpyy (Vas

N
UA)[‘@L«? + (Va, Un) H; L (Va, U H VA, UV H

L>\X< Sh. (46)

L)\X

The second term on the right hand side of (46) is O,(N 2T~3). The proof is the
same as the second term on the right hand side of (45) except that here we use

[Tz pnls|| = O,,(N%). Now consider the first term.

G[JLf)\/ L)\X Zz lzt 1 Z 87T2lltft la lisOx lztft

Sals|| is Op(N2T~2) and ||Jy ;v H; )

Thus by Assumption 5(i), H[JLf,\/H I

LAN S/\H is
O,(Nz). m

Lemma 9 Following the definitions of R, Rx, Ry, Rxiq, Ryq; 03,
4, under Assumptions 1-4, 6 and 7, as (N,T) — oo,
IRA)ill; = Op(52) for each i, and || Ry[l; = Op(557-),
I[Bflell, = Op(52-) for each t, and [|Ry]l, = Op(5z ).

and ¢y, in Section
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Proof. Note that Ry g = (¢ — ¢7) Dpgn,, L(65) (& — %) + (6 — 6) Dyern,, P(65,) (6 —
¢°).

The first term on the right hand side equals (\; — ASY 0, X,\iqL(qﬁfq)(S\i — 29 +
230 N = AT O g LS5 (= £+ 221 (fo = 1Y Opgns, L(93) (fe = £C) = L+
L2i+ L3i. Based on the expressions of Oy, L(¢), Oy, s, L(¢) and dy, 5 L(¢) in equations
(16) and (17), it can be verified that

axi,\;,\iqL(ﬁb) = Z a7r3lzt 7th ftftftq7
Miing L) = aﬂ'?’lit( it) fi)i frg + On2lip(mi) I frg + aﬁlit(ﬂit)ftlgr)la
aftft//\iqL<¢) = aﬂ3 lit (Wit)Ai)‘;ftq + 87r2 lit (ﬂ-it)]-((;) /\; + aﬂz lit (7Tit>/\i]-((;)/-

Since ¢ (consequently ¢;, and ¢y,) lies in B(D) w.p.a.l and ||fi||, |\l [Or2lie(mic)]
and |03l (m;;)| are all bounded within B(D), we have

N 2
|L1i] < i — AP M,
L2i| < TH|[A = a8 ‘f—fGHM,
2
L3i] < H M,

for some large M w.p.a.l. Thus by Proposition 4 and Theorem 1, |L1i|, |L2i| and
|L3i] are all O,(5-), and SOV L], SN | L2i] and SN, L3 are all Op(55).
Now consider (¢ — ¢G)’8¢,¢/,\iqP(¢fq)(¢ — ¢%). From equations (20), (21) and (22),
it can be verified that
T
Zz 1 )\’52(] Zt:l ft2q

Osori (T — — =71 )?] = 8Dyp(Ligvy + vgli)) Dy
8

+NAz‘qD7v1T(fN+T ® tg),

O g [Z;Zl Z;:p " (Z; fwla)?] = 0,
Do i [Z;:l Z;:p-i-l (211 Aphia)] = Q(Zm&q AwD1 + Zp#q lipu;’q)
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1liq is an N7 + T'r dimensional vector with the ¢-th element in the i-th block being
one and all the other elements being zero. Thus (gAb — ) Ogg/ i P (gbfq)(gb —¢%) equals

CNT(Q% - ﬁbG)IDKflT(lqu + vyl ) NT(¢ ¢ )
+cT(¢ — %) NigDyp(Insr @ 1) (9 — 6)
T, - T
F =0 D MpDi(d = 69 + (6= 67 D (gt + ) (6 — 6)
= Pli+ P21+ P3i+ P4a.

It follows that

Pli| = QCNT‘%(S\W - Ag)[% S Nl - Zt FulFou— )
H+Tuﬂwf—fﬂu
I

. 2 T . 2
W—WHSMNMM**Wa

10 2 1

P2il < MT |\ —H)\—)\GH -

P2 < MT N (+ e
] cT

< 17,

] 2T N S N 3
|P4i| = ‘Zpyéq Z NNy = AG) + Zj:1 Aip(Ajg — ASy))

7j=1

§ AT )\z_)‘z‘G

Thus by Proposition 4, Theorem 1, |P1i|, ..., | P4i| are all Op(ﬁ)’ while Zﬁl | P1il,
ooy SOV | P4i| are all O (M)

Taking together, we have shown ||[R,)];||, = (#) and ||R,||, = (52 ). The
other half of the Lemma follows from symmetry. =

Lemma 10 Under Assumptions 1-4 and 6-8, as (N, T) — oo,
(i) (F = FO)z = O)(F=N<T¥),
NT
(ii) (F — FOYe = O,

Proof. Part (i): From equation (8), we have f, — f& = [¢ — ¢%|ne = —[H 1] nps —
%[H " Ry Tt follows that

R T -
—(F = F)z = thl[H_ls]N+tZ£ T3 thl[H_lR]NthZé-
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First consider the second term on the right hand side. The (g¢,j)-th element is
Zle[HflR](NH)qztj and its magnitude is bounded by |[[H'R]f||, max |2¢;], where
[H'R]; is the vector that contains the last Tr elements of H~'R. From Assumption
8, it’s easy to see that max |2¢5] 1s Op(T%). By Lemma 5 and Lemma 9, ||[H 'R/,

is Op(57—N %T%) Thus the second term on the right hand side is Op(5—N gT%)
NT NT
The first term on the right hand side is O, (N ~2T2). From equation (57) and by

symmetry, the first term equals

T -1 -1
Z ff/Sf t2t+z Hff/Hf)\/ H)\)\/ H)\f’Hff'Hf)\l> H)\f’ ff/Sf]tZt
T
—Z [Hff’Hf/\lH)\/\/S)\]t’Zt

T

Similar to expression (43), H (Hyyv — HaxpHY i ‘H ) H is O,(T~"). From Assumption
8, it’s easy to see that ||z|| = O,(Tz). These together with parts (xi) and (xvi) of
Lemma 4 and parts (ii) and (v) of Lemma 8 implies that the second to the fourth
terms of expression (47) are all O,(N~2T'2).

From equation (38) and by symmetry, the first term of expression (47) equals

T -1 /
thl[HLff’Sf]tzt -

T B T _ _ _
thl[HLflf’(Vf’ U=t + (Vs Up) Hy i oo (Vi Up) (Vi Up) Hif 1Sy 448)

Similar to parts (iii) and (vii) of Lemma 4, ||(V}, Uy)|| is O(T) and |[Hp}p || is
Op(N~1). Similar to expression (39), ||[= &z L2 + (Vi, Up) H . (Vy, Up)] 7| is O(NT ).
By Assumption 8, ||z||z is O,(T 2). These together with Lemma 8(i) implies that the
second term of expression (48) is O, (N )

Now consider the first term of (48). Tts (g, )-th element is .., z; [HL_;f,Sf]tq,
which equals Y, 1ztjl(r)/(Zivl&rzlit/\c/\G’)*l(Zi]il 0:132S).  In Lemma 8(i), we
have shown (by symmetry) that >, f, Gl(r (N 02l AN (N, 0,14 09) s
O,(N ~2T2). Lemma 8(i) uses Assumption 5(ii). Here from Assumption 8(iii) we
have SN ST (0N 0l XA ING 20,1y = O,(N~2T2). Thus the first term of
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expression (48) is Op(N_%T%).
Part (ii): The proof is similar to part (i), with z; replaced by €,.,. =

Lemma 11 Under Assumptions 1-4 and 6-7, (F—FC) F = O, (= %T%) as (N, T) —

5?vT
0.

Proof. The proof is the same as the proof of Lemma 10, with z replaced by F“. The
result still holds if we replace F' by 0,l;., where 0,l;, = (Oxli1, ..., Oxlir) . ®

C  Proof of Propositions and Theorems

C.1 Proof of Proposition 1

Proof. The essence of the following proof is that a low rank matrix can not fit a
high rank matrix, which also underlies the proof of consistency in Bai (2009). The
key technique (using the expansion of L(X f , 5\) and boundedness from below of
—0Or2li1(+)) is inspired by Chen et al. (2014).

Expand [;;(7;¢) at 7%, we have L (7)) = Liy(7%) + Opliy X (T3 — 7%) + %&rzlit(wft) X
(7tie — 7%)%. Tt follows that

f ;\ Z’L 1Zt 1 Zt zt ZZ 1Zt ) it zt
+ Zi:l Zt:1 Orliz X (Frix — 7Tz't> (49)
+% Zj\;l 23;1 aﬂ2lit(7r;kt) X (ﬁit - 7T'?75)2- (50)

7% is bounded because by design || is bounded and by Assumption 1 |79 is also

bounded. Thus |0;2l;(7};)| is bounded below by by. Expression (50) is negative
and its absolute value is not smaller than % Zl ST (7 — 7%)?. From inequality
[tr(AB')| < rank(B) ||A]l | B||, the absolute value of expression (49) is not larger
than 2r |0, [N, SOT (i — 7%)2]2, where 8,1 is N x T matrix with d,l; in the
i-th row and ¢-th column.

Next, since P(f,A) < 0 and P(f% \) = 0, we have L(X ‘f,ﬂ) > Q(f,\) an
L(X |f9,X%) = Q(f%,A\°). By definition, Q(f,\) > Q(f¢, %), thus L(X f,&) >
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L(X ‘ fE,A9). Tt follows that expression (49) must be positive and not smaller than

the absolute value of expression (50). Thus from Lemma 1 we have
30 ST (ra— )AE < 204 = Op(NATE 4 NATH) (51)
i=1 Lpm T - N P '

Recall that py, ..., p, and py, ..., p, are singular values of N~2 T2 FCAY and N~2 T2 F'A/
respectively. Let eq,...,e, and éq,...,é,. be the corresponding left-singular vectors.

From Davis-Kahan Theorem (see Stewart and Sun (1990)), for j = 1,...,7 we have,

&5 = esll < VE||N TR - NATOEFOA

/n, (52)

where 1 = min{‘pjf1 - ﬁj| A }ij — ,6]| ,j =1,...,r}. From equation (51) we have

HN*%T*%FA’ - N*%T*%FGAG/H < NT3T-3||FA — FOAS|| = O (N~% + T7-%).
F

Note that py, ..., p, are all bounded and bounded away from zero in probability. Thus

by Weyl’s inequality, |p; — pyl, ..., |p, — p.| are all Op(N*i + T*%). Thus from As-
sumptions 6 we can conclude 7 is bounded and bounded away from zero in probability.
It follows that (52) implies ||é; — ¢;|| = Op(N*% +7-1). For j = 1...,r, under penalty
function (3) the j-th estimated factor is y/Tp;é;. Under condition (4), the j-th factor
is \/Tpje;. Thus we have

A A ~ A 1 _1 _1
|7 = 16| < VT |\Jo, = va| 1631+ /To; s = esll = TR0,V + T-4),

By symmetry,

A /\GH = N3O,(N“5 +T77). m

C.2 Proof of Proposition 2 and Proposition 3

Ak _1
Proof. Let ¢ be the solution of the problem: min HDTK,S (qﬁ)H .
¢eB(D)ﬂHD§%(¢—¢G)HSm ¢

~ %

( is defined in Assumption 4. Expand S(¢ ) at ¢ using integral form of the mean

value theorem, we have

A% ~ A%

0 —¢“=H"(S(¢)~-9) (53)

(1): By Lemma 7, the infinity norm of the upper-left block of H! (which equals
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2 2
NETE
T

right block of H~! (which equals 1-norm of the lower-left block of A=) is O (N ‘ré ).
T3 (S\(¢) — SA)H is Op(N% + T%) because

l-norm since H~' is symmetric) is O,( ), and the infinity norm of the upper-

[ bs@) -s0f < [lrise) -,

1

< | orkis@) - 9)|, < 2| prds| = o+ 1),

where the last equality follows from Assumption 4. Similarly,

is also O,((N +T )%) Thus by Assumption 7,

NH(S56) = 5|

| = To,(NETE N + 1)) = 0,(1),

fr=ro| = NEOWNETEHIN + 1)) = ,().

(2): By equation (53), Dy (¢ —¢%) = N3 T3 (D, D, 2) [Dp3(S(8)—9)
By Holder’s inequality,

~ %

|Pra(s@) - 9)|| < )28 D56 - 9| = o + 1)),

This together with Lemma 3 shows that HD;[%F((%* — H = 0,(N"z +T"2).

(3): Part (1) implies that ¢ is an interior point of B(D) w.p.a.1, because ¢ lies
in B(Z) w.p.a.l. Part (2) implies that ¢ is an interior point of HD;,%T(qﬁ - gzﬁG)H <m
w.p.a.l. Thus gAb* is an interior point of B(D)N HD;,:%F(QS — gbG)H < m w.p.a.l. By

definition of ¢ , this implies that Dy HD;fVS = 0.

) Jo-s
It follows that [D;]%S(g%*)] ' = O since 0, HDTNS H — (H(¢)D T;[ ;]%S(gb)]Gl

(here [D;]%S ()]~ denotes the vector that each element equals the ¢ — 1 power of
the corresponding element of D ]%S (¢)), and by Lemma 3, D, ]%,H (gb)D;]%, is negative
definite within B(D ﬂ‘ NTgb ¢“) H<mwpa1

Thus we also have S (gb*) = 0 w.p.a.1, and consequently gb is the unique maximizer

of the likelihood within B(D)N HDNT (¢ — ¢° H <m w.p.a.l.
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(4): By definition, ¢ maximizes the likelihood within B(D). Proposition 1 shows
that ¢ lies in the neighborhood HD;,%F (¢ — ¢%)

< m w.p.a.l. Thus éﬁ maximizes the

likelihood within B(D)N HDNT ¢ — ¢° H <m w.p.a.l.
(5): Part (3) and part (4) together implies that ¢ = ¢ w.p.a.l. In the following,

we simply use qAb to denote both. m

C.3 Proof of Theorem 1

Proof. As explained in the main context, Theorem 1 follows from equation (5),

Lemma?)andHD SH— (N+T)z). m

C.4 Proof of Proposition 4

Proof. The first term on the right hand side of equation (6) equals

ZtT (Orlit) ft +Z [0l ft)‘G 0 lit]ftG
+Z @:l) (. — 1) +Z [Oclic(FNE) = O:lid] (f, — £C)

T
@) (T2 + —).
ONT
By Assumption 5, the first term is O, (T Tz). By Assumption 2(ii), (Zf 0L ( ft)\G)
O.14)%)} is not larger than bUHf e 1411 By is O, (L),
By Assumption 1, || f9]] is Oy( (T'z). Thus the second term is O (5NT) (O, (Oxli)?)?
is O,(T 2) because by Assumption 3(i), BE(d,l;)? is uniformly bounded. Thus the
third term is Op(#). The fourth term is O,(5—) because it is not larger than
NT
R 2
S T

For the second term on the right hand side of equation (6), we have:

N[ =

TS 01108 + s = XSl

> prmln T Z ftft ﬁbL(pmln(EFEA))

VI

> 0.
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The first inequality follows from Assumption 2(ii). "%" follows from Theorem 1 and
Assumption 1. Thus w.p.a.1, the norm of second term on the right hand side of
X — A8\, Thus || A; — AC

fi— 16|l is also Op(ﬁ). u

equation (6) is not smaller than lTbL(pmin(Z‘FZA))%

T10,(Tz + 51{ ), which is O ( —). By symmetry,

C.5 Proof of Theorem 2

Proof. As presented in the main text, \; — A = [¢ — ¢°]; = —~[H~'S);, — L[H'R],.
First consider [H ' R];. From equation (40) we have

(7R = [

AN RA] [H

AAIH/\f/(Hff/ — Hf)\/H

)\/\/H)\f/) 1Hf/\/H)\)\/R)\]

[H)\)\’H)‘leff’Rf]

[HM,HAf,(Hff, HfXHM,HAf,) 1HfA,HM,HAf,Hff,Rf] (54)

Consider the four terms one by one.

(R1): From equation (38) we have

(R = (o bR = (VA U=l +
(VM UA) HL)\)\/(Vz\a U)\)] 1(V)\7 U/\) HL)\/\’R/\ (55)

By Lemma 4(v), and Lemma 9, the 1-norm of the first term on the right hand side
of equation (55) is Op((s%). By inequality (39), Lemma 9 and parts (i), (ii), (v) and
NT
(vi) of Lemma 4, the 1-norm of the second term on the right hand side of equation
(55) is also Op(ﬁ). Taking together, we have ||[H}),R,]; ||1 521 ).
(R2): From equation (38), the second term on the right hand side of (54) equals

[H il
—[H W ll(Va Un))il= ];[Jﬂ + (Va, Un) H o (Va, U] 7H VA, Un ) Hip

XH}\f’(Hff' — Hf)\/H/\)\/H)\f/) 1Hf)\/H)\/\/R,\ (56)

Hyp(Hyp — Hyn H 20

)\A’H)\f’) HfA’] H

AN

Hyp )" Hpyli||, is Op(NEYT€H). This

together with parts (v) and (viii) of Lemma 4 and Lemma 9 implies that the 1-norm

By equation (42), H[H)\f/(Hff/ — Hf/\/H)\)\,

A
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2 2
of the first term of expression (56) is O,(%5L>). For the second term of expression

SN
(56), parts (i), (ii), (v), (vi) and (viii) of Lemma 4, equation (41), inequality (39) and
Lemma 9 together implies that the 1-norm of this term is also O (N eré ) Taking
together, the 1-norm of expression (56) is OP(%)

1
(R3): The 1-norm of the third term on the right hand side of (54) is 52 Tt The
calculation procedure is similar to (R1). The difference is that R, is replaced by
H,\f/Hff,Rf Part (R1) uses ||[Ry\)i]l; = O (BQL) and ||R,||, = Op(¥). Here by

5+)

Lemma 9 and parts (x), (xiv) and (xv) of Lemma 4, ||[H\pH ff,Rf H is O,(
NT
NEFLpEH!

and HH}J!H f/RfH ISO T)

(R4): The 1-norm of the fourth term on the right hand side of (54) is O,( %;VT? ).
The calculation procedure is similar to (R2). The difference is R, is replaced by
HypH} Ry

Taking (R1)-(R4) together, we have ||[[H 'R];|; = O,( %Tg) Since [H™'R]; is
a fixed dimensional vector its 1-norm and Euclidean norm has the same order, thus

|[H ' R];|| is also O (NET5 ). Note that here we choose to calculate |[H ' R];||, rather

than ||[H 'R];|| directly, because calculating ||[H ' R];|| requires calculating ||[R];|
and || R||. From term "L1:" in Lemma 9, we can see that this requires calculating the

exact rate of HS\ — XY, which seems quite difficult and tedious.

Now consider [H~1S];. From equation (40) we have

[H71S): = [HyuSali + [Hyy Hap (Hyp — Hpy Hy o Hapr) ™ Hyy H 0 S)s

[H)\/\/H)\f/Hff,Sf]

[H/\)\/H)\f/(Hff/ — Hf)\’H)\/\/H)\f’) foHM/HAf/ ff’Sf] (57)
Consider the four terms one by one.
(S1): From equation (38) we have

N
[ )\,\’SA] [ L,\)\’SA] [ LA)\’] [(VM U/\)]i[__TITZ +
(W, Uy) HLM,(V,\, U] (Va, Uy HLM'S/\ (58)
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Consider the second term on the right hand side of equation (58). Since [H;;A,]i is
il < (1H

1 -1
owli owdilly 1]l )2 = ([ L], Thus by
LM, i ‘ is O,(T71). |[[Va, Upli|l is Op(1). These together with equa-
tion (39) and Lemma 8(i) implies that the norm of the second term is O, (N —2T2).
11
(S2): From equation (38), the second term on the right hand side of (57) equals

symmetric, we have H

Lemma 4(v ||

Thus we have [H

[HL)\)\'] [H}Jl] (Hff/ - HfXH)\XHAf/) Hf)\IHA)\/S)\
N L ~
[HL/\X] [(VM UA)] [__TIT2 + <V>\7 U/\) HL)\X(V)” UA)] I(V/V UA) HL;,\’
X Hyp(Hypp — HfXHM,HAf,) "Hy M,sA (59)

As explained in (S1),

H il is Op(T~1). This together with Lemma 4(xiii), in-

equality (43) and parts (11) and (v) of Lemma 8 implies that the norm of the first
term of (59) is Op(N_%T_%).

Hp i is Op(T7)
and [|[V, UxJ;|| is O,(1). These together with equation (39), parts (iii), (vii) and (XV1)

Next consider the second term of (59). As explained in (S1),

of Lemma 4, inequality (43) and parts (ii) and (v) of Lemma 8 implies that the norm
of the second term of (59) is O, (N ~37~2). Taking together, the norm of expression
(59) is O,(N~2T"2).

(S3): The norm of the third term on the right hand side of (57) is Op(N’%T’%).

N
AA’H/\f’Hff’Sf] [ LA)J] [ka’Hff’Sf] [ L)\)\’] [(VMUA)] [__Ir2 +

cT
(Wi, Uy) HLM,(VA, Uy~ (VA, Uy) HLM,HAf/H;f,Sf. (60)

[H

As explained in (S1), ||[H}},/)i|| is Op(T~). This together with parts (iii) and (iv)

i
of Lemma 8 implies the norm of the first term on the right hand side of (60) is
Op(N~2T72).

The norm of the second term on the right hand side of (60) is also O,(N~2T"2).
The calculation procedure is similar to the second term on the right hand side of
equation (58). The difference is that Sy is replaced by HipH,;S;. (S1) uses
|(Va, U\ H, 1 Sh| = O, (N2T~2). Here due to parts (iii) and (vii) of Lemma 4
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and parts (i) and (v) of Lemma 8, ||(Va, Ux) H; \\ Hyp ff’SfH is also O (N2T_’)
(S4): The norm of the fourth term on the right hand side of (57) is O, (N~ 2T~ 3).
The calculation procedure is similar to (82) The difference is that S is replaced by
Hyp ff,Sf (S2) uses HHf/\’ /\/\’SAH = N2) Here due to parts (ix) and (xvi) of
Lemma 4 and parts (ii) and (v) of Lemma 8, ||H v H, ' H\pHy, Sf” is also O (Nz)

If
Taking (S1)-(S4) together, we have [H1S]; = S\i + O,(N~2T~2). Thus

)\X

[ L)\/\’

A - NET
)\7; — /\ZG = [ LAA’S)\] + O ( 2) + Op((52—)
NT

LAX] (G_(/Zipé)il and T_% [S)\]z i> N(O, GIQZFG)
Since ZENETE 0, we have Tz (\; — A9) <, N0, G182 pX 2 G'Y). Limit dis-

2
6NT

By Assumption 5(iii), we have T[H

tribution of estimated factors follows from symmetry. Consistency of vary and vary

follows from Assumption 2(ii), Assumption 3 and Theorem 1. =

C.6 Proof of Proposition 5

Proof. For expression (12): The j-th diagonal element of T'F'F and T-'FYFC is

p; and p,; respectively.

1 1
1 1
HVNT_V2

= maxp = o < Q2= )t < T

A N 2
< 9 H(F _ FG)’FGH + HF _ ¢
F F

Al FG/FGH
F

3
is OP(M) Since p; and p; are all

1
Thus by Lemma 11 and Theorem 1, HV]%T —V: 7z

and

1
bounded and bounded away from zero in probability, ||[Vnr — V||, HVK,T — Vi
|[Var — V7! are all Op(NER ).
1 ,
For expression (13): First note that GV 4 = (22A%) 7y~ 4V NT i and Hp, =

N

AZA —F;FV&IT. It suffices to show HFO# — (A3 || = OP(%). Noting that

FOIFOGV_l AO’AO _1 1 -7 N%T%
= (55)72 ) F( FGY~i ‘_’pfﬁw)

1 1

This can be proved by the following facts: (1) Vyi—V~ T = VNT(V]‘\*,T Vi)V71,(2)
F—FOGY~1 = (F— FOG)Vy i+ FOG(Vyh—V~1), (3) by Lemma 11, 2 FU(F— F@) =
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C.7 Proof of Theorem 3

Proof. Let Y = (y11n, -y yrsn), 2 = (21,0, 27), 2 = (21, oy 27)s € = (€140 -y €711)
It follows that ¥ = 20 + e 4+ (F¢ — F)G o and & = (22)12'Y = 6 + (#2) 1 (Ze +
2(FC - F)G'a). Let B = diag(G, 1,), then we have 2 — 22 = F'— FC. Then due to
facts listed below, we have § —§ = (2/2/22 + Op(%))_ (2'2'e+ O ( N%T%)) By

Assumption 8, 7712z 5 %, and T3¢ % N(0,%...). Thus given %
we have T3 (6 — §) 5 N(0,Z1221%,,.5712"~1). The proof for consistency of S is
straightforward and hence omitted.

(1) €2 = €22+ ¢ (F — F9).

2) #(FCY — F) = (F — FOY(FC — F) + 22/ (F° — F).

3) By Lemma 10, both (F — FG)'Z and (F — F% e are O ( =

)-

m\w

NeT

TS
N—

(2)
(3)
(4) By Theorem 1, F' — F% is O (5
(5) Both |Z|| and |G| are O,(1).
(6) By Assumption 8(i), ||z|| is O,(T

b .

C.8 Proof of Theorem 4

~

Proof. FiI'St ?)T+h|T —Yr+nT = 2 E(S 5) (fT - quﬂJ)/GilOZ + (ZA'T — E/ZT)/(5 — 5)
By Theorem 3, T2 24,Z(0 — 6) < N(0, zT I3 ).
By Theorem 2, under the assumption 5= N NfTE — 0, we have Nz (fr—fS)Gla %
N0, a'S 102 a).
5 o=t s o : 1
(20 — Z'27)(0 — 0) is Op(T%é

) because (1) by Theorem 4, |z — Z'z27| =
NT

HfT — fﬁ” = Op(ﬁ); (2) under the assumption 62—]\75 Tt - 0, Theorem 3 shows
that H5 — 4|l is Op(T_%).
By Assumption 8, ¢; is independent with z;, for all ¢ and s, thus z’TE(3 —§) is

asymptotically uncorrelated with (fr — f)'G .
These together implies that (§rinr — Yrinr)/Br R N(0,1). The proof for

consistency of B% is straightforward. m
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D  Verification of Assumption 2

(1) Probit:
The likelihood function is [;(7) = x4 log ®(7) + (1 — x4) log(1 — ®(7)). The first
order derivative is Oyl (m) = xit% —(1- xit)%. The second order derivative is
_ —mp(m) _ ¢*(m) —n(m) ¢°(m) _ ¢(m)
Op2lip (1) = i ( G <I>2(7r)) —(1- mit)(l_@(ﬂ) + (1—<I>(7r))2)' Let m(7) = o be the

inverse mill’s ratio and ¢;; = 2z, — 1. It follows that [;;(7) = log ®(gu7), Oxli(7) =
qim(qi) and Ozl (m) = —qumm(qium) — m?(gim). Now consider a standard normal
random variable truncated on the right at gum. Its variance is 1 — gmm(q;m) —
m?2(qum). Since |g;m| = |7| is bounded, the variance must be strictly greater than

zero and less than one. Thus —0,20;(7) is also strictly greater than zero and less

than one. The third order derivative is Ogsly(m) = —qi[m(qum) + qrm/(qum) +
2m(qum)m/(gqm)]. Since |gym| = |r| is bounded, |m(g;m)| and |m/(gym)| are also
bounded. Thus |0,3l;(7)| is also bounded.

(2) Logit:

The likelihood function is l;;(7) = zulog¥(mw) + (1 — x4)log(1 — ¥(7)), where
U(r) = 15;7,. The first order derivative is 0;l;(7) = xit% -(1- xit)%%, which

equals x;; — ¥(7w) once we plugging in ¥'(7) = ¥(w) — ¥?(7r). The second order
derivative is Ozl (m) = —¥(m)(1 — ¥(7)). The third order derivative is 0,3l (7) =
U(m)(2¥(m) — 1)(1 — U(m)). It is easy to see that given |r| is bounded, —0,21;:(7) is
less than or equal to § and strictly greater than zero, and |9yl ()| is less than 1.

(3) Poisson:

The likelihood function'! is [;(7) = —e™ + km — log k! because P(xy = k) =
p(k,\) = e *N\*/k! where A = ™. The first order derivative is O,ly(7) = —e™ + k.
Both the second and third order derivatives are Oy2l;;(m) = —e™. Thus it is easy to
see that given || is bounded, —0y2l;:(7) and |0;3l;(7)| are both bounded away from
zero and bounded above.

(4) Tobit:

Since Tobit represents a class of models, we show through a representative case.

'Note that for Poisson regression, A = e” rather than A = 7. A has to be positive while 7 could
be negative. In standard Poisson regression, 7 = ', while here m; = fo)\).
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Suppose zf, = T + e, ey is N(0,1), and x;; = «fy, if 23, > 0, x;; = 0 if 2}, < 0.
The likelihood function is ly(m) = —3(zy — m)*1(z; > 0) + log(1 — ®(7))1(z; = 0),
where 1(+) is the indicator function. The second order derivative is 0,2l (7) = —1 if
Tt > 0, Op2ly(m) = —(—7m(—m) + m?(—m)) if x;; = 0. The third order derivative is
Opslip(m) = 0 if 2y > 0, Opslyp(m) = m(—7) — 7m/(—m) + 2m(—m)m/(—m) if x; = 0.
These together with the argument in the Probit case shows —0,2l;(m) is bounded

away from zero and both —0,20;(7) and |03, (7)| are bounded above.
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