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Abstract

We review the classical Gibrat’s process for the population of city sizes. In

particular, we are interested in whether the log-population process has stationary

and independent (Gibrat’s Law for cities) increments. We have tested these char-

acteristics for the case of the municipalities of Italy and Spain and the places of

USA for a time span of more than one century. The results are clear: stationarity

and independence are empirically rejected by standard tests. These results open

theoretically the way for the observance of other city size distributions other than

the lognormal and the double Pareto lognormal, something that in fact has already

happened in the literature.

Keywords: Gibrat’s process; log-population process; stationary increments;

independent increments; Italian cities; Spanish cities; USA cities JEL: C46, R11,

R12

aDepartment of Economic Analysis, Universidad de Zaragoza (SPAIN) aramos@unizar.com.



1 Introduction

There is an ample amount of work concerning Zipf’s Law and Gibrat’s Law in the field

of Urban Economics. Two of the main references are Gabaix (1999, 2009), where the

author finds an explanation for Zipf’s Law assuming that the US urban units follow

a geometric Brownian motion process with a lower barrier and a Poisson process of

city creation. On its side, Eeckhout (2004) proposes the lognormal distribution for

describing US city size, and the generation of this distribution is based on the stan-

dard multiplicative Gibrat’s process, which is another way of considering a geometric

Brownian motion. In the firm size distribution literature, Sutton (1997) and Delli Gatti

et al. (2005) postulate that if Gibrat’s Law holds, the resulting log-size distribution

will be normal, and that the log-growth rates are expected to follow a normal distribu-

tion as well. However, work by Stanley et al. (1996); Amaral et al. (1997) shows that

the log-growth rate distribution of firm sizes is described better by a Laplace distribu-

tion. See also Toda (2012) for something similar regarding the income distribution.

More recently, Ramos (2017) has shown a new parametric density function for US city

log-growth rates that is not empirically rejected by the Kolmogorov–Smirnov (KS),

Crámer–von Mises (CM) and Anderson–Darling (AD) tests.

Almost simultaneously, a quite remarkable density function has been proposed for

city size (Reed, 2002, 2003; Reed and Jorgensen, 2004), later embraced by Giesen

et al. (2010); Giesen and Suedekum (2012, 2014), namely the double Pareto lognormal

(dPln). This last distribution can be generated by a variation of the geometric Brownian

motion, adding the effects of city age to yield the associated Yule process. Thus, until

the year 2015 the dPln offered the best fit for a number of countries in the literature

(Giesen et al., 2010; González-Val et al., 2015).

However, the recent papers Puente-Ajovı́n and Ramos (2015); Luckstead and De-

vadoss (2017); Luckstead et al. (2017) have proposed new parametric models for which

the tails are essentially Pareto, and the body is Singh–Maddala (Singh and Maddala,
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1976) or lognormal, the tails and the body delineated by two exact population thresh-

olds. These distributions offer better fits than the lognormal and dPln in the sense that

they are often not rejected by standard KS, CM and AD tests for medium-sized and

big countries, and that the information criteria Akaike Information Criterion (AIC) and

Bayesian or Schwarz Information Criterion (BIC) yield lower (better) values for the

former distributions than for the lognormal and dPln.

Even more recently, the paper of Kwong and Nadarajah (2019) proposes a better fit

to US and India city size distributions than Luckstead and Devadoss (2017); Luckstead

et al. (2017) by considering convex linear combinations of three or five lognormal

distributions.

Thus, since the empirically observed distributions (for countries of moderate or

high sample size) are not lognormal nor dPln, then the hypothesis of geometric Brow-

nian motion (with a Yule process if needed) may not apply in practice.

The aim of this paper is to review two characteristics of the increments of the log-

population process that must hold if the mentioned process qualifies as a Lévy process.

These kind of processes embrace as particular cases the geometric Brownian motion

(with a Yule process, possibly) or geometric Brownian process with drift and/or Pois-

son process. The two characteristics that will be empirically tested will be the station-

arity and independence of increments of the process. We have at hand census data for

Italy, Spain and the USA along all the XX century and the first decade of the XXI one,

so the study can be considered as a long-term exercise.

The formal definition of Lévy process is as follows (Lukacs, 1970; Sato, 1999;

Kyprianou, 2006):

Definition 1 (Lévy process) A process Y = {Yt : t ≥ 0} defined on a probability

space (Ω,F ,P)1 is said to be a Lévy process if it possesses the following properties:

1Ω denotes the sample space, i.e. the set of all possible outcomes, F denotes the σ-algebra of the set of

events, and P is a function from events to probabilities.
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(i) The paths of Y are P-almost surely right continuous with left limits.

(ii) P(Y0 = 0) = 1.

(iii) For 0 ≤ s ≤ t, Yt − Ys is equal in distribution to Yt−s.

(iv) For 0 ≤ s ≤ t, Yt − Ys is independent of {Yu : u ≤ s}.

It can be shown, see again Kyprianou (2006) and Sato (1999), that variables that

follow Lévy processes can be associated to probability laws that are infinitely divisible

and reciprocally. The standard geometric Brownian motion with drift (with a Yule pro-

cess) that can be used to generate the asymmetric double Laplace-normal for the log-

population (dPln for the population) (Reed, 2002, 2003; Reed and Jorgensen, 2004) is a

Lévy process since the characteristic function of the distribution of the log-population

y = lnx in this case takes the form

φy(θ) = exp

(

iA0θ −
1

2
B2

0
θ2
)

1

(1− iθ/α) (1 + iθ/β)

where A0, B0, α, β are real constants (and here, i is the imaginary unit). In fact, this

characteristic function is the product of the characteristic functions of a normal distri-

bution and of two Gamma distributions, each of them being infinitely divisible. Ac-

cording to Theorem 5.3.2 in Lukacs (1970) the product is infinitely divisible as well

and the underlying process of the asymmetric double Laplace-normal distribution for

the log-population (dPln distribution for the population) can be associated to a Lévy

process. This straightforward result shows the relation between Lévy processes and

the dPln distribution.

According to what has been said before, we will explicity test conditions (iii) (sta-

tionarity) and (iv) (independence) of Definition 1 which are the ones accessible to our

data sets. In short, we will see that they are strongly rejected for the three studied coun-

tries, so the log-population process does not qualify as a Lévy one and the appearance
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of lognormal or dPln distribution are not to be expected to describe well city size dis-

tributions by that reason, opening the way to other parametric descriptions that begin

to appear in the literature as we have mentioned before.

The rest of the paper is organized as follows. Section 2 reviews Gibrat’s process.

Section 3 describes the databases used. Section 4 studies the stationarity and indepen-

dence of the log-growth rates for Italy, Spain and the USA along more than a century.

Finally, Section 5 offers some conclusions.

2 Gibrat’s process

Gibrat’s process for cities can be understood as follows (we base our development

mainly in Sutton (1997) and references therein, Eeckhout (2004) and Delli Gatti et al.

(2005)). Let xi,t be the population of city i at time t, and gi,t = lnxi,t − lnxi,t−1 the

log-growth rate of city i between times t− 1 and t. From the relation

lnxi,t = lnxi,t−1 + gi,t

and assuming that t is a natural number, we can iterate the former and arrive to

lnxi,t = lnxi,t−2 + gi,t−1 + gi,t

= lnxi,0 + gi,1 + · · ·+ gi,t−1 + gi,t

Then, if the log-growth rates or increments gi,t are identical and independent variables

with mean µ and variance σ2 for all i, t,2 by the Central Limit Theorem (see, e.g.,

Feller (1968)) we have that as t → ∞ the quantity lnxi,t− lnxi,0 will follow a normal

distribution with mean µt and variance σ2t.3

2And therefore the increments are clearly stationary and independent in the sense of Definiton 1.
3Kalecki (1945) modifies this derivation so as to obtain a lognormal distribution for the size with constant

variance, by allowing a negative correlation between the log-growth rates and log-size.
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In contrast, it has been empirically found (Puente-Ajovı́n and Ramos, 2015; Luck-

stead and Devadoss, 2017; Luckstead et al., 2017; Kwong and Nadarajah, 2019) that

the normal distribution for log-populations is not observed in practice but other alter-

native distributions.

Thus the key assumption in obtaining the normal distribution for the log-popu-

lations in the previous paragraph, namely that the increments gi,t are stationary and

independent, deserves a reconsideration.4

Thus it is our main interest in this paper to study empirically, in the most general

standard framework, the question of whether the previous log-growth rates gi,t are

stationary and independent, based on our relatively ample databases.

3 The databases

There is a lively debate about the proper definition of cities from an economic point of

view. The usual data sets contain administratively defined cities, not always coinciding

with the economic sense of a city in terms of, for example, commuting or trade flows,

from which metropolitan areas are considered the most descriptive urban agglomera-

tions. See, e.g., Ioannides and Skouras (2013) for the definition of MSAs in the USA.

Metropolitan areas have the drawback that they focus essentially on the upper tail of

the distribution, or, in other words, they present an implicit cut-off for the considered

population values.

On their side, the usual census data sets offer a limitation in the sense that maybe

very spatially close different administrative cities are not considered as only one eco-

nomic entity. This perhaps becomes more relevant for the biggest agglomerations in a

country (Giesen and Suedekum, 2012). One way to overcome this problem is to define

4One could argue that for US cities the current t is not long enough to give sense to the previous limit.

The convergence is known to be of the order O(t−1/2) (see, e.g, Feller (1968)) and we will assume that the

limiting distribution, if any, should have approximately been reached already.
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clusters that give economic sense to actual agglomerations, irrespective of their legal

borders, as pioneered by Rozenfeld et al. (2008, 2011). The construction of these data

sets relies in turn on the availability of previous good data sets of geo-localization of

urban settlements. Thus there exist few of these data sets (for the whole city size distri-

bution) currently: those of USA and UK. The availability of data sets imposes therefore

a clear constraint on the studies that can be carried out in practice.

Official census have instead a crucial advantage over other types of data for the

study that is aimed in this paper, namely the long time span of the data. Indeed, we

have collected data from the official census from as early as 1900/1901 and continued

until 2010/2011 for three medium sized and big countries as they are Italy, Spain and

the USA. Thus, for a long-term study, we are constrained to take data sets available by

that time. Moreover official census cover very often almost 100% of the population (a

remarkable exception is the census of places in the USA, of use in this paper) without

population cut-offs as Eeckhout (2004) advocates.

In this article we use population data, without size restriction, on the one hand, of

two European countries: Italy and Spain, and the USA on the other hand.

For the case of Italy and Spain, the administrative urban unit of the data is the

municipality. For Italy, the data is obtained from the Istituto Nazionale di Statistica

(www.istat.it), with all the Italian municipalities (comuni) for the years from 1901

until 2011. The data for Spain is taken from the Instituto Nacional de Estadı́stica

(www.ine.es). They cover all the municipalities (municipios) covering the years

from 1900 until 2010.

As we take the data of all cities defined as the lowest administrative subdivision

of population settlements for these two European countries, we assume that from an

economic point of view they be roughly comparable units of study.

We have used in this article data about US urban centers from the decennial data

of the US Census Bureau of “incorporated places” without any size restriction, for
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the period 1900-1990. These include governmental units classified under state laws

as cities, towns, boroughs or villages. Alaska, Hawaii and Puerto Rico have not been

considered due to data limitations. The data have been collected from the original

documents of the annual census published by the US Census Bureau.5 These data sets

were first introduced in González-Val (2010), see therein for details, and later used in

other works like González-Val et al. (2013, 2015). Moreover, despite the slight lack of

consistency of the urban units, we have used the data sets of all US urban places in the

year 2000 (first used by Eeckhout (2004) and then in many papers, as for example Levy

(2009); Eeckhout (2009); Giesen et al. (2010); Ioannides and Skouras (2013); Giesen

and Suedekum (2014); González-Val et al. (2015)) and in the year 2010 (used, for

example, in Luckstead and Devadoss (2017); Ramos (2017)). Likewise, the datasets

of “City Clustering Algorithm” (CCA) (Rozenfeld et al., 2008, 2011) have not been

considered because their temporal span is very short (1991-2000) in order to consider

a long-term perspective.

We offer in Tables 1, 2 and 3 the descriptive statistics of the population samples

obtained from the official censusfor the three countries. Observations with zero popu-

lation have been removed from the original sources. For Italy the census of 1941 is not

considered because of WWII but the 1936 one instead. For Spain, the census of 1980

took place on 1981 instead, and then on 1991, 2001 and back on 2010. Observe that

for the USA samples the sample size growths considerably with time.

In Tables 4, 5 and 6 we show the descriptive statistics of the log-growth rates sam-

ples computed with the previous population samples.

5http://www.census.gov/prod/www/decennial.htmlLast accessed: March 1st , 2019.
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4 About the stationarity and independence of the log-

growth rates

In this Section we analyze whether the (generally) decennial log-growth rates for the

data of Italy, Spain municipalities and the USA places are, respectively, equal in distri-

bution, namely whether requirement (iii) in Definition 1 holds for the process followed

by Yt = lnxt applied to each type of data.

If the cited condition (iii) holds, it should happen that

lnxi,t − lnxi,t−1 = gi,t (1)

is equal in distribution to ln xi,1 for all i. Thus, all gi,t should be equal in distribution

for all t.

We have available eleven samples of (almost) decennial intervals for each of the

three countries under study. We will test whether the corresponding log-growth rates

come from the same distribution.

For that, we simply perform the Kolmogorov–Smirnov (KS), Crámer–von Mises

(CM) and Anderson–Darling (AD) tests to the empirical log-growth rates of each pe-

riod compared to all other periods’ samples. The null hypothesis in all cases is that the

empirical log-growth samples come from the same distribution for a given country.

The results are grouped by test and country, in Tables 7-15. In short, we obtain

always a strong rejection of the null hypothesis, with zero p-values. Thus we have

that the increments of the log-population of Italian and Spanish municipalities and US

places are not stationary, and requirement (iii) in Definition 1 is not fulfilled.

We should remark however that there are sources for the non-stationarity for the

samples of the three countries. For Italy, the incorporation of Trentino, South Tirol,

Trieste, Istria, part of Dalmacia and the Friuli by the Treaty of Saint-Germain-en-Laye
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(1919) has increased the territories under study so the initial Italian samples are not

completely homogeneous with the later ones. Moreover we consider the jumps 1931-

1936 and 1936-1951 which are not decennial. For Spain, the jump from 1970 to 1981

takes 11 years instead of 10, and then the jump from 2001 to 2010 takes 9 years. For the

USA, the samples’ jumps are regularly decennial, but the incorporated places’ number

increases greatly with time, so the covering of the whole distribution also increases with

time. And the last two samples (2000, 2010) contain all places, not only incorporated

ones. However, the rejection of the null hypothesis in the previous tests is so strong

and so regular that leads us to think that the mentioned sources of non-stationarity have

only slight influence, although a faithful assessment of this statement is out of reach

given the data.

Also, we will comment about the dependence of log-growth rates on the initial sizes

so that requirement (iv) in Definition 1 may not occur. Due to difficulties in preparing

the data for other jumps other than one decade (one census), we will limit ourselves to

testing whether the log-growth rates (1) are independent of the initial log-sizes lnxi,t−1

for each period t.

The test of independence chosen is the standard HoeffdingD (HD) test (Hoeffding,

1948). The null hypothesis in the test is that the two input vectors are statistically

independent, and the alternative hypothesis is that such vectors exhibit some kind of

dependence. The HD test allows to detect non-linear dependencies. The results are

shown in Table 16.

In short, the HD test yields in all cases a p-value of zero, which shows the depen-

dence of the log-growth rates on the initial values of the log-populations for one decade

jumps. Occurring this, it is sufficient for saying that requirement (iv) of Definition 1 is

not satisfied either. As a byproduct, we obtain rejection of Gibrat’s Law in the common

conception of it (see, e.g., González-Val et al. (2013, 2014) and references therein).
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5 Conclusions

We have analyzed whether the Italian and Spanish municipalities and the USA places

during more than a century have log-populations that conform processes with stationary

and independent increments. The results can be summarized as follows:

a) The log-growth rates or increments are strongly not stationary. Thus condition

(iii) in Definition 1 is not satisfied in the cases under study.

b) The log-growth rates or increments are not always independent of initial log-

sizes (rejection of Gibrat’s Law (González-Val et al., 2013, 2014)). Thus condi-

tion (iii) in Definition 1 is not satisfied either for these three countries.

Thus the Italian, Spanish and US log-population processes are not Lévy, and as

a consequence they are not geometric Brownian processes (eventually, with an added

Yule process). This justifies that the lognormal and dPln distributions are not to be ex-

pected by the assumption of the last processes taking place. They may appear, however,

by other reasons.

In addition, the above results open, theoretically, the way to the existence of newly

observed city size distributions other than the lognormal and the dPln as it has hap-

pened already in the literature (Puente-Ajovı́n and Ramos, 2015; Luckstead and Deva-

doss, 2017; Luckstead et al., 2017; Kwong and Nadarajah, 2019). In fact, until 2015

it seemed that the best fit for the overall city size distribution was obtained by the

dPln, but from 2015 onwards, a number of alternative distributions, which fit the data

very well and much better than the lognormal and the dPln (for medium-sized and big

countries), have appeared. Nowadays the problem is the relative abundance of such

parametric models, which are statistically equivalent in many cases one another6. And

perhaps this abundance is due to the fact that the log-population processes go beyond

the framework of Lévy processes to give a much richer structure. However, it is some-

6Work under preparation.
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what paradoxical this richness with the fact that city size distributions can be extremely

well described with relatively simple parametric models (cited above).
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Table 1: Descriptive statistics of the Italian population samples.

Obs. Mean SD Mean (log scale) SD (log scale) Min Max

It 1901 ini 7711 4275 14425 7.790 0.915 56 621213

It 1911 fin 7711 4648 17393 7.843 0.931 58 751211

It 1911 ini 7711 4648 17393 7.843 0.931 58 751211

It 1921 fin 7711 4971 20327 7.868 0.956 58 859629

It 1921 ini 8100 4864 20032 7.836 0.963 58 859629

It 1931 fin 8100 5067 22560 7.839 0.991 93 960660

It 1931 ini 8100 5067 22560 7.839 0.991 93 960660

It 1936 fin 8100 5234 25275 7.842 1.010 116 1150338

It 1936 ini 8100 5234 25275 7.842 1.010 116 1150338

It 1951 fin 8100 5866 31138 7.895 1.049 74 1651393

It 1951 ini 8100 5866 31138 7.895 1.049 74 1651393

It 1961 fin 8100 6250 39131 7.848 1.101 90 2187682

It 1961 ini 8100 6250 39131 7.848 1.101 90 2187682

It 1971 fin 8100 6684 45582 7.788 1.185 51 2781385

It 1971 ini 8100 6684 45582 7.788 1.185 51 2781385

It 1981 fin 8100 6982 45329 7.793 1.246 32 2839638

It 1981 ini 8100 6982 45329 7.793 1.246 32 2839638

It 1991 fin 8100 7010 42450 7.796 1.282 31 2775250

It 1991 ini 8100 7010 42450 7.796 1.282 31 2775250

It 2001 fin 8100 7021 39326 7.803 1.307 33 2546804

It 2001 ini 8081 7031 39370 7.805 1.306 33 2546804

It 2011 fin 8081 7478 41531 7.848 1.339 34 2761477
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Table 2: Descriptive statistics of the Spanish population samples.

Obs. Mean SD Mean (log scale) SD (log scale) Min Max

Sp 1900 ini 7800 2282 10178 6.966 1.063 78 539835

Sp 1910 fin 7800 2452 11221 7.013 1.079 92 599807

Sp 1910 ini 7806 2452 11217 7.013 1.079 92 599807

Sp 1920 fin 7806 2623 13506 7.025 1.108 82 750896

Sp 1920 ini 7812 2622 13501 7.025 1.107 82 750896

Sp 1930 fin 7812 2901 17575 7.060 1.142 82 1005565

Sp 1930 ini 7875 2892 17514 7.055 1.143 79 1005565

Sp 1940 fin 7875 3184 20126 7.063 1.182 11 1088647

Sp 1940 ini 7896 3181 20100 7.063 1.182 11 1088647

Sp 1950 fin 7896 3482 26041 7.086 1.203 64 1618435

Sp 1950 ini 7901 3489 26033 7.086 1.203 64 1618435

Sp 1960 fin 7901 3802 33671 7.033 1.272 51 2259931

Sp 1960 ini 7910 3802 33652 7.033 1.272 51 2259931

Sp 1970 fin 7910 4258 44099 6.830 1.445 10 3146071

Sp 1970 ini 7956 4241 43972 6.829 1.442 10 3146071

Sp 1981 fin 7956 4734 46219 6.631 1.628 5 3188297

Sp 1981 ini 8034 4701 45995 6.631 1.624 5 3188297

Sp 1991 fin 8034 4881 45336 6.529 1.715 2 3084673

Sp 1991 ini 8077 4882 45220 6.534 1.715 2 3084673

Sp 2001 fin 8077 5039 43080 6.541 1.755 7 2938723

Sp 2001 ini 8074 5041 43087 6.542 1.755 7 2938723

Sp 2010 fin 8074 5803 47645 6.580 1.848 5 3273049
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Table 3: Descriptive statistics of the USA population samples.

Obs. Mean SD Mean (log scale) SD (log scale) Min Max

US 1900 ini 10502 3473 42606 6.695 1.263 7 3437202

US 1910 fin 10502 4574 57217 6.880 1.326 4 4766883

US 1910 ini 13543 3624 50412 6.659 1.271 7 4766883

US 1920 fin 13543 4492 60692 6.772 1.336 5 5620048

US 1920 ini 15085 4093 57518 6.695 1.312 3 5620048

US 1930 fin 15085 5004 70899 6.763 1.406 1 6930446

US 1930 ini 16199 4787 68431 6.739 1.405 1 6930446

US 1940 fin 16199 5119 72452 6.808 1.429 1 7454995

US 1940 ini 16416 4981 71968 6.777 1.414 1 7454995

US 1950 fin 16416 5805 77656 6.865 1.505 1 7891957

US 1950 ini 16943 5668 76444 6.854 1.491 3 7891957

US 1960 fin 16943 6652 77112 6.953 1.603 1 7781984

US 1960 ini 17826 6470 75195 6.943 1.594 1 7781984

US 1970 fin 17826 7248 76678 7.027 1.664 3 7894862

US 1970 ini 18321 7160 75654 7.034 1.643 4 7894862

US 1980 fin 18321 7564 70278 7.143 1.658 2 7071639

US 1980 ini 18810 7450 69374 7.130 1.656 2 7071639

US 1990 fin 18810 8058 72448 7.110 1.742 2 7322564

US 1990 ini 19048 8042 72015 7.115 1.739 2 7322564

US 2000 fin 19048 9023 78498 7.190 1.779 1 8008278

US 2000 ini 24684 8207 69221 7.267 1.743 1 8008278

US 2010 fin 24684 8981 71316 7.302 1.805 1 8175133

Table 4: Descriptive statistics of the Italian log-growth rates samples.

Obs. Mean SD Min Max

It 1901 1911 7711 0.054 0.112 -0.957 1.890

It 1911 1921 7711 0.024 0.095 -0.802 0.683

It 1921 1931 8100 0.003 0.134 -0.933 3.447

It 1931 1936 8100 0.003 0.091 -0.704 2.488

It 1936 1951 8100 0.053 0.126 -0.531 2.324

It 1951 1961 8100 -0.047 0.161 -0.861 1.873

It 1961 1971 8100 -0.060 0.200 -1.075 2.234

It 1971 1981 8100 0.004 0.145 -0.900 1.108

It 1981 1991 8100 0.003 0.132 -3.098 3.835

It 1991 2001 8100 0.007 0.110 -1.384 1.366

It 2001 2011 8081 0.043 0.117 -0.580 3.303
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Table 5: Descriptive statistics of the Spanish log-growth rates samples.

Obs. Mean SD Min Max

Sp 1900 1910 7800 0.047 0.117 -0.689 1.493

Sp 1910 1920 7806 0.012 0.126 -1.504 2.143

Sp 1920 1930 7812 0.034 0.143 -1.304 1.803

Sp 1930 1940 7875 0.008 0.144 -3.312 1.330

Sp 1940 1950 7896 0.023 0.127 -1.382 2.411

Sp 1950 1960 7901 -0.053 0.176 -1.360 1.579

Sp 1960 1970 7910 -0.204 0.311 -2.104 2.619

Sp 1970 1981 7956 -0.198 0.306 -2.416 2.396

Sp 1981 1991 8034 -0.102 0.235 -2.351 3.131

Sp 1991 2001 8077 0.007 0.238 -1.985 2.529

Sp 2001 2010 8074 0.038 0.244 -1.458 3.258

Table 6: Descriptive statistics of the USA log-growth rates samples.

Obs. Mean SD Min Max

US 1900 1910 10502 0.185 0.374 -3.714 2.664

US 1910 1920 13543 0.113 0.322 -3.036 3.723

US 1920 1930 15085 0.068 0.346 -5.053 3.393

US 1930 1940 16199 0.069 0.229 -5.849 3.570

US 1940 1950 16416 0.088 0.293 -5.187 5.645

US 1950 1960 16943 0.099 0.347 -3.235 4.810

US 1960 1970 17826 0.084 0.329 -5.499 8.716

US 1970 1980 18321 0.109 0.294 -2.354 4.166

US 1980 1990 18810 -0.020 0.269 -2.735 2.770

US 1990 2000 19048 0.075 0.262 -4.467 3.581

US 2000 2010 24684 0.035 0.282 -5.278 6.075

18



Table 7: Results of the Kolmogorov–Smirnov (KS) test for the null that the log-growth

rates come from the same distribution. Italian samples. The format is p-value (statistic).

It 1911 1921 It 1921 1931 It 1931 1936 It 1936 1951 It 1951 1961

It 1901 1911 0 (0.142) 0 (0.180) 0 (0.291) 0 (0.037) 0 (0.370)

It 1911 1921 0 (0.120) 0 (0.152) 0 (0.158) 0 (0.331)

It 1921 1931 0 (0.146) 0 (0.162) 0 (0.213)

It 1931 1936 0 (0.298) 0 (0.326)

It 1936 1951 0 (0.341)

It 1961 1971 It 1971 1981 It 1981 1991 It 1991 2001 It 2001 2011

It 1901 1911 0 (0.403) 0 (0.211) 0 (0.232) 0 (0.208) 0 (0.067)

It 1911 1921 0 (0.377) 0 (0.156) 0 (0.122) 0 (0.101) 0 (0.088)

It 1921 1931 0 (0.263) 0 (0.037) 0 (0.066) 0 (0.051) 0 (0.128)

It 1931 1936 0 (0.376) 0 (0.151) 0 (0.092) 0 (0.109) 0 (0.233)

It 1936 1951 0 (0.369) 0 (0.189) 0 (0.222) 0 (0.197) 0 (0.075)

It 1951 1961 0 (0.073) 0 (0.179) 0 (0.239) 0 (0.259) 0 (0.338)

It 1961 1971 0 (0.229) 0 (0.295) 0 (0.312) 0 (0.379)

It 1971 1981 0 (0.071) 0 (0.085) 0 (0.163)

It 1981 1991 0.002 (0.030) 0 (0.174)

It 1991 2001 0 (0.147)

Table 8: Results of the Kolmogorov–Smirnov (KS) test for the null that the log-growth

rates come from the same distribution. Spanish samples. The format is p-value (statis-

tic).

Sp 1910 1920 Sp 1920 1930 Sp 1930 1940 Sp 1940 1950 Sp 1950 1960

Sp 1900 1910 0 (0.156) 0 (0.087) 0 (0.146) 0 (0.101) 0 (0.415)

Sp 1910 1920 0 (0.103) 0 (0.034) 0 (0.067) 0 (0.271)

Sp 1920 1930 0 (0.076) 0 (0.075) 0 (0.331)

Sp 1930 1940 0 (0.063) 0 (0.272)

Sp 1940 1950 0 (0.332)

Sp 1960 1970 Sp 1970 1981 Sp 1981 1991 Sp 1991 2001 Sp 2001 2010

Sp 1900 1910 0 (0.604) 0 (0.585) 0 (0.462) 0 (0.266) 0 (0.225)

Sp 1910 1920 0 (0.539) 0 (0.514) 0 (0.354) 0 (0.141) 0 (0.143)

Sp 1920 1930 0 (0.558) 0 (0.534) 0 (0.395) 0 (0.185) 0 (0.155)

Sp 1930 1940 0 (0.526) 0 (0.500) 0 (0.344) 0 (0.130) 0 (0.146)

Sp 1940 1950 0 (0.571) 0 (0.547) 0 (0.405) 0 (0.191) 0 (0.166)

Sp 1950 1960 0 (0.379) 0 (0.349) 0 (0.147) 0 (0.155) 0 (0.216)

Sp 1960 1970 0 (0.034) 0 (0.234) 0 (0.420) 0 (0.429)

Sp 1970 1981 0 (0.205) 0 (0.388) 0 (0.400)

Sp 1981 1991 0 (0.216) 0 (0.244)

Sp 1991 2001 0 (0.098)
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Table 9: Results of the Kolmogorov–Smirnov (KS) test for the null that the log-growth

rates come from the same distribution. USA samples. The format is p-value (statistic).

US 1910 1920 US 1920 1930 US 1930 1940 US 1940 1950 US 1950 1960

US 1900 1910 0 (0.096) 0 (0.156) 0 (0.210) 0 (0.146) 0 (0.143)

US 1910 1920 0 (0.091) 0 (0.118) 0 (0.054) 0 (0.061)

US 1920 1930 0 (0.105) 0 (0.067) 0 (0.032)

US 1930 1940 0 (0.066) 0 (0.078)

US 1940 1950 0 (0.038)

US 1960 1970 US 1970 1980 US 1980 1990 US 1990 2000 US 2000 2010

US 1900 1910 0 (0.165) 0 (0.146) 0 (0.331) 0 (0.196) 0 (0.274)

US 1910 1920 0 (0.086) 0 (0.058) 0 (0.282) 0 (0.119) 0 (0.209)

US 1920 1930 0 (0.043) 0 (0.081) 0 (0.196) 0 (0.087) 0 (0.122)

US 1930 1940 0 (0.074) 0 (0.066) 0 (0.276) 0 (0.062) 0 (0.164)

US 1940 1950 0 (0.052) 0 (0.043) 0 (0.259) 0 (0.078) 0 (0.175)

US 1950 1960 0 (0.027) 0 (0.057) 0 (0.224) 0 (0.063) 0 (0.149)

US 1960 1970 0 (0.041) 0 (0.209) 0 (0.044) 0 (0.127)

US 1970 1980 0 (0.246) 0 (0.062) 0 (0.160)

US 1980 1990 0 (0.223) 0 (0.142)

US 1990 2000 0 (0.110)

Table 10: Results of the Crámer–von Mises (CM) test for the null that the log-growth

rates come from the same distribution. Italian samples. The format is p-value (statistic).

It 1911 1921 It 1921 1931 It 1931 1936 It 1936 1951 It 1951 1961

It 1901 1911 0 (37.072) 0 (69.877) 0 (137.82) 0 (2.039) 0 (253.842)

It 1911 1921 0 (20.110) 0 (33.638) 0 (38.413) 0 (179.175)

It 1921 1931 0 (33.279) 0 (60.542) 0 (82.251)

It 1931 1936 0 (132.203) 0 (157.719)

It 1936 1951 0 (225.312)

It 1961 1971 It 1971 1981 It 1981 1991 It 1991 2001 It 2001 2011

It 1901 1911 0 (274.075) 0 (84.084) 0 (102.525) 0 (82.378) 0 (7.436)

It 1911 1921 0 (214.083) 0 (35.641) 0 (27.994) 0 (17.189) 0 (12.233)

It 1921 1931 0 (114.742) 0 (2.494) 0 (5.481) 0 (3.906) 0 (35.991)

It 1931 1936 0 (201.290) 0 (44.332) 0 (15.716) 0 (15.656) 0 (80.306)

It 1936 1951 0 (246.156) 0 (70.366) 0 (91.269) 0 (73.992) 0 (7.383)

It 1951 1961 0 (8.330) 0 (59.196) 0 (92.651) 0 (107.859) 0 (207.572)

It 1961 1971 0 (89.316) 0 (132.245) 0 (147.075) 0 (236.551)

It 1971 1981 0 (8.721) 0 (9.940) 0 (49.805)

It 1981 1991 0 (1.381) 0 (56.566)

It 1991 2001 0 (41.415)
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Table 11: Results of the Crámer–von Mises (CM) test for the null that the log-growth

rates come from the same distribution. Spanish samples. The format is p-value (statis-

tic).

Sp 1910 1920 Sp 1920 1930 Sp 1930 1940 Sp 1940 1950 Sp 1950 1960

Sp 1900 1910 0 (49.052) 0 (8.607) 0 (37.899) 0 (22.536) 0 (288.817)

Sp 1910 1920 0 (17.333) 0.001 (1.226) 0 (7.295) 0 (135.221)

Sp 1920 1930 0 (11.351) 0 (6.581) 0 (201.374)

Sp 1930 1940 0 (4.983) 0 (134.799)

Sp 1940 1950 0 (195.689)

Sp 1960 1970 Sp 1970 1981 Sp 1981 1991 Sp 1991 2001 Sp 2001 2010

Sp 1900 1910 0 (566.829) 0 (539.245) 0 (368.216) 0 (107.155) 0 (68.422)

Sp 1910 1920 0 (458.948) 0 (425.319) 0 (222.746) 0 (30.694) 0 (35.867)

Sp 1920 1930 0 (499.088) 0 (468.876) 0 (284.501) 0 (58.333) 0 (37.536)

Sp 1930 1940 0 (440.501) 0 (408.036) 0 (216.015) 0 (29.556) 0 (31.409)

Sp 1940 1950 0 (507.843) 0 (476.278) 0 (282.054) 0 (57.555) 0 (50.383)

Sp 1950 1960 0 (228.532) 0 (194.185) 0 (31.984) 0 (41.553) 0 (81.760)

Sp 1960 1970 0 (1.562) 0 (95.208) 0 (306.334) 0 (346.244)

Sp 1970 1981 0 (72.798) 0 (273.646) 0 (315.096)

Sp 1981 1991 0 (98.852) 0 (143.311)

Sp 1991 2001 0 (10.901)

Table 12: Results of the Crámer–von Mises (CM) test for the null that the log-growth

rates come from the same distribution. USA samples. The format is p-value (statistic).

US 1910 1920 US 1920 1930 US 1930 1940 US 1940 1950 US 1950 1960

US 1900 1910 0 (21.092) 0 (74.363) 0 (98.073) 0 (50.963) 0 (57.266)

US 1910 1920 0 (26.803) 0 (35.487) 0 (7.138) 0 (13.457)

US 1920 1930 0 (32.300) 0 (13.355) 0 (3.563)

US 1930 1940 0 (15.252) 0 (23.381)

US 1940 1950 0 (3.966)

US 1960 1970 US 1970 1980 US 1980 1990 US 1990 2000 US 2000 2010

US 1900 1910 0 (77.211) 0 (55.485) 0 (345.072) 0 (104.995) 0 (225.134)

US 1910 1920 0 (23.768) 0 (10.749) 0 (280.73) 0 (41.655) 0 (147.47)

US 1920 1930 0 (3.786) 0 (18.537) 0 (135.527) 0 (17.208) 0 (49.600)

US 1930 1940 0 (17.693) 0 (11.589) 0 (288.229) 0 (10.534) 0 (107.024)

US 1940 1950 0 (7.878) 0 (2.720) 0 (253.36) 0 (19.126) 0 (112.75)

US 1950 1960 0 (2.500) 0 (7.261) 0 (196.896) 0 (15.800) 0 (79.313)

US 1960 1970 0 (7.933) 0 (189.152) 0 (6.525) 0 (59.347)

US 1970 1980 0 (282.527) 0 (12.896) 0 (109.946)

US 1980 1990 0 (224.498) 0 (94.099)

US 1990 2000 0 (55.566)
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Table 13: Results of the Anderson–Darling (AD) test for the null that the log-growth

rates come from the same distribution. Italian samples. The format is p-value (statistic).

It 1911 1921 It 1921 1931 It 1931 1936 It 1936 1951 It 1951 1961

It 1901 1911 0 (197.116) 0 (366.799) 0 (733.396) 0 (16.872) 0 (1259.56)

It 1911 1921 0 (125.714) 0 (197.695) 0 (218.835) 0 (916.746)

It 1921 1931 0 (239.361) 0 (316.021) 0 (406.754)

It 1931 1936 0 (722.293) 0 (850.608)

It 1936 1951 0 (1118.23)

It 1961 1971 It 1971 1981 It 1981 1991 It 1991 2001 It 2001 2011

It 1901 1911 0 (1368.08) 0 (434.516) 0 (500.442) 0 (407.393) 0 (34.993)

It 1911 1921 0 (1108.51) 0 (219.461) 0 (142.470) 0 (87.486) 0 (76.958)

It 1921 1931 0 (590.312) 0 (17.867) 0 (32.155) 0 (27.106) 0 (204.367)

It 1931 1936 0 (1090.48) 0 (316.188) 0 (117.575) 0 (119.939) 0 (459.932)

It 1936 1951 0 (1233.46) 0 (352.771) 0 (444.941) 0 (369.843) 0 (39.049)

It 1951 1961 0 (56.264) 0 (298.272) 0 (483.658) 0 (560.831) 0 (1054.75)

It 1961 1971 0 (468.167) 0 (703.992) 0 (780.230) 0 (1209.41)

It 1971 1981 0 (59.944) 0 (70.977) 0 (273.77)

It 1981 1991 0 (7.467) 0 (284.311)

It 1991 2001 0 (212.905)

Table 14: Results of the Anderson–Darling (AD) test for the null that the log-growth

rates come from the same distribution. Spanish samples. The format is p-value (statis-

tic).

Sp 1910 1920 Sp 1920 1930 Sp 1930 1940 Sp 1940 1950 Sp 1950 1960

Sp 1900 1910 0 (241.656) 0 (48.780) 0 (201.061) 0 (114.003) 0 (1392.29)

Sp 1910 1920 0 (84.373) 0 (8.589) 0 (37.121) 0 (674.426)

Sp 1920 1930 0 (62.335) 0 (38.733) 0 (971.564)

Sp 1930 1940 0 (32.763) 0 (644.293)

Sp 1940 1950 0 (960.047)

Sp 1960 1970 Sp 1970 1981 Sp 1981 1991 Sp 1991 2001 Sp 2001 2010

Sp 1900 1910 0 (2693.83) 0 (2571.83) 0 (1801.36) 0 (578.149) 0 (433.32)

Sp 1910 1920 0 (2227.5) 0 (2075.66) 0 (1140.83) 0 (211.693) 0 (264.526)

Sp 1920 1930 0 (2392) 0 (2257.65) 0 (1411.17) 0 (322.789) 0 (252.549)

Sp 1930 1940 0 (2123.62) 0 (1975.53) 0 (1076.63) 0 (187.177) 0 (230.686)

Sp 1940 1950 0 (2439.17) 0 (2297.04) 0 (1409.57) 0 (350.403) 0 (352.744)

Sp 1950 1960 0 (1169.68) 0 (1009.78) 0 (196.971) 0 (206.679) 0 (415.639)

Sp 1960 1970 0 (7.415) 0 (478.733) 0 (1512.56) 0 (1726.26)

Sp 1970 1981 0 (372.823) 0 (1365.48) 0 (1590.13)

Sp 1981 1991 0 (513.264) 0 (752.987)

Sp 1991 2001 0 (55.342)
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Table 15: Results of the Anderson–Darling (AD) test for the null that the log-growth

rates come from the same distribution. USA samples. The format is p-value (statistic).

US 1910 1920 US 1920 1930 US 1930 1940 US 1940 1950 US 1950 1960

US 1900 1910 0 (122.765) 0 (385.517) 0 (597.921) 0 (291.986) 0 (293.001)

US 1910 1920 0 (128.70) 0 (229.755) 0 (39.763) 0 (64.483)

US 1920 1930 0 (223.299) 0 (67.338) 0 (21.580)

US 1930 1940 0 (110.401) 0 (175.753)

US 1940 1950 0 (23.500)

US 1960 1970 US 1970 1980 US 1980 1990 US 1990 2000 US 2000 2010

US 1900 1910 0 (402.27) 0 (303.727) 0 (1742.59) 0 (568.023) 0 (1172.63)

US 1910 1920 0 (111.927) 0 (64.679) 0 (1348.97) 0 (216.006) 0 (716.762)

US 1920 1930 0 (27.143) 0 (132.007) 0 (658.598) 0 (128.410) 0 (273.625)

US 1930 1940 0 (122.035) 0 (88.263) 0 (1359.66) 0 (55.942) 0 (485.901)

US 1940 1950 0 (34.689) 0 (29.886) 0 (1187.36) 0 (100.489) 0 (525.194)

US 1950 1960 0 (15.691) 0 (61.723) 0 (952.803) 0 (108.324) 0 (401.064)

US 1960 1970 0 (52.193) 0 (911.969) 0 (46.946) 0 (289.817)

US 1970 1980 0 (1401.95) 0 (66.781) 0 (532.715)

US 1980 1990 0 (1103.77) 0 (476.954)

US 1990 2000 0 (263.913)
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Table 16: Results of the Hoeffding D (HD) test for the null that the log-growth rates

are independent of the initial log-populations. Samples from the three countries. The

format is p-value (statistic).

It 1901 1911 0 (0.0036) Sp 1900 1910 0 (0.0026)

It 1911 1921 0 (0.0174) Sp 1910 1920 0 (0.0142)

It 1921 1931 0 (0.0148) Sp 1920 1930 0 (0.0147)

It 1931 1936 0 (0.0156) Sp 1930 1940 0 (0.0155)

It 1936 1951 0 (0.0203) Sp 1940 1950 0 (0.0106)

It 1951 1961 0 (0.0159) Sp 1950 1960 0 (0.0417)

It 1961 1971 0 (0.0429) Sp 1960 1970 0 (0.0774)

It 1971 1981 0 (0.0673) Sp 1970 1981 0 (0.1262)

It 1981 1991 0 (0.0372) Sp 1981 1991 0 (0.0768)

It 1991 2001 0 (0.0175) Sp 1991 2001 0 (0.0217)

It 2001 2011 0 (0.0301) Sp 2001 2010 0 (0.0623)

US 1900 1910 0 (0.0059)

US 1910 1920 0 (0.0071)

US 1920 1930 0 (0.0142)

US 1930 1940 0 (0.0058)

US 1940 1950 0 (0.0343)

US 1950 1960 0 (0.0348)

US 1960 1970 0 (0.0143)

US 1970 1980 0 (0.0020)

US 1980 1990 0 (0.0381)

US 1990 2000 0 (0.0097)

US 2000 2010 0 (0.0236)
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