Consumer Buying Behavior of Organic Food with Respect to Health and Safety Concerns among Adolescents

Raza, Syed Ali and Shah, Nida and Nisar, Wasay

Iqra University, Iqra University, Iqra University

5 April 2019

Online at https://mpra.ub.uni-muenchen.de/93570/
MPRA Paper No. 93570, posted 01 May 2019 16:54 UTC
Consumer Buying Behavior of Organic Food with Respect to Health and Safety Concerns among Adolescents

(Preliminary Draft)
Consumer Buying Behavior of Organic Food with Respect to Health and Safety Concerns among Adolescents

Abstract:

In the recent era, environmental protection has gained popularity and a paradigm shift has been observed in the consumer’s dietary choices. The consumer start preferring organic foods, as they are considered as healthier and eco-friendly. The organic food consumption is widely increased in the developed countries but its adoption is still low in the developing country like Pakistan. Therefore, the purpose of this study is to examine the factors that affect the adolescent’s intention to purchase organic foods in the context of Pakistan. For the purpose of the study, the data have been collected from 350 respondents and Partial Least Square Structural Equation Modeling (PLS-SEM) has been used for the analysis. The result shows that the variables ecological welfare, nutritional content, sensory appeal has a significant relationship with utilitarian and hedonic attitude. Whereas, natural content has a significant relationship with utilitarian attitude but has an insignificant relationship with hedonic attitude. On the contrary, price has a significant relationship with hedonic attitude but has an insignificant relationship with utilitarian attitude. Moreover, both the attitude (utilitarian and hedonic) has a significant relationship with consumer intention to buy organic foods. From the results, several implications can be derived for the marketers, policymakers, and the organic food retailers.

Keywords: Organic Food Consumption, Utilitarian and Hedonic Attitude, Pakistan. PLS-SEM
1. Introduction:

In today’s era, the world is facing numerous challenges which includes destruction of natural ecosystems, increase of disease and environmental degradation (Rahnama, 2016; Yadav, 2016). Among numerous factors, the human consumption pattern is identified as one of the significant factors that contribute towards environmental degradation (Hertwich & Peter, 2009). The United Nations Millennium Development Goals (2010) emphasized on sustainable consumption in order to achieve the environmental sustainability (Marrakech Process Secretariat: UNEP, 2010). Considering the importance of environment for the survival of human being the concept of ethics in consumerism has prospered (Dowd & Burke, 2013) and considered as one of the mainstream issues (Carrington et al., 2010).

The previous literature evident that the human consumption includes abnormal and uncontrolled consumption of unnatural products, and this consumption creates various impacts on environment and thus grasp the attention of the researchers (Tobler et al., 2011; Yadav, 2016). Pino et al., (2012) stated that the environmental protection has gained popularity in recent times and a paradigm shift has been observed in the consumer’s dietary choices. The consumers have start avoiding the traditionally grown foods and start preferring organic foods, as they are considered as healthier and eco-friendly (Williams & Hammitt, 2001; Rahna, 2016).

Organic foods are the food items which are free from artificial chemicals such as herbicides, antibiotics, fertilizers, pesticides and genetically modified organisms (Rana & Paul, 2017) and are not subjected to irradiation (Gad Mohsen & Dacko, 2013). It is considered healthy because it does not involve synthetic chemicals in the process of production (Suprapto & Wijaya, 2012). Grosglik, (2017) stated that organic food consumption is the symbol of ethical value system. In past literature organic food is explain my using different terminologies such as local, natural, pure and fresh (Rana & Paul, 2017).

Organic food market has rapidly increased in last few decades. In the year 1999, the sales were just 15.2$ billion and it has been expended to 905 billion in the year 2016 (Statistica Website) and is expected to reach 320.5$ billion by the year 2025 (Grand View Research, Inc). This expansion in the organic market is due to the individual concern about environmental protection and health (Bauer et al., 2013; Hwang, 2016) but also from their prioritization of various hedonic benefits of organic products (Cervellon & Carey, 2014; Hidalgo-Baz et al, 2017).

In literature, numerous factors have been identified that increases the demand of organic goods. Previous researchers have develop four type of organic food consumers (i) environmental concerned consumers (ii) food phobic consumers who are concerned about chemical residues in food (iii) humanists concerned with factory farming (iv) hedonist consumers who presumed that premium product are more better and taste better (Davies et al., 1995). The list of underlying dimensions that affect the individual willingness includes environmental concern (Stone, Barnes, & Montgomery, 1995; Riotner-Schobesberger et al., 2008); nutrition content (Magnusson et al., 2001; Hoefkens et al., 2009); price (Govindasamy & Italia, 1999; Magnusson et al., 2003); socially responsibility consumption (Antil & Bennet, 1979; Antil, 1984); health orientation (Gould, 1988; Moorman & Matulich, 1993); attitude (Davies et al., 1995; Chen, 2009), utilitarian and hedonic consumption patterns (Batra & Ahtola, 1991). Although the importance of these factors in shaping
the customers intention to purchase vary from one economy to economy (Bourn & Prescott, 2002). Most of the studies in the past has been done in the context of developed countries such as US, UK (Makatoun, 2002; Lockie et.al., 2002; Vittersø, & Tangeland, 2015) and in the context of developing countries such as China, Malaysia (Thøgersen, 2016; Yadav & Pathak, 2016) and very limitedly discuss in the context of Pakistan.

Pakistan is among one of the counties which has around 34209 hectares organic area and have 111 organic product producers area but contributes only 0.1% in overall organic industry (FiBL & IFOAM, Organics international, 2017). Similarly, the adoption of organic food consumption is quite low despite its benefits and highlights the potential of organic foods industry which can be further expanded. Thus, to take advantage of this organic food market it is of immense importance to identify those factors that affect the individual intention to buy organic foods. This study contributes to the literature in a number of ways. This study is the first attempt to investigate the factors that influences individual intention to purchase organic foods. This study contributes to the literature theoretically as well as methodologically. This study is the pioneer work in the context of Pakistan that examines the consumers’ perceptions with respect to nutritional content, natural content, ecological welfare, sensory appeal, price on attitudes (utilitarian and hedonic) to purchase organic food. Second, this study modify the Stimulus–Organism–Response (S–O–R) (iii) this study examine the association by using the advance econometric technique i.e., PLS-SEM.

The layout of the study is as follows: section 2 explains the theoretical background and empirical studies. Section 3 explains the methodology, section 4 discusses the result and section 5 explains the conclusion and recommendation of the study.

2.1 Theoretical Background:

The Stimulus-Organism-Response (SOR) model is employed as the theoretical basis for this study. The model is given by Mehrabian & Russell (1974) and have three basic variables, i.e., Stimuli, organism, and response. Stimuli is considered as external to the individual, organism is the internal state arises from environmental stimuli. The final outcome is the response which is either the avoidance behavior or approach (Lee & Yun, 2015). As stated by Hempel and Hamm (2016) the model combines unobservable and observable factors. The stimuli are the observable variables while unobservable is what happens in the organism. The organic shapes the consumers attitudes and preference, the stimuli acts as an initiator which then transform behavior (Reodiger and Hamm, 2015). The consumer’s physical and social environment influence unobservable factors which in return influence the stimulus evaluation and perception. Organism processes, each stimulus individually and act accordingly (Lee & Yun, 2015). In order to understand the consumers’ purchase behavior the reasons that transforms stimuli into responses are important to understand (Armstrong et al., 2011).

This model ideally explains the idea underlying this study. On one hand, the stimulus are the features of organic foods (Ecological Welfare, Natural Content, Nutritional Content, Price, sensory appeals) organism is the utilitarian and hedonic attitudes and response is reflected as the consumer intention.
2.2 Hypothesis Development:

2.2.1 Ecological Welfare and Attitude:

Ecological Welfare can be defined as a concern related to the environment and the animal welfare (Weigel, 1983). In the context of organic food consumption, several beliefs motivate the consumer to purchase it and among which ecological welfare is the popular one (Davies et al., 1995). Makatouni (2002) stated that ecological welfare plays a significant role in shaping the consumer intention to purchase it. Lea and Worsley (2005) stated that in Australia, consumers believe that organic foods are more environmentally compared to conventional foods. Padel and Foster (2005) stated that consumer purchase organic food because they consider it healthy, moreover, they further concluded that environmental protection is also a factor that shapes their attitude to purchase organic food. Honkanen et al. (2006) used the data of Norwegian consumers and reported that ecological welfare and attitude significantly influence the consumer intention to buy organic food. De-Magistris and Gracia (2008) reported that ecological welfare is one of the significant predictors that shape the consumer attitude to buy organic food in Southern Italy. Tsakiridou et al., (2008) also identified ecological welfare as a driver of organic food consumption in Greece. Akaichi et al., (2012) argued environmental benefit is the important factor in explaining consumer attitudes to purchase organic foods. Xie et al., (2015) stated that the main driver that shapes the consumer attitude to buy organic foods is environmental benefits. Basha et al., (2015) study the factors that shape the consumer attitude to buy organic foods and identified environmental concern as one of the significant predictors. Higuchi and Avadi (2017) stated that in future, environmental welfare is one of the factors that will shape the consumer attitude to buy organic foods. On the basis of the above discussion, the hypothesis of the study is:

H1: Ecological welfare has a significant relationship with hedonic attitude

H2: Ecological welfare has a significant influence utilitarian attitude

2.2.2: Natural Content and Attitude:

Natural content can be explained as a food that does not have artificial color or food additives. In the context of organic foods, the natural content is explained as food which has no chemical, pesticide-free no antibiotics, hormone-free (Essoussi & Zahaf, 2009). Lockie et al. (2002) reported that one of the primary reasons among customers to buy organic foods is natural foods. Lockie et al. (2004) reported that naturalness’ of food acts as a prime factor that motives consumer to buy organic foods. Beck, Kretzschmar and Schmid (2006) reported that the consumer preferred organic food over conventional foods because they perceived organic food more natural. Chen (2007) reported that natural content affects the customer attitude to buy organic foods in the context of Taiwan. Pieniak et al., (2009) concluded that natural conduct has a positive relationship with attitude towards traditional food consumption. Hsu et al., (2016) reported that natural content has a significant effect on consumer attitude to buy organic foods. Bryla (2015) uses the data do 1000 Polish consumers and reported that the preferences of organic food consumption depends on the natural taste. In another study by Bryla (2016), it is concluded that the natural taste is the key factor that shapes the preference of the organic foods. On the basis of the above discussion, the hypothesis of the study is:
H3: Natural content has a significant relationship with hedonic attitude

H4: Natural content has a significant influence utilitarian attitude

2.2.3 Nutritional Content and Attitude:

Nutritional content can be explained as the nutrients for e.g. Fat, protein, carbohydrate, vitamins etc. the organic foods contains. Wandel and Bugge's (1997) stated that nutritional value is one of the significant predictor in choice of fruits and vegetables. Kozup et al., (2003) stated that the consumer has a favorable attitude toward a product with nutrition information. Kihlberg and Risvik (2007) also reported that nutritional content acts as an important driver of organic food consumption. Hjelmar (2011) identified nutritional concerns as one of the significant factors that affect the consumer purchase intention towards organic foods. Tsakiridou et al., (2008) stated that in Greek consumer preference organic foods because of its nutritional content. Liu et al., (2013) reported that nutritional content is one of the reasons behind positive attitude towards organic foods in China. Paul and Rana (2012) argued that the organic food with good nutritional content is linked with its purchase. Liang (2016) reported that nutritional value has a positive effect on consumer attitude to buy organic foods. On the basis of the above discussion, the hypothesis of the study is:

H5: Nutritional content has a significant relationship with hedonic attitude

H6: Nutritional content has a significant influence utilitarian attitude

2.2.4 Price and Attitude:

Price is defined as the amount the consumer is willing to pay for a particular product. Magnusson et al., (2001) reported that price negatively influence the consumer positive attitude towards organic foods. Vindigni, et al., (2002) stated that premium is one of the significant factor that affects the organic food consumption among customers. Marian et al., (2014) reported that high price minimizes the organic food consumption compared to low and medium prices. Al-Swidi et al., (2014) reported that price is one of the prime factor which the consumer consider while buying organic foods. Xie et al., (2014) concluded that one of the barrier towards organic food consumption among customers is price. Irianto (2015) reported that price does not affect the consumer attitude to buy organic foods. Chekima et al., (2016) reported that premium prices does influence the consumer intention to purchase green products. Aschemann-Witzel and Zielke (2017) identified price as one of the significant barrier that hinders the consumer attitude to buy organic foods. On the basis of the above discussion, the hypothesis of the study is:

H7: Price has a significant relationship with hedonic attitude

H8: Price content has a significant influence utilitarian attitude

2.2.5 Sensory Appeal and Attitude:

Sensory appeal is the attribute that is associated with the taste, appearance, and smell of food and have been considered as one of the significant predictor that affects the consumer choice (Steptoe et al., 1995). Magnusson et al., (2001) stated that sensory appeal is one of the significant
predictor while consumer purchasing organic food. Wandel and Bugge (1997) also reported that sensory appeal is one of the determinant that affect the consumer purchasing criteria towards organic coffee. Lockie et al., (2004) identified the motivation factors that affect the consumer choice to purchase organic food and identified sensory appeal, health, ethical and environmental concerns as the significant determinants. Januszewska et al. (2011) uses the Food Choice Questionnaire (FCQ) and reported that sensory appeal is one of the important determinant that affect the food choice in European consumers. Milošević et al., (2012) collected the data from six Western Balkan Countries (WBC) and reported that among several factors, sensory appeal is one of the most important factors that affects the consumer motivation to purchase food. Lee and Yun (2015) reported that the sensory appeal affects the consumer hedonic attitude to purchase organic foods. On the basis of the above discussion, the hypothesis of the study is:

\[H9: \text{Sensory Appeal has a significant relationship with hedonic attitude} \]

\[H10: \text{Sensory Appeal has a significant influence utilitarian attitude} \]

2.2. Attitude and Intention to Buy Organic foods:

Davis (1989) explained attitude as an individual feeling to perform the specific behavior and is dependent on the individual evaluations and beliefs. Ajzen (1991) reported that more the consumer attitude towards a behaviour the higher will be his/her attention to perform that behaviour. Holbrook and Hirschman (1982) and Batra and Ahtola (1990) stated that consumer attitude toward purchasing anything is made up of two components (i) hedonic (ii) utilitarian. Hedonic attitude is based on sensory experiences or emotional gratification related to a consumption object, whereas as Utilitarian attitude is task oriented and focus on need fulfilment aspect.

Magnusson et al., (2001) stated that if the consumer have a positive attitude towards organic foods the more will be their willingness to prefer organic foods over conventional foods. Tutunjian (2004) reported that attitude acts as one of the significant predictor that can be used to study the organic food behavior. Tarkiainen and Sundqvist (2005) explained that attitude is one of the factors that can be used to forecast consumers’ intentions to purchase organic foods. Michaelidou and Hassan (2008) reported that there is positive relationship between the attitude and intention to buy organic foods. Pieniak, Aertsens, and Verbeke (2010) reported that attitude is one of the significant factors of organic food adoption. Cabuk et al., (2014) reported that there is a positive relationship between the attitude and intention to buy organic foods. They further reported that the attitude mediates the relationship between the motivational factors and intention to buy organic foods. Basha et al., (2015) stated that factors like environmental and health concern, subjective norms, lifestyle, and product shapes the consumer attitude which ultimately result in consumer intention to purchase organic foods. On the basis of the above discussion, the hypothesis of the study is:

\[H11: \text{Hedonic attitude has a significant relationship with intention to buy organic food} \]

\[H12: \text{Utilitarian attitude has a significant relationship with intention to buy organic food} \]
3. Methodology:

3.1 Measurement Instrument:

The hypotheses model of this study is depicted in figure 1 and the items of the proposed constructs are adapted from the previous literature. For this study, a 27-item questionnaire is developed and the questionnaire is chosen because it is one of the preferable ways of measuring variables that are not directly observed (Kaufmann et al., 2014). All the items of all the constructs are taken from Lee and Yun (2015). The respondents' feedback is assessed on a five-point Likert scale in which 1 means strongly disagree and 5 means strongly agree. The measurement items of the questionnaire are validated by the academician and industry expert to ensure the appropriateness.

- Insert Figure 1-

3.2 Participant and Sample Size:

After validation, the questionnaire is distributed by e-mail and in hard copy to 370 business university students. Out of 370, the usable sample was 350, the 20 responses are eliminated due to incomplete responses and missing data. The sample size is in accordance with the guidelines given by Raza and Hanif (2013), Comrey and Lee (2013), Ali et al., (2015), Raza et al., (2015), Ali et al., (2017)Sharif and Raza (2017) and Ali and Raza (2017) who consider the sample size of 50 as poor, 300 as good, 500 as very good and 1000 is considered as excellent for the purpose of factor analysis. Furthermore, each respondent participated voluntarily and also know about the objective of the study. Moreover, throughout the data collection process, the respondents are assured that the data will be kept confidential.

3.3 Demographic profile:

The demographic characteristics of the respondents are shown in table 1. The 55% of the sample is comprised of female and 45% of the sample is male and 88% of them lies in the age bracket of 18-25. Moreover, 63% of the respondents are the undergraduate students.

- Insert Table 1-

4. Data Analysis

The relationship between the variables have been analysed by applying PLS-SEM (partial least square – structural equation modelling) and the Smart-PLS software version 3.0 has been used. The PLS-SEM is preferred over other analysis technique is due to its multiple advantages. In comparison with other covariance technique it is less stringent (Ayob et al., 2017; Raza et al., 2017; Raza et al., 2018; Najmi et al., 2018; Ali et al., 2018). There is no simple size assumption and can work effectively even in small sample size (Hair et al., 2012). It can run even if there is multicollinearity between independent variables and the results are easier to interpret in comparison with other linear methods (Li & Zhong, 2017; Qazi et al., 2018; Raza et al., 2018).
PLS-SEM analysis involves two models i.e., measurement model and structural model. PLS-SEM allows to run both the models simultaneously but the models are access in stages. At first stage the measurement model is examined and then the structural model.

4.1 Measurement Model:

In measurement model the convergent validity and discriminant validity is tested (Chin, 1998). The convergent validity shows that theoretically similar variables should highly correlated with each other whereas the discriminant validity shows that theoretically different variables should show no or little correlation (Ayob et al., 2017, Raza et al., 2018). The convergent validity is assessed by looking at the values of (i) individual items reliability (ii) Cronbach’s alpha (iii) composite reliability and (iv) Average variance extracted (AVE).

The reliability ensures the data validity (Nunnally, 1978), the cronbach’s alpha and composite reliability confirms the data consistency and the AVE tells the change in factors. Table 2 depicts the result of measurement model and as seen from the table the individual items reliability of all the variables are greater than 0.55 satisfying the criteria given by Hair et al., (2014) and Ali et al. (2017). The Cronbach Alpha and composite value is greater than 0.7 which meets the criteria given by Nunally and Bernstein (1994) and Raza et al., (2018). The AVE column also shows the value greater than 0.5 thus meets the criteria given by Fornell and Larcker (1981) and Raza et al. (2017). Thus the above outcomes confirms that the model is convergently valid.

4.2 Structural Model:

As it is evident from the above discussion that the model is valid, so the hypothetical tests are performed by using the structural model. The path coefficient explains the association between the dependent and the independent variables, and R2 tells the explanatory power of the model. The result of structural model is displayed in table 6. Each path in the table represents one hypothesis.
and the association between the variables are explained by looking at the coefficient value, size
and prob value. The results confirms that out of 12 proposed hypothesis, 10 hypothesis are
accepted.

- Insert Table 6-

The result shows that H₁ (Ecological Welfare has a significant influence on hedonic attitude) and
H₂ (Ecological Welfare has a significant influence utilitarian attitude) is accepted as the path
coefficient for H₁ and H₂ is significant (β = 0.210, p <0.01), (β = 0.073, p <0.05). The H₃ (Natural
Content has a significant influence on hedonic attitude) is rejected as the path coefficient shows
insignificant as well as negative association (β = -0.006, P>0.1). Whereas the (Natural Content has
a significant influence on Utilitarian attitude (H₄) is accepted because the path shows the
significant association (β=0.221, P< 0.1). both the hypothesis H₅ (Nutritional Content has a
significant influence on hedonic attitude) and H₆ (Nutritional Content has a significant influence
on Utilitarian attitude) is accepted as the path coefficient for H₅ and H₆ is significant (β = 0.195,
p <0.05), (β = 0.464, p <0.01). The Price has a significant impact on hedonic attitude and Price
has a significant impact on utilitarian attitude explains the H₇ and H₈ of the study. The result
shows that H₇ is accepted (β=0.117, P < 0.05) and H₈ is rejected (β=0.001, P > 0.1). The H₉ and
H₁₀ shows the association between the Sensory Appeal and hedonic attitude; Sensory Appeal and
Utilitarian attitude respectively. Both the hypothesis are accepted as for H₉ (β=0.360, P < 0.01)
and H₁₀ (β=0.119, P < 0.05). The last two hypothesis H₁₁ and H₁₂ depicts the impact of hedonic
attitude and utilitarian attitude on intention to use organic goods. Both the hypothesis are accepted
as path coefficient for H₁₁ (b = 0.304, p < 0.01) and H₁₂ (b = 0.558, p < 0.01) is significant.

The next evaluation criteria is the value of adjusted R² and as stated by Hair et al. (2011) the value
of R² as 0.25 is considered weak, 0.50 as moderate and 0.70 as substantial. The adjusted R² value
of this model is 0.541 indicates that the moderate amount of variance is explained by the
independent variables for the dependent variable.

4.3 Discussion:

Overall, the result shows that all the constructs (ecological Welfare, Nutritional Content, Price,
and Sensory Appeal) except, natural content are the significant predictors for hedonic attitude. In
the case of utilitarian attitude all the construct expect price are the significant predictors.

The ecological welfare has a positive and significant relationship in developing hedonic attitude
is confirmed with the study of Lee and Goudeau (2014). The reason behind this result is might
be that the individual believe that using organic food is good for the human, earth and animal
forms the positive feeling i.e., hedonic attitude. As stated by Aertsens et al., (2009) and
Elgaaied, (2012) that emotions and affective responses acts as the significant driver for the pro-
environmental behavior so it can be concluded the ecological welfare directly influence
hedonic attitude of an individual to use organic foods. The ecological welfare also found
positive and significant association with utilitarian attitude. This is because once the consumer
associate organic foods as environment friendly and animal welfare protected, this might
develops functional and emotional values within the customer to buy organic foods and this
shapes its utilitarian attitude. The study of Lee and Yun (2015) also reported the same result related to ecological welfare and utilitarian attitude.

The nutritional content has a positive and significant relationship with utilitarian and hedonic attitude. The result is supported with the studies of Padel & Foster (2005) and Lee and Yun (2015). The result suggest that the evaluation of nutritional value shapes the customers utilitarian and hedonic attitudes to buy organic foods. As stated by Wertenbroc, Dhar and Khan (2005) that the food consumption is alternatively driven by utilitarian and hedonic values. Alba and Williams (2013) stated that the preference for organic products is explained by two consumption trends. The first time is hedonistic consumption in which the customer buy product for pleasure and in the second trend the customer buy organic product to gain health benefits such as nutritional content, quality, freshness etc.

The natural content has an insignificant and negative relationship with hedonic attitude but has a positive and significant and relationship with utilitarian attitude. The result affirms with the study of Pohjanheimo et al. (2010) who stated that factors like idealism, universalism are positively related to food natural ingredient (FNI) whereas hedonism is negatively linked with FNI. Thus, the result indicates that the individual belief that organic food is free from chemicals and contaminants may lead utilitarian attitude but doesn’t shape utilitarian attitude to purchase organic foods.

Price has a positive and significant association with hedonic motivation whereas the association with utilitarian attitude is also positive but insignificant. The results supports by the study of Zander and Hamm (2010) and Batte et al., (2007). They argued that the consumers are willing to pay a higher price for organic food once they know about the benefits of organic products (Muhammad et al., 2015; Lim et al., 2014).

The sensory appeal is also has a significant and positive relationship with hedonic and utilitarian attitude. The result is supported by the study of Lee and Yun (2015); Zanoli & Naspetti, (2002). The outcome suggest that the sensory appeal shapes the customer attitude to buy organic foods as the organic food will give them pleasurable experience. Lockie et al, (2004) stated that organic food consumption is high in those consumers that have high sensory and emotional appeal.

The utilitarian and hedonic attitude both have a significant relationship with consumer intention to buy organic foods. The result is supported by the studies of Batra & Ahtola (1991); Lee and Goudeau (2014). The result shows that consumer first used cognitive reasoning to evaluate organic foods which develops their utilitarian attitudes and then these utilitarian give rise to hedonic attitude. It means that consumer first evaluate organic food with cognitive judgments and then evaluate the organic food emotionally. Thus, it is concluded that both the components of attitude plays an important role in organic food consumption.

5. Conclusion and Recommendations:

This study explores the factors that affect the organic food consumption in Pakistan by applying the SOR model. This study examined how the attributes such as ecological welfare, nutritional content, natural content, sensory appeal, and price lead attitudes and consumer intention to purchase organic food. Based on the investigation, the result shows that each attribute affects the
It is of immense importance for the policy makers and marketers to understand consumers’ psychological preferences for organic food over conventional food and adjust marketing strategies accordingly in order to increase the organic food consumption. Marketers should promote the safety and health benefits associated with organic foods by sharing scientific evidences. They should aware the customers that they have more nutritional benefits and contain less residual of chemical pesticides compared to conventional foods (Baranski et al., 2014). If the consumer perceived that the use of organic foods gives them more health and safety benefits, the more will be their willingness to use it.

Ecological motives are one of the significant predictor for organic food consumption, so the marketers should make consumers understand that organic foods are produced, packaged and label in such a manner the protect the environment and respect animal rights (Chen, 2011; Lockie et al., 2002). Because, as the consumer convinced that the organic foods adhered environmental protection, the more they may opt for organic foods. The markets should also develop those marketing strategies that promote the health benefits associated with organic foods because this builds consumer confidence in organic foods.

The retailers should also encourage the customers to purchase organic foods by explaining them the nutritional content the food contains and how consumption of this will help them to stay healthy and contributes in environmental protection. At grocery stores, the brochure containing organic food information should be available at point of sale. Moreover, the marketers should develop such advertisements for organic foods that emphasize the societal as well as the personal benefits of these products as it helps in shaping the consumers’ intention to use it.

Sensory appeal also shapes the consumer organic food consumption, so grocery retailers at the point of purchase should provide cues for organic food for sensory evaluation. Such as the promotional stand or a sample product should be displayed which consumer can taste and taste. Because if the consumer is able to evaluate the sensory feature of the organic food as pleasant that most likely is their intention to buy organic foods. As stated by McCabe and Nowlis (2003), direct experience with a product plays a significant role in shaping consumers’ purchase intention. As it is evident from the study that consumers are willing to pay high prices for organic foods. It is important for the retailers to understand in what scenarios the food retailers are willing to pay high prices.

Attitude one is one of the significant factors towards the long term success of organic foods. As stated by Aaker (1996) once consumer develop their attitude, it is very difficult to change it. The retailers and the markets should put considerable efforts. To develop the hedonic attitude the relations should use promotional messages which highlight that by purchasing organic food the customer can protect the environment and save animals as this eventually arouse a hedonic feeling. Another way to develop the hedonic feeling is to convince consumer that organic food consumption helps to improve their well-being for themselves and their family. To develop the utilitarian attitudes the retailer’s should focus on the benefits of organic foods in advertisements, packaging, or leaflets. They should emphasize the level of vitamins, minerals, and antioxidants the
food contains. How this food is less harmful compared to conventional foods because all these measures will help in developing the positive attitude among consumers to buy organic foods.

5.1 Limitations and Future Recommendations:

This study provides managerial implications, but there are still some limitations that need to be acknowledged. In this study, we have considered potential factors that affect the consumer intention to purchase organic foods, but factors like values, personality traits, culture, trust and organic labels are ignored in the model. The inclusion of these variables could improve the predictive power of the model. The future research can examine whether these variables impacts organic food consumption or not. This study only asked recipient about broad perceptions of features and behavioral intentions toward organic and doesn’t focus on specific organic product category, future research can focus on a specific product category. Similarly, this study has focused on SOR model only and other models like TBP are ignored. Moreover, this study has collected data from adolescents only, the future research can examine organic food consumption from other sub-groups of the population, to have more generalizable results. The study does not examine the moderating effect of factors like salary, gender, so this research can be extended by examining the moderating effect. The future research can also do the comparative analysis among consumers who prefer or not prefer organic food consumption.

References:

Carrington, M. J., Neville, B. A., & Whitwell, G. J. (2010). Why ethical consumers don’t walk their talk: Towards a framework for understanding the gap between the ethical purchase intentions and actual buying behaviour of ethically minded consumers. *Journal of business ethics, 97*(1), 139-158.

Dowd, K., & Burke, K. J. (2013). The influence of ethical values and food choice motivations on intentions to purchase sustainably sourced foods. *Appetite, 69,* 137-144.

Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. *Journal of marketing research, 382-388.*

http://www.un.org/millenniumgoals/pdf/MDG%20Report%202010%20En%20r15%20-low%20res%2020100615%20-.pdf

https://shop.fibl.org/CHen/mwdownloads/download/link/id/785/?ref=1

Figure 1: Conceptual Framework
Table 1: Profile of respondents
(N=350)
<table>
<thead>
<tr>
<th>Demographic items</th>
<th>Frequency</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-25</td>
<td>310</td>
<td>88%</td>
</tr>
<tr>
<td>26-30</td>
<td>40</td>
<td>12%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>194</td>
<td>55.3%</td>
</tr>
<tr>
<td>Female</td>
<td>156</td>
<td>44.7%</td>
</tr>
<tr>
<td>Qualification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matric</td>
<td>8</td>
<td>2.3%</td>
</tr>
<tr>
<td>Intermediate</td>
<td>29</td>
<td>8.3%</td>
</tr>
<tr>
<td>Under Graduate</td>
<td>220</td>
<td>62.7%</td>
</tr>
<tr>
<td>Graduate</td>
<td>93</td>
<td>26.5%</td>
</tr>
</tbody>
</table>

Table 2: Measurement model results
<table>
<thead>
<tr>
<th>Constructs</th>
<th>Items</th>
<th>Loadings</th>
<th>Cronbach's</th>
<th>Composite reliability</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological Welfare</td>
<td>Eco_1</td>
<td>0.744</td>
<td></td>
<td></td>
<td>0.734</td>
</tr>
<tr>
<td></td>
<td>Eco_2</td>
<td>0.791</td>
<td></td>
<td></td>
<td>0.698</td>
</tr>
<tr>
<td></td>
<td>Eco_3</td>
<td>0.698</td>
<td>0.734</td>
<td>0.886</td>
<td>0.568</td>
</tr>
<tr>
<td></td>
<td>Eco_4</td>
<td>0.754</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>Pr_1</td>
<td>0.9</td>
<td>0.836</td>
<td>0.922</td>
<td>0.856</td>
</tr>
<tr>
<td></td>
<td>Pr_2</td>
<td>0.949</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory Appeal</td>
<td>Sen_1</td>
<td>0.814</td>
<td></td>
<td></td>
<td>0.865</td>
</tr>
<tr>
<td></td>
<td>Sen_2</td>
<td>0.825</td>
<td></td>
<td></td>
<td>0.902</td>
</tr>
<tr>
<td></td>
<td>Sen_3</td>
<td>0.902</td>
<td></td>
<td></td>
<td>0.865</td>
</tr>
<tr>
<td></td>
<td>Sen_4</td>
<td>0.831</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral Intention</td>
<td>Beh_1</td>
<td>0.84</td>
<td></td>
<td></td>
<td>0.832</td>
</tr>
<tr>
<td></td>
<td>Beh_2</td>
<td>0.873</td>
<td></td>
<td></td>
<td>0.739</td>
</tr>
<tr>
<td></td>
<td>Beh_3</td>
<td>0.831</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beh_4</td>
<td>0.801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedonic Attitudes</td>
<td>Hed_1</td>
<td>0.905</td>
<td></td>
<td></td>
<td>0.568</td>
</tr>
<tr>
<td></td>
<td>Hed_2</td>
<td>0.755</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Content</td>
<td>Nat_1</td>
<td>0.782</td>
<td></td>
<td></td>
<td>0.767</td>
</tr>
<tr>
<td></td>
<td>Nat_2</td>
<td>0.887</td>
<td></td>
<td></td>
<td>0.767</td>
</tr>
<tr>
<td></td>
<td>Nat_3</td>
<td>0.796</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutritional Content</td>
<td>Nut_1</td>
<td>0.932</td>
<td></td>
<td></td>
<td>0.935</td>
</tr>
<tr>
<td></td>
<td>Nut_2</td>
<td>0.934</td>
<td></td>
<td></td>
<td>0.935</td>
</tr>
<tr>
<td></td>
<td>Nut_3</td>
<td>0.925</td>
<td></td>
<td></td>
<td>0.935</td>
</tr>
<tr>
<td></td>
<td>Nut_4</td>
<td>0.868</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilitarian Attitudes</td>
<td>Uti_1</td>
<td>0.872</td>
<td></td>
<td></td>
<td>0.881</td>
</tr>
<tr>
<td></td>
<td>Uti_2</td>
<td>0.912</td>
<td></td>
<td></td>
<td>0.881</td>
</tr>
<tr>
<td></td>
<td>Uti_3</td>
<td>0.912</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors' Estimation
Table 3: Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>BI</th>
<th>ECO</th>
<th>HED</th>
<th>NAT</th>
<th>NUT</th>
<th>PR</th>
<th>SEN</th>
<th>UTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>0.815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECO</td>
<td>0.497</td>
<td>0.747</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HED</td>
<td>0.411</td>
<td>0.317</td>
<td>0.834</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT</td>
<td>0.565</td>
<td>0.566</td>
<td>0.188</td>
<td>0.823</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUT</td>
<td>0.639</td>
<td>0.571</td>
<td>0.2</td>
<td>0.743</td>
<td>0.915</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>0.221</td>
<td>0.185</td>
<td>0.221</td>
<td>0.214</td>
<td>0.277</td>
<td>0.925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEN</td>
<td>0.655</td>
<td>0.549</td>
<td>0.377</td>
<td>0.542</td>
<td>0.692</td>
<td>0.341</td>
<td>0.844</td>
<td></td>
</tr>
<tr>
<td>UTI</td>
<td>0.611</td>
<td>0.53</td>
<td>0.186</td>
<td>0.673</td>
<td>0.755</td>
<td>0.231</td>
<td>0.599</td>
<td>0.899</td>
</tr>
</tbody>
</table>

Notes: Eco=Ecological Welfare, BI=Behavioral Intention, HED=Hedonic Attitudes, NAT=Natural Content, NUT=Nutritional Content, PR=Price, SEN=Sensory Appeal, UTI=Utilitarian attitudes. The diagonal elements (bold) represent the square root of AVE (average variance extracted)

Table 4: Loadings and Cross Loadings

<table>
<thead>
<tr>
<th></th>
<th>BI</th>
<th>ECO</th>
<th>HED</th>
<th>NAT</th>
<th>NUT</th>
<th>PR</th>
<th>SEN</th>
<th>UTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco_1</td>
<td>0.403</td>
<td>0.744</td>
<td>0.241</td>
<td>0.488</td>
<td>0.471</td>
<td>0.142</td>
<td>0.445</td>
<td>0.437</td>
</tr>
<tr>
<td>Eco_2</td>
<td>0.408</td>
<td>0.791</td>
<td>0.245</td>
<td>0.453</td>
<td>0.456</td>
<td>0.176</td>
<td>0.465</td>
<td>0.442</td>
</tr>
<tr>
<td>Eco_3</td>
<td>0.280</td>
<td>0.698</td>
<td>0.219</td>
<td>0.317</td>
<td>0.336</td>
<td>0.077</td>
<td>0.298</td>
<td>0.319</td>
</tr>
<tr>
<td>Eco_4</td>
<td>0.379</td>
<td>0.754</td>
<td>0.242</td>
<td>0.412</td>
<td>0.429</td>
<td>0.147</td>
<td>0.413</td>
<td>0.369</td>
</tr>
<tr>
<td>Sen_1</td>
<td>0.480</td>
<td>0.409</td>
<td>0.171</td>
<td>0.391</td>
<td>0.547</td>
<td>0.226</td>
<td>0.814</td>
<td>0.459</td>
</tr>
<tr>
<td>Sen_2</td>
<td>0.458</td>
<td>0.461</td>
<td>0.324</td>
<td>0.424</td>
<td>0.531</td>
<td>0.279</td>
<td>0.825</td>
<td>0.457</td>
</tr>
<tr>
<td>Sen_3</td>
<td>0.623</td>
<td>0.507</td>
<td>0.336</td>
<td>0.538</td>
<td>0.673</td>
<td>0.318</td>
<td>0.902</td>
<td>0.601</td>
</tr>
<tr>
<td>Sen_4</td>
<td>0.623</td>
<td>0.467</td>
<td>0.410</td>
<td>0.454</td>
<td>0.568</td>
<td>0.312</td>
<td>0.831</td>
<td>0.487</td>
</tr>
<tr>
<td>beh_1</td>
<td>0.840</td>
<td>0.437</td>
<td>0.472</td>
<td>0.462</td>
<td>0.541</td>
<td>0.282</td>
<td>0.579</td>
<td>0.504</td>
</tr>
<tr>
<td>beh_2</td>
<td>0.873</td>
<td>0.415</td>
<td>0.301</td>
<td>0.495</td>
<td>0.574</td>
<td>0.217</td>
<td>0.583</td>
<td>0.568</td>
</tr>
<tr>
<td>beh_3</td>
<td>0.739</td>
<td>0.308</td>
<td>0.301</td>
<td>0.319</td>
<td>0.315</td>
<td>0.071</td>
<td>0.379</td>
<td>0.273</td>
</tr>
<tr>
<td>beh_4</td>
<td>0.801</td>
<td>0.432</td>
<td>0.253</td>
<td>0.525</td>
<td>0.588</td>
<td>0.106</td>
<td>0.547</td>
<td>0.573</td>
</tr>
<tr>
<td>hed_2</td>
<td>0.358</td>
<td>0.321</td>
<td>0.905</td>
<td>0.155</td>
<td>0.207</td>
<td>0.246</td>
<td>0.412</td>
<td>0.197</td>
</tr>
<tr>
<td>hed_4</td>
<td>0.331</td>
<td>0.187</td>
<td>0.755</td>
<td>0.165</td>
<td>0.110</td>
<td>0.096</td>
<td>0.176</td>
<td>0.096</td>
</tr>
<tr>
<td>nat_1</td>
<td>0.406</td>
<td>0.424</td>
<td>0.191</td>
<td>0.782</td>
<td>0.516</td>
<td>0.178</td>
<td>0.371</td>
<td>0.437</td>
</tr>
<tr>
<td>nat_2</td>
<td>0.566</td>
<td>0.522</td>
<td>0.162</td>
<td>0.887</td>
<td>0.763</td>
<td>0.179</td>
<td>0.565</td>
<td>0.707</td>
</tr>
<tr>
<td>nat_3</td>
<td>0.386</td>
<td>0.437</td>
<td>0.113</td>
<td>0.796</td>
<td>0.496</td>
<td>0.177</td>
<td>0.354</td>
<td>0.455</td>
</tr>
<tr>
<td>nut_1</td>
<td>0.581</td>
<td>0.510</td>
<td>0.184</td>
<td>0.705</td>
<td>0.932</td>
<td>0.269</td>
<td>0.642</td>
<td>0.711</td>
</tr>
<tr>
<td>nut_2</td>
<td>0.608</td>
<td>0.539</td>
<td>0.179</td>
<td>0.691</td>
<td>0.934</td>
<td>0.282</td>
<td>0.652</td>
<td>0.728</td>
</tr>
<tr>
<td>nut_3</td>
<td>0.613</td>
<td>0.539</td>
<td>0.201</td>
<td>0.687</td>
<td>0.925</td>
<td>0.267</td>
<td>0.645</td>
<td>0.703</td>
</tr>
<tr>
<td>nut_4</td>
<td>0.534</td>
<td>0.501</td>
<td>0.166</td>
<td>0.636</td>
<td>0.868</td>
<td>0.190</td>
<td>0.591</td>
<td>0.614</td>
</tr>
<tr>
<td>Pr_1</td>
<td>0.152</td>
<td>0.181</td>
<td>0.176</td>
<td>0.158</td>
<td>0.223</td>
<td>0.900</td>
<td>0.291</td>
<td>0.167</td>
</tr>
<tr>
<td>pr_2</td>
<td>0.243</td>
<td>0.165</td>
<td>0.226</td>
<td>0.229</td>
<td>0.283</td>
<td>0.949</td>
<td>0.334</td>
<td>0.249</td>
</tr>
<tr>
<td>uti_2</td>
<td>0.485</td>
<td>0.485</td>
<td>0.149</td>
<td>0.562</td>
<td>0.666</td>
<td>0.222</td>
<td>0.517</td>
<td>0.872</td>
</tr>
<tr>
<td>uti_3</td>
<td>0.524</td>
<td>0.431</td>
<td>0.145</td>
<td>0.628</td>
<td>0.679</td>
<td>0.228</td>
<td>0.522</td>
<td>0.912</td>
</tr>
<tr>
<td>uti_4</td>
<td>0.629</td>
<td>0.511</td>
<td>0.203</td>
<td>0.622</td>
<td>0.691</td>
<td>0.177</td>
<td>0.574</td>
<td>0.912</td>
</tr>
</tbody>
</table>

Notes: Eco=Ecological Welfare, BI=Behaviourial Intention, HED=Hedonic Attitudes, NAT=Natural Content, NUT=Nutritional Content, PR=Price, SEN=Sensory Appeal, UTI=Utilitarian attitudes.
Table 5: Heterotrait-Monotrait Ratio (HTMT) Results

<table>
<thead>
<tr>
<th></th>
<th>BI</th>
<th>ECO</th>
<th>HED</th>
<th>NAT</th>
<th>NUT</th>
<th>PR</th>
<th>SEN</th>
<th>UTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECO</td>
<td>0.615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HED</td>
<td>0.588</td>
<td>0.464</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT</td>
<td>0.671</td>
<td>0.733</td>
<td>0.289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUT</td>
<td>0.7</td>
<td>0.681</td>
<td>0.258</td>
<td>0.846</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>0.239</td>
<td>0.233</td>
<td>0.287</td>
<td>0.262</td>
<td>0.307</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEN</td>
<td>0.744</td>
<td>0.674</td>
<td>0.482</td>
<td>0.631</td>
<td>0.763</td>
<td>0.392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTI</td>
<td>0.682</td>
<td>0.649</td>
<td>0.243</td>
<td>0.784</td>
<td>0.83</td>
<td>0.264</td>
<td>0.678</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Eco=Ecological Welfare, BI=Behavioral Intention, HED=Hedonic Attitudes, NAT=Natural Content, NUT=Nutritional Content, PR=Price, SEN=Sensory Appeal, UTI=Utilitarian attitudes.

Table 6: Standardized regression weights for the research model

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Regression Path</th>
<th>Effect type</th>
<th>SRW</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>ECO -> HED</td>
<td>Direct effect</td>
<td>0.210***</td>
<td>Supported</td>
</tr>
<tr>
<td>H2</td>
<td>ECO -> UTI</td>
<td>Direct effect</td>
<td>0.073**</td>
<td>Supported</td>
</tr>
<tr>
<td>H3</td>
<td>NAT -> HED</td>
<td>Direct effect</td>
<td>-0.006</td>
<td>Not Supported</td>
</tr>
<tr>
<td>H4</td>
<td>NAT -> UTI</td>
<td>Direct effect</td>
<td>0.221***</td>
<td>Supported</td>
</tr>
<tr>
<td>H5</td>
<td>NUT -> HED</td>
<td>Direct effect</td>
<td>0.195**</td>
<td>Supported</td>
</tr>
<tr>
<td>H6</td>
<td>NUT -> UTI</td>
<td>Direct effect</td>
<td>0.464***</td>
<td>Supported</td>
</tr>
<tr>
<td>H7</td>
<td>PR -> HED</td>
<td>Direct effect</td>
<td>0.117**</td>
<td>Supported</td>
</tr>
<tr>
<td>H8</td>
<td>PR -> UTI</td>
<td>Direct effect</td>
<td>0.001</td>
<td>Not Supported</td>
</tr>
<tr>
<td>H9</td>
<td>SEN -> HED</td>
<td>Direct effect</td>
<td>0.360***</td>
<td>Supported</td>
</tr>
<tr>
<td>H10</td>
<td>SEN -> UTI</td>
<td>Direct effect</td>
<td>0.119**</td>
<td>Supported</td>
</tr>
<tr>
<td>H11</td>
<td>HED -> BI</td>
<td>Direct effect</td>
<td>0.304***</td>
<td>Supported</td>
</tr>
<tr>
<td>H12</td>
<td>UTI -> BI</td>
<td>Direct effect</td>
<td>0.558***</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Notes: SRW = Standardized regression weight ***p < 0.01, **p<0.05, *p < 0.10