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Abstract

Strategic games are considered where each player’s total utility is an aggregate of local utilities
obtained from the use of certain “facilities.” All players using a facility obtain the same utility
therefrom, which may depend on the identities of users and on their behavior. Individual improvements
in such a game are acyclic if a “trimness” condition is satisfied by every facility and all aggregation rules
are consistent with a separable ordering. Those conditions are satisfied, for instance, by bottleneck
congestion games with an infinite set of facilities. Under appropriate additional assumptions, the
existence of a Nash equilibrium is established.
MSC2010 Classification: 91A10; Journal of Economic Literature Classification: C 72.
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1 Introduction

The origins of this research can be traced back to two papers from the 1970’s: Rosenthal (1973) and
Germeier and Vatel’ (1974), although nobody noted the similarities between them at the time. In both
cases, each player’s total utility was an aggregate of local utilities obtained from the use of certain
”facilities”; all players using a facility obtained the same (local) utility therefrom. In the first case, that
utility only depended on the number of users, while the users had a certain freedom in deciding which
facilities to use. In the second case, each player had a fixed set of facilities to use, but was able to decide
how to use those facilities, and the local utilities depended on that. In the first case, the aggregation
of local utilities consisted in summing them up; in the second case, in taking the minimum of them. In
the first case, the existence of a Nash equilibrium was shown (actually, even of an “exact potential” as
defined later by Monderer and Shapley (1996)); in the second case, even the existence of a strong Nash
equilibrium (although this was done in later papers).

Both approaches were considered simultaneously in Kukushkin (2007), where it was shown that
only additive aggregation ensures the “universal” existence of Nash equilibrium in both “generalized
congestion games” and “games with structured utilities” (supposing that the aggregation rules must
be continuous and strictly increasing in all local utilities). Le Breton and Weber (2011) introduced a
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class of potential games similar to those from either class, but, generally, belonging to neither, and found
conditions for the existence of a Nash equilibrium in such games. Kukushkin (2018) finally united the two
approaches by formulating the notion of a “trim” game with common local utilities (henceforth, a CLU
game); every such game admits an exact potential, which attains its maximum (at a Nash equilibrium)
under certain additional assumptions.

In this paper, we pay no attention at all to the concept of an exact potential; we are only interested in
aggregation rules that ensure the acyclicity of individual improvements and, under appropriate additional
assumptions, the existence of a Nash equilibrium in CLU games. We also do not consider strong Nash
equilibrium here. Quite a few papers studied its existence in “bottleneck congestion games,” (see, e.g.,
Epstein, Feldman, and Mansour, 2009; Feldman and Tennenholtz, 2010; Harks, Klimm, and Möhring,
2013). An analysis for general CLU games was given in Kukushkin (2017).

Our basic construction is described in the following section. In Section 3, the necessity of certain
properties of aggregation rules for the guaranteed existence of a Nash equilibrium are established. In
contrast to previous results of this kind (Kukushkin, 2007, 2017), arbitrary restrictions on the possible
values of local utilities are allowed (e.g., they may be assumed to be integer). Unfortunately, the necessity
of separable aggregation remains elusive.

Section 4 introduces the notions of a “universal separable ordering” and aggregation rules consistent
with such an ordering. Theorem 1 asserts the existence of an “order potential,” i.e., the acyclicity of
individual improvements, in every CLU game with such aggregation rules. Essentially the same result,
but restricted to “generalized congestion games,” was obtained in Kukushkin (2014).

In Section 5, the question of when the potential attains its maximum is addressed. We formulate
a list of assumptions ensuring the “ω-transitivity” of the potential, and hence the existence of a Nash
equilibrium (Theorem 2 from Kukushkin (2018) and new Theorems 3–5). The proof of Theorem 3 is in
Section 6; a sketch of the proof of Theorem 5, in Section 7.

2 Basic definitions

A strategic game Γ is defined by a finite set N of players, and, for each i ∈ N , a set Xi of strategies and
a real-valued utility function ui on the set XN :=

∏

i∈N Xi of strategy profiles. We denote N := 2N \ {∅}
and XI :=

∏

i∈I Xi for each I ∈ N . Given i, j ∈ N , we use notation X−i instead of XN\{i} and X−ij

instead of XN\{i,j}.

Being interested in games with ordinal preferences here and following Kukushkin (1999), we define
a potential of Γ as an irreflexive and transitive relation ≻≻ on XN satisfying

∀xN , yN ∈ XN

[

∃i ∈ N [y−i = x−i & ui(yN ) > ui(xN )] ⇒ yN ≻≻ xN
]

. (1)

When XN is finite, the existence of a potential in our sense is equivalent to the existence of a generalized
ordinal potential (Monderer and Shapley 1996, Lemma 2.5); and it obviously implies the existence of a
Nash equilibrium. Generally, the existence of a generalized ordinal potential implies the existence of a
potential (1), but not the other way round; the existence of a Nash equilibrium also needs more than
(1).

A game with common local utilities (a CLU game) may have an arbitrary finite set N of players and
arbitrary sets of strategies Xi (i ∈ N), whereas the utilities are defined by the following construction.
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First of all, there is a set A of facilities; we denote B the set of all (nonempty) finite subsets of A. For
each i ∈ N , there is a mapping Bi : Xi → B describing what facilities player i uses having chosen xi.
Every strategy profile xN determines local utilities at all facilities α ∈ A; each player’s total utility is an
aggregate of local utilities over chosen facilities. The exact definitions need plenty of notations.

For every α ∈ A, we denote I−α := {i ∈ N | ∀xi ∈ Xi [α ∈ Bi(xi)]} and I+α := {i ∈ N | ∃xi ∈
Xi [α ∈ Bi(xi)]}; without restricting generality, we may assume I+α ̸= ∅. For each i ∈ I+α , we denote
Xα

i := {xi ∈ Xi | α ∈ Bi(xi)}; if i ∈ I−α , then Xα
i = Xi. Then we set Iα := {I ∈ N | I−α ⊆ I ⊆ I+α } and

Ξα := {⟨I, xI⟩ | I ∈ Iα & xI ∈ Xα
I }. The local utility function at α is ϕα : Ξα → R.

For every α ∈ A and xN ∈ XN , we denote I(α, xN ) := {i ∈ N | α ∈ Bi(xi)}: the set of players
using α at xN . Obviously, I−α ⊆ I(α, xN ) ⊆ I+α . We denote n−(α) := minI∈Iα #I = max{1,#I−α }: the
minimal number of players using α provided somebody is using it.

For every i ∈ N and xi ∈ Xi, there is a mapping Uxi

i : RBi(xi) → R, an aggregation rule. The
“ultimate” or total utility functions of the players are aggregates of the local utilities:

ui(xN ) := Uxi

i

(

⟨ϕα(I(α, xN ), xI(α,xN ))⟩α∈Bi(xi)

)

,

for all i ∈ N and xN ∈ XN .

We call a facility α ∈ A trim if there is a real-valued function ψα(m) defined for integer m between
n−(α) and #I+α − 1 for which

ϕα(I, xI) = ψα(#I) (2)

whenever I ∈ Iα, I ̸= I+α , and xI ∈ Xα
I . In other words: whenever a trim facility is not used by all

potential users, neither the identities of the users, nor their strategies matter, only the number of users.
We call a CLU game trim if so is every facility.

The class of trim CLU games includes two important subclasses: “generalized congestion games”
and “games with structured utilities.” The former are obtained by replacing the sum of local utilities in
Rosenthal’s (1973) congestion games with arbitrary aggregates; to be more precise, Xi ⊆ B for all i ∈ N
and (2) holds for all I ∈ Iα, even for I = I+α . In the latter class, Bi(xi) only depends on i. It follows
immediately that Iα = {I+α } for each facility α and hence (2) is not required at all.

Note that A is finite in both cases, which is not required generally.

3 Aggregation rules

Given a subset V ⊆ R, an (abstract) aggregation rule over V is a mapping from a power of V to R. Given
a set U of aggregation rules over V and a CLU game Γ, we say that player i ∈ N aggregates local utilities
with rules from U iff (i) for every α ∈ A and ⟨I, xI⟩ ∈ Ξα such that i ∈ I, there holds ϕα(I, xI) ∈ V ,
and (ii) for every xi ∈ Xi, there is U ∈ U for which the set Bi(xi) can be ordered in such a way that
Uxi

i = U .

Remark. Interestingly, none of the results of this section needs the monotonicity or continuity (in any
sense) of aggregation rules, however natural such assumptions would seem.

Proposition 1 (Kukushkin, 2014, Proposition 6.1). Let U : V m → R, where V ⊆ R, have the property
that every generalized congestion game where #xi = m for each strategy of each player and each player
aggregates local utilities with U possesses a Nash equilibrium. Then U is symmetric.
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Remark. The necessity of symmetry could not be derived without the stipulation that a Nash equilib-
rium must exist when all players use the same aggregation rule.

Henceforth, we restrict ourselves to symmetric aggregation rules and name (or order) their arguments
in whatever way is more convenient at a particular moment.

Proposition 2. Let U be a set of aggregation rules over V ⊆ R such that every generalized congestion
game where each player aggregates local utilities with rules from U possesses a Nash equilibrium; let
U,U ′ ∈ U; let the (finite) set of arguments of U ′ beM and the (finite) set of arguments of U beM∪K with
M∩K = ∅; let U ′(v′M ) > U ′(vM ) for some vM , v

′
M ∈ VM ; let wK ∈ V K . Then U(v′M , wK) ≥ U(vM , wK).

Proof. Supposing the contrary, U(v′M , wK) < U(vM , wK), we define the following generalized congestion
game. N := {1, 2}; the facilities A := A ∪B ∪ C with A := {as}s∈M , B := {bs}s∈M , C := {cs}s∈K , and
ak ̸= bh ̸= cs ̸= ak for all relevant k, h, s; X1 := {A ∪ C,B ∪ C}; X2 := {A,B}; ψas(1) := ψbs(1) := v′s
and ψas(2) := ψbs(2) := vs for each s ∈M ; ψcs(1) := ws for each s ∈ K; Ux1

1 := U for both x1 ∈ X1 and
Ux2

2 := U ′ for both x2 ∈ X2.

The 2× 2 matrix of the game looks as follows:

A B
A ∪ C (U(vM , wK), U ′(vM )) (U(v′M , wK), U ′(v′M ))
B ∪ C (U(v′M , wK), U ′(v′M )) (U(vM , wK), U ′(vM )).

There is no Nash equilibrium in the game.

Corollary 2.1. Let U be a set of aggregation rules over V ⊆ R such that every generalized congestion
game where each player aggregates local utilities with rules from U possesses a Nash equilibrium; let
U,U ′ ∈ U have the same set of arguments M ; let U(v′M ) > U(vM ) for some vM , v

′
M ∈ VM . Then

U ′(v′M ) ≥ U ′(vM ).

Proof. Set K := ∅ and drop wK and C in Proposition 2 and its proof.

Proposition 3. Let U be a set of aggregation rules over V ⊆ R such that every generalized congestion
game where each player aggregates local utilities with rules from U possesses a Nash equilibrium; let
U,U ′ ∈ U have the same set of arguments M ; let U ′(vM ) > U(vM ) for some vM ∈ VM . Then U ′(v′M ) ≥
U(v′M ) for every v′M ∈ VM .

Proof. Supposing the contrary, U ′(v′M ) < U(v′M ), we define the following generalized congestion game.
N := {1, 2}; the facilities A := A∪B with A := {ak}k∈M , B := {bh}h∈M , and ak ̸= bh for all relevant k, h;
X1 := X2 := {A,B}; ψas(1) := ψbs(2) := v′s and ψas(2) := ψbs(1) := vs for each s ∈M ; UA

1 := UB
2 := U

and UB
1 := UA

2 := U ′.

The 2× 2 matrix of the game looks as follows:

A B
A (U(vM ), U ′(vM )) (U(v′M ), U(v′M ))
B (U ′(vM ), U ′(v′M )) (U ′(v′M ), U(v′M )).

There is no Nash equilibrium in the game.
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Proposition 4. Let U be a set of aggregation rules over V ⊆ R such that every generalized congestion
game where each player aggregates local utilities with rules from U possesses a Nash equilibrium; let
U,U ′ ∈ U; let the (finite) set of arguments of U ′ be M and the (finite) set of arguments of U be M ∪K
withM∩K = ∅; let U(vM , wK) > U ′(vM ) for some vM ∈ VM and wK ∈ V K . Then U(v′M , wK) ≥ U ′(v′M )
for every v′M ∈ VM .

Proof. Supposing the contrary, U(v′M , wK) < U ′(v′M ), we define the following generalized congestion
game. N := {1, 2}; the facilities A := A ∪B ∪ C with A := {as}s∈M , B := {bs}s∈M , C := {cs}s∈K , and
ak ̸= bh ̸= cs ̸= ak for all relevant k, h, s; X1 := {A,B ∪ C}; X2 := {B,A ∪ C}; ψas(1) := ψbs(2) := vs
and ψas(2) := ψbs(1) := v′s for each s ∈M ; ψcs(1) := ψcs(2) := ws for each s ∈ K; UA

1 := UB
2 := U ′ and

UB∪C
1 := UA∪C

2 := U .

The 2× 2 matrix of the game looks as follows:

B A ∪ C
A (U ′(vM ), U ′(v′M )) (U ′(v′M ), U(v′M , wK))

B ∪ C (U(vM , wK), U ′(vM )) (U(v′M , wK), U(vM , wK)).

There is no Nash equilibrium in the game.

Remark. From a technical viewpoint, it is interesting to note that “generalized congestion games” in
the formulations of Propositions 1–4 could be replaced with “games with structured utilities” without
much change in the proofs.

4 Quasiseparable aggregation

Given a subset V ⊆ R, we define V∞ as the disjoint union of V m for m = 1, 2, . . . A universal separable
ordering on V is an ordering, i.e., reflexive, transitive, and total binary relation ≽∗, on V∞ (we denote
≻∗ and ∼∗, respectively, its asymmetric and symmetric components) such that:

1) ≽∗ on V is the standard order ≥ induced from R;

2) for every permutation σ of {1, . . . ,m},

⟨v1, . . . , vm⟩ ∼∗ ⟨vσ(1), . . . , vσ(m)⟩

(symmetry); by this condition, ≽∗ can be perceived as defined on the set of unordered lists of
⟨vs ∈ V ⟩s∈M ;

3) for every ⟨v1, . . . , vm⟩ ∈ V m, every ⟨v′1, . . . , v
′
m′⟩ ∈ V m′

, and every ⟨v′′1 , . . . , v
′′
m′′⟩ ∈ V m′′

,

⟨v1, . . . , vm, v
′′
1 , . . . , v

′′
m′′⟩ ≽∗ ⟨v′1, . . . , v

′
m′ , v′′1 , . . . , v

′′
m′′⟩ ⇐⇒ ⟨v1, . . . , vm⟩ ≽∗ ⟨v′1, . . . , v

′
m′⟩

(separability).

5



A set U of aggregation rules over V ⊆ R is consistent with a universal separable ordering ≽∗ if,
whenever functions U withmU arguments and U ′ withmU ′ arguments belong to U, while ⟨v1, . . . , vmU

⟩ ∈
V mU and ⟨v′1, . . . , v

′
m

U′
⟩ ∈ V m

U′ , there holds

U ′(v′1, . . . , v
′
m

U′
) > U(v1, . . . , vmU

) ⇒ ⟨v′1, . . . , v
′
m

U′
⟩ ≻∗ ⟨v1, . . . , vmU

⟩. (3)

It seems reasonable to call such aggregation rules quasiseparable.

Theorem 1. Let ≽∗ be a universal separable ordering on V ⊆ R ; let N be a finite set and Ui (i ∈ N) be
sets of aggregation rules over V , each consistent with ≽∗ ; let Γ be a trim CLU game where each player
i aggregates local utilities with rules from Ui. Then Γ admits a potential in the sense of (1).

Proof. The proof is a combination of those for Proposition 3.1 from Kukushkin (2014) and Theorem 1
from Kukushkin (2018). We restrict ourselves here to an explicit definition of a potential.

Given xN ∈ XN , we denote A(xN ) := {α ∈ A | I(α, xN ) ̸= ∅} and A+(xN ) := {α ∈ A | #I(α, xN ) >
n−(α)} [⊆ A(xN )]; since N and each Bi(xi) are finite, A(xN ) is finite too. Then we define an unordered
list:

κ(xN ) :=
⟨

⟨ϕα(I(α, xN ), xI(α,xN ))⟩α∈A(xN ), ⟨ψα(h)⟩α∈A+(xN ),h=n−(α),...,#I(α,xN )−1

⟩

. (4)

Now we define our potential ≻≻ in this way:

yN ≻≻ xN ⇋ κ(yN ) ≻∗ κ(xN ). (5)

Claim 1.1. Whenever xN , yN ∈ XN and i ∈ N are such that y−i = x−i and ui(yN ) > ui(xN ), there
holds yN ≻≻ xN .

The proof, quite similar to that of Proposition 3.1 from Kukushkin (2014) and based on the separa-
bility of ≽∗ is omitted. Theorem 1 is proven.

The simplest and most important example of quasiseparable (actually, just separable) aggregation is
given by addition:

U (m)(v1, . . . , vm) :=
m
∑

s=1

vs; (6)

v′M ′ ≽Σ vM ⇋

∑

s∈M ′

v′s ≥
∑

s∈M

vs.

As was noted in Kukushkin (2014), Rosenthal’s (1973) congestion games are covered by Theorem 1 with
this ordering; moreover, the construction described by (4) and (5) generates just Rosenthal’s potential
in this case.

Another example of quasiseparable aggregation is the minimum (“weakest-link”)

U (m)(v1, . . . , vm) := min{v1, . . . , vm}, (7a)

which is consistent with the leximin universal separable ordering:

min{v′1, . . . , v
′
m′} > min{v1, . . . , vm} ⇒ ⟨v′1, . . . , v

′
m′⟩ >Lmin ⟨v1, . . . , vm⟩. (7b)
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The exact definition of the leximin ordering is assumed commonly known and omitted: when comparing
two lists of local utility values, we start with the worst in either list; in the case of equality, we move
to the second worst, etc. The only point needing special mentioning is this: when comparing two lists
of different lengths, and when all possible comparisons resulted in ties (i.e., equalities), we assume that
the shorter list dominates the longer one; one might say that we supplement the shorter list with an
appropriate number of +∞ values. (Obviously, this stipulation is not needed for (7b) to hold, but it is
convenient in the following.)

A similar connection exists between the maximum (“best-shot”) aggregation,

U (m)(v1, . . . , vm) := max{v1, . . . , vm}, (8)

and the leximax ordering:

max{v′1, . . . , v
′
m′} > max{v1, . . . , vm} ⇒ ⟨v′1, . . . , v

′
m′⟩ >Lmax ⟨v1, . . . , vm⟩.

The “weakest-link” and additive (disguised as multiplicative) aggregation rules can be combined
together in a sense. Consider this family of aggregation rules (m ∈ N, vs ∈ V ⊆ R):

U (m)(v1, . . . , vm) :=

{

∏

s=1,...,m vs, if ∀s = 1, . . . ,m [vs > 0],

mins=1,...,m vs, otherwise.
(9a)

To describe the universal separable ordering this family is consistent with, we need some notations.
Given vM ∈ VM , we define Z(vM ) := {s ∈ M | vs ≤ 0}, P (vM ) := {s ∈ M | vs > 0}, and p(vM ) :=
∏

s∈P (vM ) vs. Now we are ready to define the promised universal separable ordering ≽Π:

v′M ′ ≽Π vM ⇋

[

v′Z(M ′) >
Lmin vZ(vM )) or

[

v′Z(v′
M′ )

∼Lmin vZ(vM ) & p(v′M ′) ≥ p(vM )
]

]

. (9b)

5 The existence of Nash equilibrium

Assumption 1. The set of facilities A and each strategy set Xi are metric spaces; each Xi is compact;
each mapping Bi is continuous in the Hausdorff metric on the target.

Henceforth, we assume each set XI (I ∈ N ) to be endowed with the maximum metrics. We denote
the distances in A, as well as in each XI , with the same letter d. For each i ∈ N and m ∈ N, we denote
Xm

i := {xi ∈ Xi | #Bi(xi) = m}.

Assumption 2. For each i ∈ N and m ∈ N, either Xm
i = ∅ or Xm

i is a compact subset of Xi.

Assumption 3. For each i ∈ N , Xm
i ̸= ∅ only for a finite number of m ∈ N.

Assumption 4. Every function ϕα(I, ·) : XI → R is upper semicontinuous in xI , i.e., for every α ∈ A,
I ∈ Iα, xI ∈ Xα

I , and ε > 0, there is δ > 0 such that:

ϕα(I, xI) > ϕα(I, yI)− ε (10)

whenever yI ∈ Xα
I and d(xI , yI) < δ.
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For α ̸= β, a stronger version of (10), with a tint of the monotonicity of ϕα in I, is assumed.

Assumption 5. For every α ∈ A, I ∈ Iα, and ε > 0, there is δ > 0 such that:

ϕα(I, xI) > ϕβ(J, yJ)− ε (11)

whenever β ∈ A \ {α}, J ∈ Iβ, xI ∈ Xα
I , yJ ∈ Xβ

J , J ⊆ I, d(α, β) < δ, and d(xJ , yJ) < δ.

If A is finite as, e.g., in a game with structured utilities or in a (generalized) congestion game, then
Assumption 5 holds vacuously since a δ > 0 smaller than the minimal distance between α ̸= β can be
chosen.

Theorem 2 (Kukushkin, 2018, Theorem 3). Every trim CLU game with additive aggregation (6) satis-
fying Assumptions 1–5 possesses a (pure strategy) Nash equilibrium.

Theorem 3. Every trim CLU game with the minimum aggregation (7a) satisfying Assumptions 1, 4,
and 5 possesses a (pure strategy) Nash equilibrium.

The proof is deferred to Section 6.

Theorem 4. Every trim CLU game with the maximum aggregation (8) satisfying Assumptions 1, 4,
and 5 possesses a (pure strategy) Nash equilibrium.

The proof is “dual” to that of Theorem 3, and is omitted.

Theorem 5. Every trim CLU game with the aggregation (9a) satisfying Assumptions 1–5 possesses a
(pure strategy) Nash equilibrium.

A sketch of the proof, combining those of Theorem 2 and Theorem 3, is given in Section 7.

6 Proof of Theorem 3

As easily understood, the order ≻≻ defined by (5) with >Lmin as ≻∗ need not be continuous in any sense.
Nonetheless, it can be shown to satisfy the following condition (“ω-transitivity”): xωN ≻≻ x0N whenever
⟨xkN ⟩k∈N converges to xωN and xk+1

N ≻≻ xkN for all k. As proven by Gillies (1959) and Smith (1974), such
a strict ordering on a compact set always admits a maximizer, and XN is compact by Assumption 1. In
its turn, every maximizer of ≻≻ must be a Nash equilibrium of the game because of (1).

Thus, let xkN → xωN ∈ XN and xk+1
N ≻≻ xkN , i.e., κ(xk+1

N ) >Lmin
κ(xkN ), for all k. We have to show that

κ(xωN ) >Lmin
κ(x0N ). Since A(xωN ) is finite and each Bi is continuous in the Hausdorff metric, there is

δ̄ > 0 so small that, first, if α, β ∈ A(xωN ) and α ̸= β, then d(α, β) > δ̄, and, second, I(β, yN ) ⊆ I(α, xωN )
whenever d(α, β) < δ̄ and d(xωN , yN ) < δ̄.

Let vω1 ≤ vω2 ≤ · · · ≤ vωm denote all different components of κ(xωN ) and let each vωs enter κ(xωN ) just
νωs times. Let vk1 ≤ vk2 ≤ . . . and νk1 , ν

k
2 , . . . have the same meaning for each k = 0, 1 . . .

Claim 6.1. vω1 ≥ v01.
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Proof. Supposing the contrary, we define ε := v01 − vω1 > 0; then we pick α ∈ A(xωN ) and I ⊆ I(α, xωN )
such that vω1 = ϕα(I, xI); then, relying on Assumptions 4 and 5, pick a δ > 0 for which both (10) and
(11) hold, set δ∗ := min{δ, δ̄} with δ̄ defined at the start of the proof, and only consider k for which
d(xωN , x

k
N ) < δ∗.

If there is k such that α ∈ Bi(x
k
i ) for all i ∈ I, then ϕα(I, x

k
I ) is present in κ(xkN ) by definition (4),

and hence (10) applies. Otherwise, for each i ∈ I and k large enough, there is βi ∈ Bi(x
k
i ) such that

d(α, βi) < δ∗; picking such a k and i ∈ I \ I(α, xkN ), and denoting J := I ∩ I(βi, x
k
N ) [∋ i], we can apply

(11). In either case, we have vk1 ≤ vω1 + ε < v01, and hence κ(x0N ) >Lmin
κ(xkN ), contradicting our initial

assumption.

Claim 6.2. vω1 ≥ vk1 for each k.

Proof. Since the sequence xkN , x
k+1
N , . . . also converges to xωN , Claim 6.1 applies.

If vω1 > vk1 for some k ≥ 0, then κ(xωN ) >Lmin
κ(xkN ) ≥Lmin

κ(x0N ) and we are home. Let vω1 = vk1 for
each k. Since κ(xk+1

N ) >Lmin
κ(xkN ), we have νk+1

1 ≤ ν01 for each k ≥ 0; without restricting generality,
νk1 = ν01 for all k.

Claim 6.3. If vω1 = vk1 and νk1 = ν01 for all k, then νω1 ≤ ν01 .

Proof. The proof is quite similar to that of Claim 6.1, but somewhat more complicated. Supposing the
contrary, we either have v02 − vω1 > 0 or there is no v02 at all, i.e., κ(x0N ) consists of ν01 entries of v01. In
the first case, we define ε := v02 − vω1 > 0; in the second, pick ε > 0 arbitrarily.

Denoting A∗ := {α ∈ A(xωN ) | ∃I ⊆ I(α, xωN ) [vω1 = ϕα(I, x
ω
I )]}, and relying on the finiteness of both

N and A∗, we pick a δ > 0 for which (10) and (11) hold for all α ∈ A∗ and I ⊆ I(α, xωN ). Then we set
δ∗ := min{δ, δ̄} with δ̄ defined at the start of the proof, and fix a k large enough that d(xωN , x

k
N ) < δ∗,

and hence I(α, xkN ) ⊆ I(α, xωN ) for each α ∈ A∗, and that, for each i ∈ I(α, xωN ), there is βi ∈ Bi(x
k
i )

such that d(α, βi) < δ∗. Then we consider each α ∈ A∗ separately.

Let α ∈ A∗ bring να1 values of ϕα(I, x
ω
I ) = vω1 into κ(xωN ), and let [0<]m1 < · · · < mνα

1
[≤#I(α, xωN )]

be the cardinalities of those I ⊆ I(α, xωN ). If #I(α, xkN ) ≥ mνα
1
, then I(α, xkN ) contains subsets of all

cardinalities m1, . . . ,mνα
1
and (10) applies to each of them, bringing into κ(xkN ) at least να1 values of

ϕα(I, x
k
I ) < vω1 + ε.

If mνα
1
> #I(α, xkN ) ≥ m1, then (10) applies to subsets I1 ⊂ · · · ⊂ Ih ⊂ I(α, xkN ) with cardinalities

m1, . . . ,mh [< mνα
1
]. For each i ∈ I(α, xωN ) \ I(α, xkN ), we have α /∈ B(xki ), but there is (at least one)

βi ∈ B(xki ) such that d(α, βi) < δ∗. We fix such a βi for each i and define an equivalence relation ∼ on
I(α, xωN ) \ I(α, xkN ) by i ∼ j ⇋ βi = βj . Then we linearly order (in an arbitrary way) the equivalence
classes, and then linearly order the players within each equivalence class, obtaining a (lexicographic)
linear order on I(α, xωN ) \ I(α, xkN ). The order allows us to define a mapping r : I(α, xωN ) \ I(α, xkN ) → N

by r(i) := #(I(α, xkN )∪{j ∈ I(α, xωN )\ I(α, xkN ) | j ≤ i}). Clearly, mh < r(i) ≤ mνα
1
for each i. Then we

define is := r−1(ms) for h < s ≤ να1 and Js := {j ∈ I(βis , x
k
N ) | j ≤ is}. Now we have is ∈ Js ̸= ∅ and

Js ⊆ Is; hence (11) applies. Moreover, #Js ̸= #Js′ whenever s ̸= s′ and is ∼ is
′
; hence all ϕβis

(Js, xkJs)
separately enter κ(xkN ).

If #I(α, xkN ) < m1, in particular, if I(α, xkN ) = ∅, then we argue exactly as in the preceding para-
graph, but with h+ 1 = 1. We see that κ(xkN ) contains at least να1 values smaller than vω1 + ε.
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Summing up for all α ∈ A∗, we obtain at least νω1 values smaller than vω1 + ε in κ(xkN ); therefore,
κ(x0N ) >Lmin

κ(xkN ), contradicting our assumption.

If νω1 < ν01 , then κ(xωN ) >Lmin
κ(x0N ) and we are home. Let νω1 = ν01 = νk1 for each k.

Claim 6.4. If vω1 = vk1 and νω1 = νk1 for all k, then vω2 ≥ v02.

Proof. Supposing the contrary, vω2 < v02, we argue in essentially the same way as in Claims 6.1 and 6.3.

If vω2 > v02, then we are home. Iterating these arguments further, we come to the conclusion that
either κ(xωN ) >Lmin

κ(x0N ) indeed, or vωs = vks and νωs = νks for all relevant s and all k. The latter
alternative, however, is incompatible with our assumptions.

7 Sketch of the proof of Theorem 5

Similarly to the situation of Theorem 3, the order ≻≻ defined by (5) with ≽Π as ≻∗ need not be even semi-
continuous; however, its “ω-transitivity” can be established, ensuring the existence of a Nash equilibrium
of the game.

Assuming that xkN → xωN ∈ XN and xk+1
N ≻≻ xkN for all k, we have to show that xωN ≻≻ x0N . As

long as the first alternative in (9b) is involved, exactly the same argument as in the proof of Theorem 3
works; we do not even need Assumptions 2 and 3. So let Z(κ(xωN )) ⊇ Z(κ(x0N )) = Z(κ(xkN )) for all
k and κ(xωN )Z(κ(xk

N
)) ∼

Lmin
κ(xkN )Z(κ(xk

N
)) for all k. We have to show that Z(κ(xωN )) = Z(κ(x0N )) and

p(κ(xωN )) > p(κ(x0N )).

Exactly as in the proof of Theorem 2 (Theorem 3 of Kukushkin, 2018), Assumptions 2 and 3 imply
that #Bi(x

ω
i ) = #Bi(x

k
i ) for all i ∈ N and k large enough. Supposing, to the contrary, that Z(κ(xωN )) ⊃

Z(κ(x0N )) = Z(κ(xkN )), we have at least one “superfluous” pair of α ∈ A and I ∈ Iα such that ϕα(I, x
ω
I ) ≤

0; but then ϕα(I, x
k
I ) > 0 or ϕβ(J, x

k
J) > 0 become arbitrarily close to 0 as k → ∞ by (10) or (11), while all

components of κ(xkN ) remain bounded above. Therefore, p(κ(xkN )) → 0 and hence p(κ(xkN )) < p(κ(x0N ))
for large enough k, contradicting our initial assumption.

If Z(κ(xωN )) = Z(κ(xkN )) for all k, but p(κ(xωN )) < p(κ(x0N )), then we would have p(κ(xkN )) <
p(κ(x0N )) for large enough k for the same reason as in the preceding paragraph. Finally, the situation of
Z(κ(xωN )) = Z(κ(xkN )), κ(xωN )Z(κ(xω

N
)) ∼

Lmin
κ(xkN )Z(κ(xk

N
)), and p(κ(x

ω
N )) = p(κ(xkN )) for all k is also

incompatible with our assumption, exactly as at the end of the proof of Theorem 3.

8 Conclusion

To summarize, the main objective of this paper was twofold. First, to advance as far as possible
towards establishing that (quasi)separable aggregation of local utilities is necessary and sufficient for the
guaranteed acyclicity of individual improvements in trim CLU games. Second, to find out reasonable
additional assumptions under which a Nash equilibrium exists. Concerning the first goal, the sufficiency
of separability for acyclicity is derived from essentially the same good old construction of Rosenthal’s;
the necessity of some “separability-style” properties without restrictions on the domain are obtained for
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the first time ever. The existence of Nash equilibrium for certain quasiseparable aggregation rules is
established; in particular, in bottleneck congestion games with an infinite number of facilities.
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