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This paper performs a spectral analysis (univariate and bivariate) of monthly series of
growth in money (a narrow and a broad aggregate) and in prices for Mexico. This analysis
allows the identification of the most important frequencies for each series, as well as of
some measures of association between the series, at different frequencies. In particular,
zero frequency measures, typically used for identifying the long-run relationship between
money and prices, are obtained. In addition to the analysis of the entire series (1969-2010),
a rolling sample analysis for the zero frequency is also carried out to allow for changes in

the long-run relationships.



I. Introduction
The quantitative theory of money and prices is probably one of the oldest theories in
Economics. Various historians attribute it to David Hume, but there are hints of it for

earlier times (see, for example, Robbins (1998)).

In more recent times, the study by Vogel (1974) and a well-known article by Lucas (1980)
provided empirical evidence that supported this theory. Nevertheless, the results by Lucas
have been the target of major scrutiny, showing certain instability in the relationship

between money and prices.

Some economists, like Sargent and Surico (2011), have proposed models to explain the
aforementioned instability, while others, like Benati (2009), have spent time documenting
the long-run behavior of this relationship for a good many of countries and time periods.
These studies of long-run behavior are mainly done with tools from spectral analysis, which
determine the behavior of time-series at the lowest frequencies. Such a study has never

been done for Mexico, partly because of the complexity of this technique.

The main purpose of this paper is to briefly introduce the methodology of spectral analysis

and the resulting estimations for Mexico, with monthly data from 1969 to 2010.

Section II introduces basic concepts from spectral analysis, which are needed to understand
the results; section III presents the data; section IV presents the results obtained for the

entire sample; and section V presents the results from a rolling sample. The paper ends with



a brief discussion and conclusion; and a small appendix contains the estimators that were

employed.

I1. Elements of Spectral Analysis’

There are generally two approaches for analyzing stationary stochastic processes: the first
and most common is the "time domain" approach, the second and least common is the
"frequency domain" approach.

The "frequency domain" approach is also known as spectral analysis, due to the fact that
light is composed of electromagnetic waves of different frequencies and the continuum of

such frequencies is called the spectrum.

Stationary processes

It is assumed that the reader is familiar with the concept of random variable. It is then
needed to define what a stationary process is. For practical purposes, we will limit
ourselves to univariate processes (those of only one variable) which occur in discrete time
(integer units of time) and whose realizations are real numbers (and not, say, complex
numbers).

We define a stochastic process, {X;}, as a family of random variables indexed by the
symbol t. We assume that t belongs to the set of integers and that, for all ¢, X, is a random
variable with density function f;(*).

We define the mean of X, u;, as

ue = E[X,] = f *fi(X)dx

1 This is an informal presentation, which follows Priestley (1981), Fuller (1996), Brockwell and Davis
(1991), and Box et al. (2008).



and the autocovariance of X;, cov(X;, X;), as

cov(Xe,Xs) = E[(Xe — 1) (Xs — 15)] = f f (1 — ) (s — ) fos (a2 ) s s

where f; <(-,*) is the joint density function of (X¢, X).

We define a stationary stochastic process, or stationary process, as a stochastic process,

{X:}, with yu = u, and cov(Xg, Xp1q) = coV(Xiyr Xesrrq) forall t, d and k integer

numbers.

It follows from the definition of stationary process that the mean of a stationary process is a

constant p, and that the autocovariance can be expressed as a function that depends solely

on the distance d.

Examples:

ii.

White Noise
A stochastic process {&;} is called white noise when it is composed of a sequence of

uncorrelated random variables whose mean and variance are the same:

Ele] = u
0, d=#0
covar (&, Eerq) = {0.2 d=0

Clearly, white noise is a stationary process.
Autoregressive process of order 1, also known as AR(1)
A stochastic process {U,} is called autoregressive of order 1 if
U =aU;_ 1 + &
where a is a constant and {&;} is white noise.
If |a| < 1 and the white noise has a zero mean, E[e;] = 0, then {U,} is a stationary

Process:



covar (U, Ugrq) = E[U;, Ugyql
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We can simplify the double summation since all the terms a*a” &;_¢&;, 4 With t —
s # t + d — r have a zero mean (recall that covar (&g, €;4+4) = 0 for d # 0). Hence,
we only need to consider terms witht —s =t + d — r, or equivalently s = r — d.
We can therefore substitute s in terms of r or vice versa. For convenience, we will
keep only one summation going from zero to infinity; so we will make the
substitution depending on whether d is positive or negative. If d < 0 we have that

d = —|d|. Substituting s according to s = r — d we remain with a single

summation from zero to infinity:
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If d > 0, the result is the same except for the use of the absolute value; hence the

expression using the absolute value of d is correct.

Frequencies

So far we have considered processes that are defined on the time domain. However, it also
possible to define processes on the frequency domain.

When we speak of frequencies, we are implicitly talking about a repeating event (a periodic
event). The frequency is nothing more than the amount of times that such an event happens
per unit of time.

In mathematics, the most popular periodic functions are the trigonometric functions sine
and cosine, sin(x) and cos(x) respectively. We will later see how these two functions

constitute the building blocks for any stationary process.

Fig. 1. Sine and cosine functions



Although trigonometric functions can be computed for angular degrees (for example, the
sine of 45 degrees or 45°), the common practice is to use “radians” as their argument. The
conversion from one unit to the other is fairly straightforward since 2r radians equal 360
angular degrees (a complete turn) and both units are directly proportional (see the

accompanying graph, which has the unit conversion on the axis).

Sinusoidal processes
Let us begin by considering a stochastic process with sine and cosine functions:
Y, = ucos(t) + vsin(t)
where u and v are random variables with the same variance o2, zero mean, and zero
covariance. {Y;} is a stationary process since
E[Y;] = E[ucos(t) + vsin(t)]
= E[u] cos(t) + E[v] sin(t)
= 0-cos(t) + 0 - sin(t)
=0
That is, the unconditional mean is constant. And using the trigonometric identity
cos(x — y) = cos(x) cos(y) + sin(x) sin(y) together with the zero covariance assumption
(i.e., E[uv] = 0), we have that
E[Y;Y:1q] = E[(usin(t) + v cos(t))(usin(t + d) + v cos(t + d))]
= E[u? sin(t) sin(t + d)
+ uv(sin(t) cos(t + d) + cos(t) sin(t + d)) + v? cos(t) cos(t + d)]
= E[u?]sin(t) sin(t + d) + E[uv](sin(t) cos(t + d) + cos(t) sin(t + d))
+ E[v?] cos(t) cos(t + d)

= o2 sin(t) sin(t + d) + 2 cos(t) cos(t + d)



= g2 cos(d)
In other words, the autocovariance depends only on the distance d. Notice that ford = 0
we get the variance of Y;, which is 62 (and not 2¢2) since sin?(x) + cos?(x) = 1 for all x.
That is, whenever the sine grows, the cosine shrinks such that the sum of both variances is
constant and equal to one.
In order to convert the time units into radians, one multiplies t by w, where w = 2rf and f
is the amount of cycles per time unit:
Y; = ucos(wt) + vsin(wt)
= ucos(2rft) + vsin(2nft)
In this way we see that Y; has a frequency of f cycles per time unit, and our proof for
stationarity remains valid since we did not require t or d to be integers.
Let {w,}n=1 be asequence of positive distinct constants, and let {a,}p=1, {bn}n=1 be two
real-valued stochastic processes with zero mean, zero covariance, and variance ¢;2. Then,
subject to some regularity conditions, the process

W, = Z(an cos(wyt) + by, sin(wyt))

n=1

is a stationary process. Thus, the stationary process {W,} is basically a sum of sinusoidal
functions whose coefficients form a bivariate stochastic process.

In what follows, it will prove convenient to use the following complex exponential notation
(this notation is based upon the polar form of complex numbers?), which is equivalent to

the long sine and cosine notation:

b
7

2Thatis,z = a+ ib = r(cos 8 + isin0) = re’?, where r = |z| = VaZ + b?, cos8 = %,and sinf =

8



Wt= Z Akeisgn(k)a)|k|t

k=—o00
with

1

E(ak—ibk), k=1

A, = 0, k=0
1 .
ki (a|k| + lb|k|), k<-1

and where i is the imaginary unit with i? = —1, and sgn(x) is the sign of x. Thus, we

simply construct the complex-valued stochastic process{Ay }r=_o from our previous
sequence {wy }n=; and our previous real-valued stochastic processes {a, }n=1 and {b, }o=.
The mean of a complex-valued random variable Z = a + ib is u; = E[Z] = E[a] + iE[b].
While the variance is var(Z) = E[(Z — uz)(Z* — uz)], where Z* is the complex conjugate
of Z; thatis,if Z =a + ibthen Z* = a — ib.

It follows that {A; };=_. is a complex-valued stochastic processes with zero mean and

. 1 . . . .
variance var(4;) = Eaﬁcl for all k # 0. Moreover, since the summation is symmetric, the

amount of variance contributed by the frequency w,, is var(4,) + var(A_,) = o2. The
representations are thus equivalent.

An important characteristic of the sinusoidal process, which is inherited by the spectral
representation that will be seen later, is that the variance of the stochastic process W; equals
the sum of the variances at each distinct frequency:

var(W;) = var(W,) = var( i Ak> = var <§ an> = i o2

Notice that we use the property whereby the variance of a stationary process is the same for

all t and therefore the same as that for t = 0. Since sin(0) = 0, only the coefficients of the



cosine functions remain. And because their covariance is zero, we get only the sum of their

variances as the variance of the stationary process W;.

The alias effect and the frequency continuum

Whenever a stationary process is observed exclusively for discrete units of time, it is
impossible to distinguish some frequencies (high ones) from others (lower ones). This is
known as the “alias” effect. An intuitive way to understand the alias effect is by following
this line of reason: A necessary condition to identify a periodic movement is the ability to
observe at least two different states of this movement, say, a low and high state.
Unfortunately, this is not a sufficient condition, since there might be movements with a
higher frequency (for example, twice the frequency) which coincide for both the only states
that we are able to observe.

A clear example of the alias effect can be seen in Fig. 2:

15

sinusoidal 1

—— sinusoidal 2

Fig. 2. An example of the alias effect

In this graph, we notice that eliciting observations at t, and t; is not enough to distinguish
the sinusoidal 1 from the sinusoidal 2, because both take the same values at those points. In

other words, the frequency of sinusoidal 1 is an alias of the frequency of sinusoidal 2.

10



It follows from the aforementioned observations that whenever we are working with
discrete processes, we are limited to some maximum observable frequency w*. If the time
units employed are the same as those of the observations, as is common practice, then this
maximum observable frequency is w* = m. In other words, the shortest cycles that we are
able to tell are those which take at least two time units.?

One might be tempted to conclude that, since it is hard to identify high frequencies, it
should be equally hard to identify non-integer frequencies: Is it possible to identify cycles
of length 2.4 or /10 months? The answer is that it is possible.

In summary, we are in principle able to identify any frequency w in the interval (0, rr]. This
is not only possible but desirable because, as we shall see, it turns out that every discrete-

time stationary process can be described in terms of this continuum of frequencies.

Spectral representation of stationary processes

An important result of the field of stochastic processes is the spectral representation
theorem for stationary processes.

Starting from our previous representation,

Wt: Z Akeisgn(k)w|k|t

k=—oc0
With {4, } ;- _ being a complex-valued stochastic process, we can imagine a generalized
version where every frequency w in the interval (0, rr] is taken into account. The spectral
representation theorem states that every discrete-time stationary process with zero mean

can be represented in this way. In other words, it can be represented as

3 This maximum observable frequency is also known as the Nyquist frequency.

11



A
X, = f et dZ(w)
—TT

Where Z(w) is an orthogonal complex-valued stochastic process satisfying dZ*(w) =
dZ(—w), and E[dZ(w)] = 0. Notice that w < 0 is only an artifact so that, together with
the symmetry of dZ, we can obtain real coefficients (just as in our last representation of
We).

The similarity between the sinusoidal process and the spectral representation is evident;
dZ(w) works as the coefficient 4,,, and both are complex-valued stochastic processes (one
is defined over the set of integers and the other over a continuous interval from - to ).

Just as we did earlier for W;, we can also compute the variance for X;:

var(X,) = var(X,) = var <jndZ(w)> = an[IdZ(w)IZ]

Defining
dH (w) = E[|dZ()]?]
we have that dH (w) is the variance due to the frequency w. If H(w) is differentiable, then
dH(w) = h(w)dw, and h(w) is called “the power”. Thus, h(w,) is interpreted as the
variance of the random coefficients in the neighborhood of w,.*
Example:
i.  The power of a white noise process
The stochastic process {&;} gets the name “white noise” from the fact that it is made

of all the frequencies in the same intensity. That is,

4 Recall that if a function is differentiable, it means its derivative is continuous. And continuity of a
function f(+) implies that for every € > 0 and x,, there is a neighborhood of x,, such that
|f(x) — f(x0)] < € for all x in that neighborhood.

12



ii.

2
g . .
h(w) = pyult where — < w < m, and o2 is the variance of &;.
s

Every frequency w contributes in the same amount, just as every color (which is just
an electromagnetic wave at a specific frequency) contributes to the white color in
the same amount. For purposes of displaying the power we use 62 = 1, so that the

area under the “curve” (meaning, the total variance) equals one.

0.08 =—h(w)

-in -0.5m on 057 in

Fig. 3. The power of a white noise process

The power of an autoregressive of order 1
Assuming that the process is stationary ( |a| < 1 and E[g;] = 0 ), the power of an

AR(1) depends on the value of a and the frequency w:

o2
2n(1-2a cos(w)+a?)’

h(w) = where — < w < m, and o2 is the variance of &;.

Whenever a > 0, the power of the low frequencies is greater than the power of the
high frequencies; the opposite is true for a < 0. For purposes of displaying the

power we use 62 = 1 and a? = 0.5% = 0.25 . This implies an area (total variance)

2

of var(U,) =

S w

g
1-a?

13



0.7 T

—h(w)

-ln -0.5m on 05n in

frecuency w

Fig. 4. An example of the power for an AR(1) process

Since the power (sometimes called “power spectrum’’, or simply “spectrum”) of
every real-valued process is symmetrical, we might just as well display only the
positive frequencies. Another common practice, to be employed later on, is to
display the natural logarithm of the power, instead of the power itself. This is done
mainly because oftentimes the power of some frequencies is several orders of
magnitude greater than that of others. Finally, for ease of interpretation, we will use

the length of the cycles, instead of their frequency, on the horizontal axis.

Coherency and gain

Starting off from the spectral representation, one is able to derive different measures of
association between two stochastic processes. Two of those measures which will be used
throughout are the coherency and the gain.

Suppose we have two stationary processes {X; .} and {X, .}; then, by the spectral

representation theorem, we can express them as
Y
Xl,l’ = f eltwdzl(a))
-1

14



Vs
X = | etdz;(w)
—TT

The coherency €1, (w) at a frequency w between two stationary processes {X; .} and {X;.};
is defined as

cov(dZy(w), dZ,(w))
[var(dZ,(w))var(dZ,(w))] 2

C2(w) =

The use of the absolute value\norm is due to the fact that the covariance between two
complex-valued random variables is, in general, complex as well. The coherency €, (w)
can be interpreted, grossly speaking, as the correlation between the random coefficients of
the processes {X; ;} and {X, .}, at the frequency w. In fact, the coherency satisfies the
inequality 0 < €, (w) < 1. It is, grossly speaking, a measure of linear association.

The gain G,,(w) of the process {X; .} over the process {X,,} at frequency w is defined by

cov(dZ(w),dZ,(w))
var(dZ,(w))

Gi,(w) =

Once again, we use the norm because this covariance is, in general, complex-valued. The
gain G, (w) can be interpreted, grossly speaking, as the least-squares estimate for the slope
of a linear regression where dZ; (w) is the dependent variable and dZ, (w) is the
independent variable.

Unlike the coherency, the gain is---in general---asymmetric. That is, §,,(w) # G, (w).

III. Data
We briefly introduce the data in this section. The series of the two monetary aggregates for

Mexico are available online from the 1980s onwards.> The author requested the earlier

5 At the mexican central bank’s website.
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observations directly from the central bank. The monetary aggregates are called M1a and
M4a. Both of them have the letter “a” because they include the public sector. M1a includes
(1) coins and bills in the hands of the public, (2) checkable deposits at domestic
banks/subsidiaries, (3) demand deposits at domestic banks/subsidiaries, and (4) demand
deposits at credit unions. M4a includes M1a plus (1) domestic securities in hands of
residents, (2) domestic securities in hands of non-residents, (3) deposits made at mexican
branches/subsidiaries abroad. Both monetary aggregates are available from 1960 onwards

and have a monthly frequency.

The Consumer Price Index (CPI) for Mexico is available online from the mexican statistics
bureau.® The series begins around 1969, and is available at a monthly frequency as well.

Hence our data is restricted to 1969 through 2010.”

Inflation
Starting off from the CPI series, we obtain the monthly logarithmic change from 1969

through 2010. These data are presented in the following figure.

6 This bureau is called the Instituto Nacional de Geografia y Estadistica (INEGI).
7 The CPI is known in Mexico as the Indice Nacional de Precios al Consumidor (INPC).

16
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Fig. 5. CPI monthly log-change

The behavior of inflation over the last four decades has been analyzed by different
economic historians (see, for example, Moreno-Brid and Bosch (2010), or Kuntz (2010)).
An interesting feature, hitherto ignored by other authors, is that while the annual inflation
rates of the last years is similar to that of 1969-1972, the seasonality of the monthly
inflation is much greater. This is likely the result of the stability in the (implicit/explicit)

target for the interest rate that the mexican central bank has kept throughout the last years.

The growth of Mla
Both monetary aggregates are transformed using a monthly logarithmic change, as was

done for the price index.

17
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Fig. 6. M1a monthly log-change
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The growth of M4a

The series for M4a is visibly “heavier” (i.e., it has more inertia, it takes longer for it to get

18

back to the mean), and it is closer in behavior to the price series.
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Fig. 7. M4a monthly log-change

Indeed, M4a appears to be an hybrid between the price index and M1a. Not surprisingly,

this crude characterization will become apparent in our quantitative analysis as well.

IV.  Results

For the sake of exposition, the rest of the paper (sections IV and V) will employ the terms

“prices” and “monetary aggregates” when referring to the respective monthly log-changes.
Also, keep in mind that what follows are all estimates, even if we do not always explicitly

mention it.

We now present the three main results of the quantitative analysis: the spectra for each
series (prices, M1a, M4a), and the coherencies and gains for the duplets (prices, M1a) and

(prices, M4a).
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The specifics of our methodology are somewhat technical, and therefore found at the end.

The power
The power of a time series summarizes a great amount of information in a non-parametric
fashion.
We have chosen to display the logarithm of the power in our figures, for the sake of
exposition.
a) The power of prices. The power estimate for prices has an expected shape: that of a
heavy series whose lowest frequencies embody most of the total variance. “the

typical spectral shape of an economic variable” in the words of Granger (1966).

-3.1

-3.6

-4.1

-4.6

-5.1

-5.6

6 years 2 years 1year 6 5 4 3 2
months  months months months months

Fig. 8. Log of the power estimate for prices

Thanks to the properties of logarithms, we can see that the cycles with a length of around 6

years explain 200% more of the total variance than those with a length of around 3 months.

20



b) The power of M1a. The power of M1a is rather different from that of the other two

series: it does not show the typical spectral shape of an economic variable.

-3.1

-3.2

| \ﬂ/\ : /\ﬂ/

-3.6

-3.7

T T T T T T
6 years 2 years 1year 6 5 4 3 2
months  months months months months

Fig. 9. Log of the power estimate for M1a

On the contrary, it is a much “lighter” series, with a heavy seasonal behavior. Cycles with

length of around 6, 3, and 2 months explain more than those close to one or more years.

¢) The power of M4a. Finally, the estimated spectral shape of M4a is somewhere in
between that of M1a and prices: it a very “heavy” series, just like prices, but with a

certain seasonality around 6, 3, 2.4, and 2 months.?

8 A seasonality around 2.4 months may seem awkward. It is actually not because 2.4 months are one
fifth of a year. In other words, this is a harmonic frequency of the yearly frequency. Together, the cycles
of length 6, 3, 2.4, and 2 months, help describe common yet not uniform seasonalities.
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Fig. 10. Log of the power estimate for M4a

Unlike the power estimate for prices though, the power estimate for M4a shows a greater
variance for cycles with length of 3 months or less than for cycles with length around 4

months or a year.

The coherency
The coherency was estimated for the duplets (M1a, prices) and (M4a, prices). Just like the
correlation coefficient, the coherency is a symmetric measure: the coherency between M1a
and prices is the same as that between prices and M1a. However, the coherency is not
negative because it takes the absolute value to turn complex numbers into real ones.
a) Coherency between Mla and prices. The coherency estimate is statistically not
different from zero for the highest frequencies, modest for intermediate frequencies,

and considerable for very low frequencies.

22
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Fig. 11. Coherency estimate for (M1a, prices)

of length greater than or equal to 2 years.

We conclude that the relationship between M1a and prices is close to linear only for cycles

b) Coherency between M4a and prices. For the coherency estimate of (M4a, prices),

the relationship for cycles with length of 2 or more years is almost linear: the
coherency estimate is statistically greater than 0.8. Moreover, for cycles with

lengths of 6 years or more, the coherency is statistically not different from 1.
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Fig. 12. Coherency estimate for (M4a, prices)

Other cycles have a modest or statistically insignificant coherency.

The gain
As previously said, the gain can be interpreted---grossly speaking---as the slope of a linear
regression from the random coefficients of one process over those of the other. In our two
following estimations, we have proceeded as if prices were the left-hand-side (or
independent) variable.

a) The gain of prices over Mla. As the figure shows, our gain estimate has a very clear

shape in the case of M1a:
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Fig. 13. Gain estimate of prices over M1a

For cycles with a length of less than 2 years, the “slope” is less than 0.2; while for cycles
with a length of 6 or more years, the “slope” is around 0.85 and statistically not different

from 1.

b) The gain of prices over M4a. In the case of M4a, the “slope” is around 0.2 for
cycles with length of less than 1 year; and the “slope” is around 1 for cycles with

length of more than 2 years.
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Fig. 14. Gain estimate of prices over M4a

Notice that the gain over M4a is greater than that over M1a, even though there is no “a
priori” reason for the gains to be different. In fact, if M1a was a constant proportion of
M4a, the gains would be (trivially) identical. There are some reasons to believe that the
gain of a narrow aggregate should be smaller than that of a broader one. But the results of

Benati (2009) show that this is not always the case.

V. Analysis for Rolling Samples
In this section, we include an analysis of rolling samples analogous to the one done by

Benati for various OECD countries.

The main reason for performing this type of analysis is the concern about the stability of the

spectrum. Since it is impossible to simultaneously display three surfaces (the spectrum and
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the confidence bands), we only show the results for the zero frequency, just like Benati

does.

A window length of 15 years was chosen, since it is about the minimum length required to

get discernible patterns from this dataset.

The coherency at the zero frequency
As mentioned before, the importance of the zero frequency is due to its interpretation as the
“long run”. This in turn is because it is the frequency whose neighborhood contains the

lowest frequencies (and hence, arbitrarily large cycles).

a) The coherency between M1a and prices. The coherency between M1a and prices at
frequency zero seems quite unstable. The figure shows what appears to be 4

different episodes classifiable into 3 different regimes.
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Fig. 15. Coherency at frequency zero for (M1a, prices), rolling sample

The first regime has a high coherency and matches two episodes of relatively healthy public
finances (their start points being 1969-1976 and 1995 onwards). The second regime has a
moderate coherency and matches an episode with escalating inflation rates (start points
being1976-1987). The third regime has a very low coherency, and matches an episode of

low inflation rates that were achieved through national agreements and a fixed exchange

rate (1988-1994).°

b) The coherency between M4a and prices. The coherency between M4a and prices is

fairly stable. Despite the shock of 1988 (start point), it slowly recovered to previous

levels.

9 Strictly speaking, it was a crawling-peg regime. For detailed accounts of mexican economic history
see, for example, Moreno-Brid and Bosch (2010), or Kuntz (2010).
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Fig. 16. Coherency at frequency zero for (M4a, prices), rolling sample

The confidence bands provide support to our previous assertion as well: the upper band
never descends to the levels of the lower band, and both bands slowly return to their

previous after the 1988 shock.

The gain at frequency zero

Just like the coherency at frequency zero, the gain at frequency zero is used to describe

long-run behavior. In particular, the gain is like “the slope” of a linear relationship.

a) The gain or prices over M1a. The gain of prices over M1a is almost a mirror image
of coherency: it is also possible to distinguish the previously mentioned episodes,

although this time the last episode is more akin to the second than to the first.
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Fig. 17. Gain at frequency zero from prices over M1a, rolling sample

Notice that, despite both being low inflation episodes, the very last episode has only about
half the gain of the first episode.
b) The gain of prices over M4a. The gain of prices over M4a is far more stable than

that over M1a. In fact, it is even more stable than the corresponding coherency: it

took less than three years for the gain to recover from the 1988 shock, and go back

to previous levels.

30



2:5
—— gain at frequency zero
= = = gain +/- 2 standard errors
2 -~
ik 2]
’ ———rean " ]
~ 4 ,\, Ssval :
~ - / v
\ =i Planldy N moy, N A
[t ] K - \\~--_-_ '\M| ] n
W - M \ ] \
Vel \ ’ \
15 ' % W
1 \
] ] H
] n
] /
]
' ]
! )
W\\ ! i
\
1 ] z ™~
R TTLEY N
05 Fayaarmag _g=" """ =" e ssroy TR -y
- \‘ ,v""" |'f .
\ /\” ¢
\ 4
\.e?
0 T T T T T T T T T T T
1969-1984 1974-1989 1979-1994 1984-1999 1989-2004 1994-2009

Fig. 18. Gain at frequency zero from prices over M4a, rolling sample
It may seem as if the gain has decreased in the last years, but it is far from a statistically

significant change.

VI. Discussion

We now consider the results for Mexico, that we just presented, with those obtained by

Benati for other countries as well as the observations done by Sargent y Surico (2011) for

the US.

As previously mentioned, one of the present-day puzzles of monetary economics is the
apparent instability of the long-run money-prices relationship. Benati documents this

instability through his zero-frequency rolling-sample estimations.'°

10 Benati employs 25-year-width windows. We chose 15-year-width windows, given the smaller span
of our sample. Our results are fairly comparable though.
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It might be comforting for the mexican policymakers to know that Mexico is not the only
country exhibiting instabilities for the zero frequency coherency and gain between prices
and a narrow monetary aggregate: the USA, the UK, Canada, Japan, Norway, and the Euro
Zone, all show unstable gains which take both values above and below one. Nevertheless,
all of these economies (except for USA, UK, and Norway) show coherencies that are

consistently close to one (greater than 0.9).

Another piece of information that is worth mentioning is that, according to Benati, the zero-
frequency gains for most other countries oscillate around 0.75: just like it does for Mexico

for the last 15 years.

Sargent and Surico (2011) propose a model with rigidities, habit formation, price-indexing,
and unit-root technological shocks, in order to explain the instabilities for the USA. They
argue that this model is able to explain the variations in (a statistic that is very similar to)

the gain.

VII. Conclusions

Section IV presented the results for the entire sample (1969-2010).

Considering the behavior of the aggregates and prices during this entire time period, a
critical result is that only cycles in money-growth that lasted for more than two years were

associated with cycles in inflation.
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For the growth in M1a, a lasting deviation of 1% is related to a lasting deviation of 0.8% in
the inflation rate.!! On the other hand, a lasting deviation of 1% in the growth rate of M4a

translates into a lasting deviation of 1.1% in the inflation rate.
Section V presented results for 15-year rolling sample.

An important result from this exercise was that, indeed, both the “long-run” coherency and
the “long-run” gain of (prices,M1a) are unstable. It seems as if the monetary/fiscal regime

plays a crucial role in shaping their relationship.

A comparison of our results with those of Benati let us conclude that Mexico is not as
different from other countries like the US and the UK. They too exhibit “long-run”

instabilities in their relationships between prices and narrow monetary aggregates.

Finally, we showed that the relationship between prices and M4a is a fairly stable one, with

a gain that is not statistically different from one throughout the whole period.
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Appendix

All the estimators follow Priestley (1981). The power estimate h(w) of the process {X;} is

(N-1)

m=% > ASRE) cos(sw)

s=—(N-1)
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where N is the number of observations, A(s) is the lag window, and R(s) is a consistent
estimator of the autocovariance function at a given distance s. This estimator, biased but
with a low mean square error, is

N—|r|

— 1
R(s) = N Z (e = X) (Xpgpr) — X)

-1 . . o
where X = Nzltvzl X¢, and {x;} are observations, that is, realizations of the process {X;}.

The lag window that was employed for all our estimations was the quadratic spectral

window, with a scale parameter m = 12.2 That is

A(s) = % (Sinfs(s) — COS(5)), where § =

émls| _ m|s|
5m 10

In order to estimate the coherency between processes {X; +} and {X; +}, we can use the fact

that

(c12(w))? + (q12(w))? 2
hy1(w)hy, (W)

C2(w) =

where ¢;,(w) 1s the co-spectrum, and g, (w) is the quadrature spectrum of processes {X; ;}
and {X, .} at frequency w, and h;; (@) is the power spectrum of process i = 1,2 at

frequency w.

Thus, the employed estimator is

12 See Priestley (1981) and Andrews (1991).
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(c12 (‘U))z + (q12 (‘U))z

) = I e @)

where the estimator h,,(w) is the same as before (without any subindex), and the co-

spectrum and quadrature spectrum estimators are

c12() = = -1y AS)[R12(5) + Riz(=5)] cos(sw), and

q12(®) = = T80 A)[R12(5) — Rip(=s)] sin(sw),

— 1 — —

where Ry,(s) = ﬁZt(xZ,t - xz)(xl,t+s - xl) .

The asymptotic variance of the coherency estimator is given by
S m 5

avar(elz(a))) = N (1= €2 (w)?)

our confidence bands are calculated using the asymptotic standard error that results from

this expression.

Finally, for the gain estimate between processes {X; ¢} and {X; .}, we use the fact that

[(c12(@))? + (qr2(w))?] /2
hz (W)

Gi,(w) =

Therefore using the estimator

[(012(0))) + (q12(w)) ]
hzz(‘“)

912 w

where the estimators for the co-spectrum, the quadrature spectrum, and the power, are the
same as before. The asymptotic variance of the gain estimator is given by
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avar(91/2—(2))) 912(“’)2 [1 + N )2]

The (asymptotic) standard errors are calculated from this expression.
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