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Abstract 

This study applies a nonparametric time dependent conditional frontier model to 

estimate and evaluate the convergence in eco-efficiency of a group of 51 US states over 

the period 1990-2017. Specifically, we utilize a mixture of global and local pollutants 

(carbon dioxide CO2, sulphur dioxide SO2 and nitrogen oxides NOx) to capture the 

environmental damage caused by the anthropogenic activities. The empirical findings 

indicate divergence for the whole sample, while specific groups of convergence club 

regions are formulated dividing the US states into worst and best performers. Moreover,  

Our findings reveal significant convergence patterns between the US regions over the 

sample period.  
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1. Introduction  

Despite the primary contribution of the French physicist and philosopher Jean-

Baptiste Joseph Fourier, The analytical Theory of Heat, who was the first to describe 

back in 1822 the greenhouse effect and the underlying theoretical mechanisms of 

climate change, the scientific community has recently acknowledged that 

environmental damage triggered by anthropogenic activities is a global challenge that 

incurs a global response.1  

As a result, Kyoto Protocol was adopted in December 1997, setting legally 

binding targets to mitigate greenhouse gas emissions for the period 2008-2012. To 

achieve these objectives, three flexible instruments were created (i.e., emissions 

trading, joint implementation and clean development mechanism) giving the 

opportunity to ratified countries to use the market mechanism. This global awareness 

covers also the post Kyoto period and a new international agreement is in force from 

December 2015 (Paris Agreement).2  

One of the main aspects in achieving these goals is sustainable development and 

eco-efficiency. Kuosmanen and Kortelainen (2005) were the first who coined the term 

“eco-efficiency” to describe the ability of an economy to produce the maximum level 

of economic output (desirable output) while causing the minimum environmental 

distortion (undesirable output).   

In an influential study, Kuosmanen and Kortelainen, (2005) employ a Data 

Envelopment Analysis (DEA) framework in order to measure eco-efficiency, 

accounting for various substitution possibilities between different natural resources and 

                                                             
1 Actually he was the first to argue that the Earth’s atmosphere acts to raise the planet’s temperature latter 

known as the “greenhouse” effect (Fourier, 1878)  
2 Paris Agreement, aims to strengthen the ability of countries to deal with the impacts of climate change 

by keeping a global temperature rise well below 2 degrees Celsius above pre-industrial levels. 
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emissions. However, this analysis is developed in a static setting since it does not 

account for technical change or explain changes in environmental performance over 

time (Kortelainen, 2008). In order to deal with this limitation, Kortelainen (2008), 

builds a general framework to account for dynamic environmental performance 

analysis. Specifically, this study, constructs an environmental performance index (EPI) 

by applying frontier efficiency techniques combined with a Malmquist index approach. 

The sample used in this work includes 20 European Union (EU) member states over 

the period 1990–2003. The empirical findings indicate that improvement in overall 

environmental performance can mostly be attributed to environmental technical 

change, while relative eco-efficiency change has minor contribution for most of the 

sample countries. 

In another study, Halkos et al, (2013) apply an additive two-stage DEA model 

along the lines of Chen et al., (2009) to create a sustainability composite index 

consisting of production efficiency and eco-efficiency. Specifically, they employ a 

window-based approach on a sample of 20 countries over the time period 1990–2011. 

The empirical findings justify inequalities among the sample countries over the two 

distinct stages. Specifically, they argue that eco-efficiency stage is characterized by 

large inequalities among the sample countries and significantly lower efficiency scores 

than the overall sustainability efficiency and the production efficiency. Moreover, the 

authors suggest that a country’s high production efficiency level is not related to a high 

eco-efficiency performance.  

During the last years, several researchers have attempted to investigate 

convergence patterns in eco-efficiency in greenhouse gas emissions. The study of 

Camarero et al, (2013a) employ DEA techniques and directional distance functions to 

assess the existence of convergence-divergence hypothesis among a sample of EU 
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countries following Phillips and Sul (2007) methodology. The empirical results indicate 

the existence of four convergence groups among the EU-periphery. In a similar vein, 

Camarero et al, (2013b) examine convergence patterns in eco-efficiency scores drawn 

from a sample of 22 OECD countries over the period 1980–2008 taking also into 

account three “undesirable” outputs (CO2, NOX and SOX emissions). The authors argue 

that in general terms, eco-efficiency indicator has been increased over the sample 

period, indicating environmental performance. Moreover, some convergence groups 

are formed consisting of various sample countries based on their eco-efficiency 

performance. Specifically, Switzerland can be characterized as the most eco-efficient 

country, followed by some Scandinavian countries (i.e, Sweden, Iceland, Norway and 

Denmark). On the other hand, some Southern EU member states (e.g., Portugal, Spain 

and Greece) followed by Canada and the United States, are among the worst 

performers.  

This study contributes the literature in many fronts. First and foremost, we apply 

one of the most innovative Data Envelopment Analysis (DEA) methods (i.e., time 

dependent conditional frontier model) to estimate the eco-efficiency indicator drawn 

from a separable production function of the electricity sector. Specifically, we use a 

flexible nonparametric partial frontier analysis to estimate in the first stage the eco-

efficiency scores per US region (states). Second, in the applying methodological 

framework we take into account time effects and the effects generated by environmental 

degradation without imposing any restrictive assumptions on the statistical models 

describing the data generating process (Simar and Wilson, 2011; Daraio et al., 2018). 

The third novelty of this study lies on its application of the proposed model. To our 

knowledge there are few studies for EU member states or OECD countries estimating 

eco-efficiency at a regional level. Our application is the first that investigates such a 
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relationship for the 51 US states. Fourth, we deliver for the first time in the literature a 

convex Order-m eco-efficiency measure, which is analogous to the original DEA based 

eco-efficiency indicator developed by Kuosmanen and Kortelainen (2005) but more 

robust to extreme values and potential outliers. We then use this indicator to test for the 

robustness of our findings. Lastly, we move beyond the well-known convergence 

methodology of Phillips and Sul (2007; 2009) by employing distributional dynamics 

organized along a Markov chain. In this way, we use stochastic kernels to describe both 

the change in the external shape and the intra-distribution dynamics of the cross-

sectional distribution in order to trace possible convergence clubs (Kounetas and 

Zervopoulos, 2019).  

The remainder of the paper is structured as follows. Section 2 presents the data 

and the methodology applied. Section 3 discusses the empirical findings concerning the 

estimation of eco-efficiency scores on each US region over the sample period (1990-

2017), and the formulation of convergence clubs. In Section 4 the necessary robustness 

checks are presented by comparing our main results with two alternative eco-efficiency 

measures (e.g., conventional DEA based indicator and convexified order-m estimator). 

Lastly, Section 5 encapsulates the main findings of the paper. 

 

2. Data and Methodology 

This section describes the data used in the empirical analysis, while providing 

the summary statistics for all the sample variables. Moreover, we discuss and analyze 

the probabilistic frontier analysis along with the convergence methodology applied (see 

Phillips and Sul, 2007; 2009) that we used to empirically estimate and test for the eco-

efficiency scores convergence among the US states (regions).  
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2.1  Data description  

Our empirical analysis is based on a panel dataset of 1,428 annual observations, 

spanning the period 1990-2017 (N = 51 and T = 28). The selected sample includes all 

the 51 US states. The starting date for the study was strictly dictated by data availability, 

while the final date observation, represents the last year for which data mostly regarding 

the US Energy Information Administration (EIA) were available at the time the 

research was conducted.  

The level of economic growth is proxied by per capita real GDP across US 

states, measured in millions of 2009 USD. 3 The latter is drawn from the Regional 

Economic Accounts of the Bureau of Economic Analysis (BEA) and provides the 

market value of goods and services produced by the labor and property located in a US 

state.4 This variable can be regarded as an inflation-adjusted measure that is based on 

national prices for the goods and services produced within each region (US state).  

The environmental variables used in the estimation of the eco-efficiency 

indicator, refer mainly to global and local pollutants such as CO2, SO2 and NOx 

emissions. The latter are measured in metric tons for the 51 US states generated by 

power plants from all energy sources (i.e., coal, petroleum, geothermal, natural gas, 

wood and wood derived fuels, other biomass, other gases, and other emissions such as 

CO2 emissions from municipal solid waste) over the period 1990-2017. The reason for 

using the CO2 emissions as the only global pollutant stems from the fact that it 

constitutes the main contributor to global warming and therefore environmental 

                                                             

3
 Similarly, to Camarero et al, (2013a), we moved the base year to the beginning of the period to avoid 

bias in favour of convergence around the GDP base year. The results did not exhibit significant 

differences and are available upon request.   
4
 https://www.bea.gov/regional/index.htm 
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regulations aimed at reducing CO2 emissions have been in force the longest and in most 

cases are the most restrictive (Camarero et al, 2013b).   

To get a clear picture of the environmental degradation in the US, we include in 

our analysis all the different types of power plants consisting of commercial (non) co-

generators, industrial (non) co-generators, electric utilities, etc. The relevant variables 

were drawn from the EIA.5 The following table, portrays the descriptive statistics for 

all the variables used in the empirical analysis.  

<Insert Table 1 about here> 

2.2  Probabilistic frontier analysis  

According to Kuosmanen (2005) eco-efficiency is referred to the production of 

economic output with minimal environmental degradation. Based on the work by 

Koopmans (1951), Kuosmanen and Kortelainen (2005) provide an eco-efficiency 

measure using data envelopment analysis (DEA) estimators. They have characterized 

the pollution-generating technology set as: 

Φ = ���, �� ∈ ℝ�
��
�value added � can be generated with damage � .   (1) 

Equation (1) implies all technical feasible combinations of states’ value added 

levels � and environmental damage � = !��, … , �
#.  Then using the Farrell (1957) 

measure, we can present state’s eco-efficiency level as: 

$��, �� = inf&$|�$�, �� ∈ Φ(.        (2) 

Following the framework by Daraio and Simar (2007b) an observed state ��) , �)� 

defines an individual possibilities set as: 

                                                             

5
 https://www.eia.gov/tools/a-z/index.php?id=e  
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*��) , �)� = ���, �� ∈ ℝ�

���� ≥ �) , � ≤ �) .      (3) 

The union of these sets (equation 3) provides us a Free Disposal Hull-FDH (Deprins et 

al. 1984) type of eco-efficiency estimator as: 

Φ. /01 = ⋃ *��) , �)� = ���, �� ∈ ℝ�

���� ≥ �) , � ≤ �) , 3 = 1, … , 5 .6

)7�    (4) 

Then the DEA-type of eco-efficiency measure is obtained by the convex hull 

(CH) of Φ. /01 as: 

Φ. 089 = :;�⋃ *��) , �)�6
)7� �=���, �� ∈ ℝ�


���� ≤ ∑ =)�); � ≥ ∑ =)�) ,6
)7�

6
)7�

for �=�, … , =6�@. A. ∑ =) = 1; =) ≥ 0, 3 = 1, … , 56
)7�  .     (5) 

Based on the probabilistic framework by Cazals et al. (2002) and Daraio and Simar 

(2005) the pollution generated technology can be also characterized by the joint 

probability measure �C, D� as : 

Β0F��, �� = Prob�C ≤ �|D ≥ ��Prob�D ≥ �� = H0|F��|��IF���.  (6) 

Then the probabilistic version of the eco-efficiency measure can be defined as: 

$��, �� = inf J$| KH0|F�$�|��L > 0N = inf&$|Β0F�$�, �� > 0(,    (7) 

where  OP0|F,6��|�� = ∑ Q�0RST,FRUV�W
RXY

∑ Q�,FRUV�W
RXY

. 

According to Daraio and Simar (2007b) the eco-efficiency, which are based on 

the FDH and the DEA estimators, are very sensitive to extreme values and outliers. In 

order to avoid such shortcomings according to Cazals et al. (2002) it is more appropriate 

to apply the Order-m estimators in order to construct the eco-efficiency measures. 

Previously H0|F�⋅|�� defines state’s environmental pollutants (damage) C at the value 

added level. The Order-m robust estimators instead of looking the lower boundary of 
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this support in order to define state’s eco-efficiency levels, it uses the average of the 

minimal value of environmental pollutants (damage) for [ states which are randomly 

drawn according to H0|F�⋅|��. As a result in order to evaluate state’s eco-efficiency 

levels it uses as a benchmark only the states producing at least the value added level �. 

According to Daraio and Simar (2007b) for a given value added level, we consider [  

i.i.d. random variables C�, … , C\ generated by the conditional p-variate distribution 

function H0|F�⋅|�� obtain a random production set as: 

Φ] \��� = ���, �́� ∈ ℝ�

���� ≥ C) , �́ ≥ �, 3 = 1, … , [ .     (8) 

Therefore, the Order-m eco-efficiency measure can be defined as: 

$\��, �� = _0|F�$\̃��, ��|D ≥ ��,        (9) 

where $\̃��, �� = inf�$|�$�, �� ∈ Φ] \���  and _0|F is the expectation in relation to 

H0|F�⋅|��. As a result the Order-m eco-efficiency measure is the expectation of the 

environmental damage efficiency score of the state ��, �� when is compared with the 

[ states randomly drawn with replacement from the population of states producing at 

least the value added level �. Moreover, the estimated Order-m frontier is the set 

of!�\a ���, �# ∈ Φ, where �\a ��� is the radial projection of ��, �� ∈ Φ on the Order-m 

frontier in the environmental damage direction.  

We can calculate the Order-m eco-efficiency measure as: 

$\̂��, �� = _P0|F�$\̃��, ��|D ≥ �� = c K1 − HP0|F�e�|��L
\

�ef
g .              (10) 

Finally, we can obtain a convex Order-m eco-efficiency estimator as: 

 $\̂h ��, �� = inf�$|� ≤ ∑ =)�); $� ≥ ∑ =)�i\,)
a , for �=�, … , =6�@. A. ∑ =) =6

)7�
6
)7�

6
)7�

1; =) ≥ 0, 3 = 1, … , 5 .                   (11) 
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According to Daraio and Simar (2007b) it holds: 

$��, �� ≤ $\h ��, �� ≤ $\��, ��,                  (12) 

where $��, �� is the Kuosmanen, and  Kortelainen’s (2005) eco-efficiency measure; 

$\h ��, �� is the global convex Order-m based eco-efficiency measure. The eco-

efficiency and the convex Order-m measure can take values from zero to one (eco-

efficient region). Finally $\��, �� is an Order-m based eco-efficiency measure. It is 

worth mentioning that the efficiency scores can take values greater than one (indicating 

a super eco-efficient region). Lastly, as suggested by Cazals et al. (2002) partial 

frontiers such as Order-m estimators are less sensitive to outliers. 

2.3  Convergence methodology  

Phillips and Sul (2007), propose an econometric approach for testing the 

convergence hypothesis and the identification of convergence clubs. Their method uses 

a nonlinear time-varying factor model and provides the framework for modelling 

transitional dynamics as well as long-run behavior (Apergis et al, 2013). The 

methodology applied can be outlined as follows:  

If itX  is the solely factor of a panel data set ( X denotes the rating for a given 

journal, i  denotes the journal list and t  the time), then 

,tititX µδ=                                                                    (13) 

where itδ  measures the deviation of journal list’s i  ranking from the common trend tµ

and can be represented as:  

,)( 1 a
itiiit ttL −−+= ξσδδ                                           (14) 
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where iδ is fixed, itξ is weakly dependent over t with )1,0(~ iiditξ  and )(tL  is a slowly 

varying function with ∞→)(tL when ∞→t . The null hypothesis of convergence for 

all i  ( 0H ) versus the alternative of non-convergence for some i  ( AH ) can be expressed 

as:  

δδ =iH :0  and 0≥a ; δδ ≠iAH : or 0<a .                                                           (15) 

The null hypothesis in (15) can be tested through the following regression: 

,ˆlogˆˆ)(log2log 1
t

t

utbctL
H

H
++=−








                                               (16) 

for TrTrTt ,...,1][],[ += with some 0>r .6 In (4), ∑ =
−=

N

i itt hNH
1

2)1()/1(

∑∑ =
−

=
−

==
N

i it

it

N

i it

it
it

NXN

X
h

1

1

1

1 δ

δ
,  )1log()( += ttL and ab ˆ2ˆ =  where â is the least-

squares estimate of a  in 0H  (null hypothesis).  

        Based on the above analysis, Phillips and Sul (2007) argue that the hypothesis 

of convergence can be tested through a one-sided t-test. Specifically, the alternative 

hypothesis of non-convergence cannot be rejected at the 5% level if 65.1ˆ −<
b

t . 

Finally, we apply Phillips and Sul (2009) procedure to determine the existence of 

further convergence clubs.  

3.  Results and discussion  

This section presents the empirical findings of the study. In the first stage, we 

present the results of the eco-efficiency scores of 51 US regions constructed by applying 

the probabilistic frontier analysis (order-m estimator) and compare these estimates with 

                                                             
6 Following Phillips and Sul (2007, 2009), r is set equal to 0.3. 
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the results of similar studies reported by the existing literature. Then in the second stage, 

we test for club formulation convergence between the sample regions utilizing the 

Phillips and Sul (2007; 2009) methodology. 7   

3.1 Eco-efficiency scores   

Table 2 presents the results of the regional eco-efficiency scores for selected 

years derived from the applied probabilistic frontier analysis (i.e., order-m estimators).8 

We must bear in mind that in contrast to other eco-efficiency indicators appeared in 

similar studies (see for example Kuosmanen and Kortelainen, 2005; Picazo-Tadeo et 

al. 2011; Camarero et al, 2013b) the proposed one can take values greater than one, 

implying higher levels of eco-efficiency. It is worth mentioning that the empirical 

findings have been obtained setting m = 20.9 It must be stressed that contrary to the full 

frontiers the order-m efficiency scores denote the expectation of the minimal input eco-

efficiency score of a region, when compared to twenty other regions randomly drawn 

with replacement from the population of regions having the same or higher GDP per 

capita (Halkos and Tzeremes, 2013). 

The eco-efficiency score results reveal that 3 out of 51 states (e.g., Vermont, 

Rhode Island and District of Columbia) constitute the most eco-efficient regions since 

their scores exceed unity for all the selected years (see Panel A). In other words, these 

three states are the only regions across the US territory that remain above the efficient 

boundary of the order-m frontier (“best” performing regions). As a result, they can be 

characterised as eco-efficient since they use fewer pollutants levels (CO2, SO2 and 

                                                             
7 For our empirical estimations, we used the STATA codes appeared in Du (2017). 
8 To conserve space, we only report the eco-efficiency scores for the selected four years (1990, 2000, 

2010 and 2017). The detailed results for each sample year are available from the authors on request.  
9 To check for robustness, we have experimented with other values for m (m = 10, 15, 25, 30) but the 

results which are not reported here converge quickly to the FDH scores. These results are available from 

the authors upon request.  
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NOx) compared only to states having the same or higher level of economic growth 

(GDP per capita). On the other hand, the regions of West Virginia and Wyoming report 

the lowest eco-efficiency scores ranging from 0.736 to 0.806 (“worst” performing 

regions).  

As it is evident, Wyoming is the region with the lowest eco-efficiency factor 

equal to 0,8 for the latest available year (2017). This means that the specific region uses 

20% more inputs in the production process than the expected value of the minimum 

input level of m other regions (in our case 20) drawn from the population of regions 

producing a level of output equal or greater than the efficient one (see Daraio and Simar, 

2007b; Halkos and Tzeremes, 2013). On the other hand, the state of Vermont exhibits 

the highest score compared to the rest US regions remaining well above the efficient 

boundary of the order-m frontier taking the value of 1,609 in 2017.  

In addition, the eco-efficiency score in four regions (California, District of 

Columbia, Illinois and Indiana) equals to unity, implying that the specific entities are 

on the efficient boundary of the order-m frontier. As a consequence, we argue that the 

relevant regions appear to have the same levels of pollutants than the expected value of 

the minimum level of pollutants of the twenty other regions (i.e., m = 20) drawn from 

the total population of regions having at least the same level of economic growth. 

Overall, the summary statistics reveal low disparities of regional eco-efficiency 

scores among the US states since the standard deviation and the coefficient of variation 

appear to be relatively low exhibiting a downward trend throughout the selected years 

(see Panel B). Lastly, the average eco-efficiency indicator shows an upward trend over 

the sample period (i.e., reaching 1,008 in 2017 compared to 0,923 in 1990).  

<Insert Table 2 about here> 
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3.2  Convergence clubs formulation  

Having estimated the efficiency scores by applying the probabilistic frontier 

analysis, we limit our attention to the existence of eco-efficiency convergence clubs 

using the Phillips and Sul (2007) methodology.  

The results drawn from the convergence algorithm are illustrated in Table 3. As 

it is evident, the null hypothesis of convergence cannot be accepted for the US as a 

whole (full sample) since the t-statistic is smaller than the critical value (-1.65) at 5% 

level of statistical significance. This means that we must test for the existence of 

separate convergence clubs drawn from the whole sample (i.e., 51 regions).  

It can be easily shown that there are six convergence clubs (see Column 1) 

consisting of different number of regions. In particular Club 1 consists of 35 states 

(Alaska, Arkansas, California, Colorado, Connecticut, Delaware, District of Columbia, 

Florida, Georgia, Idaho, Illinois, Indiana, Kansas, Louisiana, Maryland, Massachusetts, 

Michigan, Missouri, Nevada, New Hampshire, New Jersey, New York, North Carolina, 

Oklahoma, Oregon, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, 

Vermont, Virginia, Washington and Wisconsin). Club 2 has 2 members (Minnesota, 

Pennsylvania and Utah), while Club 3 consists of 6 regions (Alabama, Arizona, 

Kentucky, Mississippi, Nebraska and New Mexico). Moreover, Club 4 and 5 have also 

2 members (Hawaii and Iowa; Montana and North Dakota respectively). Finally, the 

rest of the regions (i.e., West Virginia and Wyoming) do convergence formulating Club 

6.  

<Insert Table 3 about here> 

In these clubs, the estimated t-statistics are larger than -1.65, indicating 

convergence (i.e., acceptance of null hypothesis). However, the state of Maine (20) 

formulates a non-converging group by itself. It is worth emphasizing that the “best” 
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performing regions fall within the first Club (i.e., Vermont, Rhode Island and District 

of Columbia). On the contrary, the “worst” performers (i.e., West Virginia and 

Wyoming) do convergence formulating Club 6.   

 Having delineated the convergence clubs based on Phillips and Sul (2007) 

generic algorithm, the analysis continues with the interpretation of the speed of 

convergence among the formulated clusters. A deeper inspection of Table 3 uncovers 

some important remarks.  

First, the speed of convergence varies significantly across the six formulated 

clubs.10 Second, the first club, which includes among others the “best” performing 

regions, records an absolute value of α = 2,8 approximately, indicating a high 

adjustment speed to convergence among other clubs. This finding runs contrary to the 

study of Camarero et al, (2013b), in which convergence speed is slower in those clubs 

consisting of higher eco-efficiency country scores, compared to other clubs with lower 

efficiency scores. Apart from the different sample, this discrepancy might also be 

attributed to the different methodology applied, since the study of Camarero et al, 

(2013b) employs a full frontier analysis in which the variable of interest (i.e., eco-

efficiency indicator) is bounded between zero and one, where one (zero) denotes the 

most (least) eco-efficient country. Third, the “worst” performers (Club 6) are 

characterized by a large value of convergence speed equal to α = 1,37 approximately. 

This means that the two members of this club (West Virginia and Wyoming) are 

approaching one another more rapidly in relative terms. This value is almost six times 

greater than the relevant one (α = 0.235) appeared in Camarero et al, (2013b). Lastly, 

                                                             
10 According to Phillips and Sul (2007), the speed of convergence α can be calculated as half the estimated 

convergence coefficient (γ/2).    
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slow convergence is found among the regions of Clubs 5, 4 and 2, whereas the members 

of Clubs 1 and 6 are approaching more rapidly. 

As a final step, we use the Phillips and Sul (2009) methodology to investigate 

the existence of convergence merging clubs. The following table, presents the empirical 

results drawn from the applied methodology. As it is evident, we accept the null 

hypothesis of convergence only in one case (Club 3 and Club 4), since the relevant t-

stat (2.3307) is larger than its critical value (-1.65). This means that these two primary 

clubs formulate one larger (merged) club with moderate convergence speed (α = 0.575). 

On the contrary, none of the other existing primary clubs can be merged since the null 

hypothesis of club-merging for all the combinations of two or three clubs is rejected (t-

stat>-1.65). In this case, the initially formed clubs as described above are the 

appropriate ones. Therefore, after club-merging, there are five convergence clubs (i.e. 

primary clubs 1,2,5, 6 and one merged Club 3+4).     

<Insert Table 4 about here> 

 

 

4.  Robustness checks  

In this section, we perform the necessary robustness checks by using two 

alternative eco-efficiency indicators namely the conventional eco-efficiency and the 

robust eco-efficiency indicator.  

Firstly we calculate the original eco-efficiency measure as proposed by 

Kuosmanen and Kortelainen (2005) and formally presented in Equation (5). This 

measure constitutes a DEA based indicator under the assumption of Variable Returns 

to Scale (VRS). However, as any other DEA estimator is sensitive to potential extreme 

values and outliers (Daraio and Simar, 2007b). Alternatively by following the 
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theoretical framework by Cazals et al. (2002) we provide an Order-m based eco-

efficiency measure (see Equation 10). This indicator is more robust compared to the 

original DEA based eco-efficiency indicator since it does not envelop all the data points 

and therefore is more resistant to potential effects form outliers and extreme values. 

However, this indicator is not convex as the DEA estimator, therefore, we convexify 

the Order-m based eco-efficiency indicator to provide rigorous economic intuition. (see 

Equation 11). 11 

The results from the initial club clustering are displayed in Table 5. To get a full 

picture of convergence patterns and club classifications among the sample regions, we 

conserve the order-m estimator results. From the careful examination of the relevant 

table some interesting results emerge. First, the null hypothesis of convergence does 

not seem to hold for the whole sample regions since the t-statistic is smaller than the 

critical value (-1.65) at least at 5% level of significance. Second, regarding conventional 

eco-efficiency indicator, the Phillips and Sul (2007) algorithm revealed nine initial 

convergence clubs and one non-converging group. Third, the robust eco-efficiency 

scores provided similar convergence patterns (i.e., ten clubs and one non-converging 

group). Finally, in line with the order-m eco-efficiency indicator, we exemplify that the 

best (worst) performing regions fall within the first (last) convergence club 

respectively. This implies that the empirical findings are rather robust.   

<Insert Table 5 about here> 

Having identified the existence of specific convergence clubs among the sample 

regions, we turn our attention on whether it is possible to merge some of the initial 

convergence clubs found above. Therefore, we apply the Phillips and Sul (2009) 

                                                             

11
 This is highlighted in the expression (12). 
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methodology on the two different eco-efficiency measures (conventional and robust 

eco-efficiency scores).  

The relevant results are illustrated in Table 6. Regarding the conventional eco-

efficiency indicator, we fail to reject the null hypothesis of convergence in two cases 

(Club 7+8 and Club 8+9). On the contrary, none of the other existing primary clubs can 

be merged. Similar findings can be postulated by examining the robust eco-efficiency 

indicator. In this case, only the initial convergence club 7 (Alaska and Hawaii) and club 

8 (Mississippi, Nebraska, New Mexico and North Dakota) can be merged since the 

relevant t-statistic (-0.718) falls within the null hypothesis region (i.e., larger than the 

critical value of -1.65).  

<Insert Table 6 about here> 

Finally, to draw sharp conclusions about the interpretation and the comparison 

of the three alterative eco-efficiency indicators, we provide the average efficiency score 

over time (1990–2017) for each region along with the average annual growth rate (% 

percent change from 1990 to 2017).  

As it is evident from the following table, the average annual growth rates do not 

appear to have significant differences across the three eco-efficiency indicators 

providing a stable convergence pattern. Regarding the magnitude, we argue that eco-

efficiency as it is measured by three different indicators (i.e., conventional, convexified 

robust estimator and order-m estimator), portrays significant positive changes in most 

of the sample regions (see for example Delaware, New Hampshire, South Dakota and 

Connecticut and Arizona). Regarding order-m eco-efficiency scores, Rhode Island and 

Delaware are the regions with the highest average annual growth rate (+44.39% and 

+37.10% respectively), whereas District of Columbia achieves the lowest growth rate 

(-22.59%). The two above regions have substantially improved their eco-efficiency 
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scores since 1990. This might be attributed to various reasons mainly stemming from 

the legislative and regulatory framework for environmental protection, which has been 

greatly improved within the last twenty years, targeting, among others, global warming 

and sustainable development (Halkos et al., 2015). As a result, the SO2 emissions in 

Rhode Island have been significantly reduced reaching an annual growth rate of -95% 

(from 3,282 in 1990 to 156 in 2017). Similarly, SO2 and NOx emissions have been 

successfully mitigated in Delaware (99% and 94% respectively).  

However, the positive average growth rates are much smaller when we measure 

eco-efficiency by the other two approximations (e.g., conventional and robust eco-

efficiency indicators). Regarding robust eco-efficiency indicator, only six efficiency 

scores change more than 15% in average during the time period (District of Columbia 

with 25.51%, Colorado with 18.42%, Arizona with 17.77%, Massachusetts with 

17.60%, Tennessee with 16.66% and finally Maryland with 16,27%). We must mention 

thought that the results do not dramatically change when we account for conventional 

eco-efficiency indicator. In this case, we observe that there are ten regions with an 

annual growth rate more than 15%.  

It is worth emphasizing that most of the sample regions appear to have a similar 

ranking pattern across the three indicators for the latest available sample year (2017). 

From the careful inspection of the relevant table (see ranking column), one cannot fail 

to observe that specific states such as Vermont (1st place in two indicators and 2nd place 

in the third one), District of Columbia (2nd place in one indicator and 3rd place in the 

other two) and New Jersey (5th place in all of the three indicators) belong to the highly 

ranked regions in all of the three different eco-efficiency measures. This means that the 

relevant regions constitute the “best” performers in terms of their eco-efficiency 

capability.   
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On the other hand, Wyoming, West Virginia, North Dakota, Montana and New 

Mexico constitute the “worst” performing regions based on their low ranking positions 

across the three different indicators. The above findings confirm the existence of the 

previously discussed convergence clubs (clusters) across the US territory. However, for 

some US states (see for instance Rhode Island, Connecticut and Oregon), the order-m 

indicator reveals substantial differences compared with the rest two eco-efficiency 

approximations.  

<Insert Table 7 about here> 
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5.  Conclusions  

 

The need of modern economies to produce with fewer impacts on the 

environment and less consumption of natural resources constitutes a challenging issue 

for the environmental economists and researchers worldwide. Despite the significant 

contributions on this field, mostly made from the empirical standpoint, the existing 

literature on this topic is still in its infancy. We attempt to shed light on this ongoing 

research by applying a nonparametric time dependent conditional frontier model to 

estimate and evaluate the convergence in eco-efficiency of a group of 51 US states over 

the period 1990-2017. For this reason, we utilize a mixture of global and local pollutants 

(carbon dioxide CO2, sulphur dioxide SO2 and nitrogen oxides NOx) to capture the 

environmental damage caused by the anthropogenic activities.  

The empirical findings indicate divergence for the whole sample, while specific 

groups of convergence club regions are formulated dividing the US states into worst 

and best performers. Our findings reveal significant convergence patterns between the 

US regions over the sample period. Lastly, our results survive robustness checks under 

the inclusion of two alternative measures of eco-efficiency (e.g. robust and 

conventional eco-efficiency indicators).       
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List of Tables  

 

Table 1: Summary statistics  

Variables  Observations Mean  Standard 

Deviation  

Min  Max  

      

GDP  

(Millions USD) 

1,428 269,644 335,648 16,712 2,576,223 

 

CO2  emissions  

(Metric tonnes) 
1,428 88,034,823    

 
86,413,836 13,166 534,928,184 

 

SO2 emissions 

(Metric tonnes) 

1,428 371,159 543,423 0 4,091,966 

 

NOX emissions 

(Metric tonnes) 

1,428 711.9 410.7 1 1,421 

      

 

  



23 

 

Table 2: Order-m Eco-efficiency scores $\̂��, �� per selected year 

State  1990 2000 2010 2017 

Panel A: Eco-efficiency scores  

Alabama [1]  0.883 0.892 0.902 0.938 

Alaska  [2] 0.907 0.903 0.972 0.979 

Arizona [3] 0.882 0.930 0.939 0.988 

Arkansas [4] 0.834 0.863 0.878 0.913 

California [5] 0.970 0.979 0.989 1.000 

Colorado [6] 0.939 0.936 0.950 0.986 

Connecticut [7] 0.995 1.000 1.158 1.267 

Delaware [8] 0.863 0.899 0.951 1.184 

District of Columbia [9] 1.292 1.357 1.426 1.000 

Florida [10] 0.908 0.935 0.934 0.950 

Georgia [11] 0.906 0.909 0.914 0.961 

Hawaii [12] 0.885 0.876 0.894 0.908 
Idaho [13]  0.998 1.016 1.007 1.000 

Illinois [14] 0.931 0.948 0.946 1.003 

Indiana [15] 0.885 0.886 0.889 0.913 

Iowa [16] 0.858 0.917 0.923 0.957 

Kansas [17] 0.864 0.902 0.939 1.047 
Kentucky [18] 0.857 0.888 0.890 0.920 

Louisiana [19] 0.927 0.914 0.922 0.925 

Maine [20] 0.894 0.883 0.920 0.972 

Maryland [21] 0.950 0.950 0.969 1.036 

Massachusetts [22] 0.959 0.967 0.998 1.110 

Michigan [23] 0.910 0.915 0.917 0.937 

Minnesota [24] 0.940 0.943 0.954 0.977 

Mississippi [25] 0.856 0.871 0.883 0.922 

Missouri [26] 0.920 0.913 0.914 0.921 

Montana [27] 0.793 0.827 0.839 0.863 

Nebraska [28] 0.853 0.848 0.883 0.922 

Nevada [29] 0.844 0.894 1.024 1.150 
New Hampshire [30] 0.891 0.908 0.933 1.130 

New Jersey [31] 1.000 0.988 1.046 1.190 

New Mexico [32] 0.808 0.824 0.881 0.913 

New York [33] 0.960 0.964 0.983 1.037 

North Carolina [34] 0.922 0.908 0.921 0.962 

North Dakota [35] 0.745 0.756 0.804 0.819 

Ohio [36] 0.892 0.908 0.918 0.966 

Oklahoma [37] 0.857 0.919 0.920 0.957 

Oregon [38]  0.976 1.023 1.018 1.050 

Pennsylvania [39] 0.899 0.930 0.937 0.980 

Rhode Island [40] 1.069 1.034 1.625 1.543 
South Carolina [41] 0.893 0.929 0.937 0.993 

South Dakota [42] 0.870 0.904 0.918 1.113 

Tennessee [43] 0.911 0.908 0.945 0.979 

Texas [44] 0.910 0.894 0.893 0.931 

Utah [45] 0.825 0.866 0.946 0.997 

Vermont [46] 1.758 1.242 1.699 1.609 
Virginia [47] 0.957 0.929 0.950 0.986 

Washington [48] 1.016 0.992 1.016 1.052 

West Virginia [49] 0.769 0.777 0.793 0.806 

Wisconsin [50] 0.929 0.919 0.937 0.962 

Wyoming [51] 0.736 0.763 0.790 0.803 

Panel B: Diagnostics  

Average 0.923 0.926 0.971 1.008 

Standard deviation 
0.147 

0.096 0.169 0.148 

Coefficient of variation (%) 
15.9 10.4 17.4 14.7 

Min 0.736 0.756 0.790 0.803 

Max 1.758 1.357 1.699 1.609 
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Table 3: Primary club convergence results  

Order-m Eco-efficiency $\̂��, �� log t t-stat 

Full sample -5.8971 (1.5561) -3.7896** 

Club 1 {35 states} 

[2,4,5,6,7,8,9,10,11,13,14,15,17,19,21,22,23,26,29, 

30,31,33,34,36,37,38,40,41,42,43,44,46,47,48,50] 

-5.745 -1.420 

Club 2 {3 states} 

[24,39,45] 

0.514 0.596 

Club 3 {6 states} 

[1,3,18,25,28,32] 

1.274 3.935 

Club 4 {2 states} 

[12,16] 

0.442 0.350 

Club 5 {2 states} 

[27,35] 

0.259 0.771 

Club 6 {2 states} 

[49,51] 

2.740 2.628 

Non-converging Group 7 {1 state}  

[20] 

- - 

Notes: The numbers in parentheses denote the standard errors. The term log t denotes the convergence 

coefficient, while t-stat is the convergence test statistic. The latter is distributed as a simple one-sided t-

test with a critical value of −1.65. The first nine periods are discarded before each regression. ** denotes 

rejection of the null hypothesis (convergence) at 5% level of statistical significance.  
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Table 4: Final club convergence results  

Order-m Eco-efficiency $\̂��, �� Merged  

clubs  

log t t-stat Final club 

classification  

log t t-stat 

Initial classification        

Club 1 {35 states} 

[2,4,5,6,7,8,9,10,11,13,14,15,17,19,21,22,23,26,29, 

30,31,33,34,36,37,38,40,41,42,43,44,46,47,48,50] 

Club 1+ Club 2 -7.5553 

(2.8529) 

-2.6483** Club 1 -5.745 -1.420 

Club 2 {3 states} 

[24,39,45] 

Club 2+ Club 3 -1.3376 

(0.2137) 

-6.2593** Club 2 0.514 0.596 

Club 3 {6 states} 

[1,3,18,25,28,32] 

Club 3+ Club 4 1.1503 

(0.4935) 

2.3307  

Club 3 + Club 4 

 

1.1503 

 

 

2.3307 

Club 4 {2 states} 

[12,16] 

Club 4 + Club 5 -0.2818 

(0.1146) 

-2.4579** 

Club 5 {2 states} 

[27,35] 

Club 5+ Club 6 -0.6641 

(0.2361) 

-2.8129** Club 5 0.259 0.771 

Club 6 {2 states} 

[49,51] 

Club 6+ Group 7 -2.0125 

(0.1506) 

-13.3662** Club 6 2.740 2.628 

Non-converging Group 7 {1 state}  

[20] 

      

Notes: The numbers in parentheses denote the standard errors. The term log t denotes the convergence 

coefficient, while t-stat is the convergence test statistic. The latter is distributed as a simple one-sided t-

test with a critical value of −1.65. The first nine periods are discarded before each regression. ** denotes 

rejection of the null hypothesis (convergence) at 5% level of statistical significance. Final converging 

merged clubs in bold.    
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Table 5: Initial club classifications for the three indicators   

Order-m  

Eco-efficiency $\̂��, �� 

Conventional  

Eco-efficiency $̂��, �� 

Robust   

Eco-efficiency(convexified Order-m) 

 $\̂h ��, �� 

 log t t-stat  log t t-stat  log t t-stat 

Full  

sample 

-5.8971 

(1.5561) 

-3.7896** Full  

sample 

-1.2497 

(0.0447) 

-27.9561** Full sample -1.2304 

(0.0443) 

-27.7789** 

Club 1 {35 states} 
[2,4,5,6,7,8,9,10,11

,13,14,15,17,19,21,

22,23,26,29, 

30,31,33,34,36,37,

38,40,41,42,43,44,

46,47,48,50] 

-5.745 -1.420 Club 1 {3 states} 
[5,8,33] 

-3.156 -6.795** Club 1 {3 states} 
[5,8,33] 

-3.320 -6.425** 

Club 2 {3 states} 
[24,39,45] 

0.514 0.596 Club 2 {4 states} 
[22,31,44,48] 

0.592 1.414 Club 2 {4 states} 
[22,31,44,48] 

0.580 1.424 

Club 3 {6 states} 
[1,3,18,25,28,32] 

1.274 3.935 Club 3 {6 states} 
[10,15,21,34,39,4

7] 

0.005 0.034 Club 3 {6 states} 
[10,15,21,34,39,47] 

-0.010 -0.074 

Club 4 {2 states} 

[12,16] 

0.442 0.350 Club 4 {3 states} 

[7,11,36] 

0.688 0.493 Club 4 {2 states} 

[11,36] 

2.831 3.640 

Club 5 {2 states} 
[27,35] 

0.259 0.771 Club 5 {9 states} 
[4,6,23,24,38,40,4

2,43,50] 

-0.040 -0.127 Club 5 {7 states} 
[6,7,23,24,38,43,50

] 

0.394 1.643   

Club 6 {2 states} 

[49,51] 

2.740 2.628 Club 6 {17 

states} 

[1,2, 

9,12,13,14,16,17,

18, 

19,20,26,29,30,37

,41,45] 

-0.055 -0.328 Club 6 {18 states} 

[1,4,9,13,14,16,17,

18,19,20,26,29,30,

37,40,41,42,45] 

-0.164 -0.973 

Non-converging 

Group 7 {1 state}  
[20] 

- - Club 7 {4 states} 
[25,27,28,32] 

0.036 0.131 Club 7 {2 states} 
[2,12] 

-1.394 -0.801 

   Club 8 {2 states} 

[3,35] 

0.187 0.608 Club 8 {4 states} 

[25,28,32,35] 

0.625 3.069 

   Club 9 {2 states} 

[49,51] 

-0.005 -0.011 Club 9 {2 states} 

[3,27] 

0.256 1.029 

   Non-converging 

Group 10 {1 

state}  

[46] 

  Club 10 {2 states} 
[49,51] 

-0.188 -0.381 

      Non-converging 

Group 11 {1 state}  
[46] 

- - 

Notes: The numbers in parentheses denote the standard errors. The term log t denotes the convergence 

coefficient, while t-stat is the convergence test statistic. The latter is distributed as a simple one-sided t-

test with a critical value of −1.65. The first nine periods are discarded before each regression. ** denotes 

rejection of the null hypothesis (convergence) at 5% level of statistical significance.  
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Table 6: Merging convergence club results for the three indicators   

Order-m  

Eco-efficiency $\̂��, �� 

Conventional  

Eco-efficiency $̂��, �� 

Robust  (convexified Order-m) 

Eco-efficiency $\̂h ��, �� 

 log t t-stat  log t t-stat  log t t-stat 

Club 1 + Club 2 -7.5553 

(2.8529) 

-2.6483** Club 1 + Club 2 -2.219 

(0.2317) 

-9.577** Club 1 + Club 2 -2.318 

(0.2275) 

-10.190** 

Club 2 + Club 3 -1.3376 

(0.2137) 

-6.2593** Club 2 + Club 3 -1.201 

(0.1079) 

-11.136** Club 2 + Club 3 -0.980 

(0.0533) 

-18.380** 

Club 3+ Club 4 1.1503 

(0.4935) 

2.3307 Club 3+ Club 4 -0.459 

(0.0932) 

-4.923** Club 3+ Club 4 -0.332 

(0.0963) 

-3.447** 

Club 4 + Club 5 -0.2818 

(0.1146) 

-2.4579** Club 4 + Club 5 -0.386 

(0.2268) 

-1.701** Club 4 + Club 5 -0.143 

(0.0802) 

-1.783** 

Club 5 + Club 6 -0.6641 

(0.2361) 

-2.8129** Club 5 + Club 6 -0.645 

(0.0661) 

-9.757** Club 5 + Club 6 -0.580 

(0.0879) 

-6.596** 

Club 6 + Group 7 -2.0125 

(0.1506) 

-13.3662** Club 6 + Club 7 -0.723 

(0.0858) 

  -8.425** Club 6 + Club 7 -0.256 

(0.1466) 

-1.745** 

   Club 7 + Club 8 -0.008 

(0.1802) 

-0.046 Club 7 + Club 8 -0.090 

(0.1259) 

-0.718 

   Club 8 + Club 9 -0.291 

(0.1820) 

-1.600 Club 8 + Club 9 0.486 

(0.1714) 

2.835** 

   Club 9 + Group 10 -1.198 

(0.2532) 

-4.731** Club 9 + Club 10 -0.402 

(0.0786) 

-5.119** 

      Club 10 + Group 11 -1.434 

(0.3005) 

-4.773** 

Notes: The numbers in parentheses denote the standard errors. The term log t denotes the convergence 

coefficient, while t-stat is the convergence test statistic. The latter is distributed as a simple one-sided t-

test with a critical value of −1.65. The first nine periods are discarded before each regression. ** denotes 

rejection of the null hypothesis (convergence) at 5% level of statistical significance. Final converging 

merged clubs in bold.    
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Table 7: Average eco-efficiency scores and rankings (1990-2017) 

State  Order-m Eco-efficiency 

$\̂��, �� 

Conventional Eco-efficiency 

$̂��, �� 

Robust (convexified Order-m) 

Eco-efficiency$\̂h ��, �� 

 

Average 

efficiency 

Average 

growth 

rate (%) Ranking 

Average 

efficiency 

Average 

growth 

rate (%) Ranking 

Average 

efficiency 

Average  

growth 

rate (%) Ranking 

Alabama [1]  0.901 +6.23 39 0.631 +10.12 37 0.640 +9.70 32 

Alaska  [2] 0.935 +7.93 22 0.636 +2.44 35 0.638 +2.63 33 

Arizona [3] 0.938 +11.94 20 0.680 +18.31 27 0.685 +17.77 26 

Arkansas [4] 0.872 +9.57 45 0.609 +4.76 46 0.614 +4.25 46 

California [5] 0.983 +3.10 10 0.939 +11.72 2 0.941 +11.43 1 

Colorado [6] 0.946 +5.04 17 0.694 +19.35 22 0.699 +18.42 23 

Connecticut [7] 1.077 +27.32 4 0.747 +11.11 14 0.740 +7.73 17 

Delaware [8] 0.941 +37.10 18 0.639 +17.52 33 0.636 +12.31 35 

District of Columbia [9] 1.427 -22.59 2 0.914 +21.47 3 0.906 +25.51 3 

Florida [10] 0.932 +4.68 24 0.787 +11.11 9 0.793 +10.49 8 

Georgia [11] 0.918 +6.07 31 0.737 +15.97 16 0.744 +14.99 15 

Hawaii [12] 0.889 +2.66 42 0.631 +4.34 38 0.635 +4.39 37 

Idaho [13]  1.011 +0.19 8 0.712 -4.28 19 0.701 +1.31 21 

Illinois [14] 0.953 +7.82 14 0.794 +8.77 7 0.798 +7.88 7 

Indiana [15] 0.889 +3.11 43 0.675 +12.49 29 0.685 +11.82 27 

Iowa [16] 0.911 +11.54 35 0.629 +10.50 39 0.635 +10.27 38 

Kansas [17] 0.919 +21.21 30 0.624 +9.25 41 0.629 +7.68 41 

Kentucky [18] 0.890 +7.33 41 0.622 +9.96 42 0.632 +9.73 40 

Louisiana [19] 0.920 -0.24 29 0.676 +4.21 28 0.684 +4.17 28 

Maine [20] 0.907 +8.80 36 0.634 +9.27 36 0.635 +9.76 39 

Maryland [21] 0.963 +9.02 12 0.735 +17.46 18 0.738 +16.27 18 

Massachusetts [22] 0.991 +15.75 9 0.783 +19.90 10 0.784 +17.60 10 

Michigan [23] 0.917 +2.90 32 0.744 +7.50 15 0.752 +7.06 14 

Minnesota [24] 0.949 +3.89 15 0.711 +14.18 20 0.716 +13.52 19 

Mississippi [25] 0.878 +7.74 44 0.616 +2.30 43 0.621 +1.71 43 

Missouri [26] 0.914 +0.21 34 0.683 +6.62 26 0.691 +6.47 25 

Montana [27] 0.832 +8.79 48 0.576 +7.54 48 0.570 +7.12 48 

Nebraska [28] 0.872 +8.18 46 0.614 4.83 44 0.619 +4.12 44 

Nevada [29] 0.955 +36.30 13 0.637 +13.82 34 0.638 +10.26 34 

New Hampshire [30] 0.938 +26.90 21 0.646 +15.59 31 0.646 +14.62 31 

New Jersey [31] 1.034 +19.05 5 0.828 +9.62 5 0.825 +7.11 5 

New Mexico [32] 0.851 +13.01 47 0.594 +10.82 47 0.599 +9.66 47 

New York [33] 0.977 +8.10 11 0.891 +15.15 4 0.893 +14.30 4 

North Carolina [34] 0.923 +4.34 27 0.736 +13.55 17 0.743 +12.84 16 

North Dakota [35] 0.779 +9.91 50 0.554 +4.37 49 0.546 +11.06 50 

Ohio [36] 0.921 +8.37 28 0.752 +9.45 13 0.759 +8.40 13 

Oklahoma [37] 0.907 +11.68 37 0.629 +12.88 40 0.636 +12.65 36 

Oregon [38]  1.017 +7.62 7 0.705 +7.01 21 0.704 +6.08 20 

Pennsylvania [39] 0.929 +9.05 25 0.766 +10.91 11 0.772 +9.85 11 

Rhode Island [40] 1.213 +44.39 3 0.694 -5.05 23 0.666 -5.14 29 

South Carolina [41] 0.939 +11.26 19 0.652 +11.73 30 0.657 +11.23 30 

South Dakota [42] 0.917 +27.99 33 0.642 +12.49 32 0.627 +13.42 42 

Tennessee [43] 0.929 +7.37 26 0.692 +17.84 25 0.698 +16.66 24 

Texas [44] 0.904 +2.34 38 0.811 +14.03 6 0.819 +13.61 6 

Utah [45] 0.896 +20.78 40 0.611 +14.16 45 0.615 +12.77 45 

Vermont [46] 1.602 -8.45 1 0.940 +0.63 1 0.926 +1.56 2 

Virginia [47] 0.949 +3.04 16 0.756 +11.03 12 0.761 +10.59 12 

Washington [48] 1.018 +3.47 6 0.794 +13.45 8 0.792 +13.09 9 

West Virginia [49] 0.783 +4.87 49 0.554 +5.05 50 0.563 +4.37 49 

Wisconsin [50] 0.933 +3.56 23 0.694 +11.02 24 0.700 +10.41 22 

Wyoming [51] 0.772 +9.15 51 0.539 +6.11 51 0.538 +5.98 51 

 



29 

 

References 

Apergis, N., Christou, C., and Hassapis, C (2013). Convergence in public expenditures 

across EU countries: evidence from club convergence. Economics and Finance 

Research, 1: 45–59.  

Camarero, M., Picazo-Tadeo, A.J. and Cecilio, T. (2013a). Are the determinants of CO2 

emissions converging among OECD countries? Economics Letters, 118(1): 159-162. 

Camarero, M., Castillo, J., Picazo-Tadeo, A., and Tamarit, C. (2013b). Eco-Efficiency 

and Convergence in OECD Countries, Environmental and Resource Economics, 55(1): 

87-106.  

Cazals, C., Florens, J. P., and Simar, L. (2002). Nonparametric frontier estimation: a 

robust approach. Journal of Econometrics, 106(1), 1-25. 

Chen, Y., W. D. Cook, N. Li, and J. Zhu. (2009). Additive efficiency decomposition in 

two-stage DEA. European Journal of Operational Research 196(3): 1170–1176. 

Daraio C, Simar L (2007a) Advanced robust and nonparametric methods in efficiency 

analysis. Springer Science, New York.  

 

Daraio, C., and Simar, L. (2007b). Conditional nonparametric frontier models for 

convex and nonconvex technologies: a unifying approach. Journal of Productivity 

Analysis, 28(1-2), 13-32. 

Daraio, C., Simar, L., & Wilson, P. W. (2018). Central limit theorems for conditional 

efficiency measures and tests of the ‘separability’ condition in non‐parametric, two‐

stage models of production. Econometrics Journal, 21(2), 170-191. 



30 

 

Deprins D, Simar L, Tulkens H (1984). Measuring labor inefficiency in post offices. 

In: Marchand M, Pestieau P, Tulkens H (eds) The performance of public enterprises: 

concepts and measurements. Amsterdam, North-Holland, 243–267. 

Du, K., (2017). Econometric convergence test and club clustering using Stata. The 

STATA Journal, 17(4): 882-900.   

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal 

Statistical Society: Series A (General), 120(3), 253-281. 

Halkos, G., and Tzeremes, N. (2013). National culture and eco-efficiency: an 

application of conditional partial nonparametric frontiers, Environmental Economics 

and Policy Studies, 15(4): 423-441.  

Fourier, J.B.J (1878). The analytical theory of heat, Cambridge University Press. 

London.  

Kounetas, K., and Zervopoulos, P. (2019). A cross-country evaluation of environmental 

performance: Is there a convergence-divergence pattern in technology gaps?, European 

Journal of Operational Research, 273(3): 1136-1148.  

Kortelainen, M. (2008). Dynamic environmental performance analysis: A Malmquist 

index approach. Ecological Economics 64: 701–715.  

Kuosmanen, T., and Kortelainen, M. (2005). Measuring eco‐efficiency of production 

with data envelopment analysis. Journal of Industrial Ecology, 9(4), 59-72. 

Kuosmanen, T. (2005). Measurement and analysis of eco‐efficiency: An economist's 

perspective. Journal of Industrial Ecology, 9(4), 15-18. 



31 

 

Koopmans TC (1951). An analysis of production as an efficient combination of 

activities. In: Koopmans TC (ed) Activity analysis of production and allocation, Cowles 

Commission for Research in Economics, Monograph 13. John-Wiley and Sons Inc, 

New York. 

Picazo-Tadeo AJ, Reig-Martínez E, Gómez-Limón JA. (2011). Assessing farming eco-

efficiency: a data envelopment analysis approach. Journal of Environmental 

Management 92:1154–1164 

Quah, D. T. (1996). Convergence empirics across economies with (some) capital 

mobility. Journal of Economic Growth, 1: 95–124. 

Quah, D. T. (1997). Empirics for growth and distribution: stratification, polarization, 

and convergence clubs. Journal of Economic Growth, 2: 27–59. 

Simar, L., and Wilson, P. W. (2011). Two-stage DEA: caveat emptor. Journal of 

Productivity Analysis, 36(2), 205. 

 

 

 

 


