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Abstract 
 
This paper decomposes the environmental Kuznets curve into the scale, technique and composition 
effects while incorporating the roles of energy consumption, trade openness and foreign direct 
investments (FDI) effects in a carbon emissions function for the United States (U.S.). We have 
incorporated information about unknown structural breaks into this function while investigating 
the cointegration between the related variables. The empirical results confirm the existence of 
cointegration between the variables in the presence of structural breaks. Moreover, the scale effect 
increases carbon dioxide emissions, but the technique effect reduces it as expected. Energy 
consumption also adds to carbon emissions, while the composition effect improves environmental 
quality by lowering carbon dioxide emissions. Further, trade openness decreases carbon dioxide 
emissions. However, increases in FDI hamper environmental quality by increasing carbon 
emissions. To reduce the level of carbon emissions, the technical processes of production should 
be improved by investing in technological innovations and capital stock and upgrading 
environmental regulations to channel in environment-friendly FDIs. There should also be a 
transformation of the energy consumption structure towards cleaner energy sources. 
 
Keywords: carbon emissions; scale effect; composition effect; technique effect; international trade; 
foreign direct investment 
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1. Introduction 

In today’s world, climate change is one of the most prominent problems of recent days, and the 

underlying cause of climate change is global warming. It is also well known that the leading cause 

of global warming is greenhouse gas emissions. These emissions are considered to be a leading 

indicator of environmental pollution, but previous studies have used many measures of gas 

emissions. At this point, carbon dioxide (CO2) emissions seem to be the leading indicator of 

environmental pollution (Tiba and Omri, 2017). In doing so, our paper focuses on the determinants 

of carbon dioxide emissions in the United States (U.S.). A unique role is given to foreign direct 

investment (FDI) and trade openness as they could be potential drivers of carbon dioxide emissions 

in this country. 

According to the previous literature, per capita income is the primary driver of carbon 

dioxide emissions (Jaunky, 2011; Narayan and Narayan, 2010; Shahbaz et al., 2018). At this stage, 

the effects of income on carbon dioxide emissions can be explained by three effects (Tsurumi and 

Managi, 2010; Yin et al., 2015). The first effect is known as that scale effect which stipulates that 

as per capita income rises with higher inputs; this will systemically raise the level of carbon dioxide 

emissions. In other words, that scale effect implies that a higher level of per capita income leads 

to higher energy consumption, which results in increases in carbon emissions (i.e., environmental 

degradation).  

The second effect is the composition effect which states that an increase in per capita 

income can exhibit a positive or a negative impact on carbon emissions. At this point, as per capita 

income increases, there could be a significant structural change in the economy and a change in 

economic activity, which can lead to a higher or a lower level of environmental degradation. 

Specifically, at the first stage of economic development which entails a structural change of the 
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economy from agriculture to the industry, an expansion in this development is expected to increase 

environmental degradation. However, at the second stage of economic growth, that is the process 

of structural change from industry to services or from an energy-intensive industrial production 

process to a more technology-intensive production process, the level of environmental degradation 

is expected to decline (Kearsly and Riddel, 2010). 

Similarly, the third effect is known as the technique effect, that is, a change in the 

production process (i.e., technology shocks) can introduce a negative or a positive impact on 

carbon emissions (Rezek and Rogers, 2008). In the developed countries, like the U.S., one should 

expect a negative technique effect of per capita income on the level of carbon emissions because 

the U.S. is one of the leading technology producers in the world.1 In other words, the technique 

effect systematically decreases environmental degradation in developed countries due to a higher 

level of technology (Lau et al., 2014).2  

At this stage, trade openness and FDI will create a technique effect on the relationship 

between per capita income and environmental degradation. Therefore, to motivate the 

decomposition analysis, our empirical models include trade openness and FDI as potential drivers 

of carbon emissions. International trade will help countries engage in cross border trade to share 

in technology diffusions and access clean energy technology. FDI also helps in transferring 

technology to host countries. It is suggested that FDI transmits technological knowledge, as well 

as contributing to the physical capital stock. Moreover, the technology transferred through FDI 

has the effect of stimulating competing firms in the domestic market to carry out technological 

upgrading.  

                                                           
1 Indeed, according to the data from the World Intellectual Property indicators of the World Intellectual Property 
Organization, 24.3% of the world's total patent applications were made by the U.S. companies in 2016. 
2 For example, according to Can and Gozgor (2017), the economic complexity indicator is a robust indicator of the 
level of technology as well as it is a significant determinant of the carbon dioxide emissions in France. 
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Finally, following previous papers (e.g., Ang, 2007; Tiwari, 2014; Shahbaz et al., 2017), 

we consider the pivotal role of energy consumption, which contributes not only to the process of 

economic development but also to environmental degradation, and we mainly focus on 

consumption from fossil sources which are a fundamental input in the production process.  

Indeed, a country can achieve a higher level of efficiency in the production process through 

technology transfer. The effect of technology transfer can be measured by international trade 

(measured by the nominal trade openness that is the ratio of the sum of exports and imports to 

GDP) and FDI inflows (as a % of GDP). Therefore, various studies have empirically tested the 

validity of the EKC hypothesis and have considered trade openness and FDI inflows as the 

benchmark indicators of technology transfer (Gozgor, 2017). As trade openness increases, there 

will be a structural transformation in the economy which promotes environmental quality due to 

the transfer of technology. Consequently, one should expect that trade openness will improve 

environmental quality in developed countries in particular.3 However, the effect of FDI inflows on 

environmental degradation can be positive or negative, and it depends on whether the country will 

attract direct investments from the heavy industry and the energy-intensive industry to the 

technology-intensive sector and services. Therefore, there could be positive or negative effects of 

FDI on environmental quality in developing and developed countries (Lau et al., 2014; Shahbaz et 

al., 2015). In short, the effect of technology transfer via FDI on environmental degradation depends 

on the inputs used in the production process. To this end, our paper analyzes the effects of trade 

openness and FDI on carbon emissions hypothesis in the U.S. economy. 

                                                           
3 The impact of the trade openness on environmental degradation can be negative or positive in developing economies. 
The sign of the related effect depends on the production structure of exporting and importing goods and services (Can 
and Gozgor, 2017). 
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It is also noteworthy to state that the validity of the EKC hypothesis has empirically been 

tested in developing countries, rather than developed countries (Stern, 2017). At this point, one of 

the prominent case for analyzing the effects of FDI and trade openness on carbon emissions is the 

U.S. Indeed, according to the data from the British Petroleum (BP)’s Statistical Review of World 

Energy 2017, the U.S. is solely responsible for 23.4% of carbon emissions in the globe for the 

period 1965-2016 (BP, 2017). Besides, according to the data from the World Development 

Indicators, the share of gross domestic product (GDP) (measured by the current price in USD) of 

the U.S. in global GDP is 26.9% for the period 1965-2016 (World Bank, 2018).  

Our paper contributes to the existing energy literature by four-fold. (i) It is a novel 

contribution that decomposes the environmental Kuznets curve into scale, technique and 

composition effects for the U.S. economy while controlling for energy consumption among other 

variables. However, the special roles in this contribution are given to trade openness and FDI 

inflows as potential drivers of carbon emissions. Our current paper also contributes to the previous 

evidence on the effects of trade openness and FDI on the environment by using a relatively new 

dataset. We consider a long-term empirical analysis for the period from 1965 to 2016 in the U.S. 

(ii) Traditional, and structural breaks unit root tests are also applied to examine the stationary 

properties of the variables. (iii) The ARDL bounds testing approach to cointegration is employed 

to determine whether cointegration exists between carbon emissions and their determinants in the 

presence of structural breaks in the series. (iv) The direction of a causal relationship between 

carbon emissions and their determinants is investigated by applying the VECM Granger causality 

while accommodating structural breaks. Our empirical results confirm the presence of 

cointegration between the variables. Furthermore, they also show that the scale effect increases 

carbon emissions, but the composition and technique effects reduce CO2 emissions. Trade 
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openness has a negative effect on carbon emissions, while FDI hampers environmental quality by 

increasing carbon emissions in the U.S. 

The remainder of the paper is organized as follows. Section 2 briefly reviews the previous 

literature. Section 3 explains the empirical model and the data. Section 4 details the empirical 

strategy. Section 5 provides the empirical results. Finally, Section 6 concludes and discusses policy 

implications. 

 

2. Literature Review 

It is important to note that the net effect of the composition, scale, and technique effects can be 

analyzed via the environmental Kuznets curve (EKC) hypothesis proposed by Grossman and 

Krueger (1995) (Esty and Porter, 2005).4 The EKC hypothesis proposes that there will be an 

“inverted-U shaped” relationship between per capita income and environmental degradation since 

an increase in per capita income will lead to a rise in carbon emissions during the first stage of 

economic development. This issue is due to the evidence that the main aim of the related countries 

is to promote economic development, while the negative consequences of environmental 

degradation are not the priority of the policymakers in the related countries. However, as a country 

develops and the accompanying per capita comes around $4,000 per capita income level according 

to Gozgor (2017), carbon emissions should then start to decline. In particular, when a country 

reaches a high-income level, eliminating the adverse effects of environmental pollution becomes 

a priority of policymakers (Dinda, 2004).  

The previous papers on the determinants of carbon emissions can be grouped into three 

different categories (Al-Mulali and Ozturk, 2016; Gozgor, 2017; Shahbaz et al., 2017). The first 

                                                           
4 Note that specialization in relative abundance can be processed as a natural resource-comparative advantage effect 
which is one of the decomposed components like the scale effect and the other effects. 
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group of the studies investigates the direct link between per capita income and carbon emissions 

(Narayan and Narayan, 2010; Shahiduzzaman and Layton, 2015; Narayan et al., 2016). The second 

group analyzes not only the impact of per capita GDP but also the impact of energy consumption 

on CO2 emissions (Ang, 2007; Acaravci and Ozturk, 2010; Pao and Tsai, 2010; Arouri et al., 

2012). Following these papers, we include per capita income and energy consumption in our 

empirical analysis.  

The third group investigates not only the effects of per capita income and energy 

consumption but also controls for additional control variable(s) such as FDI and trade openness. 

At this point, the effects of FDI and trade openness on carbon emissions are also included in the 

empirical studies on developing economies and developed countries. However, most of these 

studies have focused on the cases of emerging economies, such as Brazil, China, Egypt, India, 

Indonesia, Malaysia, Mexico, Nigeria, Turkey, and Tunisia (see e.g. Halicioglu, 2009; 

Jayanthakumaran et al., 2012; Lau et al., 2014; Onafowora and Owoye, 2014; Shahbaz et al., 2013 

and 2014).5 

There are also several studies that  analyzed the determinants of CO2 emissions in the U.S.6 

For instance, using the EKC hypothesis and the K-L growth model (Augmented Factor model) 

(including the capital and labor as control variables) for the U.S., Soytas et al. (2007) examine the 

effects of per capita income and energy consumption on carbon emissions for the period 1960 to 

2004. Their empirical results imply that per capita income does not cause carbon emissions, and 

the main driver of CO2 emissions is energy consumption in the U.S. A similar evidence is obtained 

by a paper written by Shahiduzzaman and Layton (2015) in which those authors find no systematic 

                                                           
5 For more details of these studies, refer to Al-Mulali and Ozturk (2016) and Tiba and Omri (2017). 
6 There are also the recent studies to analyze the validity of the EKC hypothesis using panel data for the states (regions) 
of the U.S. For example, see Apergis et al. (2017) and Atasoy (2017)   
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relationship between per capita income and carbon emissions over the business cycle phases for 

the period from 1949 to 2011.7 Ajmi et al. (2015) also analyze the determinants of carbon 

emissions in six developed countries, including the U.S. Their empirical strategy controls for the 

effects of per capita income and per capita energy consumption in the EKC function for the period 

from 1960 to 2010. Their empirical findings also demonstrate the presence of a bi-directional 

causal relationship between per capita energy consumption and per capita carbon emissions. 

However, there is no significant causality between per capita income and per capita carbon 

emissions in the U.S.  

Furthermore, considering the EKC hypothesis, Baek (2016) analyzes the effects of per 

capita income and energy consumption on CO2 emissions in the U.S. for the period from 1960 to 

2010. A special interest is given to the effects of nuclear energy and renewable energy consumption 

in the EKC function. Using the autoregressive-distributed lag (ARDL) model, the author finds that 

per capita income and energy consumption increase the level of carbon emissions. In addition, 

there is a suppressing effect of renewable energy consumption on carbon emissions in the short-

run; while there is a significant overpowering effect of nuclear energy consumption in both the 

short-run and the long-run. Dogan and Turkekul (2016) also consider the EKC hypothesis to 

analyze the determinants of carbon emissions in the U.S. for the period from 1960 to 2010. Their 

empirical models not only consider per capita income and its squared value, but also energy 

consumption, financial development, trade openness, and urbanization rate. Their empirical 

analysis also indicates the presence of a bi-directional causal relationship between carbon 

emissions and economic growth as well as between CO2 emissions and energy consumption. The 

authors also report that the EKC hypothesis is not valid in the U.S. economy since the expected 

                                                           
7 Their empirical models also use the disaggregated level energy intensity (i.e., coal, electricity, gas, and oil). 
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signs could not be obtained, and a neutral effect exists between trade openness and CO2 emissions 

in this country. Finally, Shahbaz et al. (2017) analyze the validity of the EKC hypothesis in the 

U.S. for the period 1960-2016. Their paper considers not only the impact of economic growth on 

carbon emissions, but also the effects of biomass energy consumption, oil prices, and trade 

openness on carbon emissions. Their empirical results illustrate that there is an “Inverted-U 

shaped” relationship between economic growth and carbon emissions. Moreover, biomass energy 

consumption and trade openness reduce carbon pollutants.  

To conclude the literature review, this paper appertains to the third group of studies. In line 

with this group, it uses trade openness and FDI inflows as additional determinants (control 

variables) of carbon emissions while decomposing environmental Kuznets curve into scale, 

technique and composition effects. However, there is a lack of evidence of the existing literature 

of the effects of FDI and trade openness on CO2 emissions in the U.S. Finally; there is a lack of 

studies on the decomposing the role of income into scale, technique and composition effects within 

a multivariate carbon emission function.  

 

3. Modeling and Data Collection 

This paper decomposes the environmental Kuznets curve into scale, technique and composition 

effects by considering the vital role of trade openness and FDI effects in carbon emission function 

for the U.S economy. The decomposition of environmental Kuznets curve into scale, technique 

and composition effects is based on the arguments raised by Tsurumi and Managi (2010) and Ling 

et al. (2015). It is argued by Tsurumi and Managi (2010) that economic growth affects carbon 

emissions via the scale effect, technique effect, and composition effect. Economic growth 

underpins the scale effect which increases CO2 emissions and impedes environmental quality. The 
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scale effect reveals that more production needs more energy usages, which in turn emits more 

carbon emissions.  

On the other hand, the economic growth effect may impact carbon emissions positively or 

negatively via the technique effect. This effect implies that income or preferences changes may 

lead to policy changes, which leads to an improvement in the production techniques that enhance 

domestic production with fewer carbon emissions per unit. Economic growth can also impact 

carbon emissions positively or negatively via the composition effect. This effect reveals that the 

structure of an economy changes with an increase in income. With time, an increase in income 

may lead to dirtier or cleaner economic activities. Generally, carbon emissions may rise during the 

transformation from the agricultural to industrial sectors. 

Similarly, a structural change from the industrial sector or an energy-intensive economy to 

the services economy may lead to a decline in carbon emissions, depending on the level of services 

and knowledge. Trade openness may affect carbon emissions via economic growth. It is argued by 

Cole (2006) that trade openness may affect carbon emissions through inducing an energy efficient 

technology transfer, awareness, increasing the demand for a cleaner environment and a shift of 

government policies towards the environmentally friendly economic policies.  

Furthermore, the relationship between trade openness and carbon emissions depends on the 

association between trade openness and economic growth (Ling et al., 2015). Foreign direct 

investment impacts carbon emissions through economic growth and may affect economic growth 

via a technology transfer, a positive externality such as spillover effects and gains in productivity 

and by introducing new production processing with improved managerial skills. This increased 

economic growth induces energy demand, which in turn increases carbon emissions (Shahbaz et 

al., 2015). It implies that foreign direct investment promotes not only economic growth but also 
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hampers environmental quality by increasing carbon emissions. On the contrary, foreign direct 

investment may improve environmental quality if an energy efficient technology is implemented 

in production in the recipient country with technical management skills and environment-friendly 

economic policies (Cole, 2006). Based on this theoretical background, we extend the general form 

of the carbon emission function as follows: 

  ),,,,,( ttttttt FOEKTSfC =        (1) 

where tC , tS , tT , tK ¸ tE , tO  and tF  represent CO2 emissions, scale effect, technique effect, 

composition effect, energy consumption, trade openness, and foreign direct investment.  

We transform the general form of carbon emission function in Equation (1) by converting 

all the variables into natural-log. The log-linear specification may provide consistent and reliable 

empirical evidence. Furthermore, the transformation of the data of all the variables helps to reduce 

the sharpness in the time series data (Shahbaz et al., 2017). Various studies in the existing literature 

seem to use multiple proxies for the scale, technique and composition effects. For instance, 

Antweiler et al. (2001) and Panayotou (1997) propose to use GDP per square kilometer, GDP per 

capita and industrial value-added to GDP as measures of the scale, technique and composition 

effects, respectively. Later on, Cole (2006) used the lagged GDP per capita to capture the scale 

and technique effects. Cole (2006) further argues that “there is no way to separate income and 

technique effects” (P. 110). This issue is addressed by Tsurumi and Managi (2010) who suggest 

the use of real GDP and GDP per capita as proxies for the scale and technique effects, which are 

separable. Ling et al. (2015) measure the scale and technique effects by real GDP per capita and 

real GDP per capita squared. Composition effect is measured by the capital-labor ratio (Cole 2006, 

Ling et al., 2015; Tsurumi and Managi, 2010). We follow the Tsurumi and Managi (2010) model 
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strategy by incorporating trade openness and foreign direct investment as additional determinants 

in the carbon emission function.  

In doing so, the empirical equation is generated from the general carbon emission function 

and modeled as follows: 

   ittttttt FOEKTSC µβββββββ +++++++= lnlnlnlnlnlnln 6543210  (2) 

Where ln is the natural-log and iµ is the residual term assumed to be normally distributed. We 

measure the scale effect and the technique effect by real GDP and real GDP per capita. The capital-

labor ratio is used to measure the composition effect. Energy consumption is measured by energy 

use. The sum of exports per capita and imports per capita is used to measure trade openness. The 

foreign direct investment is the FDI net inflows. More production needs more energy consumption, 

which results in increases in carbon emissions and we expect 01 >β . However, 02 <β  since 

energy efficient technology produces domestic production with fewer carbon emissions. We 

expect 03 >β  or 03 <β  as it depends on whether the economy is more energy-intensive or more 

technology-intensive. More energy consumption adds to carbon emissions, and we thus expect

04 >β . Though, trade openness reduces CO2 emissions if trade policies are environmentally 

friendly, then 05 <β  ; otherwise 05 >β . Moreover, 06 >β if FDI impedes environmental quality 

by increasing carbon emissions; otherwise 06 <β .  

 This study covers the period 1965-2016. We collect the data on CO2 emissions (in metric 

tons), GDP (in constant 2010 US$) and energy use (in kg of oil equivalent) from the World 

Development Indicators (CD-ROM, 2018). Capital proxy for the capital stock at the current 

Purchasing Power Parity (PPP) (in a million 2011 US$) are sourced from the Penn World Table 

(Version 9.0) (Feenstra et al., 2015). The data on FDI net inflows (in constant 2010 US$) and labor 
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force (total) are also obtained from the World Development Indicators (CD-ROM, 2018). We have 

transformed all the variables into per capita by dividing all the variables by total population (data 

collected from the World Development Indicators).             

 

4. Empirical Strategy  

Firstly, this paper employs the standard unit root tests such as the Augmented Dickey-Fuller (ADF) 

and Phillip-Perron (PP) tests. However, these unit root tests are unable to take into account 

structural breaks. Ignorance of unknown structural breaks in time series makes the empirical 

results based on the ADF and PP unit root tests biased and unreliable. Secondly, this issue is 

addressed by applying the Kim and Perron (2009) unit root test, while accommodating information 

of a single unknown structural break in the series.8 The empirical strategy will also include using 

the ARDL approach to test for cointegration and the VECM approach to examine Granger 

causality in the short and long run. 

4.1 The ARDL Bounds Testing Approach to Cointegration  

In line with the results of the unit root tests, we apply the bounds testing approach to cointegration 

to examine whether a long run relationship is present between CO2 emissions and their 

determinants. The existing applied economics literature provides numerous cointegration tests 

such as the EG residual-based test by Engle and Granger (1987), Phillips and Ouliaris (1990), 

Maximum Eigenvalue test by Johansen and Juselius (1990), and Gregory and Hansen (1996) in 

the presence of structural breaks. These cointegration tests require that all the variables should 

have a same order of integration.  

                                                           
8 We also consider the endogenous multiple structural breaks method in the unit root test and the results are similar. 
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The ARDL bounds test is flexible whether the regressors or independent variables are I(1) 

or I(0). For this reason, the dependent variable should be I(1) to be able to use the ARDL, and it 

indeed is according to the unit root tests. This cointegration approach is suitable for a small sample 

dataset such as ours. The bounds testing approach to cointegration provides short-run and long-

run results without a loss of information about the long-run empirical results. The issue of serial 

correlation along with endogeneity is solved automatically by the ARDL bounds testing for 

cointegration. The ARDL cointegration test provides consistent and reliable empirical results since 

a single cointegrating vector (cointegration association) is present between the variables. Pesaran 

et al. (2001) tabulated critical bounds (upper and lower) to decide on rejecting or accepting the 

null hypothesis of no cointegration. This null hypothesis is based on the asymptotic upper and 

lower critical bounds regardless of whether the variables are integrated at I(1) or I(0). At this point, 

the critical values of the bounds test, which are reported in Narayan (2005) and Pesaran et al. 

(2001), are used in the analysis. Third, after rejecting the null hypothesis of the bounds test that is 

“there is no cointegrating relationship among the variables,” the short-run coefficients and the 

long-run coefficients are obtained by the ARDL model of Pesaran and Shin (1999).  

Accordingly, our paper estimates the following the unrestricted error correction regression 

that considers the natural logarithm of the per capita carbon dioxide emissions as the dependent 

variable in the U.S: 
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5 6 7 1 1 2 1

0 0 0

3 1 4 1 5 1 6 1 7 1

ln ln ln ln ln

ln ln ln ln ln

ln ln ln ln ln

n n n n

t t ij t ij t ij t ij
i i i i

n n n

t ij t ij t ij t t
i i i

t t t t t i
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T K E O F

α α α α α

α α α β β
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− − − − −

∆ = + ∆ + ∆ + ∆ + ∆

∆ + ∆ + ∆ + +

+ + + + + +

∑ ∑ ∑ ∑

∑ ∑ ∑      (3) 

In Equation (3), ∆ symbolizes the change in the variables and 1ε t  is an error term. The 

parameters for α ij (j= 1,2, 3,…7, i = 1, 2, 3,...n) represent the short-run coefficients and the 
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parameters for β i (i = 1, 2, 3, 4, 5, 6, and 7) are the long-run coefficients of the ARDL model. 

Pesaran et al. (2001) propose a joint significance ADRL-F test on the coefficients of the lagged 

level variables to decide for the long run relationship between the variables. It is opined by Pesaran 

et al. (2001) that the ARDL-F test is sensitive to the lag order selection. An ARDL requires 

applying the F-test for the lagged level independent variables and the t-test for the lagged 

dependent variable for cointegration. Failure to meet the two requirements raises the possibility of 

degenerate cointegration relationships among the variables (Pesaran et al., 2001: 296). Hence, we 

report the t-statistics along with the F-statistics in Table 3. We select the lag order of the variables 

following the Akaike Information Criterion (AIC). The AIC provides better information to choose 

the lag order compared to the Bayesian Information Criterion (BIC) (Ling et al., 2015; Shahbaz et 

al., 2017). We define the null hypothesis of no cointegration based on Equation (3):  

 0: 76543210 ======= βββββββH ,  

against alternative hypothesis  

0: 76543210 ≠≠≠≠≠≠≠ βββββββH .  

We may opt for cointegration if the ARDL statistic should be higher than the upper critical 

bounds. The decision is for no cointegration if the lower critical bounds are more than the 

calculated ARDL-F statistic. We are in the indecisive zone if the calculated ARDL-F statistic is 

found between the upper and lower critical bounds. In the ARDL estimations, the paper checks 

the necessary diagnostic tests for autocorrelation, heteroscedasticity, specification of the model, 

and stability of the regressions (i.e., using the CUSUM and CUSUMSQ tests). 

4.2 The VECM Granger Causality Approach 

In addition, we apply the vector error correction model (VECM) Granger-based causality test to 

examine long-run and the short-run causal relationship between CO2 emissions and their 
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determinants.  It is argued by Granger (1969) that there should be causality between the variables 

should be at least from one-side if cointegration is confirmed by the single order of integration of 

the variables. The empirical equation of the VECM Granger causality is modeled as follow as:  
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 (4) 

Those lagged level variables represent the long run. In Equation (4), )1( L− is the difference 

operator and	������ is the lagged error-correction term, which is obtained from the long-run 

equilibrium model. In addition,	��,�, �
,�, ��,�, ��,�, �
,� ��,�, ��,� represent the independent and 

identically distributed (i.i.d) random errors within a finite covariance matrix with its mean is zero. 

The causality in the long run is investigated by the significant value of ECTt−1 by employing the t-

test statistic. For the changes between carbon emissions and their determinants is examined by 

applying the F-statistic for the first-difference lagged explanatory variables.  

5. Empirical Results and Discussion 

5.1 Descriptive Statistics and Correlation Matrix 
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Table (1) shows the descriptive statistics of the variables. Among those variables, the technique 

effect has the highest mean value (in log terms). The scale effect, trade openness and energy 

consumption emerge next with the highest mean values (in log terms). The mean value for the 

carbon emission remains the smallest. In terms of the degree of variability in the variables from 

their mean values, it is the highest in the technique effect, and this is followed by the variability of 

foreign direct investment and trade openness. The variabilities in carbon emissions and energy 

consumption remain the smallest. Thus, while the degree of spread is high in the technique effect, 

foreign direct investment and trade openness, it is less in energy consumption and carbon 

emissions, comparatively. The distribution patterns show that, except for trade openness that has 

a positive skewed distribution, the rest of the variables are negatively skewed. Thus, while there 

is a higher tendency for increases than decreases in trade openness, it is the opposite for the rest of 

the variables. The values of the kurtosis and the Jarque-Bera test confirm all the variables are 

normally distributed except for carbon emissions. 

 The pairwise correlation matrix shows that while the scale effect and energy consumption 

have a positive correlation with carbon emissions, the technique effect, composition effect, and 

trade openness are negatively correlated with carbon emissions. The correlation between foreign 

direct investment and CO2 emissions is positive. In terms of the correlation among the regressors, 

there seems to be a higher degree of correlation between the composite effect and the scale effect, 

trade openness and the scale effect, and foreign direct investment and the scale effect. This 

evidence seems to suggest a possible collinearity problem which could affect the identification of 

parameters in the model. However, correlations do not imply causalities. Therefore, subsequently, 

in this study, we test for the short-run and long-run causalities. 
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Table 1: Descriptive Statistics and the Correlation Matrix 

Variables tCln  tSln  tTln  tEln  tKln  tOln  tFln  

Mean 2.9440 10.5665 111.7000 8.9363 4.8516 8.9627 5.8362 

Median 2.9630 10.5758 111.8483 8.9494 4.8161 8.9873 6.0619 

Maximum 3.0898 10.8627 117.9991 9.0405 5.1426 9.7311 7.3353 

Minimum 2.7086 10.1361 102.7422 8.8180 4.4416 8.1736 3.6358 
Std. Dev. 0.0873 0.2235 4.7089 0.0553 0.1859 0.4452 1.0137 

Skewness -1.0029 -0.3277 -0.3074 -0.5386 -0.1439 0.0230 -0.5917 

Kurtosis 3.7602 1.7548 1.7353 2.6426 2.0381 1.8165 2.4133 

Jarque-Bera 8.0535 3.4651 3.4606 2.2541 1.7639 2.4547 3.0534 

Probability 0.0178 0.1768 0.1772 0.3239 0.4139 0.2930 0.2172 

tCln  1.0000       

tSln  0.3340 1.0000      

tTln  -0.4309 0.4509 1.0000     

tEln  0.4504 0.4595 -0.4617 1.0000    

tKln  -0.5135 0.5404 0.5427 -0.3298 1.0000   

tOln  -0.4064 0.3710 0.4790 -0.5329 0.4169 1.0000  

tFln  0.5124 0.4045 0.4026 0.3615 0.5108 0.3819 1.0000 

 
 
5.2. Results of the Unit Root Tests with/without Structural Breaks 

Table 2 contains the results of the tests of unit roots by first using the traditional augmented 

Dickey-Fuller and Phillip-Perron tests which do not take into account structural breaks. For these 

tests, it is evident that all the variables contain a unit root in the levels, which an indication that 

these series might be I(1) variables. However, as pointed out by Perron (1989), the traditional unit 

root tests that do not take into account structural breaks give biased results, and thus they reduce 

the ability to reject a false null hypothesis. In the lower part of Table 2, we use the ADF test with 

structural break developed by Kim and Perron (2009).  

Generally, we cannot reject the null hypothesis of a unit root with structural breaks in the 

levels. These structural breaks are relevant and the outcome of environmental, economic, energy 

and trade policies implemented in the United States over the study period. The structural break 

periods are 2008, 1992, 2007, 1996 and 1992 for the CO2 emissions, scale effect, technique effect, 
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energy consumption, composition effect, trade openness, and foreign direct investment, 

respectively. The structural breaks may reflect the Kyoto protocol that was signed in 1997 after 

hefty discussions in the year before. This agreement is a protocol to the United Nations Framework 

Convention on Climate Change (UFCCC), to decrease greenhouse gases that cause climate 

change. The break-in CO2 emissions show the implementation of the ‘Pollution Prevention Law 

and Policies (PPLP)’ in 2007, which has significantly affected environmental quality in 2008.  

Table 2: Results of the Unit Root Analysis 

Variable  ADF at Level  PP at Level 

T. Statistic P. Value T. Statistic P. Value 

tCln  -1.1398 (2) 0.9091 -1.0366 (3)  0.9273 

tSln  -1.6546 (3) 0.7138 -1.2307 (3)  0.8813 

tTln  -1.6980 (2) 0.7336 -1.2577 (3)  0.8843 

tEln  -1.5570 (1) 0.7924 -2.0107 (3)  0.5782 

tKln  -3.0144 (2) 0.1414 -2.3006 (3)  0.4242 

tOln  -1.7689 (1) 0.6451 -1.6711 (3) 0.6545 

tFln  -2.9801 (2) 0.1511 -3.1053 (3) 0.1186 

Variable  ADF at Level with Break ADF at 1st Diff. with Break  

T-statistic Break Year T-statistic Break Year 

tCln  -3.2311 (1) 2008 -5.3862 (2) *** 2009 

tSln  -1.6584 (2) 1992 -5.8537 (3) *** 2005 

tTln  -1.6574 (1) 1992 -6.0052 (2) *** 2005 

tEln  -2.9042 (3) 2007 -5.2492(1) ** 2000 

tKln
 

-4.0537 (2) 1996 -5.8854 (3) *** 1991 

tOln  -2.9602 (2) 1992 -6.6058 (2) *** 2009 

tFln  -3.6827 (1) 1992 -7.2291 (3) *** 1991 

Note: *** and ** show significance at the 1% and 5% levels, respectively. The optimal lag 
lengths used are shown in (). 
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However, after the first difference, we reject the null hypothesis of unit roots with a 

structural break. Thus, the ADF unit root test with a structural break confirms that we have 

variables which are integrated of degree one, I(1). This evidence is a crucial requirement for 

cointegration or the long-run equilibrium analysis. 

5.3. Results of the Bounds Cointegrating Test 

In Table 3, we apply the cointegrating bounds test with structural breaks to examine the presence 

of multiple cointegrating vectors, as we do not impose the assumption of one cointegrating 

equation. Except for the models for the scale effect and the technique effect, the calculated F-

statistic for the rest of the variables is higher than the upper bound critical values at either one 

percent or five percent significance levels. Thus, there is evidence of multiple cointegration 

relationships between carbon emissions and their determinants. In particular, for the CO2 

emissions equation, the evidence of cointegration implies that the identified regressors can indeed 

be treated as the ‘long-run forcing’ variables that explain the changes in CO2 emissions in the U.S.  

Table 3: Results of the Bounds Cointegration Test  

Bounds Testing Approach to Cointegration Diagnostic tests 

Estimated Models 
Optimal Lag 

Length 
Break Year 

F-statistic 2

NORMALχ  2

ARCHχ  2

RESETχ  2

SERIALχ  
CUSUM CSUSUMSQ 

),,,,,( ttttttt FOKETSfC =  2, 2, 1, 2, 1, 2, 2 2008 11.150*** 0.7363 1.4849 2.1352 0.9007 Stable Stable 

),,,,,( ttttttt FOKETCfS =  2, 2, 1, 2, 1, 2, 2 1992 2.187 0.4403 2.002 0.4351 1.1007 Unstable Stable 

),,,,,( ttttttt FOKESCfT =  2, 2, 2, 2, 2, 1, 2 1992 2.191 0.1090 1.6101 1.1303 2.1050 Stable Unstable 

),,,,,( ttttttt FOKTSCfE =  2, 1, 2, 2, 1, 2, 1 2007 9.155*** 2.1342 2.1051 0.3765 0.1594 Stable Stable 

),,,,,( ttttttt FOETSCfK =  2, 1, 1, 2, 1, 2, 2 1996 11.190*** 1.3623 4.1825 2.1535 0.3043 Stable Stable 

),,,,,( ttttttt FKETSCfO =  2, 1, 2, 2, 2, 1, 1 1992 7.087** 1.2628 2.2802 2.1051 0.3010 Stable Stable 

),,,,,( ttttttt OKETSCfF =  2, 1, 2, 1, 1, 2, 2 1992 7.190** 2.0989 1.9087 2.0084 0.1780   

Significance Level 
Critical values (T = 52)        

Lower bounds 
I(0) 

Upper bounds 
I(1) 

     
  

1 percent Level 7.317 8.70        

5 percent Level
 

5.360 6.373        

10 percent Level
 

4.437 5.377        
Note The asterisks *** and ** denote significant at the 1% and 5% levels, respectively. The AIC determines the optimal lag length. 
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For these models, we also perform several diagnostic statistics. All the models pass the 

normality, heteroscedasticity, model misspecification, serial correlation, and stability tests. 

Cointegration implies that there exists a long-run equilibrium. In this study, we show the long-run 

and short-run models for the carbon emissions function and test for causality in the short-run and 

long-run.  

5.4. Results of the Long-run and the Short-run Analyses  

Tables 4 and 5 contain the long-run and short-run estimates. In both cases, it is evident that, while 

the scale effect (measured by real GDP) increases carbon emissions, the technique effect 

(measured by real GDP per capita) decreases it. This finding confirms the existence of the EKC 

hypothesis. However, this identified relationship is significant only in the long-run. Thus, in the 

U.S, the EKC is more of a long-run phenomenon. This evidence makes sense since, in the short-

run, both input substitution options and the investments in advanced technologies are limited. 

However, in the long-run, the time is long enough to propel input substitution and investment in 

advanced technologies.  

In the U.S, there is evidence to suggest that environmental awareness has improved among 

the population. Demand for renewable energy sources like solar panels has increased as well as 

the demand for electricity-based cars. These shifts in the demand patterns change the input 

composition in favor of less energy-intensive inputs, hence inducing a lower energy requirement 

and its associated carbon dioxide emissions in the long-term. Moreover, the growth of the U.S 

economy has moved in tandem with investment in the technical aspect of production, and this has 

improved energy use efficiency in the country. This finding is consistent with the results of Atasoy 

(2017) who confirms the existence of EKC in the long-run but not in the short-run. Dogan and 
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Seker (2016), by using a panel of top renewable energy-using countries that included the U.S., also 

confirm the existence of the EKC in the long-run. However, the results contrast with the findings 

of Dogan and Turkekul (2016) and Dogan and Ozturk (2017) who reveal evidence of no EKC in 

the short-run and long-run in the U.S. 

Energy consumption in the short-run and long-run has a significant positive effect on 

carbon emissions in the U.S. According to the estimates, an increase in total energy consumption 

by 10% would cause carbon emissions to increase by 8.8% in the short-run but 1.3% in the long-

run. The positive effect of energy consumption on CO2 emissions in the U.S. could be attributed 

to the energy source structure. In the U.S., renewable energy sources which decrease energy-

related emissions are dominated by non-renewable energy sources that increase energy-related 

emissions.9 For example, in 2016, total energy consumption was 97.4 thousand trillion Btu. 

Starting with the non-renewable energy sources, natural gas accounted for 33%, petroleum for 

28%, coal for 17%, and nuclear electric power for 10%, thereby provided about 88% of this total 

consumption, while the remaining 12% came from renewable energy sources.  

The dominance of non-renewable energy sources over renewable energy sources implies 

that in the U.S. increasing the consumption of energy will create more pollution. However, a 

comparison between the short-run and long-run coefficients reveal that the energy-induced carbon 

effect is higher in the short-run than in the long-run. As mentioned earlier, in the short-run, input 

substitutability options and the investments in advanced technologies that are more energy 

efficient are limited. As a result, the energy-induced carbon effect is higher in the short-run. 

                                                           
9 Dogan and Seker (2016) reveal that in the U.S., while non-renewable energy sources increase carbon dioxide 
emissions, renewable energy sources decrease carbon dioxide emissions. Dogan and Ozturk (2017) also confirm this 
result for the U.S. Paramati et al. (2017) also find this result for both developed and developing economies in G20, 
but find that non-renewable energy increases carbon dioxide emissions, renewable energy decreases carbon dioxide 
emissions. 
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However, in the long-run, input substitution and advanced energy saving technologies become 

available. Therefore, the energy-induced carbon effects decline in the long-run. Atasoy (2017) also 

finds that the energy-induced carbon effect is higher in the short-run than in the long-run for the 

U.S. In contrast, Dogan and Turkekul (2016) find that energy-induced carbon effect is higher in 

the long run than in the short-run in the U.S. 

The effect of the composition effect, i.e., capital intensity (which is measured by the 

capital-labor ratio) is significantly negative in the short-run and long-run. As suggested by Cole et 

al. (2005), the effect of capital intensity is ambiguous. While the higher capital intensity may 

indicate the growth of energy-intensive industries and hence higher carbon emissions, it could 

imply a growth of capital energy-efficient industries, consequently, lower carbon dioxide 

emissions. The negative effect of capital intensity or the composition effect on CO2 emissions in 

the long-run and short-run suggests that, in the case of the U.S., the effect of the latter explanation 

may dominate the former. The elasticity suggests that an increase in the composition effect by 10% 

will cause carbon dioxide emissions to go down by 0.9% in the long-run and by 1.5% in the short-

run. Thus, the short-run effect seems to dominate the long-run effect. This could be linked to the 

depreciation of capital over time. As capital installed in the short-run begins to wear down, energy 

productivity of the equipment and machinery decreases in the long-run. Thus, without significant 

investment in capital consumption, the carbon-reducing effect of capital declines in the long-run. 

By implication, investment in capital consumption has to be intensified to improve the carbon-

reducing impact of installed machinery and equipment in the U.S. in the long-run.  

Figure 1 shows the total current depreciation cost for aggregate equipment of private 

nonresidential fixed assets for different sectors. Generally, depreciation costs for total equipment 

in all sectors continue to rise, which indicates that there is a high degree of equipment depreciation. 
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Indeed, this implies that without significant investment in capital consumption, the energy 

productivity of equipment in these sectors will fall, and hence minimizing the carbon-reducing 

effect of equipment in these sectors. 

 
Figure 1: Current-cost Depreciation of Private Nonresidential Fixed Assets (Total 

Equipment) 

 

  

  

Data Source: Bureau of Economic Analysis, the U.S. Department of Commerce 
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Trade openness has a negative effect on CO2 emissions in the short-run and the long-run, 

but the effect is statistically significant only in the latter case. Thus, the tendency for trade openness 

to reduce emissions is likely to materialize more in the long-run than in the short-run in the U.S. 

In the long-run, an increase in trade openness by 10% will cause carbon emissions to fall by 1.45%. 

Dogan and Turkekul (2015) also find that trade openness reduces carbon dioxide emissions in the 

U.S. only in the long-run. Dogan and Seker (2016) also confirm the negative effect of trade 

openness on carbon dioxide emissions in the U.S. in the long-run. The tendency for trade openness 

to decrease emissions more in the long-run than the short-run can be explained as follows. In the 

short-run, countries that are initially exposed to trade openness may not have the technical capacity 

to compete favorably in the international market. Hence, production is likely to be pollution-

intensive. However, in the long-term, the technical capacity of the economy might improve due to 

the opportunities of the inflow of foreign capital, local investment in technology, and exposure to 

better international management practices. Consequently, production is likely to be less pollution-

intensive in the long-run.  

In the short-run and long-run, foreign direct inflows increase carbon dioxide emissions, 

and the effect is higher in the long run than in the short-run. According to the estimated elasticities, 

an increase in foreign direct investment by 10% will cause carbon dioxide emissions to increase 

by 0.19% in the long-run and by 0.08% in the short-run. While the positive effect of FDI on 

emissions may seem to confirm the existence of the Pollution Haven Hypothesis, we are cautious 

to explain this as such since the U.S economy is one of the countries in the world with stringent 

environmental regulations, especially on foreign capital. As found by Kelly and Levinson (2002), 

an increase in pollution-abatement cost reduces FDI in manufacturing and chemical industry, 

though in an economic sense, the effect is minimal. On the contrary, we contribute this 
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phenomenon to the scale-dominant impact of FDI. FDIs impose a higher energy requirement on 

the host country via the scale effect since more capital implies more energy required to run this 

capital equipment and machinery. Thus, through the scale effect, FDI is positively related to carbon 

dioxide emissions. However, FDIs also present the local economy with opportunities of learning 

and imitating technology in abroad and technological spillover, which could improve the technical 

processes of production in the country, hence leading to improvements in energy efficiency and 

lower energy-related emissions. Thus, through the technical effect, FDIs reduce carbon dioxide 

emissions in the host country. 

In conclusion, the positive effect of FDI on carbon dioxide emissions suggests an 

oppressive influence of the scale effect of FDI over the technical effect of FDI.  Lee (2013) 

examines the effect of FDI on economic growth, energy consumption and clean energy use for the 

G-20 countries. This author finds that FDI actively leads to economic growth and higher energy 

consumption, which confirms the dominance of the scale effect of FDI. However, there is no 

evidence to suggest that FDI promote clean energy use in these economies, and consequently could 

lower carbon dioxide emissions, which also confirms the limited nature of the technical effects of 

FDI.  

Paramati et al. (2017) also examine the effect of stock market growth and renewable energy 

use on carbon dioxide emissions, while controlling for the impact of FDI for the G-20 economies. 

Their result shows that while FDI reduce carbon emissions for the developing economies sub-

group, it increases carbon dioxide emissions for the developed economies sub-group, which 

includes the U.S. According to them, two possible explanations could underlie the positive FDI-

environment relationship for the developed economies sub-group. First, the authors claim that 
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these economies do not rely on FDI for technological transfer, and second, they may have 

converted these FDIs into productive activities without due course to the environment.  

The dummy variable has a negative and significant effect on carbon emissions. This 

evidence confirms that the implementation of PPLP has improved environmental quality by 

lowering carbon emissions in the U.S. in short-run and the long-run. Environmental regulations 

impose additional costs on firms, thus shrinking production and limits entry into the industry. 

Consequently, the associated carbon dioxide emissions fall. Also, environmental regulations could 

stimulate investment in technological innovation; this might increase production and employment 

and attract new entrants into the industry. In this regard, the overall effect of the regulations might 

depend on the extent of economies of scale enjoyed in the industry. Our findings of the negative 

policy effect could be attributed to either of the reasons stated above or even both in the case of 

the U.S. 

Finally, the error-correction term in the short-run model is negative and significant. The 

estimated value suggests that for any initial one percent error in carbon dioxide emissions, 

approximately 38% of this error will be corrected in the first year. The negative sign, thus indicates 

that disequilibrium in carbon dioxide emissions is temporal. The model diagnostics suggest that 

for the short-run and long-run equations, there are no misspecification, heteroscedasticity, and 

serial correlation problems. Also, the errors are normally distributed, and the estimated short-run 

and long-run parameters are stable (see Appendix A for the graph plot). The stability of empirical 

model implies that the coefficients are not susceptible to structural breaks. Hence reliable forecasts 

can be derived based on these estimates. 

5.5 Results of the Short-run and the Long-run Causality Tests 
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We report the results of short-run and long-run causality based on the VECM with structural break 

approach. First, we performed the short-run and long-run causality test independently and then 

later tests them jointly. All these results are shown in the upper and lower parts of Table 6, 

respectively. First, we implement the stability tests for all the equations based on the CUSUM and 

CUSUMSQ plots. The results, as shown in Table 6, indicate that the models are stable. 

Table 4: Results of the Long-Run Analysis 

Dependent Variable = tCln  

Variables Coefficient Std. Error T-Statistic Prob. Value 
Constant 17.1046** 8.5638 1.997301 0.0536 

tSln  4.7364*** 1.6315 2.9029 0.0064 

tTln  -0.2331*** 0.0793 -2.9376 0.0058 

tEln  0.1284*** 0.0051 24.9775 0.0000 

tKln
 -0.0929** 0.0442 -2.0915 0.0438 

tOln  -0.1450*** 0.0316 -4.5786 0.0001 

tFln  0.0192*** 0.0062 3.1111 0.0037 

2008D  -0.0040*** 0.0130 -3.0769 0.0039 
2R  0.8801    

Adj- 2R  0.8767    

F-Statistic 28.7554***    

Durbin Watson 1.8878    

Stability Test 

Test F. Statistic 
Probability 

Value   
2

Normalχ  1.2902 0.5245   
2

serialχ  1.8568 0.2080   
2

ARCHχ  0.6024 0.4308   
2

Heteroχ  2.1091 0.1107   
2

Remsayχ  0.7054 0.4701   

CUSUM Stable    

CUSUMSQ Stable    

Note: *** and ** show significance at the 1% and 5% levels, respectively. 

 
 

For carbon dioxide emissions, we only find evidence of short-run causality running from 

the composition effect to carbon dioxide emissions. However, in the long-run, there is evidence to 
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suggest that the scale effect and the technique effect Granger cause carbon emissions in the U.S. 

The significance of the error-correction term shows this. Next, the lower part of Table 6 shows 

evidence of all the regressors independently causing carbon dioxide emissions in the short-run and 

long-run. 

Table 5: Results of the Short-Run Analysis 

Dependent Variable = tCln∆  

Variables Coefficient Std. Error T-Statistic Prob. Value 
Constant -0.0096*** 0.0036 -2.6318 0.0128 

tSln∆  1.9091 2.9959 0.6372 0.5284 

tTln∆  -0.1100 0.1460 -0.7535 0.4565 

tEln∆  0.8784*** 0.1037 8.4670 0.0000 

tKln∆
 -0.1465** 0.0661 -2.2143 0.0338 

tOln∆  -0.0041 0.0350 -0.1182 0.9066 

tFln∆  0.0077* 0.0044 1.7545 0.0886 

2008D  -0.0089** 0.0035 -2.5662 0.0152 

1−tECM  -0.3778** 0.1375 -2.7472 0.0097 
2R  0.6068    

Adj- 2R  0.5970    

F-Statistic 7.890***    

Durbin Watson 1.7063    

Stability Test 

Test F. Statistic 
Probability 

Value   
2

Normalχ  1.50526 0.4308   
2

serialχ  0.2065 0.8070   
2

ARCHχ  0.2005 0.9607   
2

Heteroχ  1.2107 0.5605   
2

Remsayχ  0.2323 0.8399   

CUSUM Stable    

CUSUMSQ Stable    
Note: ***, ** and * show significance at the 1%, 5%, and 10% levels, respectively. 

 

For energy consumption, we find that only carbon emissions and foreign direct inflows 

Granger cause energy consumption in the short-run. However, in the long-run, there is evidence 
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to suggest that carbon dioxide emissions, scale effect, technique effect, composition effect, trade 

openness and foreign direct inflows Granger cause energy consumption. However, the joint test 

reveals that independently these variables Granger cause energy consumption in the short-run and 

long-run. 

For the composition effect, the independence test shows that only the scale effect Granger 

causes the composition effect in the short-run. But in the long run, all the variables Granger cause 

the composition effect, as indicated by the significance of the error-correction term. The joint test, 

however, shows that independently these variables Granger cause the composition effect in the 

short-run and long-run. In the case of trade openness, only the composition effect and foreign 

direct inflows Granger cause trade openness in the short-run. The significance of the error-

correction term suggests the presence of long-run causality. The lower part of Table 6 confirms 

that carbon dioxide emissions, scale effect, technique effect, composition effect, and energy 

consumption Granger cause trade openness in the short-run and long-run. 

In the short-run, the independent test reveals that carbon dioxide emissions, scale effect, 

energy consumption, and trade openness Granger cause foreign direct investment. There is 

evidence of long-run causality indicated by the significance of the error-correction term. The joint 

test, instead shows that independently all the variables Granger cause foreign direct investment in 

the short-run and long-run. 

We conclude that there is a bi-causal relationship between energy consumption and foreign 

direct investment and also between trade openness and foreign direct investment in the short-run. 

All other causality patterns can be described as unidirectional in the short-run. There is evidence 

of unidirectional causality from trade openness to foreign direct investment in the short-run and 

long-run. All other identified causal relationships are bi-directional in the short-run and long-run. 
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Table 6: Results of the VECM Granger Causality Analysis 
Dependent 
Variable 

Short Run Long Run CUSUM CUSUMSQ 

1ln −∑∆ tC  
1ln −∑∆ tS  

1ln −∑∆ tT  
1ln −∑∆ tE  

1ln −∑∆ tK  
1ln −∑∆ tO
 1ln −∑∆ tF

 
Break Year

 

1−tECM    

tCln∆  … 0.6422 
[0.5349] 

0.1652 
[0.8487] 

0.6666 
[0.5227] 

10.2089*** 
[0.0003] 

0.4229 
[0.6599] 

1.5928 
[0.2241] 

2008 -0.2229*** 
[-4.007] 

Stable Stable 

tSln∆  
0.2792 

[0.7588] 
… 3.9826** 

[0.0321] 
9.3701*** 
[0.0019] 

0.3111 
[0.7355] 

0.0066 
[0.9934] 

0.2430 
[0.7861] 

1992 …. Stable Stable 

tTln∆  
0.3781 

[0.7408] 
4.0086** 
[0.0317] 

… 7.0053** 
[0.0110] 

0.1701 
[0.8109] 

0.2074 
[0.8092] 

0.2040 
[0.8109] 

1992 …. Stable Stable 

tEln∆  
24.9636*** 

[0.0000] 
0.4060 

[0.6706] 
0.6369 

[0.5373] 
… 0.6334 

[0.5391] 
0.7598 

[0.4782] 
3.0299* 
[0.0514] 

2007 -0.1178*** 
[-3.9097] 

Stable Stable 

tKln∆  
1.0799 

[0.3555] 
23.0644*** 

[0.0000] 
0.3520 

[0.7068] 
0.3190 

[0.7298] 
… 0.3504 

[0.7079] 
0.1961 

[0.8232] 
1996 -0.3208*** 

[-2.8017] 
Stable

 
Stable

 

tOln∆  
0.3986 

[0.6756] 
0.0763 

[0.9267] 
0.9053 

[0.4178] 
0.7526 

[0.4819] 
3.2161* 
[0.0579] 

… 2.6039* 
[0.0947] 

1992 -0.3236** 
[-2.3001] 

Stable
 

Stable
 

tFln∆  
3.0152* 
[0.0679] 

5.1761** 
[0.0136] 

1.1395 
[0.3367] 

3.9224** 
[0.0336] 

1.7923 
[0.1882] 

2.5561* 
[0.0985] 

… 1992 -0.0814*** 
[-3.1576] 

Stable
 

Stable
 

Joint Long-run and Short-run Causality CUSUM CUSUMSQ  

tCln∆  
… 15.8161*** 

[0.0000] 
13.3242*** 

[0.0000] 
26.1319*** 

[0.0000] 
9.1516*** 
[0.0003] 

12.9157*** 
[0.0000] 

14.5678*** 
[0.0000] 

2008 Stable
 

Stable  

tSln∆  
…. …. …. …. …. …. …. 1992 …. ….  

tTln∆  
…. …. …. …. …. …. …. 1992 …. ….  

tEln∆  
21.2311*** 

[0.0000] 
9.8090*** 
[0.0002] 

7.6017*** 
[0.0010] 

…. 12.2071*** 
[0.0000] 

21.5060*** 
[0.0000] 

20.1989*** 
[0.0000] 

2007 Stable
 

Stable  

tKln∆  
5.5401*** 
[0.0036] 

3.6014** 
[0.0276] 

4.0702** 
[0.0183] 

10.7030*** 
[0.0001] 

…. 5.1704** 
[0.0155] 

18.9018*** 
[0.0000] 

1996 Stable
 

 
Stable

 
 

tOln∆  
17.2011*** 

[0.0000] 
11.8191*** 

[0.0001] 
6.6710*** 
[0.0019] 

5.9879** 
[0.0123] 

19.0989*** 
[0.0000] 

…. 12.7890*** 
[0.0000] 

1992 Stable
 

Stable
 

 

tFln∆  
15.0681*** 

[0.0000] 
14.3440*** 

[0.0000] 
22.1217*** 

[0.0000] 
12.1013*** 

[0.0000] 
12.9053*** 

[0.0000] 
13.1231*** 

[0.0000] 
…. 1992 Stable

 
Stable

 
 

Note: ***, ** and * denote the significance at the 1%, 5% and 10 % level, respectively. 
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5.6. Results of the Variance Decomposition Analysis 

This section ascertains the future contributing roles of each variable in explaining one standard 

deviation shock in each variable. The first part of Table 7 shows the variance decomposition of 

carbon dioxide emissions. In the first year, one standard deviation shock in carbon dioxide 

emissions is explained by itself. However, this reduces in year two as the significance of other 

variables in terms of their contribution increases. For instance, trade openness accounts for 

about 22% of the future variations in carbon dioxide emissions in year 2. On the whole, trade 

openness seems to account for the larger share of future changes in carbon dioxide emissions 

in the U.S. However, this begins to fall, albeit with a marginal size after the 7th year.  

Similarly, the contributions of the scale effect, the composition effect and foreign direct 

investment in explaining future variations in carbon dioxide emissions begin to diminish 

respectively after the 5th and 6th years. On the contrary, the contributions of the technique and 

energy consumption in explaining future changes in carbon dioxide emissions increase with 

time. For example, the contribution of the technique effect increases by 12.8 percentage points 

in the first five-year period and further by 5.8 and 3.4 percentage points in the next two five-

year periods. For energy consumption, the upturn in the contribution increases by 1.62, 5.42 

and 3.03 percentage points for the three to five-year windows. In all, trade openness, the scale 

effect and energy consumption are the dominant contributors to future variations in carbon 

dioxide emissions in the U.S. 

The second part of Table 7 shows the variance decomposition for the scale effect. In the 

first year, the carbon dioxide emissions and the scale effect explain the changes in the scale 

effect. However, the contribution of carbon dioxide emissions to further changes in the scale 

effect decreases significantly. The contribution of carbon dioxide emissions decreases from 

44% in the 1st year to approximately 9% in the 15th year, which represents a fall of 35 percentage 

points. Likewise, the contributions of trade openness and the technique effect have also declined 
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after some period; precisely the 6th period for trade openness and the7th period for the scale 

effect. On the contrary, foreign direct investment, energy consumption and the composition 

effect grow in importance with time. In general, carbon dioxide emissions and trade openness 

explain much of the future variations in the scale effect in the U.S. 

The scale effect, carbon dioxide emissions and trade openness account for much of the 

future variations of the technical effect. However, while the contribution of the scale effect 

grows with time, the effect of carbon dioxide emissions and trade openness decreases with time. 

The other variables (FDI, energy consumption and composition effect) account relatively for a 

smaller share in the future variations of the technical effect. However, their importance grows 

with time. 

In the case of energy consumption, carbon dioxide emissions, trade openness and the 

technique effect contribute primarily to the future variations in energy consumption. While the 

contribution of trade openness and the technique effect grows with the time that of carbon 

dioxide emissions diminishes. The contributions of scale effect, composition effect, and foreign 

direct inflows remain small and decrease with time. 

The technique effect, trade openness and carbon dioxide emissions explain much of the 

variation in the composition effect, but the contribution of carbon dioxide emissions diminishes, 

while that of trade openness and the technique effect increases with time. The contributions of 

the scale effect, energy consumption, and foreign direct investment remain the smallest but 

increase with time. The scale effect, technique effect, energy consumption, and carbon dioxide 

emissions are the major contributors to future changes in trade openness. While the importance 

of the scale effect and the technique effect grows with time, whereas that of energy consumption 

and carbon dioxide emissions declines with time. The composition effect and FDI are the least 

contributors, but the importance of FDI grows with time and that of the composition effect 

declines with time. Lastly, the carbon dioxide emissions, scale effect, and trade openness 
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explain much of the future variations in FDI, while the importance of the scale effect grows 

with time, and that of carbon dioxide emissions and trade openness declines with time. The 

composition effect, energy consumption, and the technique effect are the least contributors. 

While the contribution of the composition and technique effects increases with time, the 

contribution of energy consumption drops with time. 

 

Table 7: Results of the Variance Decomposition Analysis 

Variance Decomposition of tCln  

Period tCln  tSln  tTln  tEln  tKln  tOln  tFln  

1 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 69.1125 0.0447 4.2504 2.7152 0.7026 22.4019 0.7724 

3 46.3330 0.1100 8.0965 2.6452 1.1805 39.7100 1.9245 

4 34.1871 0.1433 10.7816 1.8293 1.2510 49.0926 2.7150 

5 27.3525 0.1436 12.7623 1.6236 1.1124 53.9344 3.0709 

6 23.0916 0.1274 14.3027 2.2234 0.9295 56.2104 3.1146 

7 20.1797 0.1091 15.5482 3.3543 0.7904 57.0312 2.9868 

8 18.0463 0.0951 16.5972 4.6716 0.7204 57.0793 2.7897 

9 16.4026 0.0850 17.5188 5.9330 0.7099 56.7697 2.5807 

10 15.0863 0.0768 18.3569 7.0235 0.7380 56.3328 2.3855 

11 13.9989 0.0695 19.1361 7.9169 0.7855 55.8799 2.2129 

12 13.0774 0.0644 19.8678 8.6326 0.8398 55.4534 2.0643 

13 12.2807 0.0647 20.5570 9.2049 0.8933 55.0612 1.9379 

14 11.5811 0.0742 21.2056 9.6675 0.9428 54.6972 1.8312 

15 10.9596 0.0969 21.8148 10.0479 0.9868 54.3520 1.7417 

Variance Decomposition of tSln  

Period tCln  tSln  tTln  tEln  tKln  tOln  tFln  

1 44.3280 55.6719 0.0000 0.0000 0.0000 0.0000 0.0000 

2 33.9963 56.3314 1.2535 0.5922 0.0513 7.7131 0.0618 

3 26.3729 55.0745 2.5745 0.5924 0.1035 15.2293 0.0524 

4 21.4753 54.6757 3.4768 0.4643 0.1037 19.7580 0.0459 

5 18.2590 55.1748 3.9818 0.6641 0.0859 21.7736 0.0603 

6 16.0128 56.1556 4.2004 1.2239 0.0983 22.1874 0.1213 

7 14.3537 57.3114 4.2379 1.9536 0.1608 21.7390 0.2433 

8 13.0814 58.4914 4.1735 2.6579 0.2647 20.9126 0.4182 

9 12.0828 59.6383 4.0585 3.2268 0.3898 19.9790 0.6245 

10 11.2860 60.7347 3.9219 3.6324 0.5173 19.0670 0.8404 

11 10.6409 61.7754 3.7790 3.8921 0.6352 18.2262 1.0508 

12 10.1112 62.7582 3.6373 4.0391 0.7379 17.4679 1.2480 

13 9.6702 63.6809 3.5012 4.1053 0.8238 16.7884 1.4298 

14 9.2983 64.5404 3.3738 4.1161 0.8938 16.1807 1.5966 

15 8.9805 65.3324 3.2584 4.0895 0.9495 15.6390 1.7503 



35 

 

Variance Decomposition of tTln  

Period tCln  tSln  tTln  tEln  tKln  tOln  tFln  

1 44.3090 55.6380 0.0528 0.0000 0.0000 0.0000 0.0000 

2 34.1660 56.5606 0.9475 0.6171 0.0478 7.5957 0.0649 

3 26.6088 55.4952 2.0612 0.6373 0.0971 15.0439 0.0562 

4 21.7206 55.2298 2.8522 0.4934 0.0971 19.5568 0.0497 

5 18.4955 55.8357 3.3000 0.6444 0.0805 21.5786 0.0649 

6 16.2357 56.9083 3.4936 1.1389 0.0940 22.0021 0.1270 

7 14.5620 58.1434 3.5252 1.8031 0.1570 21.5587 0.2503 

8 13.2749 59.3901 3.4655 2.4506 0.2609 20.7306 0.4270 

9 12.2620 60.5920 3.3603 2.9746 0.3857 19.7897 0.6356 

10 11.4515 61.7329 3.2360 3.3460 0.5128 18.8658 0.8546 

11 10.7934 62.8093 3.1065 3.5803 0.6301 18.0113 1.0687 

12 10.2513 63.8202 2.9790 3.7083 0.7320 17.2388 1.2700 

13 9.7989 64.7636 2.8580 3.7603 0.8170 16.5459 1.4559 

14 9.4159 65.6365 2.7472 3.7604 0.8858 15.9268 1.6270 

15 9.0875 66.4344 2.6502 3.7260 0.9401 15.3765 1.7850 

Variance Decomposition of tEln  

Period tCln  tSln  tTln  tEln  tKln  tOln  tFln  

1 80.4443 1.5368 0.0015 18.0173 0.0000 0.0000 0.0000 

2 55.5194 0.8010 2.7938 22.4652 0.8652 16.6920 0.8630 

3 39.8670 0.5146 5.5705 19.5013 1.5666 30.8463 2.1333 

4 31.6268 0.4206 7.7114 15.7309 1.8195 39.6091 3.0812 

5 27.0140 0.3737 9.3883 13.1208 1.7779 44.7502 3.5746 

6 24.1151 0.3351 10.7364 11.8880 1.6202 47.5937 3.7111 

7 22.0678 0.3030 11.8498 11.6540 1.4651 49.0222 3.6379 

8 20.4901 0.2799 12.8073 11.9403 1.3615 49.6489 3.4716 

9 19.2043 0.2640 13.6714 12.3927 1.3118 49.8763 3.2793 

10 18.1157 0.2508 14.4825 12.8224 1.2996 49.9379 3.0907 

11 17.1670 0.2372 15.2612 13.1607 1.3078 49.9493 2.9166 

12 16.3212 0.2229 16.0143 13.4022 1.3241 49.9552 2.7597 

13 15.5551 0.2099 16.7419 13.5662 1.3421 49.9644 2.6201 

14 14.8538 0.2015 17.4415 13.6758 1.3589 49.9714 2.4967 

15 14.2076 0.2017 18.1111 13.7502 1.3734 49.9678 2.3880 

Variance Decomposition of tKln  

Period tCln  tSln  tTln  tEln  tKln  tOln  tFln  

1 30.2478 52.4433 6.1091 0.0438 11.1557 0.0000 0.0000 

2 25.3624 53.3545 4.6431 1.8124 10.762 3.5562 0.5088 

3 21.7407 52.6971 3.8500 3.5049 9.9292 7.6007 0.6770 

4 19.3167 52.2648 3.4850 4.5155 9.2909 10.4285 0.6982 

5 17.7317 52.3624 3.3996 4.9802 8.9103 11.9151 0.7003 

6 16.6672 52.8128 3.5225 5.1485 8.7087 12.4206 0.7194 

7 15.9037 53.3741 3.8135 5.1911 8.6011 12.3525 0.7637 

8 15.3081 53.8736 4.2396 5.1961 8.5260 12.0245 0.8318 

9 14.8066 54.2209 4.7700 5.2049 8.4463 11.6342 0.9167 
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10 14.3598 54.3839 5.3774 5.2383 8.3440 11.2873 1.0090 

11 13.9466 54.3605 6.0401 5.3067 8.2138 11.0315 1.1005 

12 13.5551 54.1617 6.7421 5.4131 8.0572 10.8847 1.1857 

13 13.1783 53.8020 7.4724 5.5550 7.8788 10.8513 1.2619 

14 12.8117 53.2970 8.2226 5.7261 7.6837 10.9300 1.3285 

15 12.4522 52.6615 8.9867 5.9187 7.4765 11.1176 1.3863 

Variance Decomposition of tOln  

Period tCln  tSln  tTln  tEln  tKln  tOln  tFln  

1 20.0367 8.8359 14.0703 0.1021 0.0038 56.9509 0.0000 

2 20.4133 12.5002 13.4936 4.5795 0.1206 48.6051 0.2874 

3 19.2716 15.1697 12.6028 9.7614 0.5497 42.3289 0.3155 

4 17.8803 17.3389 11.9286 13.0202 1.0837 38.4599 0.2881 

5 16.7788 19.4852 11.5864 14.3660 1.4987 36.0147 0.2698 

6 15.9400 21.7436 11.5072 14.5686 1.7236 34.2546 0.2620 

7 15.2016 24.0388 11.5987 14.2159 1.7896 32.8621 0.2931 

8 14.4598 26.2430 11.7923 13.6182 1.7578 31.7351 0.3934 

9 13.6917 28.2584 12.0473 12.9248 1.6794 30.8321 0.5659 

10 12.9160 30.0328 12.3425 12.2170 1.5846 30.1176 0.7892 

11 12.1586 31.5473 12.6685 11.5452 1.4875 29.5580 1.0346 

12 11.4376 32.8007 13.0224 10.9389 1.3937 29.1278 1.2787 

13 10.7617 33.8008 13.4035 10.4099 1.3051 28.8112 1.5074 

14 10.1333 34.5603 13.8121 9.9584 1.2223 28.5990 1.7142 

15 9.5508 35.0951 14.2476 9.5779 1.1452 28.4854 1.8976 

Variance Decomposition of tFln  

Period tCln  tSln  tTln  tEln  tKln  tOln  tFln  

1 24.5239 7.7759 2.3207 3.0102 0.1862 16.3697 45.8131 

2 25.6221 14.2345 2.0964 3.1343 1.0267 14.6655 39.2202 

3 25.0689 19.1057 1.9063 2.8715 2.0166 13.3611 35.6698 

4 24.0799 22.2587 1.8161 2.7214 2.6222 12.9941 33.5072 

5 23.1734 24.2973 1.7738 2.6683 2.9442 13.0769 32.0658 

6 22.4805 25.7134 1.7400 2.6347 3.1278 13.2033 31.1001 

7 21.9836 26.7786 1.7057 2.5988 3.2502 13.2254 30.4574 

8 21.6260 27.6207 1.6779 2.5646 3.3422 13.1468 30.0215 

9 21.3560 28.2990 1.6667 2.5359 3.4135 13.0182 29.7105 

10 21.1383 28.8454 1.6790 2.5126 3.4663 12.8863 29.4718 

11 20.9511 29.2815 1.7182 2.4950 3.5014 12.7793 29.2732 

12 20.7817 29.6241 1.7849 2.4845 3.5203 12.7097 29.0945 

13 20.6221 29.8867 1.8786 2.4834 3.5252 12.6807 28.9231 

14 20.4669 30.0803 1.9981 2.4936 3.5186 12.6918 28.7504 

15 20.3120 30.2141 2.1425 2.5160 3.5033 12.7410 28.5707 
 

 

 

 

 

 

 



37 

 

6. Conclusion and Policy Implications  

This paper investigated the decomposition of the environmental Kuznets curve into the scale 

effect, technique effect and composition effects by incorporating energy consumption, trade 

openness and foreign direct investment as additional determinants of carbon emissions. In doing 

so, we have applied the unit root, and cointegration approaches in the presence of structural 

breaks in the series. We have also applied the VECM Granger-based causality to examine the 

causal relationships between carbon emissions and their determinants in the short-run and long-

run. 

The empirical results indicate the presence of a cointegration association between 

carbon emissions and their determinants. Moreover, the scale effect adds to carbon emissions, 

but the technique effect decreases it. The negative effect of the technical effect and the positive 

effect of the scale effect suggest the existence of the EKC hypothesis, but this hypothesis is 

more evident in the long run than in the short-run. Further, energy consumption has a positive 

effect on CO2 emissions. The composition effect is negatively linked to carbon emissions, but 

the effect is less in the long-run due to the depreciation of capital. Trade openness improves 

environmental quality by lowering carbon emissions, while foreign direct investment has a 

positive impact on carbon emissions confirming the presence of the pollution haven hypothesis 

in the U.S. Environmental regulations also reduce carbon emissions.  

In light of the positive impact of the scale effect on carbon emissions, economic growth 

in the world’s largest economy increases carbon emissions, and thus hurts the global 

environment. This evidence suggests that it will be difficult for the world to significantly reduce 

CO2 emissions without the participation of the United States in global agreements related to 

climate change.  This conclusion has relevance to the withdrawal of the United States from the 

COP 21 agreement which aims to strengthen the global response to the threat of climate change 
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by keeping a temperature increase in the world in this century well below 2 degrees Celsius 

above pre-industrial levels.  

This task is challenging since the results show that the scale effect dominates the 

technical effect. Therefore, to reduce carbon emissions in the U.S, the technical processes of 

production should be improved. In this regard, investment in technological innovations and 

addressing capital consumption are prominent as well as advancing the knowledge of trade 

liberalization in national policy discourse and implementation. The U.S. companies should have 

a “social purpose” that determines how their investments and technology affect the environment 

and climate changes. Not very technology (e.g., electric cars) that produces new energy will 

help with climate change. The composition effect should work against the scale effect as the 

American economy keeps shifting towards more services and less manufactured goods. The 

share of the U.S. services sector to GDP is 78.9% in 2015, compared to 68.9% of the world. 

This fact also implies the composition effect in the U.S. has a limited range to run against 

climate change. 

Policies that promote export quality and export diversification can reduce the production 

of highly energy-intensive products (Apergis et al., 2018; Fang et al., 2019; Gozgor and Can, 

2017; Shahbaz et al., 2019). Upgrading the quality of export basket can be more effective than 

increasing the volume of exports to decrease the demand for fossil-fuels energy, and thus export 

quality can reduce the level of carbon emissions. The shift in production of electricity should 

target the use of renewable and cleaner sources of energy in producing cleaner electricity. The 

desirability of FDI to the environment should also be connected to the lower corruptibility of 

local governments. Governmental regulations should also be strong enough to discourage 

foreign companies from taking advantage of weak rules and moving their highly polluting 

activities to those countries with such laws. Governments can even subsidize foreign companies 
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that bring in technologies that reduce pollutions. Eco-duties (e.g., taxes and tariffs) can also be 

used to protect the environment from those heavy polluters. 

Stricter environmental regulations are also necessary since this will not only directly 

reduce carbon emissions but also help avert the potential occurrence of the pollution haven 

hypothesis. There should be strong support for the Climate Action Plan in the United States that 

addresses climate change through setting up effective standards. Besides, FDI may take 

advantage of weak regulations and use countries with weak regulations as a haven for their 

polluting activities. The same applies to governments where foreign companies can exploit to 

their advantage high levels of corruption. In such circumstances and others, FDI may not lead 

to less carbon-intensive technologies.  

Lastly, shifting the energy consumption structure towards more renewable and cleaner 

energy sources is very crucial in this case. With the continuous decline in the cost of renewable 

energy in the U.S, investment in renewables is now cost competitive. According to the Energy 

Information Administration (EIA), renewable energy and natural gas are likely to increase their 

market share in the future. Even though the recent tariff imposition of 30% on imported solar 

panels seems a significant setback, this one-time tariff imposition is expected not to derail the 

long-term growth of the industry, given the massive public support of renewable energy by the 

people and businessess of the country. 

We have positioned the paper as an invitation to the additional roles of FDI and trade 

openness vis-a-vis the CO2-intensive industries and demand sectors of US emissions Future 

research should consider the impact of export quality on CO2 emissions instead of just trade 

openness. This variable is different from export volume and export diversification and is not 

well explored. Research should also focus on coordination of the various energy and 

environmental policies at the state level in the United States and the province level in Canada 

(Popp, 2019). More research on electric grid management should be undertaken to smooth out 
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increases in intermittent renewable power. There is a need to research the coordination at the 

federal level. 
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Appendix I. Long-Run Analysis 

Figure 2: CUSUM 
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Figure 3: CUSUMSQ 

-0.4

0.0

0.4

0.8

1.2

1.6

2009 2010 2011 2012 2013 2014 2015 2016

CUSUM of Squares 5% Significance  
 

 

 

 

 

 

 



47 

 

 

 

 

Appendix II. Short-run Analysis 

Figure 4: CUSUM 
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Figure 5: CUSUMSQ 
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