
Munich Personal RePEc Archive

Heterogeneous component multiplicative

error models for forecasting trading

volumes

Naimoli, Antonio and Storti, Giuseppe

University of Salerno, University of Salerno

9 May 2019

Online at https://mpra.ub.uni-muenchen.de/93802/

MPRA Paper No. 93802, posted 10 May 2019 01:57 UTC



Heterogeneous component multiplicative error models for forecasting trading

volumes

Antonio Naimoli, Giuseppe Storti∗

Università di Salerno, Dipartimento di Scienze Economiche e Statistiche (DISES)

Abstract

We propose a novel approach to modelling and forecasting high frequency trading volumes. The new model extends

the Component Multiplicative Error Model of Brownlees et al. (2011) by introducing a more flexible specification of

the long-run component. This uses an additive cascade of MIDAS polynomial filters, moving at different frequencies,

in order to reproduce the changing long-run level and the persistent autocorrelation structure of high frequency trading

volumes. After investigating its statistical properties, the merits of the proposed approach are illustrated by means of

an application to six stocks traded on the XETRA market in the German Stock Exchange.
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1. Introduction

Thanks to the rapid growth of computing power and availability of data storage facilities, in recent years, the analysis

of high frequency data has been receiving increasing attention in the financial econometrics literature. The availability

of financial data recorded at very high frequencies has inspired the development of new types of econometric models,

able to reproduce the peculiar features of these data such as strong serial dependencies, irregular spacing in time,

price discreteness and intra-daily seasonal patterns. To model the dynamic behaviour of irregularly spaced transaction

data, Engle and Russell (1998) proposed the Autoregressive Conditional Duration (ACD) model, later generalised in

Multiplicative Error Model (MEM) by Engle (2002). MEMs are a general class of time series models for positive-

valued random variables, which are decomposed into the product of their conditional mean and a positive-valued error

term with unit mean. Extensions of this class of models and their statistical properties are discussed in Chou (2005),

Manganelli (2005), Cipollini et al. (2006, 2013), Lanne (2006), Brunetti and Lildholdt (2007) and Brownlees et al.

(2011), among others.

At the same time, the continuous development of new financial instruments has stimulated the research on statist-

ical models for positive-valued time series, such as number of trades and volumes, high-low range, absolute returns,

financial durations and realized volatility measures derived from ultra high frequency data. It is well established that

all these variables have rich serial dependence structures sharing the features of clustering and high persistence. The

recurrent feature of long-range dependence is conventionally modelled through the use of autoregressive fractionally

integrated moving average (ARFIMA) models, as in Andersen et al. (2003), or using regression models mixing in-

formation at different frequencies, such as the Heterogeneous AR (HAR) model of Corsi (2009). The HAR model,

initially proposed for modelling realized volatility series, is inspired by the Heterogeneous Market Hypothesis of

Müller et al. (1993) and offers a simple alternative to the use of ARFIMA models. The idea is to model daily realized

volatility as a linear combination of past realized volatilities aggregated at different frequencies. Despite its simpli-

city, in practical applications, this particular structure, usually referred to as an additive volatility cascade, has been
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found to be able to satisfactorily reproduce the empirical regularities of realized volatility series, including their highly

persistent autocorrelation structure.

It is worth noting that, working with real data, spurious persistence could also occur as a consequence of unmod-

elled structural breaks or level shifts. These phenomena could take place smoothly or in abrupt manner. In order

to model changes in the long-run level of the variable of interest, still remaining within the class of MEMs, Gallo

and Otranto (2015) proposed a new class of models that combine Markov switching models with smooth transition

dynamics, with the aim of keeping track of both smooth and abrupt level changes. Along the same line, researchers

and practitioners have recently shown interest for component models featuring two or more components moving at

different frequencies. The increasing popularity of these models is due to their ability to parsimoniously characterise

the rich dependence structure of financial variables such as volatility and volume. Component models have been ini-

tially applied to daily returns in a GARCH framework. Starting from the Spline GARCH of Engle and Rangel (2008),

where volatility is specified as the product of a slow-moving component, represented by an exponential spline, and

a short-run component, following a unit GARCH process, several contributions have extended and refined this idea.

Engle et al. (2013) introduced a new class of models, called GARCH-MIDAS, where the long-run component is

modelled as a MIDAS (Mixed-Data Sampling, Ghysels et al. (2007)) filter that applies to monthly, quarterly or bian-

nual financial and macroeconomic variables. Brownlees and Gallo (2010) proposed a dynamic model incorporating a

long-run component based on some linear basis expansion of time and bounded with a penalised maximum likelihood

estimation strategy. Amado and Teräsvirta (2013) decomposed the variance into a conditional and an unconditional

component, so that the latter smoothly evolves over time through a linear combination of logistic transition functions

taking time as the transition variable. A recent review of component volatility models can be found in Amado et al.

(2019).

Moving to the analysis of intra-daily data, Engle and Sokalska (2012) developed the Multiplicative Component

GARCH. This model decomposes the volatility of high frequency asset returns into the product of three components:

a daily, a diurnal and a stochastic intraday component. In a multivariate setting, Bauwens et al. (2016) and Bauwens

et al. (2017) developed and discussed several component specifications for time series of realized covariance matrices.

Applications of component models to the analysis of other positive-valued time series are more rare. Coming

closer to the object of this paper, Brownlees et al. (2011) proposed a Component MEM (CMEM) for intra-daily trad-

ing volumes, where long-run (daily) and non-periodic short-run (intra-daily) dynamics are modelled using GARCH-

type recursions moving at different frequencies. In order to account and test for asymmetric dynamics, the model

includes a dummy, whose value depends on the sign of past stock returns. The specification is completed by a peri-

odic component accounting for intra-daily seasonality. This component structure is found to be able to capture the

salient features of intra-daily volumes such as high-persistence, asymmetry and intra-daily periodicity.

Aim of this paper is to propose novel dynamic component models for high frequency trading volumes, investigate

their statistical properties and assess their effectiveness for trading by means of an out-of-sample forecasting exercise.

The main specification proposed in this paper, called the Heterogeneous MIDAS Component Multiplicative Error

Model (H-MIDAS-CMEM), is closely related to the class of Component MEMs discussed in Brownlees et al. (2011).

The most notable difference with respect to the latter is that the long-run component is now modelled as an additive

cascade of MIDAS filters moving at different frequencies (from which the heterogeneous quality of the model comes).

This specification is motivated by the empirical regularities arising from the analysis of high frequency time series of

trading volumes. After removing the intra-daily seasonal cycle, these are typically characterised by two prominent

and related features: a slowly moving long-run level and a highly persistent autocorrelation structure. In our model,

we account for both these features by considering a heterogeneous MIDAS specification of the long-run component.

Residual short term autocorrelation is then explained by an intra-daily non-periodic component that follows a mean

reverting unit GARCH-type process. In addition, from an economic point of view, the cascade structure of the long-

run component reproduces the natural heterogeneity of financial markets that are typically characterised by different

categories of agents operating at different frequencies. This results in a variety of sources separately affecting the

variation of the average volume at various speeds.

Model parameters are estimated by a two stage approach. First, we correct the raw volumes for intra-day season-

ality by a Fourier Flexible Form, whose coefficients are estimated by OLS regression. Then, the remaining parameters

are estimated by the method of maximum likelihood under the assumption that the innovations are distributed accord-

ing to the (Dynamic) Zero-Augmented Generalized F distribution introduced by Hautsch et al. (2014). The reason
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for this choice is twofold. First, it delivers a flexible probabilistic model for the conditional distribution of volumes.

Second, it allows to control for the presence of zero volumes in our data.

In order to assess the relative merits of the proposed approach we have performed a forecasting exercise using

high frequency trading volume data from January 2009 to December 2012 for six stocks traded on the Xetra Market in

the German Stock Exchange. The ability of the proposed models to predict intra-daily volumes at different horizons

is assessed by means of purely statistical loss functions such as the Mean Squared Error (MSE) and Mean Absolute

Error (MAE). In addition, in order to offer an economic appraisal of the proposed specifications, we have considered

the Slicing loss function (Brownlees et al., 2011). This measures the effectiveness of volume forecasts for the imple-

mentation of trading strategies based on the replication of the Volume Weighted Average Price (VWAP). The results

are compared with those generated by a set of alternative models, including the CMEM and its extension obtained

specifying the long-run component of volumes as a HAR model (HAR-CMEM).

Our findings suggest that the H-MIDAS-CMEM is able to satisfactorily reproduce the salient empirical features of

high frequency volumes. We also find that the forecasting performance of the H-MIDAS-CMEM favorably compares

with that of its main competitors. The Model Confidence Set (MCS) of Hansen et al. (2011) is used to assess the

significance of differences in the predictive performances of the models under analysis.

The remainder of the paper is structured as follows. Section 2 describes the proposed H-MIDAS-CMEM model

defining its components. The statistical properties of the model are investigated in Section 3, where we provide

conditions for strict stationarity and ergodicity of the seasonally adjusted volumes. The estimation procedure is

presented in Section 4, while Section 5 illustrates the results of the empirical application. Section 6 concludes.

2. Model specification

Let {xt,i} be a time series of intra-daily trading volumes. We denote days by the subscript t ∈ {1, . . . ,T }, where each

day is divided into I equally spaced intervals indexed by i ∈ {1, . . . , I}. The total number of observations is then given

by N = T I. In the remainder, it will be convenient to adopt the following convention: given non-negative integers

j,w, k, with w ≤ I, we let xt,i− j = xt−k,i−w for j = k I + w.

The H-MIDAS-CMEM represents xt,i as the product of different stochastic components according to the equation

xt,i = τt,i gt,i φi εt,i, (1)

where φi is an intra-daily periodic component that reproduces the approximately U-shaped intra-daily seasonal pat-

tern typically characterising trading activity; τt,i is a smoothly varying component, given by the sum of MIDAS filters

moving at different frequencies, designed to track the dynamics of the long-run level of trading volumes; gt,i is an

intra-daily dynamic non-periodic component, based on a mean reverting unit GARCH-type process, that reproduces

autocorrelated movements around the current long-run level. Finally, εt,i is an error term satisfying the following

assumption.

Assumption A1 (iid errors): The multiplicative innovation term εt,i is assumed to be an i.i.d. non-negative process

with unit mean and constant variance σ2, that is

εt,i
iid∼ D+(1, σ2). (2)

In the remainder of this section, we will discuss in more detail the structure of the dynamic components in Eq. (1). In

addition, we will investigate the stochastic properties of the short-run non-periodic component gt,i and of the seasonal

adjusted volumes (xt,i/φi).

2.1. Intra-daily periodic component

Intra-daily volumes usually exhibit a U-shaped daily seasonal pattern, i.e. trading activity is higher at the beginning

and at the end of the day than around lunch time. In order to model these periodicities, as in Engle and Sokalska

(2012), we specify the intra-day seasonal component φi via a Fourier Flexible Form (Gallant, 1981)

φi =

Q
∑

q=0

a0,q ι
q +

P
∑

p=1

[

ac,p cos(2πp ι) + as,p sin(2πp ι)
]

, (3)
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where ι = i/I ∈ (0, 1] is a normalised intraday time trend and the number of terms (Q, P) in (3) can be selected through

the use of standard information criteria. The diurnally adjusted trading volumes can be then computed as

yt,i =
xt,i

φi

. (4)

2.2. Intra-daily dynamic non-periodic component

As in Engle et al. (2013), the intra-daily non-periodic component gt,i is assumed to follow a mean reverting GARCH-

type process with E(gt,i) = 1. Namely, the dynamics of gt,i are determined by the following recursion

gt,i = ω
∗ +

r
∑

j=1

α j

yt,i− j

τt,i− j

+ α0I(yt,i−1 = 0) +

s
∑

k=1

βk gt,i−k, τt,i > 0 ∀t, i, (5)

where I(yt,i−1 = 0) denotes an indicator function that takes value 1 if the argument is true and 0 otherwise. It is worth

noting that Eq. (5) does not automatically guarantee that the unit mean assumption on gt,i is satisfied. To this purpose,

it is necessary to set appropriate constraints on ω∗ by means of a targeting procedure that will be discussed in Section

3.1.

The coefficient α0 of the dummy variable in (5) has the role of adjusting the dynamics of gt,i to the lack of trading

activity at time (t, i − 1). This is most easily seen in the simple case in which r = 1 and s = 1, where Eq. (5) can be

reformulated giving rise to the following piecewise linear model



























∀ yt,i−1 > 0, gt,i = ω
∗ + α1

yt,i−1

τt,i−1
+ β1gt,i−1,

∀ yt,i−1 = 0, gt,i = ω
∗ + α0 + β1gt,i−1.

In general, representing the dynamics of gt,i as a regime switching model offers a convenient framework for deriving

sufficient conditions for the positivity of gt,i that, for ease of reference, are summarised in the following assumption.

Assumption A2 (positivity of gt,i). The parameters in (5) satisfy

ω∗ > 0, α j ≥ 0 ( j = 1, . . . , r), (ω∗ + α0) > 0, βk ≥ 0 (k = 1, . . . , s).

2.3. Low frequency component

The low frequency component is modelled as a linear combination of MIDAS filters of past volumes aggregated at

different frequencies. It should be emphasised that our setting is more general than that considered by Brownlees et al.

(2011) since we do not constrain the long-run component to be fixed within the trading day, but its value is updated

as soon as a new intra-daily observation is made available. In addition, this choice facilitates the derivation of the

stochastic properties of the seasonally adjusted volumes yt,i in Section 3.

In the MIDAS framework, a relevant issue is related to the identification of the frequency of the information to

be used by the filter, that notoriously acts a smoothing parameter. A simple and intuitive solution would be to use

volumes aggregated over a rolling window of daily length, leading to the following specification for τt,i

τt,i = md + θd

Kd
∑

k=1

ϕk(ωd)YD
(k)

t,i
, (6)

where

YD
(k)

t,i
=

I
∑

j=1

yt,i−(k−1)I− j
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denotes the rolling daily cumulative volume. The subscript d indicates that the parameters refer to the daily frequency.

Furthermore, in order to guarantee the positivity of the estimated trend, we impose the following parameter constraints:

md > 0 and θd > 0. This does not imply any relevant loss of generality since traded volumes are typically positively

autocorrelated.

A common choice for determining ϕk(ωd) is the Beta weighting scheme

ϕk(ωd) =
(k/Kd)ω1,d−1(1 − k/Kd)ω2,d−1

∑Kd

j=1
( j/Kd)ω1,d−1(1 − j/Kd)ω2,d−1

, (7)

where the weights in Eq. (7) sum up to 1 and ωd = (ω1,d, ω2,d)′. As discussed in Ghysels et al. (2007), this weighting

function is very flexible, being able to accommodate increasing, decreasing or hump-shaped weighting schemes.

Furthermore, the value of Kd, the number of daily lags involved in the filter, can be chosen by information criteria, to

avoid overfitting problems.

An alternative trend specification could be based on the use of higher frequency volumes aggregated over intervals

of length equal to 1/H days

τt,i = mh + θh

Kd
∑

k=1

H
∑

l=1

ϕl,k(ω1,h, ω2,h)YH
(l,k)

t,i
, (8)

where nh = I/H ∈ {1, . . . ,H T } denotes what, for ease of reference, we will call the hourly period, H is the number

of sub-intervals in which the day is divided, while the subscript h refers to the parameters corresponding to the just

defined hourly frequency. The variable YH
(l,k)

t,i
corresponds to the (l)-th hourly cumulative volume of the (k)-th past

interval of daily length before time i of day t. Namely,

YH
(l,k)

t,i
=

nh
∑

j=1

yt,i−(k−1)I−(l−1)nh− j. (9)

A more general formulation of the long-run component, encompassing the previous two, is then given by

τt,i = m + θd

Kd
∑

k=1

ϕk(ω1,d, ω2,d)YD
(k)

t,i

+ θh

Kd
∑

k=1

H
∑

l=1

ϕl,k(ω1,h, ω2,h)YH
(l,k)

t,i
.

(10)

This multiple frequency specification appears to be preferable to the previous single-frequency models in (6) and (8)

for three different reasons. First, the modeller is not bound to choose a specific frequency for trend estimation, but

can determine the optimal blend of low and high frequency information in a data driven fashion. Second, it is com-

patible with the heterogeneous market assumption of Müller et al. (1993), enforcing the idea that market agents can

be divided in different groups characterised by different frequencies of interest and strategies. Third, as pointed out in

Corsi (2009), an additive cascade of linear filters, applied to the same variable aggregated over different time intervals,

can allow to reproduce very persistent dynamics such as those typically observed for high frequency trading volumes.

Positivity of the long-run component τt,i can be guaranteed by imposing appropriate constraints on the parameters

of (10). These are summarised in the following assumption.

Assumption A3 (positivity of τt,i). Assume that the parameters in (10) satisfy

m > 0, θd > 0, θh > 0, ϕk(ω1,d, ω2,d) ≥ 0, ϕl,k(ω1,h, ω2,h) ≥ 0,

∀l, k, with
Kd
∑

k=1

ϕk(ω1,d, ω2,d) = 1,

Kd
∑

k=1

H
∑

l=1

ϕl,k(ω1,h, ω2,h) = 1.
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3. Dynamic properties of seasonally adjusted volumes

3.1. Statistical properties of the short term component gt,i

In this section, we provide conditions under which the short-run component gt,i is strictly stationary and ergodic.

Before proceeding with the illustration of the main results, we define some notational conventions that will be used

throughout this section. In particular, we consider the following norm: for v ∈ Rn, ‖v‖ = maxi=1,2,...,n(v1, . . . , vn)′ and,

for a (m×n) matrix M, the induced matrix norm is ‖M‖= max
i=1,...,n

∑n
j=1|Mi j|. Also, In denotes an identity matrix of order

n; 0m,n denotes a (m×n) matrix of zeros; 1m,n denotes a matrix of ones of the same dimension; log+(x) = max(log(x), 0).

The desired result is obtained following the approach described in Bougerol and Picard (1992a). First, we need

to rewrite Eq. (5) as a random coefficient vector autoregressive model

gt,i = Bt,i + At,igt,i−1, (11)

where gt,i is the (r + s − 1) × 1 stochastic vector

gt,i = [gt,i, . . . , gt,i−s+1, ỹt,i−1, . . . , ỹt,i−r+1]′.

with ỹt,i = yt,i/τt,i (τt,i > 0). Without loss of generality, we impose r, s ≥ 2, that can always be obtained even from

lower order models by introducing some additional α and β coefficients equal to 0, if needed. At,i is a positive-valued

random matrix that can be written in block form as

At,i =





























δt,i βs α αr

Is−1 0 0s−1,r−2 0

ξt,i 0 01,r−2 0

0r−2,s−1 0 Ir−2 0





























,

where δt,i is a 1 × (s − 1) random vector

δt,i = [β1 + α1εt,i−1, β2, . . . , βs−1],

ξt,i is a 1 × (s − 1) random vector

ξt,i = [εt,i−1, 0, . . . , 0],

α is a 1 × (r − 2) vector of constants

α = [α2, . . . , αr−1].

The (r + s − 1) × 1 matrix Bt,i is defined as

Bt,i = [ω∗ + α0I(εt,i−1 = 0), 01,r+s−2]′.

Conditions for the stationarity and ergodicity of gt,i can be then derived by means of the following proposition.

Proposition 1 (Strict stationarity and ergodicity of gt,i). Assume that A1, A2 and A3 hold, Eq. (11) will then admit

a unique stationary and ergodic solution if and only if

γ(A) = lim
N→∞

1

N
E(log‖At,iAt,i−1 . . . A1,1‖)

a.s.
= lim

N→∞

1

N
(log‖At,iAt,i−1 . . . A1,1‖) < 0, (12)

where γ(A) is the top Lyapunov exponent associated to the sequence {At,i}.

If Assumption A1 is replaced by the weaker Assumption A1′ reported below, condition (12) will be then only sufficient

for the stationarity and ergodicity of the sequence {gt,i}.

Assumption A1′. The multiplicative innovation term εt,i is assumed to be a non-negative, strictly stationary and

ergodic process with unit mean and constant variance σ2.
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Proof. The proof follows from the application of well known results in the theory of dynamical stochastic processes.

Note that, under Assumption A1, the matrices {At,i, Bt,i} are by construction i.i.d. ∀t, i. Also they are such that

E(log+‖A0,0‖) and E(log+‖B0,0‖) are finite. The desired result then follows from Theorem 2.5 in Bougerol and Picard

(1992b). Differently, in the case of stationary and ergodic errors (obtained replacing A1 by A1′), the results in

Glasserman and Yao (1995) (Lemma 3A) or Bougerol and Picard (1992b) (Theorem 1.1) can be applied to prove the

sufficiency of condition (12) and complete the proof.

In general, condition (12) cannot be exactly computed, but it can be easily approximated by computer simulation. In

the simple case of a model of order (1,1), it can be conveniently rewritten as

E[log(α1εt,i + β1)] < 0.

In addition, it can be shown (see Theorem 2.5 in Francq and Zakoian (2011) and associated remarks) that the following

condition
















r
∑

i=1

αi +

s
∑

j=1

β j

















< 1 (13)

implies that (12) is satisfied.

In Proposition 2 we investigate the mean stationarity of gt,i, that is we provide necessary and sufficient conditions

under which E(gt,i) is time-invariant and finite: E(gt,i) = G, with 0 < G < ∞.

Proposition 2 (Mean stationarity of gt,i). Assume that assumptions A1, A2 and A3 hold and let π = P(yt,i > 0). The

process in (5) is mean stationary if and only if condition (13) is satisfied. Moreover, for a mean stationary process,

the expectation of gt,i will be given by

E(gt,i) = G =
ω∗ + α0(1 − π)

1 −∑r∗
j=1(α j + β j)

, (14)

where r∗ = max(r, s) and the following notational conventions have been introduced: α j = 0 and βk = 0 for j > r and

k > s, respectively.

Proof. We first prove the necessary part of the condition. Note that, under Assumption A1, we have

E(ỹt,i) = E(gt,i)E(εt,i) = G

and, under assumptions A2 and A3,

E[I(yt,i = 0)] = E[I(εt,i = 0)].

It then follows that

G = ω∗ + α0E[I(εt,i = 0)] +

r
∑

j=1

α jG +

s
∑

k=1

β jG

= ω∗ + α0(1 − π) +

r∗
∑

j=1

(α j + β j)G,

from which Eq. (14) is immediately obtained. For the sufficient part, it should be noted that condition (13) implies

strict stationarity of gt,i in (5). Furthermore, the Markovian representation in (11) can be rewritten as

gt,i = Bt,i + At,i(Bt,i−1 + At,i−1gt,i−2) = Bt,i + At,iBt,i−1 + At,iAt,i−1gt,i−2 (15)

and, by n repeated substitutions, as

gt,i = Bt,i +

n−1
∑

k=1

k−1
∏

j=0

At,i− jBt,i−k +

n−1
∏

j=0

At,i− jgt,i−n.
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From Theorem 1.3 in Bougerol and Picard (1992a) and Theorem 2.4 in Bougerol and Picard (1992b) it follows that, as

n → ∞, the series
∑n−1

k=1

∏k−1
j=0 At,i− jBt,i−k converges almost surely and

∏n
j=0 At,i− j → 0. This implies that, for n → ∞,

Eq. (15) simplifies to

gt,i = Bt,i +

∞
∑

k=1

k−1
∏

j=0

At,i− jBt,i−k, (16)

which is the unique strictly stationary solution to (11). Note that, under the stated assumptions, A11, A2 and A3, the

matrices At,i are positive and serially independent and the same holds for the sequence Bt,i, for any t and i. In addition,

their expectations E(At,i) = A and E(Bt,i) = B will be time invariant. Finally, all the terms in the product on the RHS

of (16) will be independent because each of the involved matrices depend on a single lag of εt,i− j with the dates (t, i− j)

being distinct: At,i− j = A(εt,i− j−1), for j = 0, . . . , k − 1, and Bt,i−k = B(εt,i−k−1). It follows that, taking expectations on

both sides of (16) leads to

E(gt,i) = B +

∞
∑

k=1

AkB = (I +

∞
∑

k=1

Ak)B, (17)

where convergence of the RHS of (17) stems from the fact that the spectral radius of A is strictly less than 1 (see

Theorem 2.5 in Francq and Zakoian (2011) and associated remarks).

Applying Proposition 2, Eq. (14) implies that the unit mean assumption for gt,i is satisfied under the additional

parameter constraint on ω∗

ω∗ = 1 −
r∗
∑

j=1

(α j + β j) − α0(1 − π). (18)

This expression is also useful for deriving the required positivity constraints on ω∗ and ω∗ + α0. For example, in the

case of a model of order (1,2), like the one estimated in our empirical application, the positivity constraint on ω∗ can

be enforced by letting
1 − α1 − β1 − β2

1 − π > α0,

while (ω∗ + α0) > 0 when
α1 + β1 + β2 − 1

π
< α0,

where 0 < π < 1. Merging the two above conditions, it follows that the constraints ω∗ > 0 and (ω∗ + α0) > 0 are

simultaneously satisfied for
α1 + β1 + β2 − 1

π
< α0 <

1 − α1 − β1 − β2

1 − π . (19)

Finally, we derive an analytical expression for E(gt,i+h|Ft,i), for h>0, where Ft,i is the sigma-field generated by the

available information until interval i of day t. First, note that, under the assumptions that gt,i and τt,i are strictly

positive (A2 and A3), I(yt,i = 0) = I(εt,i = 0). Second, under the additional assumption that the errors εt,i are iid (A1),

it is easy to show that

E(ỹt,i+h|Ft,i) = E(gt,i+h|Ft,i) ∀h > 0.

The desired conditional expectation can be then easily derived by standard calculations

E(gt,i+h|Ft,i) = ω∗ + α0E[I(yt,i+h−1 = 0)|Ft,i] +

r∗
∑

j=1

(α j + β j)E(gt,i+h− j|Ft,i)

= ω∗ + α0E[I(εt,i+h−1 = 0)] +

r∗
∑

j=1

(α j + β j)E(gt,i+h− j|Ft,i)

= ω∗ + α0(1 − π) +

r∗
∑

j=1

(α j + β j)E(gt,i+h− j|Ft,i).

1Note that A1 also implies the constant zero probability assumption.
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From the above formula it can be argued that, in the case of a stationary model of order (1,1), the sum α1 + β1 can be

interpreted as the persistence of the short term component gt,i, defined as the speed at which, in absence of shocks,

multi-step ahead predictors converge to their long-run level.

3.2. Stationarity of the seasonally adjusted volumes yt,i

Despite its apparent complexity, the linear rolling window specification of the long-run component in Eq. (10) still

allows to derive stationarity and ergodicity conditions for the seasonal adjusted volumes yt,i. The desired result is

achieved following a strategy inspired by the approach proposed in Wang and Ghysels (2015). The first step is to

rewrite the model in (10) as an autoregressive model at the intra-daily frequency

τt,i = m + θd

Kd
∑

k=1

ϕk(ω1,d, ω2,d)YD
(k)

t,i
+ θh

Kd
∑

k=1

H
∑

l=1

ϕl,k(ω1,h, ω2,h)YH
(l,k)

t,i

= m +

Kd
∑

k=1















θdϕk(ω1,d, ω2,d)YD
(k)

t,i
+ θh

H
∑

l=1

ϕl,k(ω1,h, ω2,h)YH
(l,k)

t,i















= m +

Kd
∑

k=1

















θdϕk(ω1,d, ω2,d)

I
∑

j=1

yt,i−(k−1)I− j + θh

H
∑

l=1

ϕl,k(ω1,h, ω2,h)

nh
∑

p=1

yt,i−(k−1)I−(l−1)nh−p

















= m +

Kd
∑

k=1

















θd

H
∑

l=1

ϕk(ω1,d, ω2,d)

nh
∑

p=1

yt,i−(k−1)I−(l−1)nh−p + θh

H
∑

l=1

ϕl,k(ω1,h, ω2,h)

nh
∑

p=1

yt,i−(k−1)I−(l−1)nh−p

















= m +

Kd
∑

k=1

















H
∑

l=1

nh
∑

p=1

θdϕk(ω1,d, ω2,d)yt,i−(k−1)I−(l−1)nh−p +

H
∑

l=1

nh
∑

p=1

θhϕl,k(ω1,h, ω2,h)yt,i−(k−1)I−(l−1)nh−p

















= m +

Kd I
∑

j=1

ψ jyt,i− j,

where

ψ j = θdϕk(ω1,d, ω2,d) + θhϕl,k(ω1,h, ω2,h)

for (k − 1)I + (l − 1)nh < j ≤ (k − 1)I + l nh, k = 1, . . . ,Kd, l = 1, . . . ,H. Letting

θ∗ =
Kd I
∑

j=1

ψ j,

we can write

τt,i = m + θ∗
Kd I
∑

j=1

ψ j

θ∗
yt,i− j = m + θ∗

Kd I
∑

j=1

ψ∗jyt,i− j,

where
∑Kd I

j=1
ψ∗

j
= 1. Then note that, letting ηt,i = gt,iεt,i, it follows that

yt,i = τt,iηt,i =

















m + θ∗
Kd I
∑

j=1

ψ∗jyt,i− j

















ηt,i, (20)

where ηt,i is strictly stationary and ergodic under the conditions in Proposition 1. Furthermore, by some algebra, Eq.

(20) can be reformulated as

yt,i =

















m + θ∗
Kd I
∑

j=1

ψ∗jyt,i− j

















gt,iεt,i

= (m gt,iεt,i) + θ
∗gt,iεt,i

Kd I
∑

j=1

ψ∗jyt,i− j,
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that can be further elaborated to give the (KdI × 1) vector random coefficient AR(1) model

yt,i = B∗t,i + A∗t,iyt,i−1, (21)

where

yt,i = (yt,i, yt,i−1, . . . , yt,i−Kd I+1)′,

B∗t,i = (m gt,iεt,i, 0, . . . , 0)′,

A∗t,i =

(

Ψ
′
t,i θ∗gt,iεt,iψKd I

IKd I−1 0Kd I−1,1

)

,

with

Ψt,i = (θ∗gt,iεt,iψ1, . . . , θ
∗gt,iεt,iψKd I−1)′.

Conditions for stationarity and ergodicity of yt,i are then established by the following proposition.

Proposition 3 (Strict stationarity and ergodicity of yt,i). Assume that A1, A2, A3 and the condition in Eq. (13) hold.

Eq. (21) will admit a unique strictly stationary and ergodic solution iff

γ(A∗) = lim
N→∞

1

N
E(log‖A∗t,iA∗t,i−1 . . . A

∗
1,1‖)

a.s.
= lim

N→∞

1

N
(log‖A∗t,iA∗t,i−1 . . . A

∗
1,1‖) < 0. (22)

Proof. The proof closely follows that of Proposition 3.3 of Wang and Ghysels (2015). To start, first note that we can

rewrite A∗
t,i

in (21) as follows

A∗t,i = θ
∗gt,iεt,iHD + F,

where H and F are square matrices of dimension (KdI) such that

H =

(

11,Kd I

0Kd I−1,Kd I

)

F =

(

01,Kd I−1 0

IKd I−1 0Kd I−1,1

)

and D = Diag(ψ∗) is a diagonal matrix with main diagonal given by ψ∗ = (ψ∗
1
, ψ∗

2
, . . . , ψ∗

Kd I
)′. Without loss of

generality, we set t = 0 and i = 0 and note that 1 ≤ ||A∗
0,0
||≤ θ∗g0,0ε0,0||HD||+||F||≤ θ∗g0,0ε0,0 + 1, using the sub-

multiplicative nature of the induced matrix norm and the fact that ||HD||= 1, given that 0 ≤ ψ∗
j
< 1 (for j = 1, . . . ,KdI).

Therefore, E(log(||A∗
0,0
||)) ≤ E(log(||θ∗g0,0ε0,0+1||)) ≤ E(||θ∗g0,0ε0,0+1||) < ∞, using the result log(1+ x) ≤ x, ∀x > −1

(Love, 1980). Sufficiency follows from Theorem 3.1 in Glasserman and Yao (1995). To prove the necessity, we use a

strategy similar to that adopted in the proof of Theorem 1.3 of Bougerol and Picard (1992a).

Suppose that Eq. (21) admits a unique strictly stationary and ergodic solution and let nS t,i =
∏n−1

j=0 A∗
t,i− j

, for n > 0,

and 0S t,i = 1, for n = 0. It is easy to show, by repeated substitutions, that

y0,0 = kS 0,0y0,−k +

k−1
∑

n=0

nS 0,0B∗0,−n. (23)

From the positivity of the components on both sides of (23) it follows that
∑k−1

n=0 nS 0,0B∗
0,−n
≤ y0,0, a.s. for any k.

Convergence of this summation, in turn, implies that a.s. limn→∞ nS 0,0B∗
0,−n
= 0. Letting {e1, e2, . . . , eKd I} be the

canonical basis of RKd I , this also implies limn→∞ ỹ0,−n nS 0,0 e1 = 0. Moreover, for i = 1, . . . ,KdI − 1, the following

relation holds

nS 0,0ei =n−1 S 0,0(θ∗ỹ0,−n+1HD + F)ei =
(

θ∗ψ∗i ỹ0,−n+1

)

n−1S 0,0e1 + n−1S 0,0ei+1, (24)

while, for i = KdI, we have

nS 0,0eKd I =
(

θ∗ ψ∗Kd I ỹ0,−n+1

)

n−1S 0,0 e1. (25)

Eq. (25) and Eq. (24) can be recursively applied to prove that limn→∞ nS 0,0ei = 0, a.s. for i = 1, . . . ,KdI. It follows

that limn→∞ nS 0,0 = 0, a.s.. Finally, Lemma 3.4 in Bougerol and Picard (1992b) applies to prove that γ(A∗) < 0. This

completes the proof.
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4. Inference

4.1. The Zero-Augmented Generalized F distribution

Multiplicative Error Models are usually estimated by QMLE, assuming that the density of the innovation term follows

a Gamma distribution or one of its generalisations or special cases. However, when dealing with non-liquid assets,

these distributions cannot account for a point mass at zero, as the corresponding log-likelihood functions exclude

zero realizations, with the exception of the Exponential distribution, that can be obtained as a particular case of the

Gamma. The specification of an Exponential distribution for εt,i is a natural choice, as this distribution can be seen

as the counterpart of the Normal distribution for positive-valued random variables. Under the assumption of correct

specification of the conditional mean function, maximisation of the Exponential quasi log-likelihood function leads

to consistent and asymptotically normal estimates of the conditional mean parameters. A formal derivation of this

result, relying on the work of Lee and Hansen (1994) for GARCH models, can be found in Engle and Russell (1998)

or Engle (2002).

However, the continuous nature of the Exponential distribution implies that the proportion of zeros must be trivial

to avoid misspecification at the lower boundary of the support. It follows that, in the presence of zero observations,

the Generalized Method of Moments (GMM) can be a valid alternative estimation strategy, as discussed in Brownlees

et al. (2011), since it does not require the adoption of a specific density function for the innovation term.

In general, both Exponential-QML and GMM can yield consistent estimates of conditional mean parameters, but these

become quite inefficient in the presence of a high proportion of zeros. To address this problem Hautsch et al. (2014)

proposed an alternative estimation strategy based on the introduction of what they call Zero-Augmented Generalized

F (ZAF) distribution. Their results provide evidence that, in the presence of a non-trivial proportion of zero outcomes,

MLE based on the ZAF distribution allows to overcome the potential inconsistency of the standard QMLE and, in any

case, to obtain substantial efficiency gains over the latter.

Following Hautsch et al. (2014), consider a non-negative random variable Z, assigning a discrete probability mass

to exact zero values as follows

π = P(Z > 0), (1 − π) = P(Z = 0), (26)

with 0 ≤ π ≤ 1. We will say that the variable Z follows a ZAF distribution if, conditionally on Z > 0, it is distributed

as a Generalized F distribution with density function

g(z; ζ) =
azab−1[c + (z/ν)a](−c−b) cc

νab B(b, c)
, (27)

where ζ = (a, b, c, ν)′, B(·, ·) is the Beta function with B(b, c) = [Γ(b)Γ(c)]/Γ(b + c), a > 0, b > 0, c > 0 and ν > 0.

The Generalized F distribution is based on a scale parameter ν and three shape parameters a, b and c, thus it is very

flexible, nesting different error distributions, such as the Weibull for b = 1 and c → ∞, the Generalized Gamma for

c→ ∞ and the Log-Logistic for b = 1 and c = 1 (Hautsch, 2003).

The overall ZAF distribution is semi-continuous with density function given by

fZ(z) = (1 − π)η(z) + πg(z)I(z>0), (28)

where I(z>0) denotes an indicator function taking the value 1 for z > 0 and 0 elsewhere. It can be easily noted that the

ZAF density reduces to the Generalized F for π = 1.

The moments of the ZAF distribution are given by

E[Zr] = πE[Zr |Z > 0] + (1 − π)E[Zr |Z = 0] = πνrcr/a Γ(b + r/a)Γ(c − r/a)

Γ(b)Γ(c)
, r < ac. (29)

In order to use the ZAF distribution as a probabilistic model for the error term εt,i in the MEM structure in (1), it is

necessary to set ν = (πξ)−1 to ensure that the unit mean assumption for εt,i is fulfilled and

ξ = c1/a [Γ(b + 1/a)Γ(c − 1/a)] [Γ(b)Γ(c)]−1 . (30)
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4.2. The Dynamic Zero-Augmented Generalized F distribution

The presence of zero volumes is very common in high frequency trading and, thus, their behaviour needs to be

modelled. As discussed above, this can be done using the ZAF distribution. However, there could be cases in which

it is not reasonable to assume that the value of the trading probability is constant over time. In particular, this is likely

to occur if the time interval under investigation is sufficiently long and characterised by the alternance of periods

featuring remarkably different volatilities and trading intensities. To account for the presence of time-varying zero

probabilities, Hautsch et al. (2014) proposed a dynamic version of the ZAF distribution, that is the Dynamic Zero-

Augmented Generalized F (DZAF). Assuming a DZAF distribution for εt,i is equivalent to assume that the trading

probability, which is the probability of observing non-zero volumes, is time-varying. Namely,

πt,i = P(εt,i > 0|Ft,i−1) = P(εt,i|Ht,i−1) = π(Ht,i−1,ϑπ),

whereHt,i−1 ⊂ Ft,i−1 and ϑπ the parameter vector characterising πt,i.

Now, let It,i be a binary trade indicator taking value 1 if εt,i > 0 and 0 otherwise. The time-varying probability

πt,i can be modelled by means of a logistic function of the kind

πt,i =
exp(ht,i)

1 + exp(ht,i)
, (31)

where ht,i is assumed to follow the Autoregressive Conditional Multinomial (ACM) specification proposed by Russell

and Engle (2005)

ht,i = ̟ + δ1st,i−1 + γ1ht,i−1, (32)

with st,i being a standardised trade indicator

st,i =
It,i − πt,i

√

πt,i(1 − πt,i)
. (33)

Since {st,i} is a martingale difference with zero mean and unit variance, it follows that {ht,i} is an ARMA process with

a weak white noise error term, resulting stationary if |γ1|< 1.

The main consequence related to the time-varying zero probability assumption is that the error terms εt,i lose the

i.i.d. property since, conditionally on the information set Ht,i−1, they become independently but not identically dis-

tributed. In this case, the conditional density of εt,i|Ht,i−1 is then given by

fε(εt,i|Ht,i−1) = (1 − πt,i)η(εt,i) + πt,igε(εt,i)I(εt,i>0). (34)

It is worth remarking that, under the assumption of DZAF errors, Assumption A1 is not fulfilled implying that Pro-

positions 1-3 cannot be immediately extended to the models with DZAF errors illustrated in this section.

4.3. Two stage estimation procedure

The estimation of the H-MIDAS-CMEM model is performed in two stages. In the first stage, the parameters of

the Fourier Flexible Form specified in (3) for the seasonal factors φi are estimated by an OLS regression of the raw

volumes xt,i on the regressors on the RHS of Eq. (3). The seasonal adjusted volumes ŷt,i are estimated as xt,i/φ̂i, where

φ̂i is the estimated seasonal factor for the i-th intra-daily period. In the second stage, conditional on the estimated

seasonal factors, the unknown parameters in gt,i and τt,i are estimated by maximising likelihood functions based on

the assumptions of ZAF or DZAF errors.

We now move to deriving the second-stage likelihood functions under the ZAF and DZAF assumptions on the con-

ditional distribution of εt,i. In the ZAF case, the second stage log-likelihood function for ŷt,i = xt,i/φ̂i, based on the

density in (28), is given by

L(y;ϑ, π) = nz log(1 − π) + nnz log π +
∑

t,i∈Jnnz

{

log a + (ab − 1) log

(

ŷt,i

τt,i gt,i

)

+ c log c

−(c + b) log

[

c +

(

πξŷt,i

τt,i gt,i

)a]

− log(τt,i gt,i) − logB(b, c) + ab log(πξ)

}

,

(35)
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whereJnnz
denotes the set of all observations different from zero, while nz and nnz are the number of zero and non-zero

observations respectively, with ϑ = (ϑ′g,ϑ
′
τ, a, b, c)′.

Similarly, in the DZAF case, the log-likelihood for ŷt,i, based on the density function in (34), can be written as

L(y;ϑ,ϑπ) =
∑

t,i

It,i log(πt,i) + (1 − It,i) log(1 − πt,i) +
∑

t,i∈Jnnz

{

log a + (ab − 1) log

(

ŷt,i

τt,i gt,i

)

+ c log c

−(c + b) log

[

c +

(

πt,iξŷt,i

τt,i gt,i

)a]

− log(τt,i gt,i) − logB(b, c) + ab log(πt,iξ)

}

,

(36)

where ξ is defined as in (30).

Since a two-stage estimation approach is used, when computing the standard errors of the second stage estimates

obtained through the maximisation of (35) and (36), the uncertainty arising from the first stage should be accounted

for.

This can be conveniently done representing the overall estimation problem as a two stage just-identified GMM

estimator, as in Engle and Sokalska (2012). The model parameter vector can be partitioned as λ′ =
(

a′, θ′
)

, where

θ′ =
(

ϑ′,ϑ′π
)

and a is the vector of first stage parameters estimated in the regression model in (3). The moment

conditions for the estimation of a are recovered from the normal equations of the OLS estimator of the regression

model used for the first stage estimation of seasonal coefficients

u
(N)

j
=

1

N

T
∑

t=1

I
∑

i=1

uti, j = 0,

with

uti, j =
∂

∂a j

(xt,i − φi)
2, j = 1, . . . , k1,

where φi is defined as in (3) and k1 is the number of first stage parameters in a.

In a similar fashion, the second stage moment conditions for the estimation of the elements of θ, are given by the

score equations of the second stage log-likelihood

s
(N)

ℓ
=

1

N

T
∑

t=1

I
∑

i=1

sti,ℓ = 0,

with

sti,ℓ =
∂

∂θℓ
Lti, ℓ = 1, . . . , k2

where Lti = L(yt,i; θ|a) is the contribution of observation i of day t to the overall likelihood and k2 is the number

of second stage parameters in θ. Letting u(a) =
(

u
(N)

1
, . . . , u

(N)

k1

)′
and s(θ, a) =

(

s
(N)

1
, . . . , s

(N)

k2

)′
, the overall vector of

averaged moment conditions is denoted by

w(θ, a) =
(

u(a)′, s(θ, a)′
)′
.

Estimation is then performed in two steps. First, we solve u(a) = 0 with respect to a and obtain â, which is the OLS

estimator of the first stage parameters. Second, conditional on first stage estimates, we solve s(θ, â) = 0 with respect

to θ and obtain the estimator of second stage parameters θ̂. By Theorem 6.1 in Newey and McFadden (1994), if the

usual conditions for the consistency of the OLS estimator of a (â) hold, assuming that the yt,i are strictly stationary

and ergodic, the consistency of θ̂ will follow under standard regularity conditions and the overall GMM estimator λ̂

will be asymptotically normal √
N

(

λ̂ − λ0

) d−→Nk1+k2

(

0,W−1Ω
(

W−1
)′)
,
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where λ0 denotes the vector of true unknown model parameters,

W = E

[

∂wti(λ)

∂λ′

]

and

Ω = E
[

wti(λ)wti(λ)′
]

,

where wti = (u′
ti
, s′

ti
)′, with uti = (uti,1, . . . , uti,k1

)′ and sti = (sti,1, . . . , sti,k2
)′. Furthermore, the matrix W has the

following block structure

W = E

[

∂uti/∂a′ 0

∂sti/∂a′ ∂sti/∂θ
′

]

.

As in Hansen (1982), the matrices W and Ω can be consistently estimated replacing the expectations with sample

means evaluated at λ̂ and numerically evaluating the derivatives involved in W. In this way, it is possible to obtain

consistent estimates of the standard errors of θ̂ that take into account uncertainty in the estimation of a.

Finally, it is worth dedicating some considerations to the identification of model parameters. The multiplicative com-

ponent structure makes our model naturally prone to the rise of potential identification problems. Namely, without

imposing adequate parametric constraints, the scale parameter of the error distribution ν (νt,i in the DZAF case),

(ω∗, α j) ( j ≥ 0), in the specification of gt,i, and (m, θd, θh), in the specification of τt,i, would not be simultaneously

identifiable. In order to overcome this problem, in addition to the positivity constraints in A2 and A3, we impose that

1. ν = (πξ)−1 (νt,i = (πt,iξ)
−1, ∀t, i, in the DZAF case), ensuring E(εt,i) = 1;

2. under the assumption of mean stationarity of gt,i in (13), ω∗ is parameterised as in (18) ensuring E(gt,i) = 1.

Additional threats to identification could come from the long-run component τt,i. While joint identifiability of the

slope coefficients (θd, θh) and weighting function parameters (ωd,ωh) is guaranteed by assuming that the MIDAS

weights sum up to 1 (see Eq. (7)), it should be mentioned that the parameters of the weighting function in the MIDAS

filters in τt,i become unidentified when the corresponding slope parameters (θd and θh) are equal to 0 that is however

ruled out by Assumption A3. It should be further noted that this problem is not specific to our modelling approach

and it is well known in the literature on MIDAS models. Its implications for testing hypotheses of the kind θd = 0 or

θh = 0 are discussed in Ghysels et al. (2006), who also present alternative approaches for adjusting the test statistic

and associated p-values.

In general, the complex structure of the proposed model makes the derivation of a formal proof of identifiability

a complicated task. However, it should be remarked that, for all the series considered, the likelihood optimisation

procedure always returns well defined solutions associated to positive definite estimated information matrices, thus

providing empirical support to the local identifiability of the fitted models (Rothenberg, 1971). In addition, in order

to safeguard against the presence of multiple local maxima, we performed estimation starting from different initial

conditions, without experiencing dependence of the final estimates on the chosen set of initial parameter values.

5. Empirical application

5.1. Data description

The high frequency trading volume data used in our analysis refer to the stocks Beiersdorf (BEI), a personal-care

company, Continental (CON), a manufacturing company specialised in tyres, brake systems and other vehicles parts,

Deutsche Telekom (DTE), one of the most important telecommunications company in Europe, GEA Group (G1A),

one of the largest suppliers of equipment and process technology, mainly for the food industry, Salzgitter (SZG), a

leading steel manufacturing company, and Volkswagen (VOW), a multinational manufacturers of automobiles and

commercial vehicles. These assets are all traded on the Xetra Market in the German Stock Exchange. The raw tick-

by-tick volume data have been filtered employing the procedure described in Brownlees and Gallo (2006) considering

regular trading hours from 9:00 am to 5:30 pm. The filtered volumes have been aggregated over 10-minutes intervals,

which means 51 observations per day. The empirical analysis covers the period between 2 January 2009 and 27
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December 2012 including 1017 trading days and 51867 intra-daily observations for each stock. The time plots of the

six time series of 10-minute trading volumes have been reported in the online Empirical Appendix (Figure 8).

Figure 1 displays the intraday seasonal component estimated via the Fourier Flexible Form defined in Eq. (3). As

expected, the average trading intensity varies across trading hours giving rise to a typical U-shaped pattern. This is

consistent with the well known stylised fact by which time between trades tends to be shorter near the open and the

close of the trading day than in the middle of the day, as documented in Engle and Russell (1998).

Figure 1: Estimated intra-daily periodic component for regular trading hours: 9:00 am – 5:30 pm

Table 1: Summary Statistics

Ticker Zero% Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev. ρ̂1 ρ̂51

BEI 0.064 0.000 2144 3818 5249 6650 135800 5176.852 0.663 0.349

CON 0.792 0.000 1590 3049 4143 5380 117600 4149.137 0.647 0.306

DTE 0.014 0.000 64840 103200 132400 165100 2088000 108350.631 0.690 0.407

G1A 0.251 0.000 2734 5251 7732 9878 134100 8082.502 0.605 0.398

SZG 0.102 0.000 1468 2758 3831 5022 87830 3570.694 0.643 0.406

VOW 0.390 0.000 731 1488 2282 2853 55680 2690.027 0.691 0.374

BEI 0.064 0.000 0.461 0.763 1.000 1.232 29.630 0.953 0.627 0.223

CON 0.792 0.000 0.425 0.770 1.000 1.281 22.360 0.957 0.605 0.211

DTE 0.014 0.000 0.551 0.820 1.000 1.221 22.930 0.754 0.629 0.233

G1A 0.251 0.000 0.398 0.709 1.000 1.250 16.440 1.004 0.546 0.292

SZG 0.102 0.000 0.428 0.749 1.000 1.297 26.480 0.882 0.579 0.293

VOW 0.390 0.000 0.356 0.687 1.000 1.258 34.360 1.123 0.644 0.259

Summary statistics of 10 minute raw (top panel) and seasonally adjusted (bottom panel) trading volumes. Zero%: Percentage of zero observa-

tions; Min.: Minimum; 1st Qu.: First Quartile; Median; Mean; 3rd Qu.: Third Quartile; Max.: Maximum; Std. Dev.: Standard Deviation; ρ̂1:

Autocorrelation at lag 1; ρ̂51: Autocorrelation at the lag 51 (1 day). Sample period: 02 Jan 2009 - 27 Dec 2012.

Descriptive statistics of the raw (top-panel) and seasonally adjusted (bottom-panel) 10-minute trading volumes are

shown in Table 1. An important feature of the data is the presence of non-trading intervals leading to zero volumes

with frequency ranging from 0.0135% to 0.7924%, for DTE and CON respectively. Dividing the data by the estimated

periodic component, trading volumes are rescaled to have unit mean.
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The last two columns of Table 1 report the values of the sample autocorrelation at the lags 1 and 51 (1 day).

The seasonal adjusted volumes, as it is also evident from Figure 2, are still characterised by a highly persistent

autocorrelation structure featuring a decay pattern apparently much slower than what implied by the assumption of

exponential decay.

Figure 2: Autocorrelation function of seasonally adjusted volumes

5.2. In sample estimation results and model diagnostics

In this section we fit a H-MIDAS-CMEM to the time series of trading volumes for the stocks BEI, CON, DTE, G1A,

SZG and VOW, comparing its in-sample performances to those of a number of alternative specifications. All the

models are based on seasonally adjusted volumes constructed from the same estimated φi component with Q = 2 and

P = 6, identified according to the BIC. This result is in line with the findings in Andersen et al. (2000). Also, for

the sake of parsimony, following a common practice in the literature on MIDAS models, we impose the following

constraints on the parameters of the Beta weighting function in Eq. (7): ω1,d = ω1,h = 1; ω2,d > 1 and ω2,h > 1. This

choice returns weight sequences that are monotonically decreasing over the lags.

As benchmarks we have considered the standard MEM, the CMEM of Brownlees et al. (2011), with

τt = m + α1,d ȳt−1 + β1,d τt−1

and a standard Corsi-style HAR-CMEM specification, with

τt = m + β1,d ȳt−1 + β1,w ȳt−1:t−5 + β1,m ȳt−1:t−20,

where ȳt = I−1
∑I

i=1 yt,i, ȳt−1:t−5 =
∑5

j=1 ȳt− j and ȳt−1:t−20 =
∑20

j=1 ȳt− j are the daily, weekly and monthly average

volumes, respectively. In addition, we consider the homogeneous version of the H-MIDAS-CMEM, denoted as

MIDAS-CMEM, where the long term component is specified as in (6) and only includes a daily MIDAS filter.

The model parameters have been estimated using two different specifications of the second stage log-likelihood

based on the ZAF and DZAF distributions, respectively. For the specifications with ZAF errors, the estimated model

configuration has been selected to minimise the BIC over a grid of values ranging from 1 to 2, for the orders r and s

of the short term component gt,i, and from 200 to 500, with step equal to 20, for the number of daily MIDAS lags Kd.

Table 2 reports the selected number of lags for models featuring a MIDAS-type long-run component. In the DZAF

case, in order to more easily assess the impact of assuming a time-varying probability, we keep the same model struc-

ture identified for models with ZAF errors.
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Table 2: Values of Kd minimising the BIC criterion for the MIDAS-CMEM and H-MIDAS-CMEM fitted to the time

series of trading volumes on six German stocks traded on the Xetra Market. Kd denotes the maximum daily lag

covered by the filter.

BEI CON DTE G1A SZG VOW

MIDAS 240 440 300 320 380 260

H-MIDAS 240 460 320 300 380 240

Table 3 reports the parameter estimates obtained under the assumption of constant trading probability (ZAF). Coeffi-

cients that are not significant at the usual 5% significance level are reported in bold. Similarly, parameter estimates

obtained under the assumption of time-varying trading probability (DZAF) are reported in Table 4. In both cases the

estimates are based on the full available sample 2009-2012. The associated standard errors can be found in the online

Empirical Appendix in tables 11 and 12, respectively. It is worth noting that standard errors for ω∗ are missing due to

the fact that this parameter is estimated through expectation targeting.

In general, we find that all the parameters are significantly different from zero with a few exceptions. Namely,

the dummy coefficient of the short term component α0 is always significant only for the DTE series while, for CON,

we manage to reject the null α0 = 0 only for the H-MIDAS-CMEM. For the other series the estimated α0 is never

significantly different from zero. The trend intercept m is not significant for the H-MIDAS-CMEM fitted to CON and

the CMEM fitted to G1A.

Focusing on the short term component parameters, we note that the α1 and β1 coefficients tend to assume values

remarkably close across different assets and models. Differently, probably due to the inclusion of the additional higher

frequency MIDAS filter, the value of the estimated β2 tends to take lower values for the H-MIDAS-CMEM model.

When analysing the estimates obtained for the trend parameters, three main facts arise. First, the values of ωd and ωh,

the shape parameters of the Beta weighting function, are substantially varying across assets. Second, the value of the

estimated ωd substantially decreases as the hourly filter is added to the model, that is when we move from the MIDAS-

MEM to the H-MIDAS-CMEM. This means that the introduction of the hourly filter has the effect of increasing the

memory of the daily one. Third, in the H-MIDAS-CMEM, as expected, we always find ωd < ωh, implying that the

weights of the daily filter are more slowly decaying than those involved in the hourly filter. Finally, looking at the

fitted error distributions, the estimates of the static ZAF parameters appear quite stable across different models, while

their variation across assets is more pronounced. Furthermore, it is worth noting that the estimated parameter π of the

ZAF distribution is very close to the empirical frequency of non-zero outcomes π̂ = N−1
∑N

i=1 I(yt,i>0).

Similar considerations apply to the estimates based on the Dynamic ZAF distribution in Table 4. In general, the

estimates of the intra-daily, trend and distribution parameters a, b and c are very close to those in Table 3 based on

the static ZAF distribution. Also, it is important to remark that the estimates of the parameters of the time-varying

probability πt,i are always significant with the exception of the intercept ̟ for the MIDAS-CMEM fitted to the stock

G1A. Moreover, the estimated value of γ1 is always < 1 in module, suggesting stationarity of the fitted ACM model

for {ht,i}.

Table 5 reports the BIC and log-likelihood values of the fitted models. The BIC values recorded for the simple

MIDAS-CMEM and H-MIDAS-CMEM are always remarkably lower than those of the competing models, with the

H-MIDAS-CMEM returning the lowest values. The CMEM and HAR-CMEM are characterised by similar perform-

ances, while the standard MEM seems to be the weakest competitor in terms of BIC values. These findings enhance

the empirical evidence in favour of the hypothesis that trading volumes tend to cluster around a time-varying lower

frequency component, thus providing support for the use of component models. Table 5 also allows to compare

the ZAF and DZAF specifications in terms of in-sample fit. Namely, this is explicitly done in the last two columns,

reporting the gains in terms of log-likelihood and BIC values obtained using the DZAF and ZAF distributions, respect-

ively. Despite the relatively low number of zero-volumes, the use of the DZAF produces a noticeable improvement in

terms of both log-likelihood and BIC. Positive values of L− = L(DZAF) − L(ZAF) indicate that the log-likelihood

provided by the DZAF distribution is higher than the one obtained using the ZAF. On the other hand, the negative

sign of BIC− = BIC(DZAF) − BIC(ZAF) indicates that the BIC is lower for the DZAF-models rather than for the

ZAF-models.
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Table 3: In sample parameter estimates based on the ZAF distribution

Intra-daily parameters Trend parameters ZAF parameters

Ticker Model ω∗ α1 α0 β1 β2 m α1,d β1,d β1,w β1,m θd θh ωd ωh a b c π†

BEI

MEM 0.042 0.304 -0.005 0.345 0.309 - - - - - - - - - 3.189 0.738 1.185 99.93

CMEM 0.087 0.305 -0.029 0.350 0.257 0.094 0.220 0.675 - - - - - - 3.184 0.740 1.213 99.92

HAR 0.081 0.304 0.078 0.312 0.302 0.287 - 0.205 0.325 0.151 - - - - 3.406 0.676 1.099 99.93

MIDAS 0.151 0.300 -0.061 0.336 0.213 0.178 - - - - 0.016 - 222.223 - 3.241 0.726 1.185 99.92

H-MIDAS 0.236 0.290 -0.095 0.325 0.149 0.126 - - - - 0.006 0.032 130.721 732.985 3.198 0.738 1.213 99.92

CON

MEM 0.066 0.341 1.284 0.318 0.275 - - - - - - - - - 3.093 0.951 1.368 99.96

CMEM 0.096 0.361 1.092 0.306 0.237 0.064 0.221 0.726 - - - - - - 3.088 0.973 1.321 99.96

HAR 0.090 0.353 0.265 0.359 0.198 0.136 - 0.195 0.314 0.403 - - - - 3.240 0.914 1.218 99.96

MIDAS 0.156 0.360 0.317 0.288 0.197 0.202 - - - - 0.016 - 407.385 - 3.181 0.937 1.264 99.96

H-MIDAS 0.213 0.344 0.905 0.309 0.133 0.019 - - - - 0.006 0.041 36.807 880.684 3.062 1.007 1.352 99.97

DTE

MEM 0.050 0.356 0.803 0.267 0.327 - - - - - - - - - 3.152 1.348 1.436 99.98

CMEM 0.102 0.356 0.971 0.253 0.289 0.056 0.193 0.745 - - - - - - 3.098 1.372 1.538 99.98

HAR 0.100 0.356 1.113 0.262 0.282 0.246 - 0.212 0.255 0.251 - - - - 3.227 1.284 1.453 99.98

MIDAS 0.170 0.349 1.737 0.252 0.229 0.166 - - - - 0.016 - 336.148 - 3.074 1.397 1.560 99.98

H-MIDAS 0.245 0.343 1.839 0.237 0.175 0.092 - - - - 0.004 0.040 82.794 756.965 3.161 1.347 1.495 99.98

G1A

MEM 0.025 0.303 0.005 0.341 0.331 - - - - - - - - - 3.248 0.655 1.076 99.78

CMEM 0.075 0.304 -0.010 0.350 0.271 0.005 0.090 0.907 - - - - - - 3.374 0.624 1.061 99.79

HAR 0.089 0.307 -0.034 0.370 0.235 0.075 - 0.230 0.247 0.444 - - - - 3.373 0.620 1.056 99.79

MIDAS 0.155 0.300 -0.035 0.373 0.172 0.096 - - - - 0.017 - 346.460 - 3.401 0.615 1.053 99.79

H-MIDAS 0.219 0.294 -0.042 0.355 0.133 0.029 - - - - 0.005 0.041 30.405 602.523 3.407 0.614 1.048 99.79

SZG

MEM 0.033 0.301 0.008 0.380 0.286 - - - - - - - - - 2.520 0.930 1.511 99.85

CMEM 0.091 0.292 -0.006 0.382 0.234 0.051 0.195 0.738 - - - - - - 2.606 0.885 1.511 99.85

HAR 0.086 0.289 0.006 0.377 0.248 0.151 - 0.152 0.410 0.245 - - - - 2.579 0.900 1.533 99.85

MIDAS 0.152 0.287 0.015 0.378 0.183 0.151 - - - - 0.016 - 377.033 - 2.615 0.884 1.503 99.85

H-MIDAS 0.218 0.279 0.007 0.366 0.137 0.050 - - - - 0.004 0.042 12.822 720.472 2.657 0.866 1.468 99.85

VOW

MEM 0.023 0.295 0.030 0.360 0.323 - - - - - - - - - 2.902 0.618 1.111 99.50

CMEM 0.093 0.308 0.023 0.355 0.244 0.018 0.181 0.798 - - - - - - 2.972 0.600 1.106 99.49

HAR 0.094 0.308 0.019 0.355 0.244 0.084 - 0.182 0.409 0.308 - - - - 2.971 0.600 1.107 99.50

MIDAS 0.167 0.304 0.038 0.338 0.191 0.096 - - - - 0.017 - 295.705 - 2.971 0.598 1.102 99.48

H-MIDAS 0.273 0.294 0.031 0.320 0.113 0.032 - - - - 0.006 0.037 36.004 796.936 3.005 0.595 1.094 99.49

Parameter estimates for the full sample period 02 Jan 2009 - 27 Dec 2012. In bold coefficients not significant at 5%. π†(† : ×102)
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Table 4: In sample parameter estimates based on the Dynamic ZAF distribution

Intra-daily parameters Trend parameters DZAF parameters

Ticker Model ω∗ α1 α0 β1 β2 m α1,d β1,d β1,w β1,m θd θh ωd ωh a b c ̟ δ1 γ1

BEI

MEM 0.041 0.302 -0.018 0.353 0.304 - - - - - - - - - 3.165 0.747 1.192 0.469 0.107 0.938

CMEM 0.087 0.305 -0.034 0.351 0.257 0.096 0.224 0.669 - - - - - - 3.167 0.745 1.222 0.477 0.108 0.936

HAR 0.084 0.305 -0.026 0.347 0.264 0.267 - 0.190 0.350 0.162 - - - - 3.181 0.740 1.214 0.488 0.108 0.935

MIDAS 0.159 0.299 -0.073 0.339 0.203 0.184 - - - - 0.015 - 281.754 - 3.189 0.741 1.214 0.464 0.108 0.938

H-MIDAS 0.235 0.290 -0.109 0.325 0.149 0.124 - - - - 0.006 0.032 129.749 731.739 3.208 0.735 1.207 0.479 0.108 0.936

CON

MEM 0.066 0.345 0.262 0.285 0.304 - - - - - - - - - 3.111 0.945 1.355 0.284 0.092 0.967

CMEM 0.095 0.362 0.195 0.303 0.241 0.037 0.194 0.779 - - - - - - 3.216 0.920 1.236 0.356 0.100 0.958

HAR 0.095 0.360 0.197 0.303 0.241 0.120 - 0.201 0.390 0.327 - - - - 3.189 0.929 1.254 0.361 0.097 0.958

MIDAS 0.158 0.357 0.159 0.292 0.192 0.189 - - - - 0.016 - 418.442 - 3.195 0.930 1.256 0.338 0.100 0.960

H-MIDAS 0.215 0.351 0.302 0.288 0.147 0.026 - - - - 0.006 0.041 36.249 883.925 3.153 0.969 1.289 0.365 0.103 0.958

DTE

MEM 0.048 0.356 8.311 0.271 0.324 - - - - - - - - - 3.096 1.383 1.478 4.218 1.000 0.589

CMEM 0.099 0.351 2.052 0.265 0.285 0.061 0.188 0.743 - - - - - - 3.102 1.368 1.538 2.756 0.376 0.725

HAR 0.102 0.359 2.141 0.259 0.279 0.218 - 0.213 0.385 0.158 - - - - 3.048 1.403 1.576 4.584 0.922 0.573

MIDAS 0.170 0.349 2.455 0.252 0.229 0.168 - - - - 0.016 - 345.092 - 3.115 1.370 1.526 4.434 0.989 0.580

H-MIDAS 0.249 0.342 2.949 0.236 0.173 0.092 - - - - 0.005 0.039 92.903 811.213 3.130 1.367 1.518 3.518 0.469 0.667

G1A

MEM 0.025 0.301 -0.001 0.369 0.305 - - - - - - - - - 3.349 0.628 1.028 0.145 0.118 0.978

CMEM 0.084 0.304 -0.026 0.379 0.233 0.011 0.153 0.837 - - - - - - 3.343 0.627 1.069 0.158 0.115 0.976

HAR 0.088 0.307 -0.038 0.370 0.236 0.075 - 0.231 0.251 0.441 - - - - 3.375 0.619 1.056 0.150 0.113 0.977

MIDAS 0.154 0.301 -0.040 0.364 0.181 0.092 - - - - 0.017 - 334.527 - 3.372 0.621 1.067 0.116 0.109 0.982

H-MIDAS 0.227 0.293 -0.056 0.350 0.131 0.017 - - - - 0.005 0.042 16.616 633.438 3.397 0.616 1.054 0.129 0.110 0.980

SZG

MEM 0.033 0.301 -0.007 0.382 0.284 - - - - - - - - - 2.709 0.847 1.335 0.220 0.133 0.969

CMEM 0.091 0.292 -0.030 0.381 0.235 0.052 0.199 0.732 - - - - - - 2.611 0.882 1.507 0.211 0.132 0.970

HAR 0.087 0.292 -0.029 0.380 0.241 0.174 - 0.148 0.436 0.189 - - - - 2.614 0.881 1.504 0.212 0.131 0.970

MIDAS 0.153 0.287 -0.023 0.376 0.184 0.153 - - - - 0.015 - 398.392 - 2.632 0.876 1.489 0.203 0.132 0.971

H-MIDAS 0.219 0.279 -0.031 0.366 0.136 0.049 - - - - 0.004 0.042 14.204 726.970 2.654 0.867 1.471 0.209 0.134 0.970

VOW

MEM 0.023 0.293 0.019 0.360 0.324 - - - - - - - - - 2.893 0.620 1.119 0.195 0.152 0.965

CMEM 0.092 0.307 0.004 0.355 0.246 0.018 0.184 0.796 - - - - - - 2.982 0.597 1.102 0.199 0.149 0.964

HAR 0.092 0.307 0.001 0.361 0.240 0.080 - 0.181 0.409 0.319 - - - - 2.971 0.600 1.106 0.186 0.146 0.967

MIDAS 0.150 0.304 0.009 0.344 0.202 0.080 - - - - 0.018 - 186.774 - 2.988 0.593 1.094 0.201 0.150 0.964

H-MIDAS 0.271 0.294 0.002 0.324 0.111 0.030 - - - - 0.006 0.037 37.898 795.040 3.012 0.592 1.092 0.179 0.145 0.968

Parameter estimates for the full sample period 02 Jan 2009 - 27 Dec 2012. In bold coefficients not significant at 5%. For ω∗ the average value is shown.
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Table 5: Log-likelihood and BIC values for models based on the ZAF and DZAF distributions

LZAF BICZAF LDZAF BICDZAF L− BIC−

BEI

MEM -20939.5 41963.7 -20907.7 41921.3 31.8 -42.4

CMEM -20798.6 41713.6 -20767.4 41672.4 31.2 -41.2

HAR -20822.9 41772.8 -20781.6 41711.5 41.2 -61.3

MIDAS -20689.9 41496.3 -20656.4 41450.4 33.6 -45.9

H-MIDAS -20666.2 41470.0 -20635.0 41428.9 31.2 -41.1

CON

MEM -18856.7 37795.7 -18811.4 37725.8 45.2 -69.9

CMEM -18722.7 37558.5 -18678.1 37489.9 44.6 -68.6

HAR -18724.6 37572.7 -18678.8 37501.6 45.9 -71.2

MIDAS -18655.5 37424.2 -18613.6 37361.0 41.9 -63.2

H-MIDAS -18624.0 37381.2 -18581.0 37315.8 43.0 -65.4

DTE

MEM -11050.4 22184.9 -10995.3 22095.7 55.1 -89.2

CMEM -10916.7 21949.0 -10861.9 21860.4 54.8 -88.6

HAR -10936.1 21998.2 -10876.8 21900.6 59.3 -97.6

MIDAS -10820.1 21755.8 -10765.0 21666.5 55.2 -89.3

H-MIDAS -10771.0 21678.2 -10714.3 21585.8 56.7 -92.4

G1A

MEM -14257.1 28598.2 -14186.3 28477.7 70.8 -120.5

CMEM -14045.5 28206.5 -13973.6 28083.8 71.9 -122.7

HAR -14045.3 28216.6 -13979.8 28106.7 65.4 -109.9

MIDAS -13971.1 28057.5 -13907.3 27950.8 63.8 -106.7

H-MIDAS -13935.6 28007.8 -13866.2 27890.0 69.4 -117.7

SZG

MEM -11786.7 23656.5 -11709.8 23523.4 76.9 -133.0

CMEM -11650.3 23414.9 -11576.7 23288.5 73.6 -126.3

HAR -11654.9 23434.4 -11580.5 23306.5 74.3 -127.9

MIDAS -11583.1 23280.4 -11509.0 23153.1 74.0 -127.3

H-MIDAS -11558.2 23251.5 -11485.1 23126.0 73.2 -125.5

VOW

MEM -19289.3 38663.4 -19172.2 38450.3 117.1 -213.1

CMEM -19005.0 38126.5 -18891.4 37920.5 113.6 -206.0

HAR -19010.1 38147.3 -18897.0 37942.3 113.1 -205.0

MIDAS -18945.3 38006.9 -18822.3 37782.0 123.0 -224.9

H-MIDAS -18876.5 37890.7 -18761.4 37681.5 115.2 -209.2

The table reports the log-likelihoods of models estimated using the ZAF (LZAF ) and DZAF (LDZAF ) distributions; BICs for ZAF (BICZAF ) and

DZAF (BICDZAF ); the gains in log-likelihood and BIC obtained using the DZAF rather than the ZAF distribution. L−: L(DZAF) − L(ZAF),

positive values are in favour of DZAF ; BIC−: BIC(DZAF) − BIC(ZAF), negative values are in favour of DZAF.

Next, we look at residual diagnostics. For ZAF based models, the autocorrelations of the estimated residuals ε̂t,i

are reported in the left panel of Table 6 with values in boldface indicating a significant Ljung-Box Q-statistic at the

same lag. In general, before moving to the discussion of results, it should be noted that, although the residual auto-

correlations yielded by the (H)-MIDAS-CMEM and the other fitted models always take values in module very close

to zero, the huge number of intra-daily observations makes the test extremely sensitive to deviations from the null

hypothesis of white noise errors. More in detail, we find that the only models not exhibiting lack of fit at lag 1 are the

MIDAS-CMEM and the H-MIDAS-CMEM. The white noise hypothesis is however almost always rejected at higher

lags with two exceptions: the H-MIDAS-CMEM fully captures the residual autocorrelations for SZG, while for CON

this happens at lags 1 and 51 (1-day), leaving some noise in the middle of the trading day. The middle panel of Table 6

reports the sample autocorrelations of squared residuals ε̂2
t,i

. The analysis essentially confirms the findings for ε̂t,i.
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Table 6: Residuals Analysis

Residuals ε̂t,i Residuals ε̂2
t,i

Residuals ût,i

Ticker Model ρ̂1 ρ̂17 ρ̂34 ρ̂51 ρ̂1 ρ̂17 ρ̂34 ρ̂51 ρ̂1 ρ̂17 ρ̂34 ρ̂51

BEI

MEM 0.020 0.000 0.000 0.024 0.021 -0.001 -0.002 0.014 0.001 -0.001 -0.001 -0.001

CMEM 0.013 0.007 0.001 0.020 0.018 0.002 -0.001 0.014 0.001 -0.001 -0.001 -0.001

HAR 0.015 0.005 0.000 0.019 0.022 0.002 -0.001 0.015 0.002 -0.001 -0.001 -0.001

MIDAS 0.004 0.007 -0.004 0.016 0.013 0.002 -0.002 0.012 0.001 -0.001 -0.001 -0.001

H-MIDAS -0.002 -0.004 -0.009 0.018 0.008 -0.002 -0.005 0.013 0.001 -0.001 -0.001 -0.001

CON

MEM 0.021 0.002 0.004 0.016 0.007 -0.004 0.013 0.000 0.004 -0.001 -0.001 0.000

CMEM 0.008 0.005 0.003 0.010 0.004 -0.003 0.016 -0.002 0.002 -0.001 0.000 0.000

HAR 0.015 0.005 0.004 0.011 0.006 -0.003 0.014 -0.002 0.002 -0.001 0.000 0.000

MIDAS -0.002 0.004 -0.002 0.007 0.001 -0.003 0.014 -0.002 0.002 -0.001 -0.001 0.000

H-MIDAS -0.002 -0.004 -0.006 0.008 0.001 -0.005 0.013 -0.001 0.000 -0.001 0.000 0.000

DTE

MEM 0.023 0.005 0.012 0.018 0.033 0.003 0.013 0.005 0.000 0.000 0.000 0.000

CMEM 0.015 0.011 0.012 0.014 0.031 0.007 0.014 0.003 0.000 0.000 0.000 0.000

HAR 0.016 0.011 0.012 0.013 0.032 0.006 0.013 0.002 0.000 0.000 0.000 0.000

MIDAS 0.009 0.011 0.006 0.006 0.025 0.008 0.011 -0.001 0.000 0.000 0.000 0.000

H-MIDAS 0.000 0.000 0.002 0.009 0.017 0.002 0.008 0.001 0.000 0.000 0.000 0.000

G1A

MEM 0.019 -0.007 0.013 0.015 0.005 -0.007 0.004 0.000 0.002 0.004 -0.001 -0.003

CMEM 0.010 0.001 0.014 0.015 0.003 -0.005 0.004 0.001 0.003 0.004 -0.001 -0.003

HAR 0.008 0.002 0.014 0.011 0.002 -0.003 0.002 -0.001 0.003 0.004 -0.001 -0.003

MIDAS 0.000 0.002 0.008 0.004 0.000 -0.004 0.002 -0.002 0.004 0.003 -0.001 -0.003

H-MIDAS -0.004 -0.005 0.005 0.009 -0.002 -0.007 0.002 -0.001 0.004 0.004 -0.001 -0.003

SZG

MEM 0.006 -0.003 -0.003 0.017 0.001 0.000 -0.004 0.013 0.002 0.006 -0.003 -0.002

CMEM 0.004 0.004 0.000 0.013 0.000 0.001 -0.001 0.009 0.003 0.006 -0.003 -0.002

HAR 0.006 0.003 0.000 0.014 0.002 0.000 -0.001 0.009 0.003 0.006 -0.003 -0.002

MIDAS -0.004 0.003 -0.006 0.007 -0.005 0.000 -0.004 0.008 0.003 0.005 -0.003 -0.003

H-MIDAS -0.008 -0.005 -0.009 0.009 -0.007 -0.004 -0.004 0.009 0.003 0.006 -0.003 -0.003

VOW

MEM 0.028 0.001 0.003 0.017 0.020 -0.003 -0.004 0.016 0.000 -0.003 0.005 0.013

CMEM 0.010 0.011 0.005 0.016 0.009 0.001 -0.002 0.018 0.001 -0.003 0.006 0.013

HAR 0.009 0.011 0.005 0.016 0.009 0.001 -0.003 0.018 0.001 -0.003 0.005 0.013

MIDAS 0.001 0.010 -0.003 0.006 0.003 0.001 -0.005 0.011 0.001 -0.003 0.006 0.013

H-MIDAS -0.007 -0.003 -0.005 0.012 -0.002 -0.003 -0.006 0.016 0.002 -0.003 0.005 0.013

In sample Residuals Analysis for the examined models: full sample period 02 Jan 2009 - 27 Dec 2012. ρ̂l: autocorrelation at the l-th lag; in bold:

null hypothesis of absence of serial autocorrelation up to the l-th lag is rejected at 5% according to the Ljung-Box test. The Ljung-Box statistics

are based on the residuals ε̂t,i and ε̂2
t,i

for the ZAF-models and on the ût,i =
It,i−π̂t,i

√

π̂t,i(1 − π̂t,i)
of the ACM component for the DZAF-models.

Finally, since for the DZAF specifications the εt,i are independently but not identically distributed, for these models

the diagnostics rely on the sample autocorrelations of the residuals of the ACM component,

ût,i = (It,i − π̂t,i)/
√

π̂t,i(1 − π̂t,i),

whose values are reported in the last panel of Table 6. In this case, the null hypothesis of white noise errors can

be never rejected except for VOW at lag 51. This means that the ACM(1,1) specification fully captures the serial

dependence in the trade indicator dynamics. Finally, as the autocorrelations for û2
t,i

are negligible, to save space, their

values are not reported in the paper.
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5.3. Fitted dynamic components

In this section we provide further insight on the statistical properties of the dynamic components fitted using the H-

MIDAS-CMEM and the competing models considered. We focus on models with ZAF errors, omitting to report and

comment the findings for DZAF models, since they do not substantially differ from those obtained for models with

ZAF errors. The corresponding tables and plots for DZAF models are however made available in the online Empirical

Appendix.

First of all, it is interesting to focus on the graphical analysis of the estimated trends. In particular, this is done

in Figure 3 where we report the time plots of the fitted long-run components obtained from models with ZAF errors.

For reasons of space and clarity, we confine our attention to two different subsamples of 5000 observations for the

stocks BEI and VOW 2. The plots reveal that, for the MIDAS-CMEM and, in particular, for the H-MIDAS-CMEM

specifications, the fitted trend components are more reactive to shocks in the intra-daily volumes than their competit-

ors CMEM and HAR-CMEM. This is evidently due to the fact that, for these two models, the trend component varies

on a daily scale, being fixed within a given trading day.

Figure 3: Models with ZAF errors. Fitted long-run components vs seasonally adjusted volumes over a subsample of

5000 observations for BEI and VOW.

Key to figure: CMEM (green), HAR-CMEM (blue), MIDAS-CMEM (red) and H-MIDAS-CMEM (black). Seasonally adjusted intra-daily volumes

are drawn in grey (for each series values are normalised with respect to the maximum observed trading volume).

Next, in Figure 4, we provide some insight on the effect that, in the H-MIDAS-CMEM, the introduction of the

hourly MIDAS filter has on the dynamic properties of the fitted long-run component. Here, the analysis of the autocor-

relation functions of the estimated long-run components up to 500 lags, approximately corresponding to two trading

weeks, shows that the H-MIDAS trend is less strongly autocorrelated than the MIDAS one for lower lags. However,

at higher lags, the ACFs of the τt,i components fitted by H-MIDAS filters, in four cases out of six, tends to decay more

slowly than the ACFs of the long-run components fitted by the plain daily MIDAS filters. For completeness, we also

report the autocorrelation patterns of the long-run components implied by the HAR-CMEM and CMEM, finding that,

as expected, these are remarkably more persistent than what found for the MIDAS based specifications.

In Figure 5, focusing on the H-MIDAS, we compare the sample autocorrelation functions of the fitted τt,i and gt,i.

Our aim is here to highlight the distinct and separate contributions that the short and long-run components provide

to the modelling of the dynamics of the seasonally adjusted intra-daily volumes. Under this respect, the plots make

evident that the two components are characterised by remarkably different autocorrelation patterns with gt,i only

accounting for short term movements around the long-run component and τt,i capturing longer term movements.

Finally, we analyse the weighting functions characterising the MIDAS filters involved in the long-run components

of the fitted H-MIDAS-CMEMs. As suggested by the estimation results, the shapes of these functions are remarkably

different across assets. This is clearly visible in figures 6 and 7, reporting the shapes of the estimated weighting

functions for the daily and hourly components, respectively. In order to summarise the information contained in the

plots, Table 7 reports the number of daily (2 hour 50 minute) lags needed for the weights of the daily (hourly) filter to

2The time plots of the fitted long-run components for all the stocks and the full sample period are available in Figure 10 in the online Empirical

Appendix.
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Figure 4: Models with ZAF errors. Sample ACFs of the long-run components up to lag 500.

Key to figure: CMEM (green), HAR-CMEM (blue), MIDAS-CMEM (red) and H-MIDAS-CMEM (black). Models have been estimated by the

ZAF distribution.

reach 10−2 and 10−6, respectively. For the daily component, the fastest decay takes place for the BEI stock, for which

the weights decline to 10−2 in 7 trading days, while they take 23 trading days to reach 10−6. The slowest decay is

observed for SZG, for which the decay times needed to reach the same values are equal to 37 and 222 trading days,

respectively. As expected, the weights of the hourly component decline to zero more rapidly with the fastest decay

observed for VOW, taking 4 periods (approximately 11 trading hours) to reach 10−2 and 13 periods (approximately

37 trading hours), to reach 10−6. The slowest decays occur for SZG and CON, requiring 7 periods (approximately 20

trading hours) to reach 10−2 and 21 periods (approximately 60 trading hours hours) to reach 10−6.

5.4. Out-of-sample forecasting

To evaluate the predictive ability of the H-MIDAS-CMEM model and its relative merits with respect to the compet-

itors, we have performed a forecasting comparison over the out-of-sample period 17 December 2010 – 27 December

2012. In order to capture the salient features of the data and safeguard against the presence of structural breaks,

the model parameters have been recursively estimated every day over a 500-day rolling window. Therefore, at each

Table 7: Fitted H-MIDAS-CMEM models with ZAF errors. Number of days taken by the Beta weights of the “daily”

filter (ϕk(ωd)) and number of 2 hour 50 minute-intervals taken by the Beta weights of the “hourly” filter (ϕl,k(ωh)) to

decay to 10−2 and 10−6, respectively.

Decay time to 10−2 Decay time to 10−6

daily hourly daily hourly

BEI 7 5 23 14

CON 26 7 124 21

DTE 12 6 45 17

G1A 23 6 97 20

SZG 37 7 222 21

VOW 18 4 69 13
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Figure 5: H-MIDAS-CMEM models with ZAF errors. Sample autocorrelation functions of the components gt,i (in

red) and τt,i (in black) (up to 1 day).

Figure 6: Decay profile of the Beta weighting function of the daily MIDAS filter for the H-MIDAS-CMEM with ZAF

errors: beta weights (vertical axis) vs. daily lags (horizontal axis).

step we have predicted 51 intra-daily volumes before re-estimating all the models, for a total of 517 days and 26367

intra-daily observations included in our out-of-sample period. The predictive performance of the examined models

has been evaluated by computing some widely used forecasting loss functions. The significance of differences in

forecasting performance has been assessed by means of the Model Confidence Set (MCS) approach (Hansen et al.,
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Figure 7: Decay profile of the Beta weighting function of the hourly MIDAS filter for the H-MIDAS-CMEM with

ZAF errors: beta weights (vertical axis) vs. hourly lags (horizontal axis).

2011), which relies on a sequence of statistical tests in order to identify, at a certain confidence level (1 − α), the set

of superior models with respect to some appropriately chosen measure of predictive ability.

To compare the out-of-sample predictive performance of the models, we have considered the following loss func-

tions

MS E =

T
∑

t=1

I
∑

i=1

(xt,i − x̂t,i)
2, (37)

MAE =

T
∑

t=1

I
∑

i=1

|xt,i − x̂t,i|, (38)

S licing = −
T

∑

t=1

I
∑

i=1

wt,i log ŵt,i, (39)

where MS E is the Mean Squared Error, MAE is the Mean Absolute Error and Slicing is the Slicing loss function.

This has been developed by Brownlees et al. (2011) for evaluating trading strategies based on the replication of the

Volume Weighted Average Price (VWAP). The use of this loss function can be motivated from an operational as well

as a statistical point of view.

From an operational point of view, it is worth reminding that a key objective in high frequency trading is to

minimise transaction costs of a given order by optimally slicing it during the day, aiming to achieve an average

execution price as close as possible to the VWAP. Introduced by Berkowitz et al. (1988) as an unbiased estimate of

prices which could be reached by any non-strategic trader, the VWAP is defined as the ratio between the total traded

value and the total traded volume (Madhavan, 2002). Formally, the VWAP for day t can be expressed as

VWAPt =

∑NJ

j=1
v

( j)
t p

( j)
t

∑NJ

j=1
v

( j)
t

, (40)

where NJ denotes the number of transactions within the day t, with p
( j)
t and v

( j)
t being the price and the volume of the

j-th transaction of the t-th day, respectively. Considering I equally spaced intervals during the trading day, Eq. (40)
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can be rewritten as

VWAPt =

∑I
i=1

(

∑

j∈Bi
v

( j)
t

)

p̄t,i

∑I
i=1

(

∑

j∈Bi
v

( j)
t

) =

∑I
i=1 xt,i p̄t,i
∑I

i=1 xt,i

=

I
∑

i=1

wt,i p̄t,i, (41)

with p̄t,i being the VWAP of the i-th partition of the trading day, wt,i the corresponding intra-daily proportion of traded

volumes and Bi indicating the set of transactions falling within the i-th partition. Namely,

wt,i =
xt,i

∑I
i=1 xt,i

. (42)

Similarly, let us define the Average Execution Price (AEP) over day t as

AEPt =

I
∑

i=1

w∗t,i p̄t,i,

where w∗
t,i

(i = 1, . . . , I) indicates an arbitrarily defined order slicing strategy over day t. It can be shown by simple

algebra that the discrepancy between AEPt and VWAPt is minimised by choosing w∗
t,i
= wt,i, suggesting that accurate

prediction of volume proportions is of fundamental importance for VWAP traders.

The next step is to provide a statistical justification for the use of the Slicing defined in (39) as a tool for assessing

the accuracy of forecasts of intra-daily volume proportions as well as for indirectly assessing the accuracy of VWAP

replication strategies. Under this respect, it is important to note that the Slicing loss in Eq. (39), as discussed in

Brownlees et al. (2011), is related to the Kullback-Leibler discrepancy between the distributions of observed and

forecast intra-daily volumes. In addition, it can be shown to be equal to the leading term of a negative predictive

multinomial log-likelihood. Again, details and analytical derivations are provided in Brownlees et al. (2011).

Depending on how the slicing weights ŵt,i are computed, the Slicing loss can be used to implement two different

VWAP replication strategies that will be denoted as static and dynamic, respectively. In the static case the i-th weight

represents the i-th intra-daily volume proportion of day t

ŵt,i|t−1 =
x̂t,i|t−1

∑I
i=1 x̂t,i|t−1

i = 1, · · · , I,

where x̂t,i|t−1 is the forecast of the trading volume over sub-interval i of day t conditional on previous day informa-

tion. Differently, in the dynamic VWAP replication strategy, the slicing weights are dynamically updated through the

formula

ŵt,i|i−1 =















x̂t,i|i−1
∑I

j=1 x̂t, j|i−1

(

1 −∑i−1
j=1 ŵt, j| j−1

)

i = 1, · · · , I − 1,
(

1 −∑I−1
i=1 ŵt,i|i−1

)

i = I.
(43)

It is worth noting that the Slicing loss provides a criterion for evaluating the effectiveness of trading strategies in

reaching the VWAP target through the evaluation of the accuracy of predicted volume proportions. On the other hand,

MSE and MAE focus on the evaluation of the accuracy of predicted levels of trading volumes.

Table 8 reports the results of the forecasting evaluation for a horizon equal to 10 minutes (one-step-ahead). In or-

der to facilitate the interpretation of results, we take the MEM with ZAF errors as a benchmark and, for any model M

and loss function F, report the relative gain over the benchmark measured in terms of the ratio 100(LF,M/LF,MEM−ZAF),

where LF,M is the value of loss F recorded for model M, so that values lower than 100 will indicate that model M

is outperforming the benchmark. Values in boldface indicate the models returning the minimum average loss, while

values shaded in grey are associated to models included in the 75% MCS. In the MCS implementation we have con-

sidered a Semi-Quadratic statistic3 and 5000 Bootstrap resamples generated by means of a block-bootstrap procedure.

The optimal block length has been estimated through the method described in Patton et al. (2009). The full set of

MCS p-values is reported in the online Empirical Appendix in Table 14.

3We report p-values only for Semi-Quadratic statistic because the results corresponding to the Range statistic are very similar.
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Table 8: Out-of-sample loss functions comparison for ZAF and DZAF

Relative gain vs MEM-ZAF model

BEI CON DTE

MS E MAE S Lstc S Ldyn MS E MAE S Lstc S Ldyn MS E MAE S Lstc S Ldyn

MEM-ZAF 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MEM-DZAF 100.08 100.01 100.00 100.00 96.26 98.65 99.98 99.98 99.71 99.34 100.02 100.01

CMEM-ZAF 98.87 97.93 99.93 99.93 97.52 97.69 99.92 99.93 98.78 94.08 99.90 99.90

CMEM-DZAF 98.96 97.94 99.93 99.93 91.43 97.32 99.93 99.94 98.80 97.03 99.96 99.96

HAR-ZAF 99.20 98.02 99.94 99.94 98.35 97.99 99.95 99.95 96.78 93.65 99.89 99.90

HAR-DZAF 99.24 98.02 99.94 99.94 94.94 97.58 99.95 99.96 97.77 96.69 99.96 99.96

MIDAS-ZAF 94.50 96.60 99.89 99.89 92.36 100.69 100.00 100.00 92.01 97.44 99.93 99.94

MIDAS-DZAF 94.74 96.71 99.89 99.89 86.79 96.21 99.90 99.91 91.28 94.98 99.93 99.93

H-MIDAS-ZAF 91.30 95.49 99.85 99.85 82.68 95.49 99.90 99.90 85.18 93.51 99.90 99.90

H-MIDAS-DZAF 91.60 95.59 99.86 99.86 82.57 95.06 99.88 99.89 86.38 93.24 99.90 99.90

G1A SZG VOW

MS E MAE S Lstc S Ldyn MS E MAE S Lstc S Ldyn MS E MAE S Lstc S Ldyn

MEM-ZAF 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MEM-DZAF 100.20 100.02 100.00 100.00 99.96 99.95 100.02 100.02 100.18 100.00 100.00 100.00

CMEM-ZAF 98.43 97.26 99.91 99.91 97.48 97.51 99.92 99.93 98.36 95.66 99.85 99.86

CMEM-DZAF 98.41 97.28 99.91 99.92 97.84 97.86 99.94 99.94 98.32 95.63 99.85 99.86

HAR-ZAF 98.15 97.11 99.91 99.91 97.84 97.87 99.94 99.94 98.48 95.81 99.86 99.87

HAR-DZAF 98.12 97.12 99.91 99.91 98.09 98.10 99.95 99.95 98.45 95.79 99.86 99.86

MIDAS-ZAF 93.19 95.50 99.84 99.84 96.25 96.28 99.88 99.88 93.88 94.63 99.80 99.81

MIDAS-DZAF 92.99 95.46 99.84 99.84 96.58 96.61 99.88 99.89 93.92 94.59 99.79 99.81

H-MIDAS-ZAF 89.79 94.34 99.79 99.80 94.99 95.01 99.82 99.83 89.83 92.73 99.71 99.72

H-MIDAS-DZAF 89.82 94.36 99.79 99.80 95.64 95.67 99.84 99.85 89.75 92.71 99.70 99.72

The table shows the ratio of the loss functions between all analysed models and MEM-ZAF (benchmark model) considering the ZAF and DZAF

distribution. Values smaller than 100 denote improvements over the benchmark. In bold the best model and in box model ∈ 75% MCS. Loss

functions: Mean Squared Error (MS E), Mean Absolute Error (MAE) and Slicing loss with weights computed under the static (S Lstc) and dynamic

(S Ldyn) VWAP replication strategy.

It can be easily seen that the H-MIDAS-CMEM specifications are the only ones entering the 75% MCS in almost all

cases. The only exception is represented by the DTE stock, for which we find that, for MAE and the Slicing loss

functions, the CMEM and HAR-CMEM with ZAF errors enter the MCS together with the two H-MIDAS-CMEM

models. Overall, the models with ZAF and DZAF errors return very close performances. So the choice of the error

distribution does not appear to be critical for the data at hand.

Furthermore, we have performed an additional forecasting experiment aimed at assessing the ability of the fitted

models to forecast trading volumes at longer lead times. Every day, at the market opening, we compute predictions

of the trading volume at different horizons, corresponding to different periods of the day. The accuracy of forecasts

is assessed by means of MSE and MAE and the significance of loss differentials is tested by the MCS procedure.

Namely, we partition the trading day as follows: 9:00 ⊣ 9:30, 9:30 ⊣ 10:00, 10:00 ⊣ 11:00, 11:00 ⊣ 13:00, 13:00 ⊣
17:30. The results are reported in Table 9, for the MSE, and in Table 10, for the MAE. As already found for 1-step-

ahead forecasts, models with ZAF and DZAF errors return very close performances. The H-MIDAS-CMEM models

always enter the MCS except for the MAE loss function computed over the first three sub-intervals for the DTE stock.

On the other hand, their competitors are included in the MCS in a few isolated cases: CON and DTE, for the MAE,

and SZG, for the MSE. As for the 1-step-ahead case, the associated MCS p-values are reported in the online Empirical

Appendix in tables 15 and 16.

The results of the out-of-sample forecasting comparison mostly confirm the findings of the full-sample analysis.

First, the MIDAS-CMEM and H-MIDAS-CMEM, updating the trend component intra-daily, tend to outperform their

competitors, updating the trend component daily (CMEM, HAR) or being characterised by a constant trend (MEM).

Second, in most cases, the H-MIDAS-CMEM is performing significantly better than the MIDAS-CMEM, thus sup-

porting the inclusion of a hourly component in the model for τt,i. In other words, considering that the MIDAS-CMEM
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Table 9: Out-of-sample MSE comparison for different time horizons for ZAF and DZAF

Relative gain vs MEM-ZAF for MSE

BEI CON DTE
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30

MEM-ZAF 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MEM-DZAF 99.82 99.82 99.94 99.97 100.06 96.65 91.46 95.32 95.72 95.94 98.43 94.66 94.01 97.62 97.00

CMEM-ZAF 97.92 98.98 100.48 98.34 99.85 98.46 97.86 99.60 99.75 99.25 96.32 96.57 100.37 103.27 99.94

CMEM-DZAF 97.96 98.97 100.48 98.41 99.87 94.97 90.64 91.78 90.69 93.14 98.91 96.77 98.74 99.89 97.86

HAR-ZAF 98.66 99.39 100.57 98.86 99.96 101.86 97.48 99.34 99.62 96.14 98.81 96.05 96.45 98.66 96.76

HAR-DZAF 98.69 99.37 100.62 98.87 99.95 95.74 93.91 93.42 91.25 92.63 98.45 95.21 96.82 98.93 96.02

MIDAS-ZAF 95.24 96.10 99.47 98.35 97.05 94.17 87.12 92.77 95.47 105.68 97.83 93.79 96.84 98.73 103.45

MIDAS-DZAF 95.19 96.00 99.40 98.44 97.44 89.93 87.18 89.47 89.09 91.24 96.41 94.09 96.29 96.09 90.22

H-MIDAS-ZAF 92.25 93.59 97.62 96.24 95.85 82.20 80.89 84.88 86.55 88.41 91.83 87.87 88.56 90.38 82.73

H-MIDAS-DZAF 92.26 93.41 97.72 96.53 95.87 83.26 81.85 86.69 87.00 89.49 93.84 92.05 94.89 94.75 83.31

G1A SZG VOW
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30

MEM-ZAF 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MEM-DZAF 100.12 100.12 100.04 100.06 99.99 100.16 99.39 99.21 99.55 98.14 100.09 100.04 100.03 99.95 99.89

CMEM-ZAF 97.06 94.37 96.38 99.45 96.71 99.43 98.05 102.11 101.10 97.57 96.09 95.53 96.70 97.77 92.28

CMEM-DZAF 97.05 94.35 96.37 99.41 96.71 99.34 97.03 100.34 100.17 96.94 96.28 95.58 96.66 97.65 92.17

HAR-ZAF 97.35 94.86 96.30 99.21 96.47 99.09 95.24 100.43 100.47 97.75 96.40 96.11 96.99 97.82 92.35

HAR-DZAF 97.35 94.83 96.28 99.16 96.48 98.70 96.80 100.78 100.57 97.70 96.59 96.17 96.96 97.71 92.24

MIDAS-ZAF 93.24 93.11 94.89 98.66 93.01 94.95 95.94 100.22 100.22 96.08 92.46 94.25 97.00 96.62 90.45

MIDAS-DZAF 93.16 92.81 94.77 98.56 93.23 95.01 94.95 100.45 100.58 95.99 92.58 94.11 97.07 96.58 90.41

H-MIDAS-ZAF 91.27 92.06 92.73 95.81 92.33 93.75 95.26 99.19 98.43 93.96 90.31 92.42 95.22 94.68 88.34

H-MIDAS-DZAF 91.26 92.02 92.72 95.84 92.30 93.82 94.40 99.74 99.70 94.46 90.37 92.46 95.25 94.62 88.30

The table shows the ratio of the MSE loss between analysed models and MEM-ZAF (benchmark model). Values smaller than 100 denote improve-

ments over the benchmark. In bold the best model; in box model ∈ 75% MCS. The results are based on the use of ZAF and DZAF distribution.

Time horizons:
⊣

9:30 = 9:00 ⊣ 9:30;
⊣

10:00 = 9:30 ⊣ 10:00;
⊣

11:00 = 10:00 ⊣ 11:00;
⊣

13:00 = 11:00 ⊣ 13:00;
⊣

17:30 = 13:00 ⊣ 17:30.
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Table 10: Out-of-sample MAE comparison for different time horizons for ZAF and DZAF

Relative gain vs MEM-ZAF for MSE

BEI CON DTE
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30

MEM-ZAF 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MEM-DZAF 99.97 99.93 99.93 99.97 100.03 99.07 97.64 97.54 98.18 97.52 98.74 96.75 95.97 97.76 97.66

CMEM-ZAF 97.08 96.21 95.60 94.81 96.25 98.06 97.75 98.00 98.22 98.73 91.23 89.15 90.01 92.33 90.86

CMEM-DZAF 97.12 96.27 95.56 94.86 96.23 99.01 98.24 98.46 98.63 99.20 96.99 94.27 93.91 95.19 93.85

HAR-ZAF 97.42 96.29 95.58 95.11 96.22 99.14 97.89 97.97 98.54 97.38 94.13 90.19 90.25 91.85 90.51

HAR-DZAF 97.49 96.31 95.59 95.13 96.23 99.07 98.72 98.72 98.55 98.35 97.70 94.03 93.43 94.77 93.21

MIDAS-ZAF 94.58 94.58 94.55 94.70 94.88 100.17 102.05 105.48 107.18 112.11 101.80 98.93 100.06 101.20 102.42

MIDAS-DZAF 94.53 94.62 94.42 94.95 95.19 97.13 97.77 98.49 98.22 97.56 96.25 93.84 93.90 94.45 91.98

H-MIDAS-ZAF 93.17 93.81 93.88 93.51 93.88 95.95 96.90 98.00 97.84 96.82 95.83 92.81 93.10 93.80 91.59

H-MIDAS-DZAF 93.25 93.83 93.88 93.66 93.85 95.71 96.74 97.67 97.68 96.84 94.52 92.52 92.78 92.94 89.00

G1A SZG VOW
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30

MEM-ZAF 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MEM-DZAF 99.99 99.99 99.94 99.93 99.90 100.10 99.86 99.68 99.61 99.46 99.96 99.91 99.90 99.86 99.84

CMEM-ZAF 96.09 94.09 93.55 93.72 92.27 96.81 95.02 94.51 94.17 92.79 94.93 92.37 91.49 90.26 87.04

CMEM-DZAF 96.12 94.14 93.60 93.75 92.33 96.95 95.23 94.71 94.43 92.92 95.01 92.42 91.51 90.25 87.03

HAR-ZAF 96.15 94.27 93.54 93.49 92.20 97.00 94.93 94.51 94.32 92.99 95.30 92.59 91.77 90.45 87.23

HAR-DZAF 96.19 94.33 93.58 93.52 92.26 96.92 95.35 95.00 94.74 93.30 95.38 92.64 91.79 90.43 87.22

MIDAS-ZAF 94.42 92.90 92.63 93.27 90.58 94.13 93.51 93.60 93.65 91.98 93.51 92.02 91.70 90.30 86.68

MIDAS-DZAF 94.52 92.78 92.67 93.12 90.58 94.41 93.66 93.93 94.09 92.17 93.57 91.84 91.75 90.27 86.63

H-MIDAS-ZAF 93.09 91.49 91.40 91.71 89.67 93.39 92.84 93.30 92.90 90.90 92.02 90.21 90.09 88.37 84.32

H-MIDAS-DZAF 93.12 91.56 91.47 91.77 89.66 93.64 93.31 93.72 93.54 91.08 92.07 90.26 90.13 88.38 84.33

The table shows the ratio of the MAE loss function between analysed models and MEM-ZAF (benchmark model). Values smaller than 100 denote

improvements over the benchmark. In bold the best model; in box model ∈ 75% MCS. The results are based on the use of ZAF and DZAF

distribution. Time horizons:
⊣

9:30 = 9:00 ⊣ 9:30;
⊣

10:00 = 9:30 ⊣ 10:00;
⊣

11:00 = 10:00 ⊣ 11:00;
⊣

13:00 = 11:00 ⊣ 13:00;
⊣

17:30 = 13:00 ⊣ 17:30.
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is a restricted version of the H-MIDAS-CMEM, the results of the out-of-sample forecasting comparison indirectly

provide evidence against the restriction θh = 0.

These findings lead us to the intuition that the successful performance of the proposed H-MIDAS-CMEM is

mainly driven by two key factors. The first one is related to the fact that the trend component is updated at intra-

daily frequencies. The worst performing models are indeed characterised by a slow-moving trend component that is

updated daily or even kept constant. The second one can be identified in the more flexible weighting structure of the

H-MIDAS-CMEM compared to the single filter MIDAS-CMEM.

It is also interesting to see that the three loss functions used for our forecasting comparison are not equally sensitive

to the choice of the forecasting model. In particular, for MAE and MSE, the performance gaps, between the H-

MIDAS-CMEM and its competitors, are remarkable at any forecasting horizon, in some cases being close to 20%

over the benchmark. Differently, focusing on 10-minute-ahead predictions, we find that, in terms of the Slicing loss,

the observed performance gaps, although still being statistically significant, are much less pronounced. This suggests

that, in practical applications, the choice of the forecasting model is particularly important when one is interested in

predicting future levels of trading volumes, as assessed by the MSE and MAE. On the other hand, this choice becomes

less critical when the main aim is to generate forecasts of volume proportions, whose accuracy can be assessed through

the Slicing loss function.

6. Conclusions

The paper introduces the Heterogeneous MIDAS Component MEM (H-MIDAS-CMEM) as a novel approach for

fitting and forecasting high frequency volumes. The structure of the model is motivated by the main stylised facts,

arising from the empirical analysis of time series of high frequency volumes. Namely, extending the logic of the

CMEM developed in Brownlees et al. (2011) by the use of an Heterogeneous-MIDAS component, specified as an

additive cascade of linear filters moving at different frequencies, we are able to better capture the main empirical

properties of intra-daily trading volumes, such as memory persistence and clustering of the trading activity. In addi-

tion, we investigate the statistical properties of the proposed model deriving conditions for stationarity and ergodicity.

Inference is performed by means of a two-stage approach.

On the empirical ground, from the analysis of the six German stocks considered, it arises that the H-MIDAS-

CMEM provides a very good fit in the in-sample estimation, using both the ZAF and DZAF distributions (Hautsch

et al., 2014). The out-of-sample analysis confirms the strength of the H-MIDAS-CMEM, since it significantly outper-

forms the competitors in terms of three different loss functions.

A natural extension of the research carried out in this paper would be to construct multivariate specifications

that can jointly model the co-movements of trading volumes for a panel of stocks. In addition, another potential

enhancement would be to extend the proposed heterogeneous MIDAS framework to account for the impact that

suitably chosen financial or economic variables can have on the long-run component.
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Online Empirical Appendix

Figure 8: Intra-daily trading volumes for the sample period 02 January 2009 – 27 December 2012 (for each series

values are normalised with respect to the maximum trading volume observed over the sample period).
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Figure 9: Models with ZAF errors. Fitted long-run components vs seasonally adjusted volumes.

Key to figure: CMEM (green), HAR-CMEM (blue), MIDAS-CMEM (red) and H-MIDAS-CMEM (black). Seasonally adjusted intra-daily volumes

are drawn in grey (for each series values are normalised with respect to the maximum observed trading volume).

Figure 10: Models with DZAF errors. Fitted long-run components vs seasonally adjusted volumes.

Key to figure: CMEM (green), HAR-CMEM (blue), MIDAS-CMEM (red) and H-MIDAS-CMEM (black). Seasonally adjusted intra-daily volumes

are drawn in grey (for each series values are normalised with respect to the maximum observed trading volume).
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Table 11: In sample parameter estimates using the ZAF distribution: standard errors.

Intra-daily parameters Trend parameters ZAF parameters

Ticker Model α1 α0 β1 β2 m α1,d β1,d β1,w β1,m θd θh ωd ωh a b c π

BEI

MEM 0.007 0.043 0.016 0.016 - - - - - - - - - 0.172 0.052 0.099 0.000

CMEM 0.007 0.054 0.017 0.017 0.016 0.022 0.034 - - - - - - 0.103 0.032 0.062 0.000

HAR 0.007 0.088 0.016 0.017 0.038 - 0.033 0.045 0.055 - - - - 0.175 0.045 0.086 0.000

MIDAS 0.007 0.070 0.018 0.017 0.018 - - - - 0.000 - 0.149 - 0.149 0.044 0.084 0.000

H-MIDAS 0.006 0.088 0.021 0.019 0.014 - - - - 0.001 0.002 0.103 0.035 0.101 0.032 0.059 0.000

CON

MEM 0.009 1.732 0.019 0.017 - - - - - - - - - 0.166 0.070 0.118 0.000

CMEM 0.008 0.709 0.017 0.017 0.030 0.032 0.052 - - - - - - 0.170 0.076 0.115 0.000

HAR 0.009 0.341 0.019 0.018 0.066 - 0.039 0.063 0.084 - - - - 0.149 0.059 0.086 0.000

MIDAS 0.008 0.485 0.018 0.017 0.020 - - - - 0.000 - 39.039 - 0.129 0.054 0.081 0.000

H-MIDAS 0.008 0.097 0.021 0.019 0.039 - - - - 0.001 0.002 0.073 0.974 0.194 0.090 0.136 0.000

DTE

MEM 0.007 0.234 0.014 0.014 - - - - - - - - - 0.102 0.068 0.072 0.000

CMEM 0.007 0.337 0.014 0.015 0.011 0.020 0.026 - - - - - - 0.100 0.068 0.079 0.000

HAR 0.007 0.303 0.014 0.015 0.038 - 0.031 0.052 0.065 - - - - 0.079 0.048 0.059 0.000

MIDAS 0.007 0.858 0.016 0.016 0.016 - - - - 0.000 - 21.410 - 0.088 0.064 0.071 0.000

H-MIDAS 0.006 0.577 0.017 0.017 0.016 - - - - 0.001 0.002 11.768 61.903 0.059 0.041 0.043 0.000

G1A

MEM 0.007 0.023 0.016 0.017 - - - - - - - - - 0.145 0.038 0.073 0.000

CMEM 0.007 0.038 0.018 0.018 0.003 0.017 0.019 - - - - - - 0.272 0.064 0.131 0.000

HAR 0.007 0.036 0.018 0.018 0.024 - 0.035 0.060 0.066 - - - - 0.117 0.028 0.057 0.000

MIDAS 0.007 0.049 0.021 0.019 0.014 - - - - 0.000 - 0.105 - 0.134 0.031 0.064 0.000

H-MIDAS 0.007 0.056 0.022 0.020 0.013 - - - - 0.001 0.002 5.704 5.693 0.078 0.019 0.037 0.000

SZG

MEM 0.008 0.026 0.019 0.019 - - - - - - - - - 0.175 0.086 0.179 0.000

CMEM 0.007 0.046 0.021 0.020 0.015 0.028 0.042 - - - - - - 0.082 0.039 0.080 0.000

HAR 0.007 0.051 0.021 0.021 0.040 - 0.040 0.061 0.073 - - - - 0.314 0.146 0.315 0.000

MIDAS 0.007 0.069 0.023 0.021 0.019 - - - - 0.001 - 5.474 - 0.024 0.014 0.034 0.000

H-MIDAS 0.007 0.074 0.025 0.022 0.021 - - - - 0.001 0.002 0.143 5.656 0.027 0.018 0.010 0.000

VOW

MEM 0.008 0.016 0.016 0.017 - - - - - - - - - 0.090 0.025 0.053 0.000

CMEM 0.007 0.029 0.017 0.018 0.005 0.024 0.028 - - - - - - 0.094 0.025 0.056 0.000

HAR 0.007 0.028 0.017 0.018 0.019 - 0.028 0.049 0.050 - - - - 0.093 0.024 0.055 0.000

MIDAS 0.007 0.037 0.019 0.018 0.012 - - - - 0.000 - 0.030 - 0.104 0.027 0.061 0.000

H-MIDAS 0.007 0.041 0.021 0.019 0.009 - - - - 0.001 0.002 3.546 3.526 0.066 0.017 0.038 0.000
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Table 12: In sample parameter estimates using the DZAF distribution: standard errors.

Intra-daily parameters Trend parameters ZAF parameters

Ticker Model α1 α0 β1 β2 m α1,d β1,d β1,w β1,m θd θh ωd ωh a b c ̟ δ1 γ1

BEI

MEM 0.007 0.042 0.016 0.016 - - - - - - - - - 0.128 0.040 0.075 0.097 0.011 0.013

CMEM 0.007 0.058 0.017 0.017 0.016 0.022 0.034 - - - - - - 0.096 0.031 0.058 0.106 0.011 0.014

HAR 0.007 0.059 0.017 0.017 0.037 - 0.033 0.045 0.054 - - - - 0.110 0.035 0.065 0.110 0.011 0.015

MIDAS 0.006 0.078 0.019 0.017 0.017 - - - - 0.000 - 0.142 - 0.102 0.032 0.061 0.100 0.011 0.014

H-MIDAS 0.006 0.092 0.021 0.018 0.014 - - - - 0.001 0.002 7.142 51.112 0.128 0.039 0.075 0.018 0.011 0.003

CON

MEM 0.008 0.496 0.015 0.016 - - - - - - - - - 0.191 0.082 0.131 0.099 0.016 0.012

CMEM 0.008 0.448 0.017 0.017 0.021 0.030 0.043 - - - - - - 0.120 0.049 0.074 0.108 0.016 0.013

HAR 0.008 0.516 0.017 0.017 0.066 - 0.037 0.064 0.084 - - - - 0.147 0.060 0.091 0.143 0.016 0.017

MIDAS 0.008 0.469 0.018 0.018 0.030 - - - - 0.001 - 0.220 - 0.119 0.049 0.074 0.162 0.017 0.020

H-MIDAS 0.008 0.668 0.020 0.019 0.040 - - - - 0.001 0.002 5.879 0.647 0.075 0.030 0.055 0.172 0.022 0.019

DTE

MEM 0.007 0.350 0.014 0.014 - - - - - - - - - 0.086 0.060 0.065 0.854 0.189 0.033

CMEM 0.007 0.384 0.014 0.015 0.012 0.019 0.026 - - - - - - 0.181 0.122 0.143 0.349 0.072 0.021

HAR 0.007 0.471 0.014 0.015 0.037 - 0.030 0.051 0.061 - - - - 0.030 0.027 0.033 0.261 0.269 0.023

MIDAS 0.007 0.344 0.016 0.016 0.020 - - - - 0.001 - 0.196 - 0.030 0.026 0.030 0.138 0.136 0.016

H-MIDAS 0.007 0.244 0.015 0.014 0.019 - - - - 0.001 0.002 27.509 1.695 0.096 0.066 0.073 0.058 0.011 0.010

G1A

MEM 0.008 0.029 0.017 0.018 - - - - - - - - - 0.137 0.033 0.063 0.055 0.014 0.009

CMEM 0.007 0.042 0.019 0.018 0.006 0.035 0.040 - - - - - - 0.124 0.030 0.061 0.074 0.015 0.011

HAR 0.007 0.040 0.018 0.018 0.024 - 0.035 0.060 0.067 - - - - 0.136 0.032 0.065 0.066 0.015 0.010

MIDAS 0.007 0.053 0.020 0.019 0.014 - - - - 0.000 - 0.073 - 0.127 0.030 0.062 0.066 0.018 0.010

H-MIDAS 0.007 0.060 0.022 0.019 0.013 - - - - 0.001 0.002 0.061 0.169 0.125 0.029 0.059 0.054 0.014 0.008

SZG

MEM 0.008 0.027 0.019 0.019 - - - - - - - - - 0.101 0.043 0.082 0.079 0.016 0.011

CMEM 0.007 0.053 0.021 0.020 0.016 0.028 0.042 - - - - - - 0.103 0.048 0.101 0.088 0.018 0.013

HAR 0.008 0.050 0.021 0.021 0.040 - 0.040 0.062 0.072 - - - - 0.110 0.051 0.106 0.081 0.017 0.012

MIDAS 0.007 0.077 0.023 0.021 0.019 - - - - 0.001 - 0.105 - 0.095 0.044 0.089 0.085 0.018 0.012

H-MIDAS 0.007 0.083 0.025 0.022 0.021 - - - - 0.001 0.002 0.142 0.145 0.106 0.047 0.097 0.085 0.018 0.013

VOW

MEM 0.008 0.017 0.016 0.017 - - - - - - - - - 0.092 0.026 0.056 0.062 0.017 0.011

CMEM 0.007 0.031 0.017 0.017 0.005 0.024 0.027 - - - - - - 0.097 0.025 0.057 0.073 0.019 0.013

HAR 0.007 0.034 0.017 0.018 0.019 - 0.029 0.049 0.051 - - - - 0.101 0.026 0.060 0.066 0.019 0.012

MIDAS 0.007 0.037 0.019 0.019 0.012 - - - - 0.000 - 47.151 - 0.104 0.026 0.061 0.073 0.018 0.013

H-MIDAS 0.006 0.043 0.010 0.010 0.009 - - - - 0.001 0.002 3.503 15.729 0.068 0.018 0.040 0.068 0.018 0.012
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Figure 11: Models with DZAF errors. Fitted long-run components vs seasonally adjusted volumes over a subsample

of 5000 observations for BEI and VOW.

Key to figure: CMEM (green), HAR-CMEM (blue), MIDAS-CMEM (red) and H-MIDAS-CMEM (black). Seasonally adjusted intra-daily volumes

are drawn in grey (for each series values are normalised with respect to the maximum observed trading volume).

Figure 12: Models with DZAF errors. Sample ACFs of the long-run components up to lag 500.

Key to figure: CMEM (green), HAR-CMEM (blue), MIDAS-CMEM (red) and H-MIDAS-CMEM (black). Models have been estimated by the

ZAF distribution.

Table 13: Fitted H-MIDAS-CMEM models with DZAF errors: number of days taken by the Beta weights of the

“daily” filter (φk(ωd)) and number of 2 hour 50 minute - intervals taken by the Beta weights of the “hourly” filter

(φl,k(ωh)) to decay to 10−2 and 10−6, respectively.

Decay time to 10−2 Decay time to 10−6

daily hourly daily hourly

BEI 7 5 23 14

CON 26 7 126 21

DTE 12 5 41 16

G1A 31 6 151 19

SZG 36 7 209 21

VOW 17 4 66 13
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Figure 13: H-MIDAS-CMEM models with DZAF errors. Sample autocorrelation functions of the components gt,i

(in red) and τt,i (in black) (up to 1 day).

Figure 14: Decay profile of the Beta weighting function of the daily MIDAS filter for the H-MIDAS-CMEM with

DZAF errors: beta weights (vertical axis) vs. daily lags (horizontal axis).
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Figure 15: Decay profile of the Beta weighting function of the hourly MIDAS filter for the H-MIDAS-CMEM with

DZAF errors: beta weights (vertical axis) vs. hourly lags (horizontal axis).
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Table 14: Out-of-sample loss functions comparison for ZAF and DZAF: MCS p-values

MCS p-values

BEI CON DTE

MS E MAE S Lstc S Ldyn MS E MAE S Lstc S Ldyn MS E MAE S Lstc S Ldyn

MEM-ZAF 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.005 0.000 0.000 0.000

MEM-DZAF 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.000

CMEM-ZAF 0.000 0.000 0.000 0.000 0.007 0.000 0.001 0.005 0.007 0.271 0.972 1.000

CMEM-DZAF 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.001 0.008 0.000 0.000 0.001

HAR-ZAF 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.001 0.016 0.676 1.000 0.973

HAR-DZAF 0.000 0.000 0.000 0.000 0.008 0.000 0.001 0.004 0.005 0.000 0.000 0.000

MIDAS-ZAF 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.092 0.000 0.002 0.008

MIDAS-DZAF 0.000 0.000 0.000 0.000 0.012 0.018 0.047 0.069 0.021 0.000 0.022 0.062

H-MIDAS-ZAF 1.000 1.000 1.000 1.000 0.899 0.266 0.094 0.101 1.000 0.676 0.972 0.973

H-MIDAS-DZAF 0.023 0.062 0.095 0.099 1.000 1.000 1.000 1.000 0.441 1.000 0.972 0.973

G1A SZG VOW

MS E MAE S Lstc S Ldyn MS E MAE S Lstc S Ldyn MS E MAE S Lstc S Ldyn

MEM-ZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MEM-DZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CMEM-ZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CMEM-DZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HAR-ZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HAR-DZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MIDAS-ZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MIDAS-DZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H-MIDAS-ZAF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.001 0.507 0.000 0.000

H-MIDAS-DZAF 0.385 0.513 0.482 0.433 0.019 0.027 0.000 0.000 1.000 1.000 1.000 1.000

The table shows the MCS p-values referring to the comparison in Table 8. In box model ∈ 75% MCS. Loss functions: Mean Squared Error

(MS E), Mean Absolute Error (MAE) and Slicing loss with weights computed under the static (S Lstc) and dynamic (S Ldyn) VWAP replication

strategy.
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Table 15: Out-of-sample MSE comparison for different time horizons for ZAF and DZAF: MCS p-values

MCS p-values for MSE

BEI CON DTE
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30

MEM-ZAF 0.003 0.028 0.094 0.002 0.000 0.047 0.077 0.070 0.024 0.000 0.042 0.087 0.075 0.008 0.024

MEM-DZAF 0.005 0.038 0.094 0.002 0.000 0.046 0.089 0.072 0.024 0.000 0.042 0.165 0.216 0.025 0.024

CMEM-ZAF 0.027 0.068 0.076 0.006 0.000 0.059 0.089 0.072 0.024 0.000 0.379 0.165 0.098 0.008 0.031

CMEM-DZAF 0.022 0.067 0.076 0.006 0.000 0.053 0.089 0.104 0.047 0.000 0.045 0.165 0.098 0.010 0.076

HAR-ZAF 0.014 0.057 0.076 0.002 0.000 0.055 0.089 0.072 0.024 0.000 0.045 0.165 0.216 0.025 0.109

HAR-DZAF 0.012 0.055 0.076 0.002 0.000 0.053 0.089 0.072 0.044 0.000 0.042 0.165 0.115 0.013 0.076

MIDAS-ZAF 0.051 0.111 0.094 0.002 0.001 0.053 0.089 0.072 0.024 0.000 0.045 0.165 0.115 0.013 0.024

MIDAS-DZAF 0.060 0.111 0.094 0.002 0.000 0.104 0.164 0.135 0.047 0.000 0.131 0.165 0.115 0.040 0.078

H-MIDAS-ZAF 1.000 0.374 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H-MIDAS-DZAF 0.878 1.000 0.296 0.100 0.820 0.648 0.387 0.330 0.483 0.100 0.379 0.351 0.216 0.088 0.741

G1A SZG VOW
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30

MEM-ZAF 0.000 0.001 0.001 0.005 0.000 0.000 0.009 0.331 0.151 0.001 0.000 0.000 0.002 0.000 0.000

MEM-DZAF 0.000 0.001 0.001 0.004 0.000 0.000 0.024 0.989 0.351 0.001 0.000 0.000 0.001 0.000 0.000

CMEM-ZAF 0.001 0.031 0.003 0.005 0.000 0.001 0.277 0.128 0.086 0.001 0.000 0.001 0.027 0.000 0.000

CMEM-DZAF 0.001 0.044 0.003 0.005 0.000 0.001 0.107 0.192 0.086 0.001 0.000 0.000 0.032 0.000 0.000

HAR-ZAF 0.001 0.010 0.003 0.011 0.000 0.000 0.691 0.197 0.086 0.001 0.000 0.000 0.014 0.000 0.000

HAR-DZAF 0.001 0.015 0.003 0.006 0.000 0.000 0.148 0.128 0.086 0.001 0.000 0.000 0.014 0.000 0.000

MIDAS-ZAF 0.001 0.178 0.003 0.005 0.098 0.004 0.531 0.203 0.086 0.001 0.000 0.005 0.014 0.000 0.000

MIDAS-DZAF 0.001 0.495 0.003 0.006 0.028 0.002 0.691 0.157 0.053 0.001 0.000 0.009 0.010 0.000 0.000

H-MIDAS-ZAF 0.935 0.689 0.939 1.000 0.643 1.000 0.691 1.000 1.000 1.000 1.000 1.000 1.000 0.228 0.427

H-MIDAS-DZAF 1.000 1.000 1.000 0.609 1.000 0.799 1.000 0.331 0.151 0.269 0.235 0.406 0.601 1.000 1.000

The table shows the MCS p-values referring to the MSE comparison in Table 9. In box model ∈ 75% MCS. The results are based on the use of

ZAF and DZAF distribution. Time horizons:
⊣

9:30 = 9:00 ⊣ 9:30;
⊣

10:00 = 9:30 ⊣ 10:00;
⊣

11:00 = 10:00 ⊣ 11:00;
⊣

13:00 = 11:00 ⊣ 13:00;
⊣

17:30 =

13:00 ⊣ 17:30.
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Table 16: Out-of-sample MAE comparison for different time horizons for ZAF and DZAF: MCS p-values

Relative gain vs MEM-ZAF for MSE

BEI CON DTE
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30

MEM-ZAF 0.000 0.000 0.000 0.000 0.000 0.005 0.191 0.245 0.070 0.005 0.000 0.000 0.000 0.000 0.000

MEM-DZAF 0.000 0.000 0.000 0.000 0.000 0.009 0.807 1.000 0.853 0.723 0.000 0.000 0.000 0.000 0.000

CMEM-ZAF 0.000 0.000 0.000 0.000 0.000 0.024 0.807 0.961 0.853 0.078 1.000 1.000 1.000 0.440 0.087

CMEM-DZAF 0.000 0.000 0.000 0.000 0.000 0.007 0.532 0.739 0.508 0.000 0.000 0.000 0.000 0.000 0.000

HAR-ZAF 0.000 0.000 0.000 0.000 0.000 0.024 0.807 0.961 0.726 0.723 0.000 0.255 0.749 1.000 0.103

HAR-DZAF 0.000 0.000 0.000 0.000 0.000 0.008 0.573 0.746 0.646 0.029 0.000 0.000 0.000 0.000 0.000

MIDAS-ZAF 0.000 0.014 0.016 0.000 0.000 0.002 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MIDAS-DZAF 0.000 0.008 0.058 0.000 0.000 0.040 0.735 0.798 0.756 0.528 0.000 0.001 0.000 0.006 0.000

H-MIDAS-ZAF 1.000 1.000 0.947 1.000 0.734 0.608 0.807 0.961 0.853 1.000 0.000 0.013 0.020 0.101 0.024

H-MIDAS-DZAF 0.201 0.784 1.000 0.095 1.000 1.000 1.000 0.961 1.000 0.958 0.000 0.006 0.004 0.266 1.000

G1A SZG VOW
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30
⊣

9:30
⊣

10:00
⊣

11:00
⊣

13:00
⊣

17:30

MEM-ZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MEM-DZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CMEM-ZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.039 0.012 0.000 0.000 0.000 0.000 0.000 0.000

CMEM-DZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000

HAR-ZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.018 0.003 0.000 0.000 0.000 0.000 0.000 0.000

HAR-DZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000

MIDAS-ZAF 0.000 0.000 0.000 0.000 0.000 0.006 0.025 0.142 0.012 0.000 0.000 0.000 0.000 0.000 0.000

MIDAS-DZAF 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.039 0.001 0.000 0.000 0.000 0.000 0.000 0.000

H-MIDAS-ZAF 1.000 1.000 1.000 1.000 0.829 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H-MIDAS-DZAF 0.425 0.306 0.211 0.275 1.000 0.065 0.025 0.059 0.012 0.145 0.119 0.255 0.276 0.792 0.821

The table shows the MCS p-values referring to the MAE comparison in Table 10. In box model ∈ 75% MCS. The results are based on the use of

ZAF and DZAF distribution. Time horizons:
⊣

9:30 = 9:00 ⊣ 9:30;
⊣

10:00 = 9:30 ⊣ 10:00;
⊣

11:00 = 10:00 ⊣ 11:00;
⊣

13:00 = 11:00 ⊣ 13:00;
⊣

17:30 =

13:00 ⊣ 17:30.
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