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Abstract

We provide necessary and su¢cient conditions for the identi�cation of Structural Vector

Autoregressions (SVARs) with external instruments considering the case in which r instru-

ments are used to identify g structural shocks of interest, r � g � 1. Novel frequentist

estimation methods are discussed by considering both a �partial shocks� identi�cation strat-

egy, where only g structural shocks are of interest and are instrumented, and in a �full shocks�

identi�cation strategy, where despite g structural shocks are instrumented, all n structural

shocks of the system can be identi�ed under certain conditions. The suggested approach is

applied to empirically investigate whether �nancial and macroeconomic uncertainty can be

approximated as exogenous drivers of U.S. real economic activity, or rather as endogenous

responses to �rst moment shocks, or both. We analyze whether the dynamic causal e¤ects

of non-uncertainty shocks on macroeconomic and �nancial uncertainty are signi�cant in the

period after the Global Financial Crisis.

Keywords: Exogenous Uncertainty, External Instruments, Identi�cation, proxy-SVAR,

SVAR.
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1 Introduction

Structural Vector Autoregressions (SVARs) provide stylized and parsimonious characterizations

of shock transmission mechanisms and allow to track dynamic causal e¤ects in empirical macro-
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1 Introduction

Structural Vector Autoregressions (SVARs) provide stylized and parsimonious characterizations

of shock transmission mechanisms and allow to track dynamic causal effects in empirical macroe-

conomics. The identification of SVARs requires parameter restrictions on the matrix which maps

the VAR disturbances to structural shocks, henceforth denoted with B, that are often implausi-

ble. The parameters in the matrix B capture the instantaneous impacts of the structural shocks

on the variables and are crucial ingredients of the Impulse Response Functions (IRFs). One of

the most interesting approaches developed in the recent literature to identify structural shocks

by possibly avoiding recursive structures, or implausible assumptions on the elements of B is

the so-called ‘external instruments’ or ‘proxy-SVAR’ (or ‘SVAR-IV’) approach, see Stock and

Watson (2012, 2018) and Mertens and Ravn (2013, 2014). This method takes advantage of

information developed from ‘outside’ the VAR in the form of variables which are correlated with

the latent structural shocks of interest (relevance condition) and are uncorrelated with the other

structural shocks of the system (exogeneity, or orthogonality condition).

The emerging literature on proxy-SVARs (throughout the paper we use the terms ‘SVARs

with external instruments’ and ‘proxy-SVARs’ interchangeably) is mainly devoted to the use

of one external instrument to identify a single structural shock of interest in isolation from all

the other shocks of the system. For example, Stock and Watson (2012) identify six shocks (the

oil shock, the monetary policy shock, the productivity shock, the uncertainty shock, the liquid-

ity/financial risk shock and the fiscal policy shock) by exploiting many external instruments,

but use them one at a time; see also Ramey (2016). Remarkable exceptions are Mertens and

Ravn (2013) and Mertens and Montiel Olea (2018) who deal with the case of two instruments

and two structural shocks (r = g = 2); see also Arias et al. (2018b).1 Mertens and Ravn (2013)

show that when g > 1, the restrictions provided by the external instruments do not suffice to

identify the shocks and must be complemented with additional constraints. They obtain these

constraints from a Choleski decomposition of a covariance matrix.

In general, there exists no result in the literature which provides a guidance for practitioners

to address the following question: given g ≥ 1 structural shocks of interest in a system of n

variables and r ≥ g external instruments available for these shocks, how many restrictions do

we need for the model to be identified and where do these restrictions need to be placed? One

main contribution of this article is to provide such a general framework, i.e. we extend the

identification analysis of proxy-SVARs to the case in which multiple instruments (r) are used to

identify multiple shocks (g ≥ 1). We show that when g > 1, the additional restrictions necessary

1Actually, Caldara and Kamps (2017) consider the case r = g = 3 and an identification strategy which can be

classified as a ‘full shocks’ identification approach according to the characterization we provide in the paper.
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to identify the shocks of interest (up to sign normalization) other the external instruments need

not be Choleski-type constraints. We discuss novel frequentist estimation methods alternative

to instrumental variables (IV) techniques: a classical minimum distance (CMD) approach and

maximum likelihood (ML) approach, respectively. Further, we argue that one of the advantages

of covering the case r > g (i.e. the proxy-SVAR features more instruments than shocks of

interest) is that a practitioner can potentially include up to r − g weakly relevant (or not

relevant at all) external instruments in the proxy-SVAR without affecting the inference if at

least g instruments are strongly correlated with the structural shocks of interest.

Our approach is based on the idea of augmenting the SVAR with an auxiliary model for the r

external instruments. We obtain a ‘larger’ m-dimensional SVAR, with m = n+r, which conveys

conveniently all the information relevant to identify the g structural shocks of interest. This large

system is called the AC-SVAR model, where ‘AC’ stands for ‘augmented-constrained’. The AC-

SVAR model is ‘augmented’ because it is obtained by appending the external instruments to the

original SVAR equations. The AC-SVAR model is ‘constrained’ because it features a triangular

structure in the autoregressive coefficients and a particularly constrained structure in the matrix

that contains the structural parameters (the on-impact coefficients). We discuss two types of

identification strategies which can be accommodated within the AC-SVAR framework depending

on the information available to the practitioner: a ‘partial shocks’ identification approach, which

is the typical case in the proxy-SVARs literature, and a ‘full shocks’ identification approach which

occurs, under certain conditions, when all structural shocks of the system can be identified by

the r external instruments.

In the ‘partial shocks’ identification approach, the objective is to identify the dynamic causal

effects of g ≥ 1 structural shocks of interest using r ≥ g valid external instruments, regardless

of the other n − g shocks of the system. When r = g = 1, the parameter which captures the

correlation between the external instrument and the shock of interest is a scalar, say φ, and the

parameters which are necessary to estimate the IRFs correspond to a column of the matrix B.

When g > 1 and r ≥ g external instruments are used, φ = Φ becomes a matrix with r rows and g

columns and contains therefore more than one ‘relevance’ parameter. We propose a novel CMD

estimation method for proxy-SVARs based on a set of moment conditions implied by the AC-

SVAR model. In particular, we minimize the distance between a set of reduced form parameters,

which can be easily and consistently estimated from the AC-SVAR model, and the parameters

which capture the instantaneous impact of the instrumented shocks. The identification of the

proxy-SVAR (up to sign) depends on a rank condition associated with the Jacobian matrix

behind CMD estimation. We derive this Jacobian matrix analytically and discuss the necessary

and sufficient condition and the necessary order condition for identification.
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In the ‘full shocks’ identification approach, r valid external instruments are still used to

identify (up to sign) g ≥ 1 instrumented structural shocks, r ≥ g, but it is now possible to infer,

under some additional constraints, the dynamic causal effects of all n structural shocks of the

system, including those associated with the n − g non-instrumented shocks. The identification

of the AC-SVAR model in the ‘full shocks’ approach amounts to the practice of identifying an

enlarged ‘B-model’ using the terminology in Lütkepohl (2005) (‘C-model’ using the terminology

in Amisano and Giannini, 1997). Estimation can be carried out by ML and requires minor

adaptations to the algorithms discussed in e.g. Amisano and Giannini (1997) and Lütkepohl

(2005) implemented in econometric packages.

Since we treat the proxy-SVAR as a ‘large’ SVAR, in our framework the issue of making

bootstrap inference on the IRFs, discussed in Jentsch and Lunsford (2016) and Montiel Olea et

al. (2018) and recently debated in Jentsch and Lunsford (2019) and Mertens and Ravn (2019),

boils down to the problem of making bootstrap inference on the IRFs generated by SVARs,

see e.g. Kilian and Lütkepohl (2017) for a review. For instance, in the empirical application

of Section 8 we first check that the disturbances of the estimated AC-SVAR model are not

characterized by conditional heteroskedasticity (because of the results in Brüggemann et al.

(2016) on inference in SVARs with conditional volatility of unknown form), and then compute

simultaneous confidence bands for the IRFs of interest by combining a standard residual-based

recursive-design bootstrap algorithm with the ‘sup-t’ method discussed in Montiel Olea and

Plagborg-Møller (2019).

Moreover, when the AC-SVAR system is overidentified, a convenient way to test the empir-

ical validity of the proxy-SVAR model is to compute overidentification restrictions tests. Our

analysis shows that these tests tend to reject the proxy-SVAR when the external instruments

are erroneously assumed orthogonal to the non-instrumented shocks. Thus, we have analogs of

the ‘Sargan’s specification test’ in the instrumental variables framework, or the ‘Hansen’s J-test’

in the generalized method of moments framework, and this appears a novelty in the literature

on proxy-SVARs. Notably, in the full shocks identification approach, the quality of the identifi-

cation can be evaluated not only by checking the relevance condition, but also the orthogonality

between the external instruments and the non-instrumented shocks.

The second contribution of this article is empirical. We apply our methodology to address

a recently debated issue of the uncertainty literature, i.e. whether uncertainty is a driver of

the U.S. business cycle or rather a response to first moment shocks, or both. A well recognized

fact in the literature is that uncertainty is recessionary in presence of real options effects (e.g.

Bloom, 2009) or financial frictions (e.g. Christiano et al., 2014). Instead, a less documented

and controversial fact is whether uncertainty, a second moment variable, is also a response
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to first moment shocks, especially during periods of economic and financial turmoil. Indeed,

uncertainty appears also to endogenously increase during recessions, as lower economic growth

induces greater dispersion at the micro level and higher aggregate volatility.

Reverse causality between uncertainty and real economic activity using monthly or quarterly

data can not be analyzed by recursive (triangular) SVARs which presume that some variables

respond only with a lag to others. This issue has been analyzed in the recent literature by

Ludvigson et al. (2018), Carriero et al. (2018) and Angelini et al. (2019). These authors use

non-recursive SVARs and different identification methods and report mixed evidence. We focus

on the U.S. economy after the Global Financial Crisis, in particular the ‘Great Recession+Slow

Recovery’ period 2008-2015, and consider a small-scale monthly SVAR which includes measures

of macroeconomic and financial uncertainty taken from Jurado et al (2015) and Ludvigson et

al. (2018), respectively, and a measure of real economic activity, say the industrial production

growth (n = 3). The scope of our analysis is to investigate whether the selected measures of

macroeconomic and financial uncertainty respond on-impact (instantaneously) and/or with lags

to a ‘non-uncertainty’ shock (g = 1). This requires a non-recursive (non-triangular) specification

for the matrix B which makes our approach potentially attractive. The direction of causality

we are primarily interested in runs from real economic activity to uncertainty, not the other

way around, and this requires the use of valid external instruments for the variable of the

system related to real economic activity. Thus, in our baseline specification we use two external

instruments jointly (r = 2) to identify the ‘non-uncertainty’ shock of the system and track

its dynamic impact on financial and macroeconomic uncertainty. This strategy differs from e.g.

Stock andWatson (2012) who use valid external instruments (one at a time) to identify the effects

of uncertainty shocks on macroeconomic variables. It differs also from Ludvigson et al. (2018)’s

strategy, where two external instruments for financial and macroeconomic uncertainty shocks are

employed to narrow the identification set obtained by directly restricting the structural shocks

in correspondence of particular events (event constraints).

The external instruments we employ for the non-uncertainty shock are: (a) the time series

innovations obtained from an auxiliary regression models for the changes in the log of new

privately owned housing units started; (b) an oil supply shock identified along the lines of Kilian

(2009); (c) the time series innovations obtained from an auxiliary regression model for the

changes in the log of hours worked. The couples of external instruments (a,b) and (a,c) are used

to identify the non-uncertainty shock of the system in a partial shocks identification strategy,

but also in a full shocks identification strategy under an auxiliary hypothesis on the pass-through

from financial to macroeconomic uncertainty. Empirical results show that macroeconomic and

financial uncertainty do not respond significantly to the identified non-uncertainty shocks on-
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impact. Macroeconomic uncertainty does not respond at any lag to the identified real economic

activity shocks while financial uncertainty displays a short-lived response after one period, so

that the overall empirical evidence in favor of the hypothesis of ‘endogenous uncertainty’ appears

scant. Notably, our analyses provide empirical support to the validity of the selected external

instruments. Admittedly, however, our results can not be considered ‘final’ as they depend on

the specific set of external instruments used to identify the non-uncertainty shock.

Our paper is naturally connected with the increasing strand of the macroeconometric liter-

ature which develops and applies estimation and inferential methods for SVARs with external

instruments. We compare thoroughly our methodology with other approaches in Sections 7

and our empirical results with other works on exogenous/endogenous uncertainty in Section 8.3.

Our approach is based on the maintained assumption that the external instruments are strongly

correlated with the instrumented structural shocks, which might not be the case in applied

work. Lunsford (2015) and Montiel Olea et al. (2018) discuss identification-robust inferential

methods for weak external instruments. The extension of our approach to proxy-SVARs to weak

instruments is left to future research.

The paper is organized as follows. Section 2 introduces the reference SVAR with external

instruments and presents the main assumptions. Section 3 discusses the AC-SVAR representa-

tion of proxy-SVARs and Section 4 motivates two identification strategies featured by AC-SVAR

models by considering an example centered of the concept of exogenous/endogenous uncertainty

in SVAR models. Section 5 deals with the ‘partial shocks’ identification strategy and proposes

a CMD estimation approach alternative to IV methods. Section 6 deals with the ‘full shocks’

identification strategy and discusses estimation through ML. Section 7 connects our approach to

proxy-SVARs to the literature. Section 8 applies the suggested methodology to investigate the

exogeneity/endogeneity of uncertainty in the U.S. in the period after the Global Financial Crisis.

Section 9 contains some concluding remarks. Additional technical details, formal proofs, Monte

Carlo experiments and further empirical results are confined in a Supplementary Appendix.

2 SVAR and the auxiliary model for the external instruments

We start from the SVAR system:

Yt = ΠXt +ΥyDy,t + ut , ut = Bεt , t = 1, ..., T (1)

where Yt is the n × 1 vector of endogenous variables, Xt:=(Y ′

t−1, ..., Y
′

t−k, )
′ is nk × 1, Π :=

(Π1 : ... : Πk) is the n × nk matrix containing the autoregressive (slope) parameters, Dy,t is

an dy-dimensional vector containing deterministic components (constant, dummies, etc.) with

parameters in the n×dy matrix Υy; finally, ut is the n×1 vector of iid reduced-form disturbances
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with positive definite covariance matrix Σu := E(utu
′

t). The initial conditions Y0, ..., Y1−k are

treated as fixed. The system of equations ut = Bεt in eq. (1) maps the n × 1 vector of iid

structural shocks εt, which are assumed to have normalized unit covariance matrix E(εtε
′

t) :=

Σε = In, to the reduced form disturbances through the n× n matrix B.2

We call the elements in (Π,Υy,Σu) reduced-form parameters and the elements in B struc-

tural parameters or on-impact coefficients. Moreover, we use the terms ‘identification of B’,

‘identification of the SVAR’ and ‘identification of the shocks’ interchangeably. Let

Ay :=


 Π1 · · · Πk

In(k−1) 0n(k−1)×n


 (2)

be the VAR companion matrix. The responses of the variables in Yt+h to one standard deviation

structural shock εjt is captured by the IRFs:

IRFj(h):=(Jn (Ay)
h J ′

n)bj , h = 0, 1, 2, .... (3)

where bj is the j-th column of B, j = 1, ..., n and Jn := (In : 0n×n(k−1)) is a selection matrix

such that JnJ
′

n = In. Standard local and global identification results for the SVAR in eq. (1)

are reviewed in the Supplementary Appendix A.2.

Our first assumption postulates the correct specification of the SVAR and the nonsingularity

of the matrix of structural parameters B, the only formal requirement we place on this matrix,

except where indicated.

Assumption 1 (DGP) The data generating process belongs to the class of models in eq. (1)

which satisfy the following conditions:

(i) the companion matrix Ay in eq. (2) is stable, i.e. all of its eigenvalues lie inside the unit

circle;

(ii) the matrix B is nonsingular.

Given Assumption 1 we consider, without loss of generality, the following partition of the

vector of structural shocks:

εt :=

(
ε1,t

ε2,t

)
g × 1

(n− g)× 1
(4)

2The structural shocks εt may also have diagonal covariance matrix Σε := diag(σ2
1 , ..., σ

2
n). In this case, the

link between reduced form disturbances and structural shocks can be expressed in the form ut = B∗Σ
1/2
ε ε∗t , where

ε∗t := Σ
−1/2
ε εt and B∗ has exactly the same structure as B in eq. (1) except that the elements on the main

diagonal are normalized to 1. Throughout the paper we follow the parameterization based on ut = Bεt with

Σε = In, except where indicated.

7



where ε1,t is the g×1 subvector of structural shocks henceforth denoted ‘instrumented structural

shocks’, and ε2,t is the (n−g)×1 subvector of other structural shocks, denoted ‘non-instrumented

shocks’. The instrumented structural shocks are ordered first for notational convenience only:

the ordering of variables is irrelevant in our setup. Given the corresponding partition of reduced

form VAR disturbances, ut := (u′1,t, u
′

2,t), where u1,t and u2,t have the same dimensions as ε1,t

and ε2,t, we partition the matrix of structural parameters B conformably with eq. (4):

B :=

(
B1
n×g

B2
n×(n−g)

)
=

(
B11 B12

B21 B22

)
g × g g × (n− g)

(n− g)× g (n− g)× (n− g)
. (5)

In eq. (5), the dimensions of submatrices have been reported below and alongside blocks. B1 is

the submatrix containing the on-impact coefficients associated with the instrumented structural

shocks ε1,t, and B2 is the submatrix containing the on-impact coefficients associated with the

non-instrumented shocks ε2,t; rank(B1) = g and rank(B2) = n− g because of Assumption 1(ii).

The external instruments approach postulates that given the partitions in eq.s (4)-(5), there

are available r ≥ g observable ‘external’ (to the SVAR) variables called instruments, that we

collect in the r × 1 vector vZ,t, which can be used to identify the dynamic causal effect of ε1,t

on Yt+h, h = 0, 1, ..., without the need to impose implausible assumptions on the elements of

B. Thus, we can consider the instrumented structural shocks in ε1,t as the shocks of primary

interest in the analysis and for which r valid external instruments are employed. However, as

it will be shown below, there are cases in which despite ε1,t is instrumented, also the ‘other’

structural shocks in ε2,t might be of interest and identified under certain conditions. The key

properties of vZ,t are formalized in the next assumption.

Assumption 2 (Relevance and orthogonality) The r × 1 vector vZ,t is generated by the

system of equations:

vZ,t = RΦεt + ωt = Φε1,t + ωt (6)

where RΦ :=
(
Φ : 0r×(n−g)

)
,Φ is an r× g matrix of full column rank, and ωt is a r×1 measure-

ment error term uncorrelated with εt (E(εtω
′

t) = 0n×g) with positive definite covariance matrix

E(ωtω
′

t) := Σω < ∞.

Assumption 2 ensures that the external instruments in vZ,t satisfy the conditions E(vZ,tε
′

1,t) =

Φ 6= 0r×n (‘relevance’) and E(vZ,tε
′

2,t) = 0r×(n−g) (‘exogeneity’, or ‘orthogonality’).
3 These con-

ditions are typically presented in the proxy-SVAR literature under the setup r = g, see e.g.

3Assumption 2 is consistent with a scenario in which the external instruments in vZ,t can potentially be

correlated with past structural shocks, i.e. it may hold the condition Cov(vZ,t, εt−i) = E(vZ,tε
′

t−i) 6= 0r×n,

i = 1, 2, ... which, because of eq. (6), requires E(ωtε
′

t−i) 6= 0r×n, i = 1, 2, ...
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Stock and Watson (2012, 2018), Mertens and Ravn (2013, 2014), and require that the elements

in vZ,t are correlated with the instrumented structural shocks ε1,t and are orthogonal to the other

shocks in ε2,t.
4 The matrix RΦ :=

(
Φ 0r×(n−g)

)
in eq. (6) characterizes the instruments

validity as it collects the relevance and orthogonality conditions. We call Φ the ‘relevance ma-

trix’ (or ‘matrix of relevance parameters’) thoughout the paper. The condition rank(Φ) = g in

Assumption 2 ensures that each column of Φ carries independent - not redundant - information

on the instrumented structural shocks. It will be shown in the next sections that rank(Φ) = g is

a necessary condition for identification which becomes also sufficient when g = 1. The additive

measurement error ωt in eq. (6) captures the idea that the external instruments are imperfectly

correlated with the instrumented structural shocks; the covariance matrix Σω can be possibly

diagonal.

The ‘one shock-one instrument’ case mainly treated in the proxy-SVAR literature obtains for

r = g = 1 and implies that RΦ := φ
(
1 : 01×(n−1)

)
in eq. (6) is a row and Φ = φ is a scalar. In this

paper we focus on the general case r ≥ g ≥ 1 and explore the consequences of such generalization

on the identification and (frequentist) estimation of proxy-SVARs. By considering the general

case r ≥ g ≥ 1, we mimick the situation that occurs in the instrumental variable regressions

when the number of instruments can be larger than the number of estimated parameters. As it

will be shown next, when r > g, (r−g) external instruments might be weakly correlated (or not

correlated at all) with the g instrumented shocks without consequences on asymptotic inference

if at least g external instruments are strongly correlated with the instrumented shocks.

To present our method it is convenient to generalize the auxiliary model for the external

instruments postulated in eq. (6). Indeed, the data generating process specified for vZ,t in

Assumption 2 maintains that the dynamics of the external instruments is expressed in ‘innovation

form, as vZ,t depends on the instrumented structural shocks ε1,t and the measurement error ωt. In

some situations, however, the practitioner might observe an r×1 vector of ‘raw’ (stationary) time

dependent time series whose innovation part might potentially serve as external instruments.

To account for these situations, we interpret vZ,t as the innovation part of Zt, i.e. the quantity

vZ,t := Zt − E(Zt | Ft−1), where Ft−1 is the econometrician’s information set available at time

t− 1. A specification consistent with the decomposition Zt = E(Zt | Ft−1)+ vZ,t is given by the

dynamic system:

Zt = Θ(L)Zt−1 + Γ(L)Yt−1 +ΥzDz,t +Υz,yDy,t + vZ,t (7)

where Θ(L) := Θ1+ ...+ΘpL
p−1 is a matrix polynomial in the lag operator L, whose coefficients

4Henceforth, the exogeneity of the external instruments with respect to the non-instrumented shocks will

be denoted with the term ‘ortogonality’ in order to avoid ambiguities with the distinct concept of ‘exogenous

uncertainty’ we discuss in the empirical section of the paper.
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are in the r×r matrices Θi, i = 1, ..., p (and can be possibly zero); Γ(L) := Γ1+Γ2L+...+ΓqL
q−1

is a matrix polynomial in the lag operator L whose coefficients are in the r × n matrices Γj ,

j = 1, ..., q (and can be possibly zero); Dz,t is an dz-dimensional vector containing deterministic

components (constant, dummies, etc.) specific to Zt and not included in Dy,t; Υz and Υz,y are

the r× dz and r× dy matrices of coefficients associated with Dz,t and Dy,t, respectively (an can

be possibly zero).

Equation (7) defines our auxiliary statistical model for the external instruments. It reads as

a reduced form system where Zt may depend on its own lags Zt−1, ..., Zt−p, the predetermined

‘control’ variables Yt−1, ..., Yt−k, and a set of deterministic terms. Obviously, Zt ≡ vZ,t when

all coefficient of the system in eq. (7) are zero, meaning that the elements in Zt are already in

innovations or iid shocks taken from other studies (see Section 8). When the Θi are non-zero,

the stability requirement assumed for the SVAR (Assumption 1) is extended to Zt and requires

that the roots of det(Ir −Θ1s− ...−Θps
p) = 0 satisfy the condition | s |> 1. With this in mind,

in the following we call ‘external instruments’ Zt and vZ,t interchangeably.
5

In the next section, the SVAR in eq. (1) will be combined with the auxiliary model in eq.

(7) to form a ‘larger’ system which incorporates the dynamics of the external instruments in a

coherent and efficient way.

3 The AC-SVAR representation

By coupling the SVAR in eq. (1) with the auxiliary model for the external instruments in eq.

(7) we obtain the system:

(
Yt

Zt

)
=

ℓ∑

j=1

(
Πj 0n×r

Γj Θj

)(
Yt−j

Zt−j

)
+

(
Υy 0n×dz

Υz,y Υz

)(
Dy,t

Dz,t

)
+

(
ut

vZ,t

)
(8)

(
ut

vZ,t

)
=

(
B 0n×r

RΦ Σ
1/2
ω

)(
εt

ω◦

t

)
(9)

5Some of the external instruments in Zt (vZ,t) might be censored as in the case of narrative time series, see

e.g. Mertens and Ravn (2013). The Supplementary Appendix A.11 summarizes how the approach presented in

this paper can be amended to account for external instruments which are generated by censored autoregressive

processes. A full treatment of this issue deserves a detailed analysis which goes beyond the scopes of the present

article and is therefore postponed to future research. To our knowledge, Mertens and Raven (2013) and Jentsch

and Lunsford (2019) are examples in which censoring is excplicitly accounted for in the current proxy-SVARs

literature.
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where ℓ := max {k, p, q} , Σ
1/2
ω denotes the symmetric square root of the matrix Σω and the

term ω◦

t := Σ
−1/2
ω ωt can be here interpreted as a normalized measurement error.6 System (8)

reads an m-dimensional VAR, m := n + r, of lag order ℓ which incorporates a constrained

(triangular) autoregressive structure: the lags of Zt and the deterministic variables in Dz,t are

not allowed to enter the Yt-equations of the original SVAR. The matrices Γj and Θj , j = 1, ..., ℓ

and Υz,y and Υz are restricted to zero in eq. (8) when Zt ≡ vZ,t. System (9) maps the term

ξt := (ε′t, ω
◦′

t )
′ (which includes the structural shocks) onto ηt := (u′t, v

′

Z,t)
′.

It is seen that the joint system (8)-(9) forms a large ‘B-model’ (Lütkepohl, 2005) which we

call the ‘augmented-constrained’ SVAR (AC-SVAR) model. For future reference, we compact

the AC-SVAR model in the expression:

Wt = Ψ̃Ft + Υ̃Dt + ηt , ηt = G̃ξt (10)

where Wt := (Y ′

t , Z
′

t)
′ and ηt := (u′t, v

′

Z,t)
′ are m × 1, the reduced form disturbance ηt has

covariance matrix Ση := E(ηtη
′

t), Ft := (W ′

t−1, ...,W
′

t−ℓ)
′ is f × 1 (f = mℓ), Ψ̃ := (Ψ̃1, ..., Ψ̃ℓ) is

m× f , Dt := (D′

y,t, D
′

z,t)
′ is d× 1 (d := dy + dz), Υ̃ is m× d and, finally, ξt := (ε′t, ω

◦′

t )
′ is m× 1.

We use the symbol ‘∼’ over the matrices Ψ and Υ and G to remark that these are restricted.

The structure of the matrix G̃ deserves special attention:

G̃ :=

(
B 0n×r

RΦ Σ
1/2
ω

)
=

(
B1 B2

Φ 0r×(n−g)

0n×r

Σ
1/2
ω

)
. (11)

It is seen that G̃ contains the structural parameters in B, the relevance and (the zero) orthog-

onality conditions embedded in RΦ and the parameters of the matrix Σ
1/2
ω . The covariance

restrictions implied by the AC-SVAR model (the ones stemming from Ση = G̃G̃′) boild down to

Σu = BB′ SVAR symmetry (12)

ΣvZ ,u = ΦB′

1 External instruments (13)

ΣvZ = ΦΦ′ +Σω External instruments. (14)

In the next sections we use the AC-SVAR model and the mapping in eq.s (12)-(14) to derive

general necessary and sufficient conditions for identification and to put forth a novel estimation

approach for proxy-SVARs.

6Alternatively we might replace the square root matrix Σ
1/2
ω with e.g. the Choleski factor of Σω, Pω, and

normalize the measurement error ωt as ω◦

t := P−1
ω ωt, without affecting results.
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4 Motivating example: exogenous/endogenous uncertainty in a

small-scale SVAR

In this section we motivate empirically two types of identification strategies that the AC-SVAR

model may feature. We discuss the exogeneity/endogeneity of measures of uncertainty with

respect to the business cycle in a small-scale SVAR model, a topic which will be addressed

empirically in Section 8 on U.S. monthly data.7

Consider a SVAR model for Yt:=(at, UF,t, UM,t)
′ (n = 3), where at is a measure of real

economic activity, UF,t a measure of financial uncertainty and UM,t a measure of macroeconomic

uncertainty. The relationship between the reduced form disturbances and the structural shocks

is given by: 


ua,t

uF,t

uM,t




ut

=




ba,a ba,F ba,M

bF,a bF,F bF,M

bM,a bM,F bM,M




B




εa,t

εF,t

εM,t




εt

(15)

where ut:=(ua,t, uF,t, uM,t)
′ is the vector of VAR reduced form disturbances and εt := (εa,t, εF,t, εM,t)

′

is the vector of structural shocks. As is know, this SVAR is not identified in the absence of (at

least three) restrictions on the matrix B. To inform the discussion, we temporarily label εa,t as

the ‘non-uncertainty shock’, εF,t as the ‘financial uncertainty shock’ and εM,t as the ‘macroeco-

nomic uncertainty shock’.

Since the seminal paper of Bloom (2009), attention in the empirical literature on uncertainty

has been focused on measuring the impact of uncertainty shocks on real economic activity, which

requires the identification of the parameters ba,F and ba,M in eq. (15). For instance, Stock

and Watson (2012) use either stock market volatility or the economic policy uncertainty index

of Baker et al. (2016) as external instruments to identify the effects of uncertainty shocks.

In their framework, the parameters of interest are in the column bM :=(ba,M , bF,M , bM,M )′ (or

bF :=(ba,F , bF,F , bM,F )
′) of the matrix B. In this paper, we are interested in the other direction

of causality, namely the impact of εa,t on the variables UF,t+h and UM,t+h for h = 0, 1, .... The

on-impact responses (h = 0) are captured by the parameters bF,a and bM,a contained in the

first column ba:=(ba,a, bF,a, bM,a)
′ of B; the lagged responses (h = 1, 2, ...) can be inferred from

the IRFs in eq. (3) by setting bj = ba. As in Angelini et al. (2019), we consider financial

and macroeconomic uncertainty ‘exogenous’ if UF,t and UM,t do not respond to εa,t on-impact,

which corresponds to the hypothesis bF,a = 0 and bM,a = 0 in eq. (15). Conversely, we consider

financial and macroeconomic uncertainty ‘endogenous’ if UF,t and UM,t respond significantly

7As an exercise, the Supplementary Appendix A.4 applies the two identification strategies to a monetary SVAR

model largely analyzed in the literature.
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on-impact to the non-uncertainty shock; see Carriero et al. (2018) for a similar characterization.

Obviously, it may happen that UF,t+h and UM,t+h respond to εa,t only after some periods the

shock occurs, hence we distinguish between ‘contemporaneous exogeneity’ and lagged effects

throughout the paper.

The reverse causality problem can not be addressed by placing ‘conventional’ restrictions

on the matrix B in eq. (15). Ludvigson et al. (2018), Angelini et al. (2018) and Carriero et

al. (2018) face this issue by estimating non-recursive SVARs identified by different methods

briefly reviewed in Section 8.3. In this paper, we argue that our proxy-SVAR approach can be

a valuable alternative to the existing methods.

Partition the structural relationships in eq. (15) as follows:




ua,t

uF,t

uM,t




ut

=




ba,a

bF,a

bM,a




B1≡ba

(εa,t)
ε1,t

+




ba,F ba,M

bF,F bF,M

bM,F bM,M




B2

(
εF,t

εM,t

)

ε2,t

(16)

which means that the structural shock of interest, and for which valid external instruments must

be found is the non-uncertainty shock, i.e. ε1,t := (εa,t) (g = 1). Here B1 ≡ ba coincides with

the first column of B and contains the parameters of primary interest. Consider, as an example,

the case in which r = 2 valid external instruments, collected in the vector Zt(vZ,t), are used for

εa,t. The matrix G̃ of the AC-SVAR model in eq. (11) reads:

G̃ :=
(

G̃1 G̃2

)
=

(
B1 B2

Φ 02×2

03×2

Σ
1/2
̟

)
=




ba,a

bF,a

bM,a

ba,F ba,M

bF,F bF,M

bM,F bM,M

ϕ1,a

ϕ2,a

0

0

0

0

0 0

0 0

0 0

̟1,1 ̟2,1

̟2,1 ̟2,2




(17)

where ϕ1,a := E(vZ1,tεa,t) and ϕ2,a := E(vZ2,tεa,t) are the relevance parameters contained in the

2×1 matrix Φ, and ̟1,1, ̟2,1, ̟2,2 are the 3 free elements of Σ
1/2
̟ (assumed here non-diagonal);

recall from the previous section that Σ̟ is the covariance matrix of the measurement errors ωt

in eq. (6) and that with Σ
1/2
̟ we denote the ‘square root’ of Σ̟. Observe that in eq. (17),

G̃1:=(b′a, ϕ
′)′, where ba:=(ba,a, bF,a, bM,a)

′ and ϕ := (ϕ1,a, ϕ2,a)
′.

The ‘partial shocks’ identification strategy identifies the parameters in the column G̃1:=(b′a, ϕ
′)′,

hence the shock εa,t, regardless of the other shocks of the system. The idea is that G̃1 is the

only ingredient (other than the reduced form parameters) necessary to track the dynamic causal

effect of εa,t on UF,t+h and UM,t+h, h = 0, 1, .... The other columns of G̃, collected in G̃2, are not

of interest. Since Corr(vZ1,t, εa,t) = ϕ1,a/σvZ1
and Corr(vZ2,t, εa,t) = ϕ2,a/σvZ2 , where σ

2
vZ1

and
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σ2
vZ2

are the main diagonal elements of ΣvZ , the quality of the identification can be evaluated in

this case by computing the measures ϕ̂1,a/σ̂vZ1
and ϕ̂2,a/σ̂vZ2

, where ϕ̂1,a, ϕ̂2,a, σ̂vZ1
and σ̂vZ2

are consistent estimates of the parameters ϕ1,a, ϕ2,a, σvZ1
and σvZ2

, respectively. In Section 5

we study the identification and estimation of the proxy-SVAR considering the case r ≥ g ≥ 1.

Suppose now that we have a some (limited) information on the non-instrumented structural

shocks whose instantaneous effects are captured by the columns of the matrix B2 in eq. (17). In

particular, based on the results in Angelini et al. (2019), we claim that in the period after the

Global Financial Crisis, the contemporaneous pass-trough between financial and macroeconomic

uncertainty is one-way and runs from financial uncertainty to macroeconomic uncertainty, which

implies bF,M = 0 in eq. (17). While the original SVAR for Yt:=(at, UF,t, UM,t)
′ is not identified

with bF,M = 0 in eq. (15), the AC-SVAR model based on G̃ in eq. (17) and the additional

restriction bF,M = 0 is identified (see Section 8.2). The consequence of this result is that

although the structural shock of primary interest is the non-uncertainty shock ε1,t := (εa,t), we

can also identify the financial and macroeconomic uncertainty shocks in ε2,t := (εF,t, εM,t)
′. We

call this scenario the ‘full shocks’ identification strategy, which is studies in Section 6. Since both

ε1,t := (εa,t) and ε2,t := (εF,t, εM,t)
′ can be identified, one can obtain ε̂t := B̂−1ût, t = 1, ..., T ,

where ût are the reduced form VAR residuals and B̂ is a consistent estimate of B recovered

from
̂̃
G. Accordingly, one way to evaluate the quality of the identification is computing the

measures of strength Corr(v̂Z1,t, ε̂a,t) and Corr(v̂Z2,t, ε̂a,t) which should be significant with valid

instruments, but also the correlations Corr(v̂Z1,t, ε̂F,t), Corr(v̂Z1,t, ε̂M,t), Corr(v̂Z2,t, ε̂F,t) and

Corr(v̂Z2,t, ε̂M,t) which should not be statistically significant.8 In this example, the ‘price to pay’

to move from a partial to a full shocks identification approach is given by the auxiliary restriction

bF,M = 0, which appears a modest cost relative to the benefits. In general, the investigator is

required to take a (minimal) stand also on the structure of B2 to identify all shocks.

5 Partial shocks identification and estimation strategy

In the partial shocks identification strategy, the objective of the analysis is to exploit the instru-

ments in Zt (vZ,t) to solely identify the dynamic causal effects of the g instrumented shocks in

ε1,t, ignoring the other shocks collected in ε2,t. This amounts to identify the submatrix B1 in

eq. (5), which in turn provides the IRFs in eq. (3) for j = 1, ..., g, g < n.

Our analysis starts from the AC-SVAR representation of the proxy-SVAR summarized in

8Alternatively, one can compute F-type tests from regressions of the form v̂Z,t = C1ε̂1,t+C2ε̂2,t+ǫt, t = 1, ..., T ,

where the rejection of HR
0 : C1 = 0r×g indicates that the relevance condition is supported by the data, and the

non-rejection of HO
0 : C2 = 0r×(n−g) indicates that the orthogonality condition is supported by the data.
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eq.s (10)-(11). We are interested in the first g columns of the matrix G̃:

G̃1 :=

(
B1

Φ

)
, (18)

while the remaining m−g columns in G̃2 are not of interest. The identification of the g columns

of G̃1 in eq. (18) reads as a partial identification exercise which requires imposing at least

1/2g(g−1) restrictions on G̃1 (i.e. on B1 and Φ); obviously, no restriction is needed when g = 1.

This necessary order condition for identification clearly shows that when g > 1, the r external

instruments alone do not suffice to identify the shocks of interest, see e.g. Mertens and Ravn

(2013), Mertens and Montiel Olea (2018) and Arias et al. (2018b). In principle, conditional on

the validity of a rank condition we discuss below, the additional restrictions can be placed on

the columns of B1 leaving Φ free, or can be imposed on the columns of Φ (preserving the full

column rank condition) leaving B1 free, or possibly can be distributed on both B1 and Φ.

It turns out that when the restrictions on G̃1 are homogenous (i.e. there are zero restrictions

only) and separable across columns, one can check the identification of the proxy-SVAR by

referring to the sufficient conditions for global identification established by Theorem 2 in Rubio-

Ramirez et al. (2010). However, Theorem 2 in Rubio-Ramirez et al. (2010) provides only

sufficient conditions for identification which are valid when the restrictions are homogeneous

and separable across columns. To derive necessary and sufficient conditions for identification

which are valid in more general situations, including the case of non-homogeneus, cross-columns

restrictions, we find it convenient to exploit a set of moment conditions implied by the AC-SVAR

model which pave the way for a CMD estimation approach.

The Supplementary Appendix A.5 shows that by using simple algebra the moment conditions

in eq.s (12)-(13) can be transformed into:

Ξ = ΦΦ′ , ΣvZ ,u = ΦB′

1 (19)

where Ξ := ΣvZ ,uΣ
−1
u Σu,vZ is an r×r symmetric matrix (of rank g) which is positive definite when

r = g and is positive semidefinite when r > g. The advantage of the representation in eq. (19),

relative to that in eq.s (12)-(13) is that the nuisance parameters in B2 have been marginalized

out. The moment conditions in eq. (19) can be formally compacted in the expression:

ζ = f(ϑ) (20)

where ζ := (vech(Ξ)′, vec(ΣvZ ,u)
′)′ is a vector whose elements depend on the reduced form

parameters σ+
η := vech(Ση) of the AC-SVAR model, f(ϑ) := (vech(ΦΦ′)′, vec(ΦB′

1)
′)′ is a

nonlinear differentiable vector function and ϑ is the vector which collects the unrestricted (free)
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elements in the matrix G̃1 in eq. (18). The restrictions necessary to identify G̃1 are parameterized

in explicit form by:

β1 := vec(B1) = SB1α1 + sB1 , φ := vec(Φ) = SΦϕ (21)

where α1 is the e1 × 1 vector which collects the unrestricted (free) elements of β1, e1 ≤ ng,

SB1 is an ng × e1 full column rank selection matrix and and sB1 is an ng × 1 vector containing

zeros or known non-zero elements; ϕ is the c × 1 vector which collects the unrestricted (free)

elements of Φ, c ≤ rg, and SΦ is an rg × c full column-rank selection matrix. Obviously, when

β1 is unrestricted, β1 ≡ α1, e1 ≡ ng, SB1 ≡ Ing and sB1 ≡ 0ng×1; when φ is unrestricted, φ ≡ ϕ,

c = rg and SΦ ≡ Irg. Because of the presence of the possibly non-zero term sB1 , eq. (21)

accommodates also non-homogeneous restrictions, which means that some elements of B1 can

be e.g. fixed to known non-zero constants. It is seen that ϑ := (α′

1, ϕ
′)′ is (e1 + c)× 1.

Equation (20) defines a ‘distance’ between the a×1 (a := 1/2r(r+1)+nr) vector of reduced

form parameters ζ and the (e1 + c) × 1 vector of parameters ϑ. From Rothenberg (1971) it

follows that necessary and sufficient condition for ϑ being uniquely recovered from ζ is that the

a× (e1 + c) Jacobian matrix ∂f
∂ϑ′ := ̥ϑ is regular and of full column rank in a neighborhood of

the true value of ϑ.9 We derive the Jacobian matrix ̥ϑ below.

Under Assumption 1, the estimator of the reduced form parameter σ+
η of the AC-SVAR

model is consistent and asymptotically Gaussian, hence we have the result:

T 1/2(ζ̂T − ζ0) →d N(0a×1, Ωζ) (22)

where ζ0 denotes the true value of ζ, Ωζ is an a × a covariance matrix which can be estimated

consistently (see Supplementary Appendix A.5 for details) and ‘→d’ denotes convergence in

distribution. The convergence in eq. (22) involves the estimator of the reduced form parameters

of the AC-SVAR model and is valid also if the matrix of relevance parameters Φ is zero, i.e.

irrespective of whether the external instruments are strongly, weakly or not correlated at all

with the structural shocks of interest. This result motivates a robust indirect test for the null

hypothesis of ‘no relevance’ based on the idea that if in eq. (19) it is assumed that B1 6= 0n×g,

the null hypothesis H0 : vec(Φ) = 0rg×1 (no relevance) is equivalent to H ′

0 : vec(ΣvZ ,u) = 0rn×1

(no correlation between the external instruments and the VAR disturbances). We discuss a

simple Wald-type test for H ′

0 in the Supplementary Appendix A.9.

Given eq.s (20) and the consistency of ζ̂T , ϑ can be estimated by solving the CMD problem:

min
ϑ

(ζ̂T − f(ϑ))′Ω̂−1
ζ (ζ̂T − f(ϑ)) (23)

9Let M = M(θ) be a matrix of rank m, whose elements depend on θ. M is ‘regular’ if rank(M(θ)) = m in a

neighborhood of θ0, where θ0 is the true value of θ.
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where Ω̂ζ is a consistent estimate of Ωζ . The properties of the estimator ϑ̂T obtained from

eq. (23) depend on the identification of the proxy-SVAR. The next proposition formalizes the

necessary and sufficient rank conditions and the necessary order condition for the identification

of the proxy-SVAR.

Proposition 1 [Partial shocks identification] Given the SVAR in eq. (1), a vector of r

external instruments vZ,t for the 1 ≤ g < n strucutral shocks in ε1,t and Assumptions 1-2,

consider the identification of the g columns of G̃1 in eq. (18). Let ϑ0 := (α′

1,0, ϕ
′

0)
′ be the

true value of ϑ := (α′

1, ϕ
′)′. Then:

(a) necessary and sufficient rank condition for identification is

rank {̥ϑ0} = e1 + c

where ̥ϑ0 is the Jacobian matrix:

̥ϑ :=

(
01/2r(r+1)×ng 2D+

r (Φ⊗ Ir)

(In ⊗ Φ)Kng (B1 ⊗ Ir)

)(
SB1 0ng×c

0rg×e1 SΦ

)
(24)

evaluated in a neighborhood of ϑ0 and is ‘regular’;10

(b) necessary order condition is that at least 1/2g(g − 1) restrictions are placed on the g

columns of G̃1, which is equivalent to the condition e1 + c ≤ g(n+ r)− 1/2g(g − 1).

Proof: Supplementary Appendix A.3.

Some remarks are in order.

First, Proposition 1 provides an alternative to Mertens and Ravn’s (2013) identification

approach for proxy-SVARs with g > 1 multiple shocks. Mertens and Ravn (2013) show that

when g > 1, the restrictions implied by the external instruments do not suffice alone to identify

the g shocks of interest and must be complemented with additional constraints. In their setup,

the 1/2g(g − 1) additional constraints necessary to identify the proxy-SVAR stem from the

mechanics of the IV approach and are obtained from a Choleski decomposition of a symmetric

matrix. In our framework, the fact that it is necessary to impose at least 1/2g(g−1) restrictions

to identify the g shocks of interest is a necessary order condition, but these restrictions need not

be Choleski-type constraints (the Supplementary Appendix A.7 compares in detailed Mertens

10Given the n × g matrix M , Kng denotes the ng × ng commutation matrix which satisfies Kngvec(M) =

vec (M ′). D+
n :=(D′

nDn)
−1D′

n denotes the Moore-Penrose inverse of Dn, where Dn is the n2× 1
2
n(n+1) duplication

matrix such that Dnvech(M) = vec(M), where vech(M) is the column obtained from vec(M) by eliminating all

supra-diagonal elements. See Magnus and Neudecker (1999).
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and Ravn’s (2013) identification approach with ours). Proposition 1 establishes necessary and

sufficient conditions for the identification of the parameters in Φ and B1 (i.e. of G̃1) which hold

up to sign normalization, which means that if e.g. a given Φ̃ satisfies the restriction Ξ = Φ̃Φ̃′ in

eq. (19), also the matrix Φ̃∗ 6= Φ̃, obtained from Φ̃ by changing the sign of one or more than

one of its columns, will satisfy eq. (19).

Second, according to Proposition 1(b), the proxy-SVAR is exactly identified when e1 + c =

g(n+r)−1/2g(g−1) , i.e. when there are exactly 1/2g(g−1) restrictions on the elements of G̃1

in eq. (18), and is overidentified (and therefore testable) when e1+ c < g(n+ r)− 1/2g(g− 1).11

Third, Proposition 1 clarifies that in general, the full column rank condition of the matrix Φ

(Assumption 2) is only necessary for identification. Indeed, the (2,1) block (In ⊗ Φ)Kng of the

Jacobian matrix in eq. (24) suggests that rank {Φ} = g is necessary for rank {(In ⊗ Φ)Kng} =

ng, which in turn is a necessary condition for rank {̥ϑ0} = e1+c. The structure of̥ϑ also shows

that when g = 1, the full column rank condition of Φ is also sufficient for the identification of the

proxy-SVAR (whatever r). This is easily seen in the ‘one shock-one instrument’ case r = g = 1,

where Φ = φ = ϕ is a scalar (c = 1) and if β1 is unrestricted (β1 ≡ α1) the Jacobian ̥ϑ collapses

to the (n+ 1)× (n+ 1) matrix:

̥ϑ :=


 0 0 · · · 0 2ϕ

ϕIn α1


 ;

it is seen that ϕ = φ 6= 0 is necessary and sufficient for identification.12 The form of the

Jacobian in eq. (24) also shows that one of the advantages of using more than one instrument

to identify a single shock of interest, r > g = 1, is that rank(Φ) = 1 if at least one component

in Φ := (ϕ1, ..., ϕr) is different from zero, which means that provided at least one external

instrument is strongly correlated with the shock of interest, r − 1 external instruments might

potentially violate the relevance condition. This argument can be easily generalized to the case

r > g > 1.

Coming back to the estimation problem (23), under Assumptions 1-2 and the conditions of

Proposition 1 we have (Newey and McFadden, 1991):

T 1/2(ϑ̂T − ϑ0) →d N(0(e1+c)×1, Ωϑ) , Ωϑ :=
(
̥

′

ϑ Ω−1
ζ ̥ϑ

)
−1

(25)

11When r = g one has a = 1/2g(g + 1) + ng and e1 + c = g(n + g) − 1/2g(g − 1) = 1/2g(g + 1) + gn under

exact identification, hence the Jacobian matrix in eq. (24) is square. Instead, when r > g, the Jacobian matrix

in eq. (24) is ‘tall’ (meaning that it has more rows than columns) even in the case of exact identification, i.e.

a = 1/2r(r + 1) + nr = r2 − 1/2r(r − 1) + nr > g(n+ r)− 1/2g(g − 1) = e1 + c.
12The structure of this Jacobian matrix shows that if the true value of ϕ satisfies the local-to-zero embedding:

ϕ0 := T 1/2̺, ̺ 6= 0, the proxy-SVAR is not identified asymptotically. We refer to Lunsford (2015) and Montiel

Olea et al. (2018) for inference in proxy-SVARs in the presence of ‘weak’ instruments.
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where the asymptotic covariance matrix Ωϑ can be estimated consistently by Ω̂ϑ,T :=
(
ˆ̥ ′

ϑ Ω̂−1
ζ

ˆ̥ ϑ

)
−1

and ˆ̥ ϑ is taken from eq. (24) by replacing the unconstrained (free) elements in B1 and Φ with

the corresponding elements in ϑ̂T := (α̂′

1,T , ϕ̂
′

T )
′.

When according to Proposition 1 the proxy-SVAR model is overidentified, the CMD problem

delivers a test of overidentifying restrictions because, under the null hypothesis ζ0 = f(ϑ0) and

Assumptions 1-2 the quantity TQ(ϑ̂T ) converges asymptotically to a χ2(l) random variable

with l := g(n + r) − 1/2g(g − 1) − (e1 + c) degree of freedoms. In the IV (GMM) framework,

when the number of instruments (moment conditions) is larger than the number of estimated

parameters, it is possible to compute Sargan’s specification test (Hansen’s J-test), which is

typically interpreted as a specification test for the estimated model. The TQ(ϑ̂T ) test can be

used similarly. Our Monte Carlo experiments (summarized in the Supplementary Appendix

A.8 to save space) show that the test TQ(ϑ̂T ) rejects the overidentification restrictions when

the external instruments are incorrectly assumed orthogonal to the non-instrumented structural

shocks.

In case of exact identification, or when the overidentification restrictions are not rejected by

the TQ(ϑ̂T ) test, the IRFs of interest in eq. (3) can be estimated by replacing the compan-

ion matrix Ay with its consistent estimate Ây derived from the AC-SVAR model and bj with

the j-th column of B̂1, for j = 1, .., g, where B̂1 is reconstructed from β̂1,T :=SB1α̂1,T + sB1 .

We refer to Jentsch and Lunsford (2019) and Mertens and Ravn (2019) for a recent debate on

bootstrap inference for IRFs in proxy-SVARs; see also Montiel Olea et al. (2018). Since in

our framework the proxy-SVAR is specified as a large (constrained) SVAR ‘B-model’, bootstrap

confidence bands for the IRFs can be obtained by applying the methods currently available for

SVARs reviewed e.g. in Kilian and Lütkepohl (2017, Ch. 12). In particular, when the distur-

bances ηt := (u′t, v
′

Z,t)
′ in eq. (10) are conditionally homoskedastic, it is possible to combine

residual-based bootstrap methods with the CMD approach by the algorithm summarized in the

Supplementary Appendix A.10. Accordingly, the (innovations associated with the) external in-

struments are resampled jointly with the VAR residuals regardless of the number of instruments

r and instrumented structural shocks g. For instance, in Section 8 we compute 90%-bootstrap

simultaneous confidence bands for the IRFs by using the ‘sup-t’ bands discussed in Montiel

Olea and Plagborg-Møller (2019). If instead the disturbances ηt in eq. (10) display conditional

heteroskedasticity of unknown form, the results in Bruggemann et al. (2016) and Jentsch and

Lunsford (2016, 2019) suggest that reliable inference must be based on the residual-based moving

block bootstrap.
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6 Full shocks identification and estimation strategy

In this case we investigate the conditions under which the instruments Zt (vZ,t) used to identify

the structural shocks of interest ε1,t permit to identify the dynamic causal effects of all structural

shocks in εt, including the non-instrumented ones in ε2,t.
13 We formalize the identification anal-

ysis and estimation of proxy-SVARs in these situations and show that (frequentist) estimation

of these models can be conveniently carried out by ML.

As in the partial shocks approach, our starting point is the AC-SVAR representation of the

proxy-SVAR summarized in eq.s (10)-(11). This is a large ‘B-model’ whose identification depends

on the (number and structure of) restrictions which characterize the matrix G̃. Equation (11)

shows that G̃ incorporates by construnction r(n − g) + nr zero restrictions plus the symmetry

constraints stemming from the matrix Σ
1/2
ω ; however, these restrictions do not generally suffice

to achieve the at least 1/2m(m − 1) restrictions necessary to identify the m columns of G̃. It

turns out that aside from special cases discussed below we also need a few restrictions on B2,

other than on B1 and Φ. In the uncertainty example discussed in Section 4, if one adds the

constraint bF,M = 0 in the sub-matrix B2 of G̃ in eq. (17), and if e.g. the covariance matrix of

measurement errors Σω is diagonal (which implies ω12 = ω21 = 0), there are 13 homogeneous

restrictions in G̃ which are separable across columns (there are therefore 3 overidentification

restrictions); it is possible to prove that in this case the model is identified (globally) according

to Theorem 1 in Rubio-Ramirez et al. (2010).

In general, when the restrictions on G̃ are homogeneous and separable across columns, it is

convenient to study the identification of the AC-SVAR model by checking whether the sufficient

conditions for (global) identification in Theorem 1 of Rubio-Ramirez et al. (2010) are satisfied.

We derive necessary and sufficient conditions for (local) identification which are valid in more

general situations, including the case of non-homogeneus, cross-columns linear restrictions. To

do so, we formalize the restrictions on B1 and Φ as in eq. (21) but, in addition, we include also

restrictions on B2 and Σ
1/2
ω as follows:

β2 := vec(B2) = SB2α2 + sB2 , ω := vech(Σ1/2
ω ) = SΣω̟. (26)

In eq. (26), α2 is the vector collecting the e2 unrestricted (free) elements of B2 (if any), SB2 is

an n(n− g)× e2 full column rank selection matrix and sB2 is an n(n− g)× 1 vector containing

13In the current proxy-SVAR literature, a concrete example where an identification strategy based on external

instruments identifies all shocks of the systen is Caldara and Kamps’s (2017) fiscal framework. In a system of

n = 5 variables, they use r = 3 non-fiscal instruments to identify g = 3 non-fiscal shocks (output, inflation

and monetary policy) but simultaneously they jointly identify tax and spending shocks (n − g = 2) under the

additional constraint that government spending does not respond contemporaneously to taxes.
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zeros and known elements; obviously SB2 ≡ In(n−g), β2 ≡ α2 and sB2 = 0n(n−g)×1 when β2 is

unrestricted; ̟ is the vector containing the sω unrestricted (free) non-zero elements of Σ
1/2
ω and

SΣω is an 1/2r(r + 1) × sω full column rank selection matrix, where sω:=1/2r(r + 1) when Σω

is full and sω:=r when Σω is diagonal. Summing up, the identification restrictions featured by

the matrix G̃ in eq. (11) can be represented (in explicit form) as:

vec(G̃) = S
G̃
θ + s

G̃
(27)

where θ := (α′

1, α
′

2, ϕ
′, ̟′)′ has dimension a

G̃
× 1, a

G̃
:= e1 + e2 + c+ sω, SG is an m2 × a

G̃
full

column rank selection matrix which depends on SB1 , SB2 , SΦ and SΣω , respectively, and s
G̃
is a

known m2×1 vector. The next proposition provides the necessary and sufficient rank conditions

for the (local) identification of the AC-SVAR model and the necessary order conditions.

Proposition 2 [Full shocks identification] Given the SVAR in eq. (1), a vector of r exter-

nal instruments vZ,t for the 1 ≤ g < n strucutral shocks in ε1,t and Assumptions 1-2,

consider the identification of all shocks in εt := (ε′1,t,ε
′

2,t)
′, i.e. the identification of the

first n columns of G̃ in eq. (11). Let θ0 := (α′

1,0, α
′

2,0, ϕ
′

0, ̟
′

0)
′ be the true value of

θ := (α′

1, α
′

2, ϕ
′, ̟′)′. Then:

(a) necessary and sufficient rank condition for identification is:

rank
{
D+

m(G̃0 ⊗ Im)S
G̃

}
= a

G̃
(28)

where G̃0 is the matrix G̃ evaluated in a neighborhood of θ0 and is ‘regular’;

(b) necessary order condition for identification is: a
G̃
≤ 1

2m(m+ 1).

Proof: Supplementary Appendix A.3.

Some remarks are in order.

First, according to Proposition 2, the identification of the shocks in εt := (ε′1,t,ε
′

2,t)
′ based

on r instruments for ε1,t may occur in two situations: (i) when g < (n − 1) provided a few

restrictions are also placed on B2 (see the example discussed in Section 4); (ii) when g = (n−1)

(all structural shocks of the system are instrumented but one) provided the rank condition in

eq. (28) holds.14

Second, when the AC-SVAR model is overidentified, the system features l := 1
2m(m + 1)−

a
G̃

testable restrictions which can be used to assess the empirical validity of the estimated

proxy-SVAR, see the next section.

14When n = g − 1 and B2 := b2 is left unrestricted, the total number of restrictions featured by the matrix G̃

in eq. (11), denoted ̺1, is such that ̺1 ≥ 1/2m(m− 1) for r ≥ g, which means that the necessary order condition

is always satisfied.
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Third, since the analysis is based on the factorization Ση = G̃G̃′, also in this case identifica-

tion holds up to sign normalization.

If the conditions of Proposition 2 are valid, the estimation of the AC-SVAR model in eq.s

(10)-(11) amounts to the estimation of a particular ‘B-model’ and can be carried out by ML

by simply adapting the algorithms reported in Amisano and Giannini (1997) and Lütkepohl

(2005).15 The Supplementary Appendix A.6 reviews the specification steps necessary to ob-

tain the (concentrated) log-likelihood associated with the reduced form model, denoted LT (σ
+
η ),

and the (concentrated) log-likelihood associated with the structural form, denoted Ls
T (θ). Un-

der Assumptions 1-2 and Proposition 2 the ML estimator θ̂T := maxθ L
s
T (θ) is consistent and

asymptotically Gaussian. Moreover, when the AC-SVAR model is overidentified, it is possible

to compute the LR test LRT := −2(Ls
T (θ̂T ) − LT (σ̂

+
η,T )) which is distributed asymptotically,

under the null of correct specification, as a χ2(l) variable with l := 1
2m(m + 1)− a

G̃
degrees

of freedom. This overidentification restrictions test can be interpreted similarly to the TQ(ϑ̂T )

test discussed in Section 5, hence LRT tends to reject the proxy-SVAR model when e.g. the

external instruments are wrongly assumed orthogonal to the non-insrumented shocks, see the

Monte Carlo resuls in the Supplementary Appendix A.8.

In case of exact identification, or if the overidentification restrictions are not rejected by the

LR test, the IRFs are estimated from eq. (3) by replacing Ay with the consistent estimate Ây

derived from the reduced form of the AC-SVAR model, and by replacing bj with the j-th column

of
̂̃
G = G̃(θ̂T ), j = 1, ..., n. In this case the computation of bootstrap confidence bands for the

IRFs requires bootstrapping a SVAR model: see Section 5 and the Supplementary Appendix

A.10.

7 Connections with the literature

The approach presented in the previous sections has several connections with the proxy-SVAR

literature. Stock and Watson (2012, 2018), Mertens and Ravn (2013, 2014) and Montiel Olea

et al. (2018) are seminal contributions in proxy-SVARs are estimated by IV methods; see also

Jentsch and Lunsford (2016).16 Plagborg-Møller and Wolf (2018) is the only contribution in the

frequentist framework (other than ours) where an auxiliary model for the external instruments

plays an active role in the analysis. They consider a proxy-SVAR model similar to system (7) but

15Any econometric package which features the estimation of SVARs can be used or adapted to this scope. In

practice, it is necessary to estimate a SVAR model for Wt := (Y ′

t , Z
′

t)
′ by incorporating zero restrictions in the

autoregressive coefficients.
16Important applied developments based on IV methods include, among others, Gertler and Karadi (2015),

Carriero et al. (2015) and Caldara and Kamps (2017).
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with infinite lags for the variables. Plagborg-Møller and Wolf (2018) cover the case r ≥ g = 1

and discuss inference on variance amd historical decompositions in a general semiparametric

moving average model. Extending our approach to the infinite order case as in Plagborg-Møller

and Wolf (2018) requires moving to a frequency domain approach.

In the Bayesian framework, the idea of appending the external instruments to the original

SVAR model is not new. Caldara and Herbst (2019) consider the ‘one shock-one instrument’

case r = g = 1 and add an external instrument to the original SVAR system to identify a

monetary policy shock (in their framework Zt ≡ vZ,t, hence the parameters Γjs, Θjs and Υz

and Υz,y are zero in eq. (7)). Arias et al. (2018b) consider the case r = g ≥ 1 and a dynamic

representation of the proxy-SVAR similar to ours. However, while our AC-SVAR specification

corresponds to a large (and constrained) ‘B-model’, Arias et al. (2018b)’s parameterization

reads as an large (and constrained) ‘A-model’ (Lütkepohl, 2005). Their identification strategy

features both zero and sign restrictions and modifies Arias et al. (2018a)’s algorithm to account

for the highly constrained parametric structure of the proxy-SVAR model. In line with (and

independently from) our analysis, Arias et al. (2018b) recognize that when g > 1, the additional

(zero or sign) restrictions necessary to identify the structural shocks need not be Choleski-

type constraints. Interestingly, these authors also observe that the additional identification

restrictions that complement the restrictions implied by the external instruments can possibly

be extended to the part of the system which pertains to the non-instrumented shocks, which is

exactly the logic of the full shocks identification strategy developed in Section 6.

Compared to the above mentioned contributions, we show that proxy-SVARs with r ≥ g ≥ 1

can be conveniently represented as ‘B-models’ with advantages in the identification and estima-

tion. In our framework, the analysis of proxy-SVARs is not necessarily confined to partial iden-

tification strategies but depends on the information available to the practitioner. The suggested

CMD and ML estimation approaches are novel in the proxy-SVAR literature and straighforward

to implement.

8 Empirical application

In this section we apply our methodology to investigate a recently debated issue of the empirical

uncertainty literature, i.e. whether uncertainty is an exogenous source of business cycle fluctua-

tions, or an endogenous response to first moment shocks, or both. In Section 4 we have already

anticipated some of the technical challenges that the empirical investigation of this problem rises

in the context of small-scale proxy-SVARs. Well documented facts suggest that heightened un-

certainty triggers a contraction in real economic activity, and that uncertainty tends to be higher
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during economic recessions, see e.g. Bloom (2009), Stock and Watson (2012), Christiano et al.

(2014), Jurado et al (2015), Carriero et al. (2015), Caggiano et al. (2017) and Angelini et al.

(2019), just to mention a few. It is less clear, however, whether the higher uncertainty observed

in correspondence of periods of high economic and financial turmoil is rather a consequence

of first moment shocks hitting the business cycle, not the cause. The empirical assessment of

the exogeneity/endogeneity of uncertainty is not only important to discriminate among two

broad classes of theories about the origins of uncertainty, excellently reviewed in Ludvigson et

al. (2018), but also for its policy implications. Indeed, as suggested by Bloom (2009, pages

626-7), uncertainty shocks may induce a trade-off between policy ‘correctness’ and ‘decisiveness’

- it may be better to act decisively (but occasionally incorrectly) than to deliberate on policy,

generating policy-induced uncertainty.

We address the exogeneity/endogeneity problem by using a small-scale SVAR model for

Yt:=(at, UF,t, UM,t)
′ (n = 3), including a measure of real economic activity (at), a measure of

financial uncertainty (UF,t) and a measure of macroeconomic uncertainty (UM,t). As explained

in Ludvigson et al. (2018), the joint use of macroeconomic and financial uncertainty is crucial to

disentangle the contributions of two distinct sources of uncertainty and study their pass through

to the business cycle. The direction of causality we are concerned with runs from non-uncertainty

shocks to financial and macroeconomic uncertainty, not the other way around. As argued in

Section 4, one way to achieve this objective is to use a set of external instruments for εa,t, see

the matrices B and G̃ in eq.s (15)-(17).

In Section 8.1 we summarize the data, in Section 8.2 we present the empirical results obtained

with our baseline AC-SVAR model and in Section 8.3 we compare our findings with those

obtained by other authors.

8.1 Data

Real economic activity at is proxied by the growth rate of the log of the U.S. industrial production

index, at := ∆ipt (source Fred); financial uncertainty UF,t is proxied by a measure of 1-month

ahead financial uncertainty taken from Ludvigson et al. (2018); macroeconomic uncertainty UM,t

is proxied by a measure of 1-month ahead macroeconomic uncertainty taken from Jurado et al.

(2015).17 We consider T = 88 monthly observations and the same variables as in Ludvigson et

al. (2018), but differently from these authors, we do not estimate the model on the entire period

1960-2015, but on the subsample 2008M1-2015M4 that we term the ‘Great Recession + Slow

Recovery’ period. Our choice of considering only the period after the Global Financial Crisis is

17We consider a version of the index UM,t ‘purged’ from possible effects of financial variables, see Angelini et

al. (2019) for details
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motivated by the empirical results in Angelini et al. (2019), who show that the unconditional

error covariance matrix of the VAR for Yt:=(at, UF,t, UM,t)
′ is affected by at least two major

structural breaks in the period 1960-2015. The ‘Great Recession + Slow Recovery’ period

2008M1-2015M4 is particularly informative to infer whether uncertainty measures respond on-

impact to non-uncertainty shocks as it broadly coincides with the zero lower bound constraint on

the short-term nominal interest rate. According to Plante et al. (2018)’s argument, uncertainty

should be triggered by first moment shocks in this period because of the Fed’s inability to offset

adverse shocks by conventional policies; see also Basu and Bundick (2015).18

8.2 Non-uncertainty shock, empirical results

We are primarily interested in the parameters in the column ba:=(ba,a, bF,a, bM,a)
′ which enters

the matrix G̃ in eq. (17) and capture the instantaneous impact of the shock εa,t. The specification

in eq. (17) pertains to an AC-SVAR model for Wt := (Y ′

t , Z
′

t)
′, where Zt contains r = 2 external

instruments for the non-uncertainty shock of the system. In principle, we might include variables

in Zt selected from a set of external instruments correlated with real economic activity, including

proxies for the technology shock, the oil shock, investors confidence shocks, loan demand and

supply shocks, to give a few examples relating to both aggregate supply and aggregate demand

shocks.19 Unfortunately, given the monthly frequency of our variables and the estimation sample

we consider, it is not immediate to find monthly analogs of the series of shocks largely available

in the literature at the quarterly frequency, see e.g. Ramsey (2016). However, the flexibility of

the AC-SVAR approach allows us to use ‘raw’ time series in Zt and employ, under Assumption

2, the reduced form innovations vZ,t := Zt − E(Zt | Ft−1) as external instruments.

We consider the following external instruments for the real economic activity shock εa,t:

(a) innovations obtained from an auxiliary model for ∆houset, where houset is the log of new

privately owned housing units started (source: Fred); (b) an oil supply shock constructed by fol-

lowing Kilian’s (2009) identification strategy, denoted oilt (see Supplementary Appendix A.12.1

for details); (c) innovations obtained from an auxiliary model for ∆hourst, where hourst is the

log of hours worked (source: Fred). The baseline AC-SVAR model estimated in this section

18Interestingly, Pellegrino (2017) compares the real effects of a monetary shock in tranquil and turbulent

periods by distinguishing the cases of endogenous and exogenous uncertainty. He reports that the responses of

real variables to a monetary policy shock gets halved when uncertainty is treated as an endogenous variable.
19We prefer not to consider explicitly a monetary policy shock among the list of candidate external instruments

for the real economic activity shock. As is known, assessing the impact of unconventional policy (given the sample

2008M1-2015M4) is more challenging than it is for conventional policy, see, among others, Gertler and Karadi

(2015) and Roger et al. (2018). In the Supplementary Appendix A.12.5 we check to what extent the empirical

results obtained in this section are affected by the inclusion of Wu and Xia (2016)’s ‘shadow policy rate’ (other

than the inflation rate) in the system.
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employes (a,b) as external instruments for εa,t. Oil shocks might be weak instruments for real

economic activity (Stock and Watson, 2012), but this should not in principle affect standard

asymptotic inference if the other instrument is strong, see Section 5. However, in the Supple-

mentary Appendix A.12.2 we also estimate an analog of the baseline AC-SVAR model based on

the external instruments (a, c), i.e. not including oil shocks.

While oilt is in shock form, ∆houset is a ‘raw’ variable from which we derive the innovations

vZ1,t := ∆houset−E(∆houset | Ft−1) by estimating an auxiliary dynamic model which is appen-

dend to the original SVAR model. Since ∆houset can be considered a predictor of real economic

activity, it is reasonable to conjecture that the innovations vZ1,t := ∆houset−E(∆houset | Ft−1)

are not contemporaneosuly correlated with financial and macroeconomic uncertainty shocks.20.

The baseline AC-SVAR model is given by the VAR for Yt:=(at, UF,t, UM,t)
′ along with the

auxiliary model for Zt := (Z1,t, Z2,t)
′ = (∆houset, oilt)

′ which jointly form the system:

Yt = Π1Yt−1 +Π2Yt−2 +Π3Yt−3 +Π4Yt−4 +Υy + ut (29)

Zt = Θ1Zt−1 + Γ1Yt−1 + Γ2Yt−2 +Υz + vZ,t (30)

where m = n + r = 5 and ℓop = k = 4. Here the second rows of the matrices Θ1, Γ1,

Γ2 and the vector Υz (the ones associated with the Z2,t-equation) are fixed to zero because

Z2,t ≡ vZ2,t = oilt. The reduced form disturbances ηt := (u′t, v
′

Z,t)
′ of system (29)-(30) are linked

to ξt := (ε′t, ω
◦′

t )
′ by the relationship ηt = G̃ξt, where the form of the matrix G̃ is given in eq.

(17).

System (29)-(30) is estimated by setting to zero the autoregressive coefficients in Θ1, Γ1 and

Γ2 which are not statistically significant at the 5% significance level. A battery of diagnostic

tests on the disturbances of the AC-SVAR model are summarized in Panel A of Table 1, where

we report equation-wise: a test of normality; a test for the absence of serial autocorrelation;

and a test for the absence of conditional heteroskedasticity. To save space, we have not re-

ported the estimated reduced form parameters, including the covariance matrix Ση. Panel A

of Table 1 shows that aside from the non-normality of the residuals associated with the at-

equation, the specified model is neither affected by serial autocorrelation, nor by conditional

heteroskedasticity in the residuals. As observed in the previous sections, the absence of con-

ditional heteroskedasticity in the residuals is particularly important for bootstrap inference on

the IRFs, see below. The last column in Panel A of Table 1 also summarizes F-type tests for

the null hypothesis that (four) lags of Zt are not statistically significant in the Yt-equations.

These Granger causality tests largely support the triangular structure that characterizes the

20It is reasonable to assume that E(vZ1,tε
′

2,t) = 01×2, while it is not possible to rule out the condition

E(vZ1,tε
′

2,t−i) 6= 01×2, i = 1, 2, ... (which however does not violate Assumption 2). The orthogonality condi-

tion E(vZ1,tε
′

2,t) = 01×2 will be tested empirically.
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autoregressive parameters of the AC-SVAR model, see eq.s (8)-(10). This result remarks that

the only possible connection between the two external instruments in vZ,t := (vZ1,t, vZ2,t)
′ and

the instrumented structural shock εa,t is by the covariance matrix ΣvZ ,u := E(vZ,tu
′

t) which

is a key element of system (29)-(30) and of the proxy-SVAR approach. A Wald test for the

null hypothesis H ′

0 : vec(ΣvZ ,u) = 06×1 (no correlation between the external instruments and

the VAR disturbances) against H ′

1 : vec(ΣvZ ,u) 6= 06×1, see Section 5 and the Supplementary

Appendix A.9, is equal to W rel
T :=8.55 with a p-value of 0.01, hence the reduced form evidence

tends to indirectly reject the hypothesis that the relevance parameters are zero at the 5% level

of significance.

Partial shocks identification strategy

In the partial shocks identification strategy, we are solely interested the identification and

estimation of the parameters G̃1:=(b′a, ϕ
′)′ = ϑ, where ba:=(ba,a, bF,a, bM,a)

′ and φ = vec(Φ) :=

(ϕ1,a, ϕ2,a)
′. Proposition 1 ensures that the model is identified if at least one among ϕ1,a and

ϕ2,a is non-zero in the population. Panel B of Table 1, left-side, summarizes the CMD esti-

mates (with analytic standard errors) obtained with the procedure described in Section 5. The

estimated on-impact coefficients bF,a and bM,a have negative sign, as expected, but are not sta-

tistically significant. The overidentification restrictions test TQ(ϑ̂T )exog has p-value 0.54 and

strongly supports the hypothesis of ‘contemporaneous exogeneity’ of financial and macroeco-

nomic uncertainty, bF,a = 0 and bM,a = 0. The immediate interpretation of this result is that

financial and macroeconomic uncertainty do not respond contemporaneously to the identified

non-uncertainty shock. We inspect the implied IRFs next.

We evaluate the quality of the identification by checking directly whether the (estimated)

innovations in new privately owned housing units started (v̂Z1,t) and the oil supply shock (vZ2,t)

are relevant for the real economic activity shock. Panel C of Table 1, left-side, reports the

estimated correlations between v̂Z1,t and εa,t (given by given by the ratio ϕ̂1,a/σ̂vZ1
) and between

vZ2,t and εa,t (given by the ratio ϕ̂2,a/σ̂vZ2
). These are 0.29 and 0.27, respectively, and are both

statistically significant at the 5% level of significance.

Full shocks identification strategy

If we add the restriction bF,M = 0 in the matrix G̃ in eq. (17) also the financial and macroe-

conomic uncertainty shocks can be identified from the AC-SVAR model (despite these shocks

are not instrumented). The restriction bF,M = 0 involves the submatrix B2 of B which collects

the instantaneous impacts of the non-instrumented structural shocks. We borrow the restriction

bF,M = 0 from Angelini et al. (2019) who investigate the endogeneity/exogeneity of uncertainty

by exploiting the breaks in unconditional volatility of a VAR for Yt:=(at, UF,t, UM,t)
′ across

three main macroeconomic regimes of U.S. business cycle. Given the two external instruments
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Zt := (Z1,t, Z2,t)
′ = (∆houset, oilt)

′ and driven by some preliminary evidence, we impose a

diagonal structure to the covariance matrix of measurement errors Σω, i.e. we set ̟2,1 = 0

in eq. (17). According to Proposition 2(b), with bF,M = 0 and ̟2,1 = 0 the necessary order

condition for identification is satisfied because there are a
G̃
= 12 unrestricted (free) elements in

G̃ and 1/2m(m+1) = 15 covariance restrictions, hence the system features 3 testable overiden-

tification restrictions if also the rank condition in Proposition 2(a) holds. It is possible to show

that also the identification rank condition is satisfied. Actually, it can be easily checked that

the AC-SVAR model with the matrix G̃ in eq. (17) subject to bF,M = 0 and ̟2,1 = 0 satisfies

the sufficient conditions for global identification of Theorem 1 in Rubio-Ramirez et al. (2010).

Panel B of Table 1, right-side, summarizes the ML estimates (with analytic standard errors)

of the parameters in the matrix G̃, see Section 6. The table also reports the results of two LR

tests: one (LRT ) is a test for the 3 overidentification restrictions featured by the estimated AC-

SVAR model and the other (LRexog) is a test for the hypothesis of ‘contemporaneous exogeneity’

of financial and macroeconomic uncertainty, bF,a = 0 and bM,a = 0. Both tests provide ample

empirical support to the estimated proxy-SVAR model (p-value 0.92) and to the hypothesis of

‘contemporaneous exogeneity’ (p-value 0.53), confirming the finding already obtained with the

partial shocks identification strategy. In this framework we can also evaluate the instantaneous

impacts of financial and macroeconomic uncertainty shocks on industrial production growth.

The estimated coefficient ba,F is positive (0.049) but is not significant at the 5% level of signif-

icance, while the estimated coefficient ba,M is negative (-0.313) and significant, meaning that a

one standard deviation macroeconomic uncertainty shock leads to an instantaneous decline in

industrial production growth.

Panel C of Table 1, right-side, reports the estimated correlations between v̂Z,t := (v̂Z1,t, vZ2,t)
′

and εt := (εa,t, εF,t, εM,t)
′. It is seen that the estimated correlations between v̂Z,t and ε̂a,t are

0.29 and 0.25, respectively, and are both statistically significant at the 5% level of significance.

Instead, the estimated correlations between v̂Z,t and ε̂2,t := (εF,t, εM,t)
′ are close to zero and not

statistically significant at the 5% level.

Dynamic causal effects

The IRFs generated by the estimated AC-SVAR model in the full shocks identification strat-

egy are plotted in Figure 1 with associated 90%-bootstrap simultaneous confidence bands. The

IRFs are estimated by imposing the ‘contemporaneous exogeneity’ restrictions bF,a = 0 and

bM,a = 0, not rejected by formal testing. Since the tests in Panel A of Table 1 rule out the

occurrence of conditional heteroskedasticity in the disturbances, the simultaneous ‘sup-t’ boot-

strap confidence bands for the IRFs are computed by combining a nonparametric iid resampling

scheme for η̂t := (û′t, v̂
′

Z,t)
′ with Algorithm 3 in Montiel Olea and Plagborg-Møller (2019); see
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the Supplementary Appendix A.10 for details.

The first column of Figure 1 plots the responses of the variables in Yt+h:=(at+h, UF,t+h, UM,t+h)
′

to one standard deviation non-uncertainty shock εa,t, h = 0, 1, ... Given the estimates in Panel B

of Table 1, the IRFs in the first column of Figure 1 are expected to be numerically similar to the

ones computed from a partial shocks identification strategy. It is seen that while macroeconomic

uncertainty does not respond significantly at any lag to the identified non-uncertainty shock,

financial uncertainty responds after one month, but such response is short-lived and lasts one

month. The no response of macroeconomic uncertainty and the very short-lived response of

financial uncertainty to the identified non-uncertainty shock in Figure 1 are at odds with Plante

et al. (2018)’s hypothesis of ‘endogenous uncertainty’.

In the full shocks identification framework, we can also track the dynamic responses of

Yt+h:=(at+h, UF,t+h, UM,t+h)
′ to the identified uncertainty shocks ε2,t := (εF,t, εM,t)

′, h = 0, 1, ...

Given our scopes, these responses are not of strict interest but for completeness we plot them in

the second and third columns of Figure 1. The estimated dynamic causal effects confirm a well

established fact of the uncertainty literature: financial and macroeconomic uncertainty shocks

exert non-negligible contractionary effects on industrial production growth after the Global

Financial Crisis, with financial uncertainty fostering greater macroeconomic uncertainty.

The Supplementary Appendix A.12.2 shows that the main results obtained in the paper are

confirmed by changing the oil supply shock with innovations taken from an auxiliary model for

changes in hours worked, i.e. the instrument (c) in place of (b). Overall, our empirical analyses

support the common practice of ordering (financial and macroeconomic) uncertainty first in

SVARs, i.e. as ‘the most exogenous’ variables of the system.

8.3 Comparison with existing works

The empirical results discussed in the previous section allow us to make direct contact with

Angelini et al. (2019), Carriero et al. (2018) and Ludvigson et al. (2018).

Angelini et al. (2019) identify a small-scale SVAR for Yt:=(at, UF,t, UM,t)
′ on the period

1960M8-2015M4 by applying a novel ‘identification-through-heteroskedasticity’ method which

exploits the changes in the unconditional volatility of macroeconomic variables across the main

U.S. macroeconomic regimes. In line with our results, they find that macroeconomic uncer-

tainty can be approximated as an exogenous driver of real economic activity and that financial

uncertainty displays a delayed and short-lived response to industrial production shocks.

Carriero et al. (2018) use a novel stochastic volatility approach in SVAR models which

include measures of macroeconomic and financial uncertainty (one at a time), along with mea-

sures of real economic activity. Their empirical evidence is partly consistent with ours: they
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document that macroeconomic uncertainty is broadly exogenous to business cycle fluctuations

but find that financial uncertainty might, at least in part, arise as an endogenous response to

some macroeconomic developments. Carriero et al. (2018) do not model financial and macroe-

cononomic uncertainty jointly, and this might explain why their findings are not fully consistent

with ours.

Ludvigson et al. (2018) employ a SVAR for Yt:=(at, UF,t, UM,t)
′ on the period 1960M8-

2015M4 and apply a novel set-identification strategy which combines sign-restrictions, imposed

directly on the structural shocks in correspondence of particular events (event constraints),

with the use of external instruments (correlation constraints). They instrument the uncertainty

shocks by exploiting a measure of the aggregate stock market return and the log difference in the

real price of gold, respectively, and this is one key difference with respect to our identification

strategy. The specific events constraints they impose to identify the uncertainty shocks pertain

mostly to financial uncertainty: the 1987 stock market crash and the 2007-09 financial crisis.

They report that while financial uncertainty can be approximated as an exogenous driver of

real economic activity, macroeconomic uncertainty is often an endogenous response to output

shocks, and this is another major difference with respect to our empirical findings. Ludvigson

et al. (2018) also find that, while financial uncertainty shocks are contractionary shocks, macro

uncertainty shocks have positive effects on real activity, in line with ‘growth options’ theories. In

Ludvigson et al. (2018), the main role of the external instruments is to narrow the identification

set constructed with the event constraints: the external instruments need not be orthogonal

to the non-instrumented structural shocks but the relevance condition is relaxed to a set of

inequality restrictions.

9 Concluding remarks

We have presented a general framework to analyze the identification of proxy-SVARs when

r ≥ g external instruments are used to identify 1≤ g < n structural shocks of interest. We

have discussed ‘partial’ and ‘full’ shocks identification strategies and developed novel frequentist

estimation methods based on CMD and ML, respectively.

We have applied the suggested proxy-SVAR methodology to analyze whether commonly em-

ployed measures of macroeconomic and financial uncertainty respond to non-uncertainty shocks

in the U.S., after the Global Financial Crisis. The empirical evidence supports the view that

financial and macroeconomic uncertainty can be approximated as exogenous drivers of real eco-

nomic activity. Our results, however, can not be considered ‘final’ as they depend on the specific

set of external instruments used to identify the non-uncertainty shock.
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Table 1. Estimated baseline AC-SVAR model

Panel A

NJB AR4 ARCH4 FT : Zt 9 Yt

at-eq. 318.21[0.00] 2.31[0.68] 6.06[0.19] 1.39[0.22]

UFt-eq. 0.85[0.50] 1.35[0.85] 2.45[0.65] 0.24[0.98]

UMt-eq. 2.22[0.23] 0.20[0.99] 3.98[0.41] 0.39[0.92]

Z1t-eq. 0.89[0.50] 0.47[0.98] 8.47[0.06] -

Z2t-eq. 1.11[0.50] 3.14[0.54] 0.61[0.96] -

Panel B

Partial Shocks Identification Full Shocks Identification

̂̃
G1 =




0.5614
0.1142

−0.0058
0.0026

0.0008
0.0019

0.0245
0.0111

0.1470
0.0700




̂̃
G =




0.5614
0.0941

0.0493
0.1502

−0.3135
0.1444

0 0

−0.0058
0.0060

0.0215
0.0022

0 0 0

0.0008
0.0027

0.0037
0.0012

0.0092
0.0008

0 0

0.0245
0.0089

0 0 0.0811
0.0061

0

0.1469
0.0571

0 0 0 0.5224
0.0394




TQ(ϑ)exog = 1.23[0.54] LRT = 0.47[0.93] LRexog = 1.27[0.53]

Panel C

Correlations (relevance) Correlations (relevance, orthogonality)

ε̂a

υ̂Z1
0.29[0.01]

υ̂Z2
0.27[0.01]

ε̂a ε̂F ε̂M

υ̂Z1
0.29[0.01] −0.03[0.75] 0.05[0.61]

υ̂Z2
0.25[0.02] −0.12[0.28] 0.04[0.68]

NOTES: Estimated AC-SVAR model for Yt := (at, UFt, UMt)
′ and external instrument Zt :=

(∆houset, oilt)
′, period 2008:M1-2015:M4 (T=88). Panel A: diagnostic tests. ‘NJB’ is the

Jarque-Bera test for the null of Gaussian disturbances.‘AR4’ is the LM-type test for the null of

absence of residual autocorrelation against the alternative of autocorrelated disturbances up to 4

lags. ‘ARCH4’ is a test for the null of absence of the ARCH-type conditional heteroskedasticity

up to 4 lags. ‘FT : Zt 9 Yt’ is a Granger causality F-type test for the null hypothesis that Zt do

not Granger cause the corresponding equation in Yt. Numbers in brackets are p-values. Panel B:

estimates. Left side, CMD estimates of G̃1 with associated standard errors, ‘TQ(ϑ)exog’ is the

overidentification restriction test for the null bF,a = 0 and bM,a = 0. Right side, ML estimates of

G̃ with associated standard errors, ‘LRT ’ is a test for the 3 overidenfication restrictions featured

by the estimated model, ‘LRexog’ is the overidentification test for the null bF,a = 0 and bM,a = 0.

Panel C: ex-post correlations. Left side, ex-post correlations between the structural shock ε̂a

and the reduced form shocks υ̂Z1
and υ̂Z2

(relevance). Right side, ex-post correlations between

the structural shocks ε̂t := (ε̂at, ε̂Ft, ε̂Mt)
′ and the reduced form shocks υ̂Z1

and υ̂Z2
(relevance

and orthogonality). 34



Figure 1: IRFs obtained from the baseline AC-SVAR model for Yt := (at, UFt, UMt)
′ and external instrument Zt := (∆houset, oilt)

′,

period 2008:M1-2015:M4 (T=88). Blue shaded areas denote 90%-bootstrap simultaneous ‘sup-t’ confidence bands (Algorithm 3 in

Montiel Olea and Plagborg-Møller, 2019). Responses are measured with respect to one standard deviation changes in the structural

shocks. The on-impact coefficients are estimated by imposing the null hypothesis bF,a = 0 and bM,a = 0 of exogenous financial and

macro uncertainty.
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A.1 Introduction

This Supplementary Appendix complements the results of the paper. Section A.2 reviews some

standard results on the local and global identification of SVARs which are mentioned and used

in the paper. Section A.3 sketches the proofs of Proposition 1 and Proposition 2 in the paper.

Section A.4 revisits the identification of a monetary SVAR model similar to one analyzed in

Rubio-Ramirez et al (2010) by using external instruments and considering both a partial shocks

identification strategy (Section A.4.1) and a full shocks identification strategy (Section A.4.2).

Section A.5 derives the mapping between the reduced form coefficients and the structural

parameters at the basis of the partial shocks identification approach formalized in Section 5 of

the paper, and then derives the asymptotic distribution of the estimator of the reduced form

parameters ζ̂T necessary to estimate the proxy-SVAR model by the CMD approach. Section

A.6 summarizes the main steps behind the specification of the AC-SVAR model and derives

the structural log-likelihood function maximized in Section 6 of the paper in the ML estimation

approach.

Section A.7 remarks the formal differences between our approach and Mertens and Raven’s

(2013) approach when g > 1.

Section A.8 presents the results of some Monte Carlo simulations where we investigate the

performance of the overidentification restrictions tests when the external instruments are er-

roneously assumed orthogonal to the non-instrumented shocks; the design of the experiment is

∗Corresponding author: Department of Economics, University of Bologna, Piazza Scaravilli 2, I-40126 Bologna,

luca.fanelli@unibo.it
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outlined in Section A.8.1 while the results obtained with the partial and full shocks identification

strategies are in Sections A.8.2 and A.8.3, respectively.

Section A.9 discusses a simple Wald test for the null hypothesis that the relevance parameters

of the proxy-SVAR model are zero. Section A.10 reviews the bootstrap algorithms used in the

paper to compute confidence bands for the IRFs of interest.

Section A.11 analyzes how the estimation procedures presented in Sections 5 and 6 of the

paper can be amended to account for an external instrument which is generated by a censored

autoregressive process.

Section A.12 complements the empirical results reported in Section 8 of the paper along

several directions. Section A.12.1 documents the construction of the supply oil shock used

as external instrument in the baseline AC-SVAR model estimated in the paper; Section A.12.2

replicates the empirical analyses in Section 8 of the paper by using as external instruments for the

real economic activity shock innovations built on the changes in the log of new privately owned

housing units started and the changes in the log of hours worked, respectively; Section A.12.3

compares the results one would obtain with small-scale Choleski-SVARs with those reported in

the paper; Section A.12.4 considers the ‘one shock-one instrument’ scenario (r = g = 1) and the

case of an invalid (non orthogonal) external instrument with the idea of checking the empirical

reliability of our approach; Section A.12.5 checks whether the empirical results obtained with

the baseline proxy-SVAR in the paper are robust to the inclusion of Wu and Xia (2016)’s shadow

federal funds rate and the inflation rate as control variables in the system.

A.2 Preliminaries: ‘standard’ identification results

In this section we review some standard results on the local and global identification of SVARs

which are mentioned in the paper.

The reference SVAR is in eq. (1) of the paper, which is a B-model’ in the terminology of

Lütkepohl (2005), or a ‘C-model’ in the terminology of Amisano and Giannini (1997). As is

known, the moment conditions

E(utu
′
t) =: Σu = BB′ (A.1)

impose 1
2n(n+1) restrictions on the n2 elements of B which leave 1

2n(n−1) elements unidentified.

Identification can be achieved either by specifying a recursive (triangular) structure for B which

places 1
2n(n−1) zero restrictions, or by imposing at least 1

2n(n−1) linear restrictions of general

form which can be written in explicit form as:

vec(B)=SB θ + sB (A.2)
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where SB is a n2 × aB selection matrix, θ is an aB × 1 vector containing the ‘free’ structural

parameters in B (aB ≤ 1
2n(n+ 1)) and sB is a n2 × 1 vector containing known elements. (Note

that when sB 6= 0n2×1there are non-homogeneous restrictions). By complementing the moment

conditions in eq. (A.1) with the restrictions in eq. (A.2), the identification can be framed

within a ‘classical’ Rothenberg’s (1971) paradigm. In particular, the necessary and sufficient

rank condition for identification is given by:

rank
{
2D+

n (B̆0 ⊗ In)SB

}
= aB (A.3)

where B̆0 := B̆(θ0) is a ‘regular’ matrix, i.e. whose rank does not change in a neighborhood

of θ0, which depends on θ and satisfies the identification restrictions vec(B̆0)=SB θ0 + sB; the

necessary order condition is aB ≤ 1
2n(n+ 1); see also Hamilton (1994, Ch. 11).

The necessary and sufficient rank condition in eq. (A.3) is a local identification condi-

tion. Rubio-Ramı́rez et al. (2010) have established sufficient rank conditions for global iden-

tification for cases where the restrictions on B are homogeneous (sB = 0n2×1) and separable

across equations (meaning that cross-restrictions that involve elements in different columns of

B are ruled out). Furthermore, Rubio-Ramı́rez et al. (2010) have shown that if their suf-

ficient condition for global identification is satisfied at an arbitrary point in the parameter

space, it will be satisfied almost everywhere. More specifically, for a specified matrix B := B̆

which incorporates a total of κ zero restrictions, we define the set of admissible restrictions:

R :=
{
B̆, Qj b̆j = 0n×1, j = 1, ..., n

}
where b̆j is the j-th column of B̆, and Qj are, for j = 1, ..., n,

selection matrices (i.e. containing zeros and ones) of dimensions n× n and rank(Qj)=κj , such

that κ =
∑n

j=1 κj . Thus, the matrix Qj selects the zero elements that characterize the column

b̆j for j = 1, ..., n. Assume without loss of generality that the n selection matrices in R are

ordered such that κ1 ≥ κ2 ≥ ...≥ κn, i.e. the columns of B̆ which feature a larger number of

zero restrictions are ordered first. Then define the n matrices

Mj(B̆) :=


 QjB̆

(Ij
... 0j×(n−j))


 , j = 1, ..., n (A.4)

which have dimensions (n + j) × n, respectively. Theorem 1 in Rubio-Ramı́rez et al. (2010)

establishes that:

rank
{
Mj(B̆)

}
= n for j = 1, ..., n (A.5)

is a sufficient rank condition for the global identification of the SVAR based on B := B̆. Fur-

thermore, Theorem 3 in Rubio-Ramı́rez et al. (2010) shows that when the condition in eq. (A.5)

is valid for B := B̆, it will be satisfied almost everywhere in the set R.
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A.3 Proofs

Proof of Proposition 1 (a) The Jacobian matrix in eq. (24) of the paper follows from stan-

dard matrix derivative rules, see Magnus and Neudecker (1999). The result follows trivially

from the structure of the derived Jacobian matrix. (b) From the definitions in eq. (21)

of the paper it follows that ng − e is the number of restrictions which characterize B1

and rg − c is the number of restrictions which characterize Φ. Since there must be at

least 1/2g(g − 1) restrictions on the columns of G̃1 in eq. (18) of the paper, it follow that

(ng − e) + (rg − c) ≥ 1/2g(g − 1).�

Proof of Proposition 2 (a) The proof follows from a straightforward application of the results

in eq.s (A.2)-(A.3) to the matrix

G̃ :=

(
B 0n×g

RΦ Σ
1/2
ω

)
=

(
B1 B2

Φ 0r×(n−g)

0n×r

Σ
1/2
ω

)
.

In particular, define them2×1 vector γ := (vec(B1)
′, vec(B2)

′, vec(Φ)′, vec(0r×(n−g))
′, vec(0n×r)

′, vec(Σ
1/2
ω )′)′

which contains the same information as vec(G̃) but in a different order. The linear rela-

tionship between γ and θ := (α′
1, α

′
2, ϕ

′, ̟′)′ is given by:

γ =




SB1
0ng×e2 0ng×c 0ng×sω

0n(n−g)×e1 SB2
0n(n−g)×c 0n(n−g)×sω

0rg×e1 0rg×e2 SΦ 0rg×sω

0r(n−g)×e1 0r(n−g)×e2 0r(n−g)×c 0r(n−g)×sω

0nr×e1 0nr×e2 0nr×c 0nr×sω

0r2×e1 0r2×e2 0r2×c SΣω




θ + µ (A.6)

which we simplify by the expression γ = Ωθ + µ, with Ω given as above and µ contains

known elements by which we can impose non-homogeneous restrictions. Then, introduce

the m2 ×m2 permutation matrix P such that:

vec(G̃) = Pγ,

i.e. the matrix P applied to γ returns vec(G̃). By pre-multiplying both sides of eq. (A.6)

by P, yields the linear restrictions

vec(G̃) = Pγ = PΩθ + Pµ = S
G̃
θ + s

G̃

which show that the selection matrix S
G̃

is a permutation of Ω, S
G̃

:= PΩ, and s
G̃

is a

permutation of µ, s
G̃
:= Pµ. The result is thus obtained.

(b). The necessary order condition follows from the fact that the matrix D+
m(G̃0 ⊗ Im)S

G̃
is

1
2m(m+ 1)× a

G̃
. �
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A.4 The identification of a monetary SVAR by external instru-

ments

In this section we implement the identification approach discussed in the paper to the case of

monetary SVAR analyzed in other studies, including Rubio-Ramirez et al. (2010, Section 5.2).

The SVAR model is based on the following specification of the matrix B:1

B :=

R

logM

log Y

logP

logPc




MP MD Inf PS1 PS2

b11 b12 b13 0 0

b21 b22 b23 0 0

b31 b32 b33 b34 b35

b41 b42 b43 0 b45

b51 0 b53 0 0




(A.7)

where b31 = b41 = b51 = 0 in the original specification. The five variables (n = 5) are the nominal

short-term interest rate (R), log M3 (logM), log gross domestic product (log Y ), log GDP

deflator (logP ), and log of commodity prices (logPc). The first column of B (MP) captures a

central bank’s contemporaneous behaviour, the second column (MD) describes a money demand

equation and the third column (Inf) the commodity (information) market; the last two columns

(PS1, PS2) pertain to the production sector.

Rubio-Ramirez et al. (2010) show that the so-defined SVAR (with b31 = b41 = b51 = 0) is

globally identified. The zero constraints b31 = b41 = b51 = 0 maintain that log Y , logP and

logPc does not respond on-impact (i.e. within the month) to the monetary policy shock, and

have been disputed in the recent empirical monetary policy literature, see e.g. Ramey (2016,

Section 3.3.1) and references therein for a review. If b31 6= 0, b41 6= 0, b51 6= 0, the SVAR is no

longer identified (indeed there are 8 restrictions while at least 10=1/2n(n − 1) restrictions are

needed).

Suppose that we analyze the more general setup based on b31 6= 0, b41 6= 0, b51 6= 0, and

that the scope of the analysis is to identify three structural shocks of interest (g = 3): the

monetary policy shock (εMP,t), the money demand shock (εMD,t) and the commodity market

shock (εInf,t), hence ε1,t := (εMP,t, εMD,t, εInf,t)
′. This amounts to identify the three columns in

B1 := (MP, MD, Inf), while the columns of B2 := (PS1, PS2), i.e. the shocks to the production

sector, are not of interest. The SVAR with B in eq. (A.7) is not identified but the proxy-SVAR

approach may help to solve the problem. More specifically, it is in principle possible to identify

B1 (with b31 6= 0, b41 6= 0, b51 6= 0) conditionally on the existence of at least three valid external

1Compared to Rubio-Ramirez et al. (2010) we order the variables differently; moreover, while their parame-

terization is based on the ‘A-model’ Aut = εt, we use a ‘B-model’ formuation.
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instruments which are correlated with the shocks of interest ε1,t := (εMP,t, εMD,t, εInf,t)
′ but are

orthogonal to ε2,t := (εPS1,t, εPS2,t)
′.

To simplify the exposition (and to save space), we consider the case r = g = 3, and assume

that there exist three hypothetical external instruments Zt := (Z1,t, Z2,t, Z3,t)
′ whose innovation

components vZ,t := (vZ1,t, vZ2,t, vZ3,t)
′ (see eq.s (6)-(7) in the paper) satisfy the conditions:

E








vZ1,t

vZ2,t

vZ3,t



(
ε′1,t, ε

′
2,t

)




:=







ϕ11 ϕ12 0

ϕ21 ϕ22 ϕ23

0 ϕ32 ϕ33







0 0

0 0

0 0





 =

(
Φ 03×2

)
= RΦ.

(A.8)

In eq. (A.8) vZ1,t is correlated with εMP,t and εMD,t but not with εInf,t and the other (non-

instrumented) shocks; vZ2,t is correlated with all three structural shocks of interest, εMP,t,

εMD,t and εInf,t and is orthogonal to the non-instrumented shocks; finally, vZ3,t is assumed to

be correlated with the money demand shock εMD,t and the commodity market shock εInf,t, but

is orthogonal to εMP,t and the other (non-instrumented) shocks.

In this example, we have n = 5 variables, g = 3 structural shocks of interest and r = g

external instruments, hence the AC-SVAR model is 8-dimensional, i.e. m = n + r = 8. The

matrix G̃ in eq. (11) of the paper boils down to:

G̃ :=

(
B1 B2

Φ 03×2

05×3

Σ
1/2
ω

)
=




MP MD Inf PS1 PS2 - - -

b11 b12 b13 0 0 0 0 0

b21 b22 b23 0 0 0 0 0

b31 b32 b33 b34 b35 0 0 0

b41 b42 b43 0 b45 0 0 0

b51 0 b53 0 0 0 0 0

ϕ11 ϕ12 0 0 0 ̟11 ̟21 ̟31

ϕ21 ϕ22 ϕ23 0 0 ̟21 ̟22 ̟32

0 ϕ32 ϕ33 0 0 ̟31 ̟32 ̟33




(A.9)

where ̟i,l are the elements of Σ
1/2
ω , hence pertain to the covariance matrix of the measure-

ment errors. The matrix G̃ is at the basis of the two types of identification strategy one

can implement within the AC-SVAR model. In Section A.4.1 we use the external instruments

vZ,t := (vZ1,t, vZ2,t, vZ3,t)
′ to identify ε1,t := (εMP,t, εMD,t, εInf,t)

′ in a partial shocks identifica-

tion strategy, while in Section A.4.2 we study the circumstances under which it is possible to

identify ε1,t := (εMP,t, εMD,t, εInf,t)
′ jointly with ε2,t := (εPS1,t, εPS2,t)

′ by the external instru-

ments vZ,t := (vZ1,t, vZ2,t, vZ3,t)
′.
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A.4.1 Partial shocks identification strategy

The focus is on eq.s (A.7)-(A.8). The objective is the identification of the three shocks of interest

in ε1,t := (εMP,t, εMD,t, εInf,t)
′ for which three valid instruments are used. The on-impact effects

of the instrumented shocks are captured by the first three columns of G̃ in eq. (A.9), collected

in G̃1:

G̃1 :=

(
B1

Φ

)
:=




MP MD Inf

b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43

b51 0 b53

ϕ11 ϕ12 0

ϕ21 ϕ22 ϕ23

0 ϕ32 ϕ33




.

Recall that G̃1 is part of the matrix G̃ :=
(

G̃1 G̃2

)
(see eq.(11) of the paper), where G̃2 :=

(PS1,PS2) collects the production section of the system which is not of interest.

The order condition of Proposition 1(b) of the paper is respected as G̃1 incorporates 1/2g(g−

1) = 3 restrictions; alternatively, e1 = 13 is number of unrestricted elements in vec(B1) and c = 7

is number of unrestricted relevance parameters in vec(Φ), hence e1+c = 21=g(n+r)−1/2g(g−1).

Since the restrictions that characterize the columns of G̃1 are homogeneous and separable across

columns, we skip for the moment the check for the necessary and sufficient rank condition of

Proposition 1(a) of the paper, which require computing the Jacobian matrix in eq. (24), and

rather check wether the sufficient conditions for global identification in partially identified models

reported in Theorem 2 of Rubio-Ramirez et al. (2010) are satisfied.

The zero restrictions on the columns of G̃1 are:

κ1 = 1 ≥ κ2 = 1 ≥ κ3 = 1

for a total of κ = κ1 + κ2 + κ3 = 3 zero restrictions, equal in this case to 1
2g(g − 1). Following

Rubio-Ramirez et al. (2010), we derive the matrices Q1, Q2 and Q3 that satisfy the conditions
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rank(Qi) = κi, Qig̃i = 0m×1, i = 1, 2, 3, where g̃1,i, i = 1, 2, 3, are the columns of G̃1. One has:

Q1 :=




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1




, Q1G̃1 =




0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 ϕ32 ϕ33




;

Q2 :=




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, Q2G̃1 =




0 0 0

0 0 0

0 0 0

0 0 0

b51 0 b53

0 0 0

0 0 0

0 0 0




;

Q3 :=




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, Q3G̃1 =




0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

ϕ11 ϕ12 0

0 0 0

0 0 0




;

To evaluate the sufficient condition of Theorem 2 of Rubio-Ramirez et al. (2010) we fill the rank
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matrices Mi(G̃1), i = 1, ..., 3 as:

M1(G̃1) :=




0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 ϕ32 ϕ33

1 0 0




which has rank 3 for ϕ32 6= ϕ33;

M2(G̃1) :=




0 0 0

0 0 0

0 0 0

0 0 0

b51 0 b53

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0




which has rank 3 if b53 6= 0

M3(G̃1) :=




0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

ϕ11 ϕ12 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




which has rank 3.

According to Theorems 2 and 3 in Rubio-Ramı́rez et al. (2010), the three columns in G̃1 are

globally identified for almost all structural parameters.
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A.4.2 Full shocks identification strategy

The scope of the analysis is still to identify the three structural shocks in ε1,t := (εMP,t, εMD,t, εInf,t)
′

by using the r = g = 3 external instruments in vZ,t := (vZ1,t, vZ2,t, vZ3,t)
′. The novelty

is that we now analyze the conditions which permit the identification also of the shocks in

ε2,t := (εPS1,t, εPS2,t)
′. To fully appreciate the advantages of the full shocks approach, we relax

all zero restrictions which characterize the production sector B2 := (PS1, PS2) in eq. (A.7),

except the constraint b15 = 0. Moreoer, we assume that the covariance matrix of measurement

errors, Σω := E(ωtω
′
t), is diagonal, so that also the matrix Σ

1/2
ω has a diagonal form. With these

changes, the matrix G̃ in eq. (A.9) becomes:

G̃ :=

(
B1 B2

Φ 03×2

05×3

Σ
1/2
ω

)
=




MP MD Inf PS1 PS2 - - -

b11 b12 b13 b14 0 0 0 0

b21 b22 b23 b24 b25 0 0 0

b31 b32 b33 b34 b35 0 0 0

b41 b42 b43 b44 b45 0 0 0

b51 0 b53 b54 b55 0 0 0

ϕ11 ϕ12 0 0 0 ω11 0 0

ϕ21 ϕ22 ϕ23 0 0 0 ω22 0

0 ϕ32 ϕ33 0 0 0 0 ω33




. (A.10)

As we know, in this exampleB :=
(

B1 B2

)
is not identified from the n-dimensional SVAR

for Yt. However, if we consider the m-dimensional AC-SVAR model based on Wt := (Y ′
t , Z

′
t)
′,

m = n + r = 8, and the matrix G̃ in eq. (A.10), we observe that the model features 31

zero restrictions, three more than the 1/2m(m − 1) = 28 restrictions necessary to achieve

identification. Thus, provided a rank condition holds, the matrix G̃ matrix in eq. (A.10) is

identified.

Again, in this model the restrictions that characterize the columns of G̃ in eq. (A.10) are

separable across columns and homogeneous which suggests that it might be convenient to check

whether the sufficient conditions for global identification in Rubio-Ramı́rez et al. (2010) are

satisfied.2

2It is possible to prove that regardless of whether Σω is diagonal or ‘full’, the AC-SVAR model based on the

matrix G̃ in eq. (A.10) satisfies the necessary and sufficient conditions rank condition of Proposition 2(a) of the

paper.
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Let

G̃∗ :=




0 0 0 0 b14 b11 b12 b13

0 0 0 b25 b24 b21 b22 b23

0 0 0 b35 b34 b31 b32 b33

0 0 0 b45 b44 b41 b42 b43

0 0 0 b55 b54 b51 0 b53

ω11 0 0 0 0 ϕ11 ϕ12 0

0 ω22 0 0 0 ϕ21 ϕ22 ϕ23

0 0 ω33 0 0 0 ϕ32 ϕ33




(A.11)

be the counterpart of G̃ obtained by ordering the columns such that the ones with a larger

number of zero restrictions come first (formally, G̃∗ := PG̃, P being a permutation matrix). It

is seen that the zero restrictions on the m = 8 columns of G̃∗ are:

κ1 = 7 ≥ κ2 = 7 ≥ κ3 = 7 > κ4 = 4 > κ5 = 3 > κ6 = 1 ≥ κ7 = 1 ≥ κ8 = 1

for a total of κ = κ1 + ...+ κ8 = 31 zero restrictions, more than the 1
2m(m− 1)=28 restrictions

required to exactly identify the system. It turns out that provided a rank condition is also

satisfied, the model is overidentified and features 3 testable over-identification restrictions (which

arise from the postulated diagonal form of Σω). We now establish that the model based on the

G̃∗ satisfies the conditions in Theorem 1 in Rubio-Ramı́rez et al. (2010).

First, we derive the restrictions matrices Q1,...,Q8 that satisfy the conditions rank(Qi) = κi,

Qig̃
∗
i = 08×1, i = 1, ..., 8, where g̃∗i are the columns of G̃∗, see eq.s (A.4)-(A.5). One has:

Q1 :=




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




, Q1G̃
∗ =




0 0 0 0 b14 b11 b12 b13

0 0 0 b25 b24 b21 b22 b23

0 0 0 b35 b34 b31 b32 b33

0 0 0 b45 b44 b41 b42 b43

0 0 0 b55 b54 b51 0 b53

0 0 0 0 0 0 0 0

0 ω22 0 0 0 ϕ21 ϕ22 ϕ23

0 0 ω33 0 0 0 ϕ32 ϕ33



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Q2 :=




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1




, Q2G̃
∗ =




0 0 0 0 b14 b11 b12 b13

0 0 0 b25 b24 b21 b22 b23

0 0 0 b35 b34 b31 b32 b33

0 0 0 b45 b44 b41 b42 b43

0 0 0 b55 b54 b51 0 b53

ω11 0 0 0 0 ϕ11 ϕ12 0

0 0 0 0 0 0 0 0

0 0 ω33 0 0 0 ϕ32 ϕ33




;

Q3 :=




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0




, Q3G̃
∗ =




0 0 0 0 b14 b11 b12 b13

0 0 0 b25 b24 b21 b22 b23

0 0 0 b35 b34 b31 b32 b33

0 0 0 b45 b44 b41 b42 b43

0 0 0 b55 b54 b51 0 b53

ω11 0 0 0 0 ϕ11 ϕ12 0

0 ω22 0 0 0 ϕ21 ϕ22 ϕ23

0 0 0 0 0 0 0 0




;

Q4 :=




1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




, Q4G̃
∗ =




0 0 0 0 b14 b11 b12 b13

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ω11 0 0 0 0 ϕ11 ϕ12 0

0 ω22 0 0 0 ϕ21 ϕ22 ϕ23

0 0 ω33 0 0 0 ϕ32 ϕ33




;
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Q5 : =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




, Q5G̃
∗ =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ω11 0 0 0 0 ϕ11 ϕ12 0

0 ω22 0 0 0 ϕ21 ϕ22 ϕ23

0 0 ω33 0 0 0 ϕ32 ϕ33




;

Q6 : =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1




, Q6G̃
∗ :=




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 ω33 0 0 0 ϕ32 ϕ33




Q7 : =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, Q7G̃
∗ =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 b55 b54 b51 0 b53

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




Q8 : =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, Q8G̃
∗ =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ω11 0 0 0 0 ϕ11 ϕ12 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




Secondly, we evaluate the sufficient condition in eq. (A.5) by filling the rank matrices Mi(G̃
∗),
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i = 1, ..., 8 as:

M1(G̃
∗) :=




0 0 0 0 b14 b11 b12 b13

0 0 0 b25 b24 b21 b22 b23

0 0 0 b35 b34 b31 b32 b33

0 0 0 b45 b44 b41 b42 b43

0 0 0 b55 b54 b51 0 b53

0 0 0 0 0 0 0 0

0 ω22 0 0 0 ϕ21 ϕ22 ϕ23

0 0 ω33 0 0 0 ϕ32 ϕ33

1 0 0 0 0 0 0 0




which has rank 8 for ω22 6= 0 and ω33 6= 0;

M2(G̃
∗) :=




0 0 0 0 b14 b11 b12 b13

0 0 0 b25 b24 b21 b22 b23

0 0 0 b35 b34 b31 b32 b33

0 0 0 b45 b44 b41 b42 b43

0 0 0 b55 b54 b51 0 b53

ω11 0 0 0 0 ϕ11 ϕ12 0

0 0 0 0 0 0 0 0

0 0 ω33 0 0 0 ϕ32 ϕ33

I2 02×6




which has rank 8 for ω33 6= 0;

M3(G̃
∗) :=




0 0 0 0 b14 b11 b12 b13

0 0 0 b25 b24 b21 b22 b23

0 0 0 b35 b34 b31 b32 b33

0 0 0 b45 b44 b41 b42 b43

0 0 0 b55 b54 b51 0 b53

ω11 0 0 0 0 ϕ11 ϕ12 0

0 ω22 0 0 0 ϕ21 ϕ22 ϕ23

0 0 0 0 0 0 0 0

I3 03×5




which has rank 8;
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M4(G̃
∗) :=




0 0 0 0 b14 b11 b12 b13

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ω11 0 0 0 0 ϕ11 ϕ12 0

0 ω22 0 0 0 ϕ21 ϕ22 ϕ23

0 0 ω33 0 0 0 ϕ32 ϕ33

I4 04×4




which has rank 8 for b14 6= 0;

M5(G̃
∗) :=




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ω11 0 0 0 0 ϕ11 ϕ12 0

0 ω22 0 0 0 ϕ21 ϕ22 ϕ23

0 0 ω33 0 0 0 ϕ32 ϕ33

I5 05×3




which has rank 8 for ϕ11 6= 0, ϕ21 6= 0;

M6(G̃
∗) :=




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 ω33 0 0 0 ϕ32 ϕ33

I6 06×2




which has rank 8 for ϕ32 6= 0, ϕ33 6= 0;
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M7(G̃
∗) :=




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 b55 b54 b51 0 b53

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

I7 07×1




which has rank 8 for b53 6= 0;

M8(G̃
∗) :=




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ω11 0 0 0 0 ϕ11 ϕ12 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

I8




which has rank 8.

According to Theorems 1 and 3 in Rubio-Ramı́rez et al. (2010), the AC-SVAR model is globally

identified for almost all structural parameters.

A.5 The mapping between the reduced form and structural pa-

rameters in the partial shocks identification approach and

the asymptotic distribution of ζ̂T

In this section we focus on the mapping in eq.s (12)-(13) of the paper which links the reduced

form parameters of the AC-SVAR model to the parameters in the matrices B1 and Φ.

One difficulty with the moment conditions in eq. (12) of the paper is that the covariance

restrictions:

Σu = BB′ = B1B
′
1 +B2B

′
2

involve also the parameters in B2 which are not of interest and must be marginalized out. To

get rid of B2 we use the nonsingularity of Σu = BB′ (Assumption 1 in the paper) and the

transformation:

ΣvZ ,uΣ
−1
u Σu,vZ = ΦB′

1(BB′)−1B1Φ
′
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= ΦB′
1(B

′)−1B−1B1Φ
′ = ΦB′

1(B
′)−1B−1B1Φ

′ = ΦΦ′. (A.12)

Equation (A.12) has been derived by using the fact that the condition B−1B = In = (B−1B1 :

B−1B2) implies the restrictions:

B−1B1 =

(
Ig

0(n−g)×g

)
, B−1B2 =

(
0g×(n−g)

I(n−g)

)
.

Equation (A.12) is then re-written as:

Ξ = ΦΦ′ (A.13)

where Ξ := ΣvZ ,uΣ
−1
u Σu,vZ is an r × r symmetric matrix (of rank g) which is positive definite

when r = g, and is positive semidefinite when r > g. Reporting for convenience eq. (12) of the

paper here:

ΣvZ ,u = ΦB′
1, (A.14)

we have a new set of moment conditions which involve the elements in B1 and Φ alone. The

moment conditions in eq.s (A.13)-(A.14) correspond to eq. (19) in the paper, and form the basis

of the results established in Proposition 1.

Next, we prove the result in eq. (22) of the paper. Let σ+
η,0 be the true value of σ+

η :=

vech(Ση) and σ̂+
η,T the corresponding ML estimator obtained from the AC-SVAR model (see

Section A.6). Under Assumption 1 and for T → ∞ :

T 1/2(σ̂+
η,T − σ+

η,0) →d N(01/2m(m+1)×1, Ωη) , Ωη := 2D+
m(Ση ⊗ Ση)(D

+
m)′ (A.15)

where D+
m:=(D′

mDm)−1D′
m is the Moore-Penrose inverse of Dm, Dm is the m2 × 1

2m(m + 1)

duplication matrix, see Magnus and Neudecker (1999), and the symbol ‘→d’ denotes convergence

in distribution. The asymptotic covariance matrix Ωη can be estimated consistently by Ω̂η,T :=

2D+
m(Σ̂η,T ⊗ Σ̂η,T )(D

+
m)′ and Σ̂η,T := (1/T )

∑T
t=1 η̂tη̂

′
t. The convergence in eq. (A.15) is valid

regardless of Assumption 2, i.e. the matrix of relevance parameters Φ might be also zero in eq.

(6) of the paper.

Now, define now the 1/2m(m + 1) × 1 vector λ := (vech(Σu)
′, vec(ΣvZ ,u)

′, vech(ΣvZ )
′)′,

which contains the same elements as the vector σ+
η but disposed in different order. Formally,

λ = Pσσ
+
η , where Pσ is a permutation matrix. Given eq. (A.15) and Assumption 1 we have:

T 1/2(λ̂T − λ0) →d N(01/2m(m+1)×1, Ωλ) , Ωλ := PσΩηP
′
σ (A.16)

where λ̂T :=Pσσ̂
+
η,T , λ0 := Pσσ

+
η,0 and Ωλ can be estimated consistently by Ω̂λ,T := PσΩ̂η,TP

′
σ.

The a× 1 vector ζ := (vech(Ξ)′, vec(ΣvZ ,u))
′ which plays a crucial role in the CMD estimation

approach discussed in Section 5 of the paper depends on λ, i.e. ζ = w(λ), where w(·) is
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a differentiable vector function. Thus, ζ0 = w(λ0), ζ̂T = w(λ̂T ) and from eq. (A.16) and

the delta-method, ζ̂T is a maximum likelihood estimator with asymptotic covariance matrix

Ωζ := ̥λΩλ̥
′
λ, where ̥λ := ∂ζ/∂λ′ is the a× 1/2m(m+ 1) Jacobian matrix:

̥λ :=

(
−D+

r (ΣvZ ,uΣ
−1
u ⊗ ΣvZ ,uΣ

−1
u )D+

n
′ 2D+

r (ΣvZ ,uΣ
−1
u ⊗ Ir)

0nr×1/2n(n+1) Inr

01/2r(r+1)×1/2r(r+1)

0nr×1/2r(r+1)

)
.

The matrix ̥λ can be estimated consistently by replacing ΣvZ ,u and Σu with the corresponding

elements taken from σ̂+
η,T := vech(Σ̂η,T ).

The result in eq. (22) of the paper holds also when the external instruments are available

on a shorter sample relative to the sample length T used to estimate the covariance matrix Σu

of the original VAR. Let T v :=int[frT ] denote the number of (non zero) observations used to

estimate ΣvZ ,u and ΣvZ , where 0 < fr < 1 is a positive fraction of the full sample size. Then

Σ̂fr
vZ ,u := 1

T v

∑Tv

t=1 vZ,tû
′
t is consistent for ΣvZ ,u and Σ̂fr

vZ := 1
T v

∑Tv

t=1 vZ,tv
′
Z,t is consistent for ΣvZ

as T → ∞. The convergences in eq.s (A.15) and (A.16) are still valid by using Σ̂fr
vZ ,u and Σ̂fr

vZ in

σ̂+
η,T and Ω̂η,T . The CMD estimation procedure summarized in Section 5 of the paper can still

be applied.

A.6 Specification steps for the AC-SVAR model and its likeli-

hood function

In this section we summarize the specification steps behind the econometric analysis of the

AC-SVAR model and discuss its log-likelihood function.

The reduced form covariance parameters of the AC-SVAR model in eq. (10) of the paper

are in σ+
η := vech(Ση) and can be estimated by the following steps:

Step-1 Estimate the m-dimensional VAR system for Wt := (Y ′
t , Z

′
t)
′ (by OLS), and use standard

methods to determine the VAR lag order ℓ := ℓop, where ℓop ≥ k;

Step-2 Given ℓ := ℓop, re-estimate the VAR system for Wt := (Y ′
t , Z

′
t)
′ with ℓop lags by imposing

the set of zero restrictions that characterize the autoregressive parameters Ψ̃ and Υ̃. From

eq. (10) of the paper, it turns out that the AC-SVAR model represented in compact form

is given by the system:

W = F Ψ̃′ +DΥ̃′ + η

where the matrix W is T × m with rows given by W ′
t := (Y ′

t , Z
′
t), t = 1, ..., T , F is

T ×f with rows given by F ′
t := (W ′

t−1, ...,W
′
t−ℓ), t = 1, ..., T , D is T ×d with rows given by

D′
t := (D′

y,t, D
′
z,t), t = 1, ..., T and η is T×m with rows given by η′t := (u′t, v

′
Z,t), t = 1, ..., T .
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Let δ be the vector collecting the non-zero elements contained in the matrices Ψ̃ and Υ̃.

Henceforth we use the notation Ψ̃(δ) and Υ̃(δ) to remark that these matrices depend on δ.

Constrained OLS estimation of δ and σ+
η is not fully efficient in this setup hence estimation

can be carried out either through an iterated version of (Feasible) GLS (Lütkepohl, 2005)

or, assuming that ηt := (u′t, v
′
Z,t)

′ is Gaussian, by maximizing the log-likelihood function:

LT (δ, σ
+
η ) :=

−Tm

2
log(2π)−

T

2
log(det(Ση))

−
1

2
tr
{
Σ−1
η (W − F Ψ̃(δ)′ −DΥ̃(δ)′)′(W − F Ψ̃(δ)′ −DΥ̃(δ)′)

}

(A.17)

which provides δ̂T ,
̂̃
Ψ := Ψ̃(δ̂T ),

̂̃
Υ := Υ̃(δ̂T ) and σ̂+

η,T := vech(Σ̂η,T ), Σ̂η,T := (1/T )
∑T

t=1 η̂tη̂
′
t,

η̂t := (Wt −
̂̃
ΨFt −

̂̃
ΥDt). This estimator will be fully efficient if the disturbances of the

AC-SVAR model are Gaussian in the data generating process.

The estimator σ̂+
η,T is consistent and asymptotically Gaussian under Assumption 1 of the

paper. When Zt ≡ vZ,t, the last r elements of the vector η̂t coincide with Zt and the two steps

above are not needed as σ̂+
η,T is directly obtained from Σ̂η,T := (1/T )

∑T
t=1 η̂tη̂

′
t.

Under the conditions of Proposition 2, the (concentrated) log-likelihood of the AC-SVAR

model can be obtained, given δ̂T and
̂̃
Ψ := Ψ̃(δ̂T ),

̂̃
Υ := Υ̃(δ̂T ), by expressing the log-likelihood

in eq. (A.17) in the form:

LT (δ̂T , σ
+
η ) :=

−Tm

2
log(2π)−

T

2
log(det(Ση))−

T

2
r
{
Σ−1
η Σ̂η,T

}

and then by imposing the restriction Ση := Ση(θ)=G̃(θ)G̃(θ)′:

Ls
T (θ) :=

−Tm

2
log(2π)− T log(det(G̃(θ))−

T

2
tr

{[
G̃(θ)−1

]′
G̃(θ)−1Σ̂η,T

}
(A.18)

where G̃(θ) is restricted as in eq. (27) of the paper. The log-likelihood in eq. (A.18) can be

maximized by the methods discussed e.g. in Amisano and Giannini (1997). Under Assumptions

1-2 of the paper, the estimator θ̂T := maxθ L
s
T (θ) is consistent and asymptotically Gaussian.

A.7 Comparison with Mertens and Ravn (2013) when g > 1

In this section we consider the case g > 1 (multiple structural shocks of interest) and compare

Mertens and Ravn’s (2013) approach with ours.

To simplify the exposition we focus, as in Mertens and Ravn (2013), on the case r = g = 2,

i.e. we assume that two valid external instruments are used to identify two structural shocks of

interest collected in ε1,t.
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We start from the mapping between structural shocks and reduced form disturbances:

ut = Bεt.

By partitioning ut and B conformably with εt := (ε′1,t, ε
′
2,t)

′, the mapping reads:

(
u1,t

u2,t

)
=
(

B1 B2

)( ε1,t

ε2,t

)
≡

(
B11 B12

B21 B22

)(
ε1,t

ε2,t

)
(A.19)

where B11 is 2× 2 nonsingular, B21 is (n− 2)× 2, B12 is 2× (n− 2) and B22 is (n− 2)× (n− 2)

nonsingular. The objective is to identify the parameters in the n × 2 sub-matrix B1 whose

columns capture the instantaneous impact of the shocks in ε1,t. The relationships between the

two external instruments in vZ,t and ε1,t is captured by the system:

vZ,t = Φε1,t + ωt (A.20)

where Φ is the 2 × 2 matrix of relevance parameters and ωt is a 2 × 1 measurement error with

2× 2 (symmetric) covariance matrix Σω.

By simple algebra, eq. (A.19) can be rearranged in the form:

u1,t = ηu2,t + S1ε1,t

u2,t = ζu1,t + S2ε2,t
(A.21)

where

η = B12 (B22)
−1

S1 = B11 −B12 (B22)
−1B21 (A.22)

ζ = B21 (B11)
−1

S2 = B22 −B21 (B11)
−1B12.

Mertens and Ravn (2013) show that IV methods allow to identify η, ζ and S1S
′
1, but not S1. In

other words, in the absence of further restrictions, S1 is not separately identified from S1S
′
1. In

particular, Mertens and Ravn (2013) show that B1 can be represented as:

B1 =

(
I2 + η(In−2 − ζη)−1ζ

(In−2 − ζη)−1ζ

)
S1 (A.23)

which shows that the identification of B1 depends on the identification of S1.
3 S1 can be

separately identified from S1S
′
1 if at least 1/2g(g−1)(= 1) restrictions are placed on its columns.

3Instead, when g = 1 no further restriction is needed. In this case, however, the shock is identified up to sign

normalization.
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It turns out that B1 can be identified in eq. (A.23) if at least 1/2g(g − 1)(= 1) restrictions are

placed on S1. Mertens and Ravn (2013) manage these restrictions by taking S1 lower (upper)

triangular. Equation (A.22) shows that by taking S1 lower (upper) triangular amounts to place

1/2g(g − 1)(= 1) indirect (nonlinear) restrictions on B1, and this fact is not at odds with the

necessary order condition stated in Proposition 1 of the paper.

In Section 5 of the paper, we discuss our ‘partial shocks’ identification strategy and observe

that by modelling eq.s (A.19) and (A.20) jointly, one obtains the AC-SVAR representation of

the proxy-SVAR:
(

ut

vZ,t

)

ηt

=

(
B1 B2

Φ 02(n−2)

0n×2

Σ
1/2
ω

)

G̃




ε1,t

ε2,t

ω0
t




ξt

where ηt := (u′t, v
′
Z,t)

′ is m × 1, m = n + 2, Σω is the covariance matrix of the measurement

error, Σ
1/2
ω is such that Σω = Σ

1/2
ω Σ

1/2
ω and the term ω◦

t := Σ
−1/2
ω ωt can be interpreted as a

normalized measurement error. We are interested in the identification of the first g(=2) columns

of the matrix of instantaneous impact coefficients:

G̃ :=
(

G̃1 G̃2

)
=

(
B1 B2

Φ 02×(n−2)

0n×2

Σ
1/2
ω

)
. (A.24)

In eq. (A.24) G̃1 is the submatrix of G̃ collecting the first g(=2) columns and G̃2 collects the

remaining m− g columns. In particular, we have:

G̃1 :=

(
B1

Φ

)
≡




B11

B21

Φ




2× 2

(n− 2)× 2

2× 2

. (A.25)

We treat the identification of G̃1 as a partial identification problem where the restrictions are

directly placed on the elements of G̃1.

According to Proposition 1(b) of the paper, necessary condition for identification is that at

least 1/2g(g− 1)(= 1) restrictions are placed on the two columns of G̃1. These restrictions may

vary with the particular application and may involve B1 but also Φ (provided nonsingularity is

preserved). Proposition 1(a) establishes where these restrictions need to be placed for identi-

fication (up to sign). For example, the identification restrictions can be placed e.g. on B1 by
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leaving Φ unrestricted: by setting e.g. b11 = 0 we have:

G̃1 :=




B11

B21

Φ


 :=




b11 0

b21 b22

b31 b32

b41 b42

ϕ11 ϕ12

ϕ21 ϕ22




; (A.26)

or, alternatively, by setting e.g. b41 = 0 we have:

G̃1 :=




B11

B21

Φ


 :=




b11 b12

b21 b22

b31 b32

0 b42

ϕ11 ϕ12

ϕ21 ϕ22




.

Thus, while in Mertens and Ravn (2013), the 1/2g(g− 1)(=1) ‘additional’ identification restric-

tions depend on a Choleski decomposition, in our approach there is no Choleski decomposition

involved in the identification process. Our approach is more flexible as the identification restric-

tions can possibly be placed on Φ alone, leaving B1 unrestricted: e.g. by setting ϕ21 = 0 we

have:

G̃1 :=

(
B1

Φ

)
:=




b11 b12

b21 b22

b31 b32

b41 b42

ϕ11 0

ϕ21 ϕ22




.

Summing up, in Mertens and Ravn (2013) the fact that in order to achieve identification

when g > 1 it is necessary to complement the restrictions provided by the external instruments

with at least 1/2g(g − 1) additional restrictions stems from the representation in eq. (A.23)

and the fact that S1 is not separately identified from S1S
′
1. Mertens and Ravn (2013) solve the

problem by taking S1 as the Choleski factor of the matrix S1S
′
1. This identifies B1 indirectly. Our

‘partial shocks’ identification approach is motivated by the observation that given the matrix

G̃ :=
(

G̃1 G̃2

)
and the interest in the parameters of G̃1 alone, it is necessary to impose at

least 1/2g(g− 1) direct restrictions on the g columns of G̃1. Proposition 1 in the paper answers

the following questions: given g ≥ 1 structural shocks of interest in a system of n variables and
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r ≥ g external instruments available for these shocks, how many restrictions do we need for the

model to be identified and where do these restrictions need to be placed? Proposition 1 provides

necessary and sufficient conditions for the identification of G̃1 (hence of B1 and Φ) based on

linear restrictions which are valid up to sign normalization but do not depend on Choleski-type

restrictions.

A.8 Monte Carlo results

One of the merits of the AC-SVAR approach is the possibility of easily testing overidentified

proxy-SVARs. Under the maintained hypothesis of relevant external instruments, the overi-

dentification restrictions should be rejected under two circumstances: (a) the overidentification

restrictions are false and the external instruments are orthogonal to the non-instrumented shocks,

(b) the external instruments are wrongly assumed orthogonal to the non-instrumented shocks.

In this section we focus on (b) and conduct a set of Monte Carlo experiments to analyze

the performance of the overidentification restrictions tests discussed in the paper. Section A.8.1

presents the design of Monte Carlo experiments and the hypothesis of interest. Section A.8.2

summarize the results obtained with the CMD-based test for overidentification restrictions in

the partial shocks identification approach and Section A.8.3 summarizes the results obtained

with the LR for overidentification restrictions in the full shocks identification approach.

A.8.1 Design and hypothesis of interest

We consider a SVAR based on the vector Yt := (YA,t, YB,t, YC,t)
′ (n := 3) and the system:

Yt = Υy +AyYt−1 + ut, ut = Bεt, εt :=




εA,t

εB,t

εC,t


 ∼ iidN(0, I3) (A.27)

with initial value Y0 := 03×1. The population values of Υy (constant), Ay (companion matrix)

and B :=
(

B1 B2

)
(matrix of structural parameters) are given by:

Υy :=




0.33

0.2

−0.3


 , Ay :=




−0.3 −0.25 0

0.95 0.5 0.2

0.6 0 0.8


 , λmax(Ay) = 0.738

B :=
(

B1 B2

)
=




0.6 −0.85 −0.8

0 0.55 0.45

0 0.32 0.23


 (A.28)
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where λmax(·) denotes the largest eigenvalue in absolute value of the matrix in the argument.

The matrix B in eq. (A.28) depicts a situation in which YB,t and YC,t does not respond

on-impact to the shock ε1,t := εA,t (as bB,A = 0 and bC,A = 0 in B) while the shocks ε2,t :=

(εB,t, εC,t)
′ affect YA,t on-impact: in particular, bA,B = −0.85 < 0 and bA,C = −0.8 < 0. In line

with the empirical section of the paper, we denote this situation as ‘contemporaneous exogeneity’

of YB,t and YC,t, meaning that YB,t and YC,t do not respond instantaneously to the shock εA,t

but may respond after some periods.

The hypothesis we are interested in our experiments is the joint restriction bB,A = 0 and

bC,A = 0. It is worth noting that the SVAR defined by the B matrix in eq. (A.28) (with bB,A = 0

and bC,A = 0) is not identified in the absence of an additional restriction or the use of at least

one external instrument.

To test the hypothesis of ‘contemporaneous exogeneity’ of YB,t and YC,t we need to identify

the first column B, B1, which captures the instantaneous impact of the shock εA,t. In the next

two subsections we follow two distinct identification strategies to identify εA,t and test bB,A = 0

and bC,A = 0. In one case, we instrument the shock of interest εA,t directly (Section A.8.2) in

a partial shocks identification strategy, using the results in Proposition 1 of the paper. In the

other identification strategy we mimic a scenario in which it is difficult to find valid external

instruments for εA,t but it is relatively easier to find valid external instruments for the shocks

εB,t and εC,t so that εA,t is identified ‘residually’ through a full shocks identification strategy,

using the results of Proposition 2 of the paper (Section A.8.3).

A.8.2 Partial shocks identification strategy

We consider one external instrument Zt := Z1,t for εA,t (r = g = 1) and the auxiliary model:

Z1,t = Υz + ΓYt−1 + vZ1,t, vZ,t = RΦεt + ωt, ωt ∼ iidN(0,Σω) (A.29)

with population parameter values:

Υz := 0, Γ :=
(

0.15 0.36 0
)

RΦ :=
(

Φ O
)
=
(

0.53 o1 o2

)
, Σω :=

(
0.5

)
.

The matrix RΦ incorporates the relevance condition (Φ = φ = ϕ = 0.53) and the orthogonality

condition if o1 and o2 are set to zero, i.e. if O := E
(
vZ1,tε

′
2,t

)
:= (o1, o2) = (0, 0).

The population value fixed of the relevance parameter Φ = φ = ϕ = 0.53 implies a correlation

with the instrumented structural shock equal to Corr(vZ1,t, ε1,t) = Cov(vZ1,t, ε1,t)/ (V ar(vZ1,t))
1/2 =

0.749. Instead, the parameters o1 and o2 in O control for the correlation between the external
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instrument and the non-instrumented shocks ε2,t := (εB,t, εC,t)
′. The instrument vZ1,t is orthog-

onal to ε2,t when O := (o1, o2) = (0, 0); in this case the AC-SVAR model obtained by coupling

systems (A.27) and (A.29) is based on the matrix G̃ (see eq. (11) in the paper):

G̃ :=
(

G̃1 G̃2

)
=

(
B1 B2 0n×1

ϕ O σvZ1

)
=




0.6 −0.85 −0.8 0

0 0.55 0.45 0

0 0.32 0.23 0

0.53 o1 o2 0.78




(A.30)

and we are interested in the first column G̃1 which is overidentified according to Proposition 1

in the paper (it incorporates two testable overidentification restrictions). On the other hand,

if O := (o1, o2) 6= (0, 0), the external instruments are not orthogonal to the non-instrumented

shocks.

We generate samples of size T = 100, 250 and 500, M=1000 times from the AC-SVAR model.

On each sample we estimate the parameters ϑ := (bA,A, bB,A, bC,A, ϕ)
′ by the CMD approach in

Section 5 of the paper and test the two contemporaneous exogeneity restrictions bB,A = 0 and

bC,A = 0 by the test TQ(ϑ̂T ) at the 5% nominal level of significance. We consider three different

scenarios: (i) the case of orthogonal external instrument, O := (o1, o2) = (0, 0); (ii) the case

in which the external instrument is not orthogonal to εC,t, O := (o1, o2) = (0,−0.1); (iii) the

case in which the external instruments is not orthogonal to both εB,t and εC,t, O := (o1, o2)
′ =

(−0.75,−0.25)′. In (i), the rejection frequency of the CMD-based test TQ(ϑ̂T ) coincides with

the empirical size of the overidentification restrictions test.

The rejection frequencies of the CMD-based test are reported in Panel A of Table A.1.

Results confirm that the test for the null hypothesis of ‘contemporaneous exogeneity’ of YB,t

and YA,t delivers correct empirical size when the external instrument for εA,t is orthogonal to

the non-instrumented shocks εB,t and εC,t (case (i)). Instead, the true null hypothesis tends

to be rejected when the selected external instrument is not orthogonal to the non-instrumented

shocks (cases (ii) and (iii)).

A.8.3 Full shocks identification strategy

In this section we identify the shock εA,t by changing the identification strategy radically. In

particular, we consider a scenario in which it is easier to find valid external instruments for

εB,t and εC,t rather than for εA,t. Thus, we assume that the instrumented shocks are ε1,t :=

(εB,t, εC,t)
′ (g = 2) and that ε2,t := εA,t is treated as ‘the other structural shock’ despite it

is the shock whose dynamic causal effects we are actually interested in. The shock εA,t will

be identified ‘residually’ by exploiting the advantages of the full shocks identification strategy
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summarized in Proposition 2 of the paper. In line with the ‘new’ definition of the shocks ε1,t

and ε2,t and for convenience only, henceforth we change the order of the variables in the VAR

by putting YB,t and YC,t first and YA,t last.

It is assumed that the there exist two external instruments for ε1,t := (εB,t, εC,t)
′ (r = g = 2)

collected in the vector Zt := (Z1,t, Z2,t)
′ generated by the auxiliary model:

Zt = Υz + ΓYt−1 + vZ,t, vZ,t = Φε1,t + ωt, ωt ∼ iidN(0,Σω) (A.31)

with parameters population values:

Υz :=

(
0

−0.05

)
, Γ :=

(
0.15 0.36 0

0.12 0 0

)

RΦ :=
(

Φ O
)
=

(
0.53 0.26 o1

0 0.74 o2

)
, Σω :=

(
0.5 0.20

0.85

)
. (A.32)

In eq. (A.32), the matrix RΦ := (Φ
...O) incorporates the relevance condition, captured by the

2 × 2 matrix Φ, and the orthogonality condition if O := E (vZ,tε1,t) := (o1, o2)
′ = (0, 0)′. The

parameters o1 and o2 in O control the correlation between vZ,t and the ‘other’ shock ε2,t := εA,t.

Instead, the specified matrix Φ implies that the correlations between vZ,t and the instrumented

shocks are equal to

Corr(vZ,t, ε
′
1,t) =

(
Corr(vZ1,t, εB,t) Corr(vZ1,t, εC,t)

Corr(vZ2,t, εB,t) Corr(vZ2,t, εC,t)

)
=

(
0.75 0.36

0 0.798

)
.

The form of the matrix G̃ in eq. (11) of the paper is in this case given by:

G̃ :=
(

G̃1 G̃2

)
=

(
B1 B2 03×2

Φ O Σ
1/2
ω

)
:=




bA,A bA,B bA,C 0 0

bB,A bB,B bB,C 0 0

bC,A bC,B bC,C 0 0

ϕ11 ϕ12 o1 ̟11 ̟21

0 ϕ22 o2 ̟21 ̟22




(A.33)

=




0.55 0.45 0 0 0

0.32 0.23 0 0 0

−0.85 −0.8 0.6 0 0

0.53 0.26 o1 0.85 0.38

0 0.74 o2 0.38 1.39




.

It is possible to check that when the instruments in vZ,t are orthogonal to εA,t, O := (o1, o2)
′ =

(0, 0)′ and G̃ incorporates 12 restrictions, two more of the 10 restrictions necessary to respect
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the order condition for identification (similarly, using the notation of Proposition 2 of the paper:

a
G̃
= 13 < 1/2m(m + 1) = 15). According to Proposition 2(a) in the paper, the AC-SVAR is

identified (overidentified). On the other hand, if one relaxes the hypothesis of ‘contemporaneous

exogeneity’ of YB,t and YC,t, i.e. replaces the two zeros corresponding to bB,A = 0 and bC,A = 0

with non-zero values, the AC-SVAR is exactly identified (a
G̃
= 15 = 1/2m(m+1) = 15 and the

rank condition of Proposition 2(a) still holds). Thus, in this framework the shock ε2,t := εA,t is

identified in the AC-SVAR model even if we are instrumenting ε1,t := (εB,t, εC,t)
′.

We generate samples of size T = 100, 250 and 500, M =1000 times from system (A.27)-

(A.31) and on each generated sample we test the (true) restrictions bB,A = 0 and bC,A = 0

by the LR test (see Section 6 of the paper) at the 5% nominal level of significance. Panel

B of Table A.1 summarizes the rejection frequencies of the LR test in scenarios: (i) the case

of orthogonal external instruments, O := (o1, o2)
′ = (0, 0)′; (ii) the case in which the second

external instrument is not orthogonal to ε2,t := (εA,t), O := (o1, o2)
′ = (0,−0.1)′; (iii) the

case in which both external instruments are not orthogonal to ε2,t := (εA,t), O := (o1, o2)
′ =

(−0.75,−0.25)′. In (i) the rejection frequency coincides with the empirical size of the LR test

and Table A.1 shows the test approaches the nominal size as the sample size increases. In (ii),

the LR test tends to reject the (true) null hypothesis as the sample size increases. In (iii), the

rejection frequency of the LR test approaches 1 also in small samples.

Overall, also in this case the LR test for the overidentification restrictions tend to reject the

true null hypothesis when the external instruments are erroneously considered orthogonal to the

non-instrumented shocks.

A.9 A Wald test for the ‘no relevance’ condition

In this section we focus on a simple indirect test for the null hypothesis that the relevance

parameters of a proxy-SVAR model where multiple instruments (r) are used for multiple shocks

(g) are zero.

Our starting point are the moment conditions in eq. (A.14) that play key role in the iden-

tification and estimation of proxy-SVARs. Equation (A.14) shows that if one assumes that

B1 6= 0n×g, the null hypothesis H0 : Φ = 0r×g (no relevance) is equivalent (implies and is

implied by) to the null hypothesis H ′
0 : ΣvZ ,u = 0r×n. It turns out that testing the problem:

H0 : vec(Φ) = 0rg×1 against H1 : vec(Φ) 6= 0rg×1

is equivalent to the testing the problem:

H ′
0 : vec(ΣvZ ,u) = 0nr×1 against H ′

1 : vec(ΣvZ ,u) = 0nr×1. (A.34)
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The advantage is that a test for the null H ′
0 against H ′

1 in eq. (A.34) requires standard asymp-

totics. Indeed, observe that vec(ΣvZ ,u) is a component of the a × 1 (a := 1/2r(r + 1) + nr)

vector ζ := (vech(Ξ)′, vec(ΣvZ ,u)
′)′ (see Section 5 in the paper) which in turn is a function of

the reduced form parameters of the AC-SVAR model. Under Assumption 1 in the paper:

T 1/2(ζ̂T − ζ0) →d N(0a×1, Ωζ)

where an expression for the covariance matrix Ωζ has been derived in Section A.5. The asymp-

totic normality of T 1/2(ζ̂T − ζ0) holds irrespective of whether the external instruments are

strongly, weakly or not correlated at all with the structural shocks of interest.

The testing problem in eq. (A.34) can be formulated as:

H
′′

0 : Sζ = 0nr×1 against H ′
1 : Sζ 6= 0nr×1

where S := (0nr×(a−nr)

... Inr) is an nr× a selection matrix which sets the last nr components of

ζ to zero. Let Ω̂ζ be a consistent estimator of Ωζ . Under H ′′
0 and Assumption 1 in the paper,

the Wald test statistic:

W rel
T := T ζ̂ ′TS

′
(
SΩ̂ζS

′
)−1

Sζ̂T (A.35)

is asymptotically distributed as a χ2(nr). Conversely, the test statistic W rel
T diverges under the

alternative H ′
1.

A.10 Baseline bootstrap algorithm

Since the AC-SVAR model reads as a large (constrained) ‘B-model’, bootstrap confidence bands

for the IRFs of interest can be computed by applying the methods available for SVARs reviewed

e.g. in Kilian and Lütkepohl (2017, Ch. 12). In particular, when the reduced form distur-

bances ηt are conditionally homoskedastic, we adapt a residual-based recursive-design bootstrap

algorithm to the special features of the partial shocks approach discussed in Section 5 of the

paper, using the algorithm sketched below. If instead the disturbances ηt display conditional

heteroskedasticity, the residual-based bootstrap methods based on iid resampling or the wild-

bootstrap tend to underestimate the uncertainty associated with the estimated dynamic causal

effects, see Bruggemann et al. (2016) and Jentsch and Lunsford (2016, 2019). These authors

show that when ηt features conditional heteroskedasticity of unknown form, reliable bootstrap

asymptotic inference on the IRFs can be achieved by a residual-based moving block bootstrap

procedure. We refer to Jentsch and Lunsford (2016, 2019) and Mertens and Ravn (2019) for a

discussion on the inference on IRFs focused on proxy-SVARs.

In the empirical application in Section 8 of the paper, we test for the occurrence of un-

conditional heteroskedasticity in the residuals associated with the estimated AC-SVAR model
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and do not reject the null hypothesis of conditional homoskedasticity (see Panel A of Table

1 in the paper). Based on this result, we build bootstrap-based 90% simultaneous confidence

bands for the IRFs by combining a standard residual-based recursive-design bootstrap (which

incorporates Kilian’s (1998) ‘bootstrap-after-bootstrap’ correction) with the ‘sup-t’ discussed in

Montiel Olea and Plagborg-Møller (2019). In the rest of this section we summarize the main

steps of the algorithm used in the paper.

Let
̂̃
Ψ := Ψ̃(δ̂T ),

̂̃
Υ := Υ̃(δ̂T ) and σ̂+

η,T := vech(Σ̂η,T ), Σ̂η,T := (1/T )
∑T

t=1 η̂tη̂
′
t, η̂t :=

(Wt−
̂̃
ΨFt−

̂̃
ΥDt), t = 1, ..., T , be the estimates of the reduced form parameters associated with

the AC-SVAR model, see Section A.6. To simplify exposition we temporarily assume that the

ηt are conditionally homoskedastic.

Consider first the partial shocks identification approach (Section 5 of the paper). Let ϑ :=

(α′
1, ϕ

′)′ be the unrestricted (free) structural parameters associated with the AC-SVAR model

and assume that the conditions of Proposition 1 hold, i.e. the proxy-SVAR is identified. As

discussed in Section 5 of the paper, under Assumptions 1-2 and the conditions of Proposition 1,

the parameters in ϑ := (α′
1, ϕ

′)′ can be estimated consistently by solving the problem:

min
ϑ

(ζ̂T − f(ϑ))′Ω̂−1
ζ (ζ̂T − f(ϑ)). (A.36)

Obtained ϑ̂T := (α̂′
1,T , ϕ̂

′
T )

′, the g columns of the matrix B1 are estimated consistently by B̂1,

where B̂1 is reconstructed from β̂1,T :=SB1
α̂1,T +sB1

(recall that β1 := vec(B1) = SB1
α1 + sB1

).

The estimated IRFs are given by:

ÎRF j(h):=(Jn

(
Ây

)h
J ′
n)b̂j , h = 0, 1, 2, .... (A.37)

where the estimate of the companion matrix Ây is obtained from the estimated autoregressive

parameters
̂̃
Ψ := Ψ̃(δ̂T ) , and b̂j is the j-th column of B̂1, j = 1, .., g. In the full shocks

identification approach, under Assumptions 1-2 and the conditions of Proposition 2 in the paper,

the parameters are estimated by solving θ̂T := maxθ L
s
T (θ), where the log-likelihood Ls

T (θ) is

given in eq. (A.18). The IRFs are estimated as in eq. (A.37), the difference being now that b̂j ,

j = 1, ..., n are the columns of B̂, where B̂ is part of
̂̃
G := G̃(θ̂T ), see eq. (11) in the paper.

Let η̂t, t = 1, ..., T be the residuals of the estimated AC-SVAR model. The algorithm for the

residual-based recursive-design bootstrap is a follows (the lag length of the AC-SVAR model is

fixed at the values determined on the sample):

BS-Step 1 Resample with replacement T residuals from the sequence η̂ct , t = 1, ..., T , where η̂ct

are the residuals η̂t centered, obtaining the sequence η∗t , t = 1, ..., T , and from this generate

the bootstrap sample W ∗
1 , ...,W

∗
T conditional on the ℓ initial (sample) observations using

the estimates
̂̃
Ψ,
̂̃
Υ as parameters values;
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BS-Step 2 Use the sequence W ∗
1 , ...,W

∗
T generated in the previous step to estimate Ψ̃ (Ay),

Υ̃ and Ση by ML (FGLS) as detailed in Section A.6, obtaining δ̂bT ,
̂̃
Ψ

b

:= Ψ̃(δ̂bT ) (Âb
y),

̂̃
Υ

b

:= Υ̃(δ̂bT ) and Σ̂b
η,T , respectively;

4 in the partial shocks identification approach, from

Σ̂b
η,T derive the bootstrap estimators ζ̂bT and Ω̂b

ζ as described in Section A.5 and then

solve the CMD problem in eq. (A.36), obtaining ϑ̂b
T := (α̂b′

1,T , ϕ̂
b′
T )

′. In the full shocks

identification approach, θ̂bT := maxθ L
∗s
T (θ), where the log-likelihood L∗s

T (θ) is the bootstrap

analog of that in eq. (A.18), and then obtain
̂̃
G

b

:= G̃(θ̂bT ) and Σ̂b
η,T = G̃(θ̂bT )G̃(θ̂bT )

′;

BS-Steps 3 Compute the IRFs in eq. (A.37);

BS-Step 4 Repeat the steps BS-Step1-BS-Step2 for b = 1, ..., N , obtaining the sequence ÎRF
1

j (h), ..., ÎRF
N

j (h),

where j = 1, .., g (partial shocks approach) or j = 1, .., n (full shocks approach).

BS-Step 5 Compute bootstrap confidence intervals for the IRFs of interest using one of the

methods listed in Section 12.2.6 of Kilian and Lütkepohl (2017, Ch. 12), or apply steps 6

to 13 of Algorithm 3 in Montiel Olea and Plagborg-Møller (2019) to compute simultaneous

confidence ‘sup-t’ bands.

If the disturbances ηt of the AC-SVAR model display conditional homoskedasticity of un-

known form it is necessary to replace the BS-Step 1 with a moving block bootstrap procedure

along the lines described in Bruggemann et al. (2016).

A.11 The AC-SVAR model with a censored external instrument

The covariance matrix Σu,vZ := E(utv
′
Z,t) plays a key role in the proxy-SVAR analysis, see

Sections 5 and 6 in the paper, and must be estimated consistently. In the presence of censored

external instruments, the quantity Σ̂u,vZ ,T := 1
T

∑T
t=1 ûtv̂

′
Z,t does not estimate Σu,vZ consistently.

In general, any estimation procedure for proxy-SVARs produces inconsistent estimates of the

parameters of interest (and accordingly of the IRFs) if the censoring mechanism is not properly

accounted for. In the current proxy-SVAR literature, Mertens and Ravn (2013) address this

issue.

In this section we discuss how the econometric analysis of the AC-SVAR model presented in

the paper can be modified to account for a censored external instrument. This topic deserves a

detailed treatment that goes well beyond the scopes of the paper and Supplementary Appendix.

To simplify the presentation and without any loss of generality, we consider the ‘one shock-

one instrument case’, r = g = 1, so that Zt is a scalar. In particular, we focus on the case

4Here we apply Kilian’s (1998) bias correction.
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in which the dynamics of Zt is generated by a censored autoregressive process of order one

(CAR(1)) with Gaussian disturbances. Our analysis is partly inspired by Park et al. (2007)’s

estimation method of censored ARMA-type processes.

The data generating process is given by the SVAR in eq. (1) of the paper (we drop deter-

ministic terms to simplify):

Yt = ΠXt + ut , ut = B1ε1,t +B2ε2,t , t = 1, ..., T

that we couple with the following auxiliary model for the external instrument:

Zt = max {τ, Z∗
t } (A.38)

Z∗
t = θ1Z

∗
t−1 + vZ,t , vZ,t = φε1,t + ωt ∼ N(0, σ2

vZ
) , t = 1, ..., T. (A.39)

Equations (A.38)-(A.39) define a CAR(1) process where τ is a non-stochastic threshold (cutoff)

value which could be 0, and the uncensored process Z∗
t is a ‘standard’ AR(1) model with autore-

gressive parameter |θ1| < 1, E(Z∗
t ) = 0 and σ2

vZ
:= E(v2Z,t) = φ2 +̟2. Equation (A.38) states

that the observed instruments coincide with values of Z∗
t only when these values are larger than

τ , otherwise the process is censored to τ.

Obviously, the dynamics of the external instrument might not necessarily be autoregressive.

For instance, eq.s (A.38)-(A.39) might be replaced by the censoring mechanism:

vZ,t = max
{
τ, v∗Z,t

}
(A.40)

v∗Z,t = φε1,t + ωt ∼ N(0, σ2
v∗Z

). (A.41)

Next we prefer to devote our attention to the CAR(1) specification by keeping in mind that the

algorithm that follows can be easily extended to eq.s (A.40)-(A.41).

Before discussing the estimation of the AC-SVAR model under this data generating process,

it is worth considering the main details of the estimation of the parameters θ1 and σ2
vZ

(τ is

treated as given) in the CAR(1) model in eq.s (A.38)-(A.39).

Let Z := (Z1, ..., ZT )
′ be the T × 1 vector containing the observations on Zt. Let P be a

T × T permutation matrix such that:

PZ =

(
Po

Pcen

)
Z =

(
Zo

Zcen

)
To × 1

Tcen × 1
(A.42)

i.e. P applied to Z collects the To uncensored observations in Zo first, and then the Tcen censored

observations collected in Zcen. Hence, Tcen represents the number of censored observations and To

is the number of uncensored observations where, obviously, T = To+Tcen. Let Z
∗ := (Z∗

1 , ..., Z
∗
T )

′
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be the T×1 vector containing the (virtual) observations associated with the uncensored external

instrument. It turns out that:

Z∗ ∼ NT (0T×1, V )

where NT (0T×1, V ) denotes a multivariate normal distribution with expected value 0T×1 and

T × T covariance matrix V := [Vi,j ]. The covariance matrix V summarizes the autocorrelation

structure of the AR(1) process, in particular:

Vi,j :=
σ2
vZ

1− (θ1)
2 (θ1)

|i−j| , i, j = 1, ...T. (A.43)

By applying the (above defined) permutation matrix P to Z∗ yields:

PZ∗ =

(
Z∗
o

Z∗
cen

)
∼ NT (0T×1, PV P ′) ,

where

PV P ′ :=

(
PoV P ′

o PoV P ′
cen

PcenV P ′
o PcenV P ′

cen

)
=:

(
Vo,o Vo,cen

Vcen,o Vcen,cen

)
. (A.44)

Note that the first To components of the vectors:

PZ∗ =

(
Z∗
o

Z∗
cen

)
and PZ =

(
Zo

Zcen

)

are equal. The two vector differ because Z∗
cen 6= Zcen.

The idea behind Park et al. (2007)’s approach is to replace the censored observations in Zcen

with sampling values from the conditional distribution:

Z∗
cen | Zo, Zcen ∼ N0

Tcen
(ρ,∆, Rcen) (A.45)

where N0
Tcen

(ρ,∆, Rcen) denotes a truncated multivariate normal distribution of dimension Tcen,

Rcen := (τ,∞)Tcen = (τ,∞)× (τ,∞)× ...× (τ,∞) is the censoring region and ρ and ∆ are the

conditional mean and covariance matrix given by:

ρ := Vcen,o (Vo,o)
−1 Zo , ∆ := Vcen,cen − Vcen,o (Vo,o)

−1 Vo,cen (A.46)

where Vcen,o, Vo,o and Vo,cen are defined in eq. (A.44). Note that ρ depends on Zo, the uncen-

sored process. In the statistical language, the Tcen observations generated from the conditional

multivariate truncated normal distribution in eq. (A.45) represent ‘imputed’ values which re-

produce what would have been the sequence of observations from the Gaussian AR(1) process

in the absence of censoring.
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We now extend this idea to the estimation of the AC-SVAR model. Our procedure reads as a

two-stage method. In the first stage, the auxiliary model for the external instrument is estimated

through an iterative procedure which makes use of simulation methods5 and generates a time

series of ‘imputed’ (uncensored) values for the external instrument eventually. In the second

stage, the AC-SVAR model is estimated by using the series of external instruments reconstructed

in the first-stage. In this second-stage, one can apply the partial shocks identification approach

discussed in Section 5 of the paper or the full shocks identification approach discussed in Section

6 of the paper.

We consider the following steps.

Step 1 Given the observations Z := (Z1, ..., ZT )
′ on the external instrument, compute the

permutation matrix P :=
(

P ′
o P ′

cen

)′
as in eq. (A.42), so that one obtains Zo and Zcen;

Step 2 Suppose we have initial estimates (which need not be consistent at this initial stage) of

θ1 and σ2
Z , denoted θ̂

(0)
1 and

(
σ̂2
Z

)(0)
, respectively. These can be obtained either by applying

the distribution-free Least Absolute Deviations (LAD) estimation method of Powell (1984),

which provides consistent estimates under fairly general conditions, or by applying OLS

to the To uncensored observations of the AR(1) process;6

Step 3 Given θ̂
(0)
1 and

(
σ̂2
Z

)(0)
, construct the quantity: V̂ (0) := [V̂

(0)
i,j ], where (see eq. (A.43))

V̂
(0)
i,j :=

(
σ̂2
Z

)(0)

1−
(
θ̂
(0)
1

)2
(
θ̂
(0)
1

)|i−j|
, i, j = 1, ..., T.

Then from V̂ (0) obtain the matrices V̂
(0)
cen,o, V̂

(0)
o,o , V̂

(0)
o,cen and V̂

(0)
cen,cen defined in eq. (A.44),

and use the expressions in eq. (A.46) to calculate the conditional mean and covariance

matrix:

ρ̂(0) := V̂ (0)
cen,o

(
V̂ (0)
o,o

)−1
Zo , ∆̂(0) := V̂ (0)

cen,cen − V̂ (0)
cen,o

(
V̂ (0)
o,o

)−1
V̂ (0)
o,cen;

Step 4 Given ρ̂(0) and ∆̂(0) generate Tcen observations randomly from the multivariate trun-

cated normal distribution N0
Tcen

(ν̂(0), ∆̂(0), Rcen)
7 and collect these observations in Z

(1)
cen;

Step 5 Construct the augmented data set by using the observed part and the imputed sample

from the censored part, i.e.:

Z(1) = P−1

(
Zo

Z
(1)
cen

)
To × 1

Tcen × 1

5We refer to Hajivassiliou and Ruud (1994) for a general review of estimation methods of limited dependent

variables models (which includes censoring processes) based on simulation methods.
6In this second case such naive estimator of θ1 and σ2

Z is not consistent.
7This can be done e.g. by the Gibbs sampling described in Gelfand and Smith (1990).
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where P := (P ′
o

... P ′
cen)

′ is given in Step 1;

Step 6 Re-estimate the parameters θ1 and σ2
Z by using the T observations in Z(1) for the

external instrument. These parameters can be now estimated by ‘standard’ methods, i.e.

by using OLS or (Gaussian) ML based on the t = 1, ..., T observations in Z(1);

Step 7 Repeat the steps 3-6 using the updated estimates of θ1 and σ2
Z at every iteration until

the parameter estimates converge according to some pre-fixed convergence rule. Each

iteration generates sequences of imputed observations Z(j), j = 1, ..., stop. Let Z(stop) :=

(Z
(stop)
1 , ..., Z

(stop)
T )′ be the vector of T observations on the external instruments obtained

at the convergence of the process;

Step 8 Consider the estimation of the reduced form parameters (Ψ̃,Ση) associated with the

AC-SVAR model:
(

Yt

Z
(stop)
t

)
=

(
Π 0n×1

01×n θ1

)(
Xt

Z
(stop)
t−1

)
+

(
ut

v
(stop)
Z,t

)
, Ση :=

(
Σu Σu,vZ

ΣvZ ,u σ2
vZ

)

(A.47)

using the (original) observations Y1, ..., YT for the SVAR and the observations Z
(stop)
1 , ..., Z

(stop)
T

for the external instrument obtained in Step 7. In eq. (A.47), v
(stop)
Z,t is the innovation:

v
(stop)
Z,t := Z

(stop)
t − θ1Z

(stop)
t−1 . Estimation is performed by Gaussian (constrained) ML

along the lines discussed in Section A.6. Note in particular, that the covariance matrix

Σu,vZ , which plays a key role in the proxy-SVAR approach, is estimated by Σ̂u,vZ :=
1
T

∑T
t=1 ûtv̂

(stop),′
Z,t ;

Step 9 In the partial shocks identification strategy the AC-SVAR model is estimated as detailed

in Section 5 of the paper. In the full shocks identification strategy the AC-SVAR model

is estimated as outlined in Section 6 of the paper.

Some remarks are in order.

First, it is seen that in the estimation of the parameters of the auxiliary model for the

censored external instrument, the algorithm is based on two principles: data augmentation

(imputation) through simulation of the censored part of the data (Steps 1-7), and estimation

which follows ‘conventional’ methods because it is based on reconstructed (imputed) data treated

as uncensored (Steps 8-9).

Second, Park et al. (2007) show by simulation studies that the distribution of the parameter

estimates obtained with the simulation/imputation method does not deviate substantially from

the distribution of the parameter estimates obtained by considering the uncensored process Z∗
t .

Based on these results, it is reasonable to conjecture that the asymptotic distributions of the
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estimators discussed in Sections 5 and 6 of the paper should be still Gaussian. This conjecture,

however, should be analyzed in detail analytically and through additional simulations studies

specifically designed to the features of the AC-SVAR model.

Third, conditional on the conjecture above, bootstrap confidence bands for the IRFs can be

still computed by the algorithms summarized in Section A.10.

Fourth, the suggested method can be extended along several directions. In principle, it

is possible to specify more involved dynamic processes for Z∗
t . Moreover, one could poten-

tially consider the case of multiple external instruments for g structural shocks of interest, i.e.

r := runc + rcen ≥ g ≥ 1, where rcen is the number of censored external instruments (with cen-

soring mechanism analog to that in eq.s (A.38)-(A.39)) and runc is the number of uncensored

instruments. The analysis in this case may become considerably more involved, especially if the

rcen external instruments are driven by completely different censoring processes.

These extensions deserve detailed investigations which are left to future research.

A.12 Further empirical results

This section complements the empirical results of the paper.

A.12.1 The oil supply shock

In this section we explain how the oil supply shock, oilt, used as external instrument (b) in

Section 8 of the paper has been constructed.

Our analysis follows Kilian’s (2009) identification strategy for uncovering oil supply shocks,

see also Wieland (2019). We start from a vector of three monthly variablesXt := (∆oilprodt, reat, rpot)
′,

where ∆oilprodt is the growth in global oil production, reat is a measure of global real economic

activity and rpot is the log real oil prices,8 and then consider the SVAR representation:

A0Xt = ΥX +

24∑

j=1

AjXt−j + εXt (A.48)

which is taken from Kilian (2009). In eq. (A.48), A0 is the 3×3 matrix of structural parameters,

ΥX is a 3×1 constant, Aj , j = 1, ..., 24 are 3×3 matrices of parameters associated with the lags

of Xt and, finally, ε
X
t is the 3 × 1 vector of structural shocks with diagonal covariance matrix.

The first element in εXt is the shock to global oil production, which Wieland (2019) refers to as

the ‘oil supply shock’.

Assuming as in Kilian (2009) that oil production responds to other structural shocks (e.g.

demand shocks) with at least one-month delay, it is possible to argue that the first row of A0 is

8We thank Johannes Wieland for kindly providing us with the monthly dataset.
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given by (1,0,0) (this includes the normalization to ‘1’ of the first element on the main diagonal

of A0). The first equation of system (A.48) is given by:

∆oilprodt = ΥX,1 +
24∑

j=1

αj,1Xt−j + εX1,t (A.49)

where ΥX,1 is the first element of ΥX , αj,1 are the 1 × 3 first row vectors of the matrices Aj ,

j = 1, ..., 24, and εX1,t is the first element of εXt . The regression in eq. (A.49) is estimated on the

period 1973M2-2015M9 and the time series oilt used in the paper corresponds to oilt := ε̂X1,t,

t =2008M1, ...,2015M4, ε̂X1,t , t =2008M1, ...,2015M4, being the OLS residuals.

A.12.2 Housing starts and hours worked

In this section we modify the baseline AC-SVAR model estimated in Section 8 of the paper

(with using the couple of external instruments (a,b)) by replacing the external instrument oilt

(b) with (c): the innovations obtained from an auxiliary model for ∆hourst, where hourst is

the log of hours worked (source: Fred).

The AC-SVAR model is estimated on the period 2008M1-2015M4, and is obtained by ap-

pending an auxiliary model for Zt := (Z1,t, Z2,t)
′ = (∆houset, ∆hourst)

′ to the system for

Yt:=(at, UF,t, UM,t)
′ discussed in the paper. Thee two models form an AC-SVAR specification

like the one in eq.s (29)-(30) of the paper.

Admittedly, differently from vZ1,t := ∆houset − E(∆houset | Ft−1), we do not have a

sound economic argument to motivate the orthogonality of the innovations vZ2,t := ∆hourst −

E(∆hourst | Ft−1) to financial and macroeconomic uncertainty shocks. However, the relevance

and orthogonality conditions are verified ex-post as in the paper.

In this case, a simple Wald test for the null hypothesis H ′
0 : vec(ΣvZ ,u) = 06×1 (no correlation

between the external instruments and the VAR disturbances) against H ′
1 : vec(ΣvZ ,u) 6= 06×1,

see Section 5 in the paper and Section A.9, is equal to W rel
T :=23.05 with a p-value of 0.00, hence

the reduced form evidence indirectly rejects the hypothesis that the relevance parameters are

zero at the 5% level of significance.

Empirical results are summarized in Table A.2, which reproduces the same informations as

Table 1 in the paper. Panel A of Table A.2, left-side, pertains to the estimates obtained with

partial shocks identification strategy, while the right-side pertains to the estimates obtained with

the full shocks identification strategy. Panel B of Table A.2 investigates the relevance conditions

(partial shocks approach) and the relevance and orthogonality conditions (full shocks approach)

and confirms that the two instruments (a,c) can be considered empirically ‘valid’.

The IRFs are summarized in Figure A.1 along with 90%-bootstrap simultaneous ‘sup-t’

bands (the hypothesis bF,a = 0 and bM,a = 0, strongly supported by the data, is imposed in
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the estimation of the IRFs). The overall picture that emerges from Table A.2 and Figure A.1

confirms qualitatively the results obtained with the baseline AC-SVAR with external instruments

(a,b).

A.12.3 Choleski-SVARs

In this section we resume the discussion in Section 4 of the paper and focus on the specification

in eq. (15) which represents the starting point of our investigation of the exogeneity/endogeneity

of uncertainty in small-scale SVARs.

The relationship between the reduced form disturbances and the structural shocks discussed

in eq. (15) of the paper is here reported for convenience:



ua,t

uF,t

uM,t




ut

=




ba,a ba,F ba,M

bF,a bF,F bF,M

bM,a bM,F bM,M




B




εa,t

εF,t

εM,t




εt

. (A.50)

In eq. (A.50), ut:=(ua,t, uF,t, uM,t)
′ is the vector of VAR reduced form disturbances and εt :=

(εa,t, εF,t, εM,t)
′ is the vector of structural shocks. Recall that we are interested in the identifi-

cation of the parameters in the first column of the matrix B, in particular the parameters bF,a

and bM,a which capture the instantaneous impact of the non-uncertainty shock of the system on

financial and macroeconomic uncertainty, respectively. In principle, the three zero restrictions

ba,F = ba,M = bF,M = 0 permit to identify the SVAR as they imply a triangular structure for B.

However, reverse causality between uncertainty and real economic activity can not be addressed

in a so-specified Choleski-SVAR because, given the ordering of the variables in eq. (A.50), the

restrictions ba,F = ba,M = bF,M = 0 prevent financial and macroeconomic uncertainty to affect

real economic activity within the month, and this appears in sharp contrast with a large em-

pirical literature on uncertainty. In other words, and as observed in the paper, an empirical

analysis based on a Choleski-SVAR with ba,F = ba,M = bF,M = 0 would not consider that the

‘endogeneity’ of UF,t and UM,t should be inferred from the data, not postulated a-priori.

The empirical results discussed in the paper partly conflicts with the hypothesis that the

matrix B has a lower triangular structure in which at is ordered first. In particular, Panel B of

Table 1 of the paper, right-side, reports the ML estimates of the parameters of the matrix:

G̃ :=
(

G̃1 G̃2

)
=

(
B1 B2

Φ 02×2

03×2

Σ
1/2
̟

)
=




ba,a

bF,a

bM,a

ba,F ba,M

bF,F 0

bM,F bM,M

ϕ1,a

ϕ2,a

0

0

0

0

0 0

0 0

0 0

̟1,1 0

0 ̟2,2



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where it is seen that B is a block of G̃. The empirical results in Table 1 of the paper suggest

that while the estimated ba,F coefficient is not significant at the 5% level of significance, the

coefficients ba,M is significant and the hypothesis ba,M = 0 is rejected, meaning that macroeco-

nomic uncertainty has a direct and instantaneous (within-the-month) contractionary effect on

real economic activity. This effect would be ruled out by construction in a Choleski-SVAR for

Yt := (UF,t, UM,t, at)
′.

Overall, the empirical analyses presented in the paper support the specification of a ‘standard’

SVARs with ordering Y ◦
t := (UF,t, UM,t, at)

′ and matrix B◦:

B◦ :=




bF,F 0 0

bM,F bM,M 0

ba,F ba,M ba,a


 . (A.51)

We call this model the ‘ex-post Cholesi-SVAR’ as we have inferred its recursive structure from

the estimation of a non-recursive specification. The estimated parameters of the matrix B◦ are

reported in Table A.3 with associated standard errors. It can be noticed that the estimated

parameter ba,F is not significant as it happens in Table 1 of the paper. The implied IRFs with

90%-bootstrap simultaneous (‘sup-t’) confidence bands are plotted in Figure A.2 along with the

IRFs obtained from the baseline proxy-SVAR estimated in the paper (i.e. the ones in Figure 1 of

the paper). As expected, it is seen that the estimated dynamics causal effects are substantially

similar.

A.12.4 An invalid external instrument

In this section we still address the empirical assessment of the exogeneity/endogeneity of uncer-

tainty considered in Section 8 of the paper by changing the estimated AC-SVAR model along

two directions. We consider (i) the ‘one shock-one instrument’ case, r = g = 1, and (ii) a

scenario in which the external instrument selected for the non-uncertainty shock εa,t is not or-

thogonal to the non-instrumented structural shocks (which are the financial uncertainty shock

εF,t and the macroeconomic uncertainty shock εM,t, respectively). We do so in order to check the

empirical performance of our approach in the presence of an invalid (non-orthogonal) external

instruments. The results of the Monte Carlo experiments discussed in Section A.8 suggest that

one should reject true parametric restrictions if the external instruments are not orthogonal to

the non-instrumented structural shocks. We investigate to what extent our approach detects

situations like these in practice.

Let Zt(vZ,t) be a scalar external instrument for εa,t, so that r = g = 1. In this case, the
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structural matrix G̃ that characterizes the AC-SVAR model (see eq. (11) in the paper) reads:

G̃ :=
(

G̃1 G̃2

)
=

(
B1 B2

φ 02×1

03×1

σ̟

)
=




ba,a

bF,a

bM,a

ba,F ba,M

bF,F bF,M

bM,F bM,M

ϕ1,a 0 0

0

0

0

σ̟




(A.52)

where Φ = φ = ϕ1,a is the relevance parameter which captures the correlation between vZ,t and

εa,t, and σ2
̟ := E(v2Z,t). Recall that we are interested in testing the restrictions bF,a = 0 and

bM,a = 0 which make financial and macroeconomic uncertainty ‘contemporaneously exogenous’

with respect to business cycle fluctuations.

The results in Proposition 1 of the paper suggest that the column G̃1 := (ba,a, bF,a, bM,a, ϕ1,a)
′

of the matrix G̃ is identified and that φ := ϕ1,a 6= 0 is a necessary and sufficient condition for

identification. Instead, the results in Proposition 2 of the paper suggests that if one adds the

restrictions bF,M = 0 (discussed in the paper) in the third column of G̃ in eq. (A.52), the three

structural shocks of the system can be identified from the AC-SVAR model despite only εa,t

is instrumented. Identification, however, holds conditional to the validity of the orthogonality

restriction E(vZ,t(εF,t, εM,t)) = (0, 0) which is reflected in the zeros in the positions (4,2) and

(4.3) of the matrix G̃. The Monte Carlo experiments discussed in Section A.8 point out that

regardless of whether we work under a partial shocks or full shocks identification strategy, the

restrictions bF,a = 0 and bM,a = 0 should be rejected by the overidentification restrictions tests

if E(vZ,t(εF,t, εM,t)) 6= (0, 0).

We consider the following external instruments for εa,t: changes in the log of real personal

consumption expenditure, denoted ∆ct (source: Fred). Let vZ,t := ∆ct − E (∆ct | Ft−1) be

the innovation associated with a dynamic auxiliary reduced form equation specified for real

consumption expenditure growth. It is reasonable to assume that vZ,t is correlated with the

non-uncertainty shock, but it is also reasonable to conjecture that the orthogonality condition

E(vZ,tεM,t) = 0 is likely not to hold because of the precautionary saving channel through which

macroeconomic uncertainty induces a decline in activity.

In this setup, the AC-SVARmodel is given by the VAR for Yt:=(at, UF,t, UM,t)
′ and a dynamic

auxiliary reduced form model for ∆ct, given respectively by:

Yt = Π1Yt−1 +Π2Yt−2 +Π3Yt−3 +Π4Yt−4 +Υy + ut (A.53)

∆ct = γ1UF,t−1 + γ2UF,t−2 + γz + vZ,t (A.54)

where m = n + r = 4 and the VAR lag order is ℓop = k = 4. The reduced form disturbances

ηt := (u′t, v
′
Z,t)

′ of system (A.53)-(A.54) are linked to ξt := (ε′t, ω
◦′
t )

′ by the relationship ηt = G̃ξt,
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where the form of the matrix G̃ is in eq. (A.52). System (A.53)-(A.54) is estimated on the

period 2008M1-2015M4. A battery of diagnostic tests (nor reported to save space) show that

the estimated AC-SVAR model displays ‘well-behaved’ residuals.

Panel A of Table A.4 summarizes the estimation and testing results. The left-side refers to

the partial shocks identification approach and the CMD estimates, and the right-side to the full

shocks identification strategy and the ML estimates.

The left-side of Panel A of Table A.4 shows that the estimated relevance parameter ϕ1,a =

E(vZ,tεa,t) is positive and strongly significant. The overidentification restrictions test TQ(ϑ̂T )exog

rejects the hypothesis of ‘contemporaneous exogeneity’ of financial and macroeconomic uncer-

tainty, bF,a = 0 and bM,a = 0, with a p-value slightly inferior to 0.04. It can be noticed that

the estimated parameter bF,a, which captures the instantaneous impact of the non-uncertainty

shock on financial uncertainty, is negative and strongly significant. The estimated correlation

between vZ,t and εa,t in Panel B of Table A.4, left-side, is 0.34 and is significant at the 5% level

of significance. Based on these results, one might be tempted to conclude that financial uncer-

tainty responds endogenously to the identified non-uncertainty shock. However, the results of

the Monte Carlo experiments discussed in Section A.8 suggest that the rejection of the restric-

tions bF,a = 0 and bM,a = 0 might be due to the failure of the orthogonality condition between

vZ,t and the non-instrumented shocks ε2,t := (εF,t, εM,t)
′. We investigate this issue next.

Panel A of Table A.4 summarizes the ML estimate of the parameters of the entire matrix G̃

in eq. (A.52) along with the LR test for the restrictions bF,a = 0 and bM,a = 0. Also in this case,

the tests rejects the null hypothesis with a p-value of 0.03. The estimates in the first column of G̃

confirm the results obtained with the partial shock identification approach. In addition, we note

that the identified financial and macroeconomic uncertainty shocks do not affect significantly the

industrial production growth on-impact (and the sign of the instantaneous impact is positive).

The novelty, however, is that we can now evaluate the quality of the identification by computing

the correlation between vZ,t and the estimated shocks εt := (ε1,t, ε2,t)
′ . Results in Panel B of

Table A.4 show that vZ,t and εa,t are significantly correlated, but also vZ,t and εM,t are correlated

at the 5% level of significance.

We have documented the fact that the innovations built from the model for the changes in real

personal consumption growth do not represent valid external instrument for the non-uncertainty

shock.

A.12.5 Controlling for the stance of monetary policy

In this section we check the robustness of the results obtained with the baseline AC-SVAR

model estimated in the paper to the stance of monetary policy. Since the estimation sample
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2008M1-2015M4 broadly coincides with the zero lower bound constraint, we prefer not to con-

sider explicitly the identification of a monetary policy shock. As is known, assessing the impact

of unconventional policy is more challenging than it is for conventional policy, see, among many

others, Gertler and Karadi (2015) and Roger et al. (2018). In this section we check whether

and to what extends the results obtained with the baseline specification discussed in Section 8

of the paper change once we include Wu and Xia’s (2016) ‘shadow rate’ and the inflation rate as

control variables in the proxy-SVAR. Related to this, recently, Pellegrino (2017) has shown that

expansionary monetary policy shocks tend to reduce the uncertainty in tranquil and turbulent

periods, but are significantly less powerful during uncertain times.

We consider the same specification as in eq.s (29)-(30) of the paper, i.e. the model based

on Yt:=(at, UF,t, UM,t)
′ and Zt := (Z1,t, Z2,t)

′ = (∆houset, oilt)
′ (i.e. the couple (a,b)), with an

important difference: we include Wu and Xia (2016)’s ‘shadow rate’, srt, and the inflation rate,

πt, as ‘exogenous-X’ variables as follows:

Yt = Π1Yt−1 +Π2Yt−2 +Π3Yt−3 +Π4Yt−4 + κLt +Υy + ut

Zt = Θ1Zt−1 + Γ1Yt−1 + Γ2Yt−2 +Υz + vZ,t

where Lt := (srt, πt)
′ and the 3× 2 matrix κ captures the instantaneous impact of the shadow

rate and the inflation rate on Yt.
9 The structural specification is still given by:

(u′t, v
′
Z,t)

′ =: ηt = G̃ξt

and the matrix G̃ if given by:

G̃ :=




ba,a

bF,a

bM,a

ba,F ba,M

bF,F 0

bM,F bM,M

ϕ1,a

ϕ2,a

0

0

0

0

0 0

0 0

0 0

̟1,1 0

0 ̟2,2




as in the baseline specification of the paper. The novelty in this model is the appearance of the

control variables Lt on the right-hand-side of the Yt-equations.

The estimation results are summarized in Table A.5 which reproduces the same structure as

Table 1 in the paper. The implied IRFs with 90%-bootstrap simultaneous confidence intervals

9Thus, from this version of the AC-SVAR model one can potentially track the dynamic impact of Lt on Yt+h,

h = 0, 1, 2, .... by computing the multipliers

(Jn (Ay)
h
J
′

n)κ , h = 0, 1, 2, ....

where Jn and Ay are the same selection matrix and companion matrix used for the IRFs.
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are summarized in Figure A.3 (the hypothesis bF,a = 0 and bM,a = 0 is imposed in the estimation

of the IRFs). It can be noticed that the results do not change substantially relative to what

obtained with the baseline AC-SVAR model discussed in the paper.
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Brüggemann, R., Jentsch, C. and Trenkler, C. (2016), Inference in VARs with conditional

volatility of unknown form, Journal of Econometrics 191, 69-85.

Gelfand, A., and A. F. M. Smith. (1990). Sampling-Based Approaches to Calculating Marginal

Densities. Journal of the American Statistical Association 85(410), 398-409.

Gertler, M. and Karadi, P. (2015), Monetary policy surprises, credit costs, and economic ac-

tivity, American Economic Journal: Macroeconomics 7, 44-76.

Hamilton, J.D. (1994), Time Series Analysis, Princeton University Press, Princeton.

Hajivassiliou, V.A. and Ruud, P.A. (1994), Classical estimation methods for LDV models

using simulations, Handobook of Econometrics, Vol. IV, Edited by R.F. Engle and D.L.

McFadden, Chap. 40, Elsevier.

Jentsch, C. and Lunsford, K.C. (2016), Proxy VARs: Asymptotic theory, bootstrap inference

and the effects of income tax changes in the united states, Federal Reserve Bank of Cleve-

land, Working Paper No. 16-19.

Jentsch, C. and Lunsford, K. (2019), The dynamic effects of personal and corporate income

tax changes in the United States: Comment, American Economic Review, forthcoming.

Kilian, L. (1998), Small-sample confidence intervals for impulse response functions, Review of

Economic and Statistics 80, 218-230.

Kilian, L. (2009), Not all oil price shocks are alike: Disentangling demand and supply shocks

in the crude oil market, American Economic Review 99, 1053-1069.

Kilian, L. and Lütkepohl, H. (2017), Structural Vector Autoregressive Analysis, Cambridge

University Press.

Lütkepohl, H. (2005), New introduction to multiple time series analysis, Springer-Verlag, Berlin.

42



Magnus, J.R. and Neudecker, H. (1999), Matrix differential calculus with applications in Statis-

tics and Econometrics, Wiley & Sons, Mertens, K. and Ravn, M. (2013), 2nd edition.

Mertens, K. and Ravn, M. (2013), The dynamic effects of personal and corporate income tax

changes in the United States, American Economic Review 103, 1212-1247.

Mertens, K. and Ravn, M. (2018), The dynamic effects of personal and corporate income tax

changes in the United States: Reply to Jentsch and Lunsford, Federal Reserve Bank of

Dallas, Working Paper 1805.

Montiel Olea, J.L., Plagborg-Møller, M. (2019), Simultaneous confidence bands: Theory, im-

plementation, and an application to SVARs, Journal of Applied Econometrics 34, 1-17.

Park, J.W., Genton, M.G and Ghosh, S.K. (2007), Censored time series analysis with autore-

gressive moving average models, Canadian Journal of Statistics 35, 151-168.

Pellegrino, G. (2017), Uncertainty and monetary policy in the US: A journay into a non-linear

territory, Melbourne Institute Working Paper No. 6/17.

Powell, J.L. (1984), Least absolute deviations estimation for the censored regression model,

Journal of Econometrics 25, 303-325.

Ramey, V. (2016), Macroeconomic shocks and their propagation, Handbook of Macroeconomics

2, 71-162.

Rogers, J.H,. Scotti, C. and Wright, J.H. (2018), Unconventional monetary policy and inter-

national risk premia, Journal of Money, Credit and Banking 50, 1827-1850.

Rothenberg, T.J. (1971), Identification in parametric models, Econometrica 39, 577-591.

Rubio-Ramı́rez, J. F., Waggoner, D.F. and Zha, T. (2010), Structural Vector Autoregressions

and algorithms for inference, Review of Economic Studies 77, 665-696.

Wieland, J.F. (2019), Are negative supply shocks expansionary at the zero lower bound?,

Journal of Political Economy, forthcoming.

Wu, J. C. and Xia, F.D. (2016), Measuring the macroeconomic impact of monetary policy at

the zero lower bound, Journal of Money, Credit, and Banking 48, 253-291.

43



Table A.1. Monte Carlo experiments

Panel A

Partial Shocks Identification

T v1= 0, v2= 0 v1= 0, v2= −0.1 v1= −0.75, v2= −0.25

100 0.080 0.229 1

250 0.058 0.470 1

500 0.053 0.758 1

Panel B

Full Shocks Identification

case (i) case (ii) case (iii)

T v1= 0, v2= 0 v1= 0, v2= −0.1 v1= −0.75, v2= −0.25

100 0.082 0.187 1

250 0.056 0.362 1

500 0.054 0.616 1

NOTES: Rejection frequencies (computed over M = 1000 simulations) of tests for the null

hypothesis that the shock εA,t does not affect the variables (YB,t, YC,t)
′ instantaneously, cor-

responding to the two over-identification restrictions bB,A = bC,A = 0, under three different

scenarios about the exogeneity of the external instruments. Panel A: rejection frequencies of

the CMD-based test for the overidentification restrictions in the partial shocks identification

approach, see Section 5 of the paper. Panel B: rejection frequencies of the LR test for the overi-

dentification restrictions in the full shocks identification approach, see Section 6 of the paper.

All tests are computed at the 5% nominal level of significance.
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Table A.2. Estimated AC-SVAR model, Zt := (∆houset,∆hourst)
′

Panel A

Partial Shocks Identification Full Shocks Identification

̂̃
G1 =




0.6218
0.0980

−0.0009
0.0009

−0.0003
0.0037

0.0239
0.0114

0.0027
0.0009




̂̃
G =




0.6197
0.0603

−0.0710
0.0806

−0.2064
0.0794

0 0

−0.0009
0.0037

0.0222
0.0017

0 0 0

−0.0002
0.0016

0.0034
0.0010

0.0094
0.0007

0 0

0.0240
0.0089

0 0 0.0819
0.0062

0

0.0027
0.0004

0 0 0 0.0034
0.0003




TQ(ϑ)exog = 0.07[0.97] LRT = 5.72[0.13] LRexog = 0.06[0.97]

Panel B

Correlations (relevance) Correlations (relevance, orthogonality)

ε̂a

υ̂Z1
0.28[0.01]

υ̂Z2
0.63[0.00]

ε̂a ε̂F ε̂M

υ̂Z1
0.28[0.01] −0.02[0.87] 0.04[0.67]

υ̂Z2
0.63[0.00] −0.02[0.83] −0.02[0.86]

NOTES: Estimated AC-SVAR model for Yt := (at, UFt, UMt)
′ and external instrument Zt :=

(∆houset,∆hourst)
′, period 2008:M1-2015:M4 (T=88). Panel A: estimates. Left side, CMD

estimates of G̃1 with associated standard errors, ‘TQ(ϑ)exog’ is the overidentification restriction

test for the null bF,a = 0 and bM,a = 0. Right side, ML estimates of G̃ with associated standard

errors, ‘LRT ’ is a test for the 3 overidenfication restrictions featured by the estimated model,

‘LRexog’ is the overidentification test for the null bF,a = 0 and bM,a = 0. Numbers in brackets are

p-values. Panel B: ex-post correlations. Left side, ex-post correlations between the structural

shock ε̂a and the reduced form shocks υ̂Z1
and υ̂Z2

(relevance). Right side, ex-post correlations

between the structural shocks ε̂t := (ε̂at, ε̂Ft, ε̂Mt)
′ and the reduced form shocks υ̂Z1

and υ̂Z2

(relevance and orthogonality).
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Table A.3. Estimated Choleski-SVAR

B̂◦ =




0.0223
0.0017

0 0

0.0034
0.0010

0.0094
0.0007

0

−0.0944
0.0676

−0.2103
0.0653

0.5937
0.0448




NOTES: Estimated Choleski-SVAR for Y ◦

t := (UFt, UMt, at)
′, period 2008:M1-2015:M4 (T=88),

with associated standard errors.
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Table A.4. Estimated AC-SVAR model with an invalid external instrument

Panel A

Partial Shocks Identification Full Shocks Identification

̂̃
G1 =




0.5488
0.1194

−0.0091
0.0022

−0.0078
0.0065

0.0009
0.0004




̂̃
G =




0.5488
0.1074

0.1393
0.1696

0.2986
0.1715

0

−0.0091
0.0065

0.0203
0.0032

0 0

−0.0078
0.0020

0.0003
0.0025

0.0063
0.0022

0

0.0009
0.0003

0 0 0.0025
0.0002




TQ(ϑ)exog = 6.90[0.03] LRexog = 6.52[0.04]

Panel B

Correlations (relevance) Correlations (relevance, orthogonality)

ε̂a

υ̂Z1
0.34[0.00]

ε̂a ε̂F ε̂M

υ̂Z1
0.22[0.04] −0.14[0.19] −0.23[0.03]

NOTES: Estimated AC-SVAR model for Yt := (at, UFt, UMt)
′ and external instrument Zt :=

(∆ct), period 2008:M1-2015:M4 (T=88). Panel A: estimates. Left side, CMD estimates of G̃1

with associated standard errors, ‘TQ(ϑ)exog’ is the overidentification restriction test for the null

bF,a = 0 and bM,a = 0. Right side, ML estimates of G̃ with associated standard errors, ‘LRexog’

is the overidentification test for the null bF,a = 0 and bM,a = 0. Numbers in brackets are p-values.

Panel B: ex-post correlations. Left side, ex-post correlations between the structural shock ε̂a

and the reduced form shock υ̂Z1
(relevance). Right side, ex-post correlations between structural

shocks ε̂t := (ε̂at, ε̂Ft, ε̂Mt)
′ and the reduced form shock υ̂Z1

(relevance and orthogonality).
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Table A.5. Estimated AC-SVAR model with control variable Xt := (πt, srt)
′.

Panel A

Partial Shocks Identification Full Shocks Identification

̂̃
G1 =




0.5395
0.1085

−0.0051
0.0020

0.0014
0.0029

0.0256
0.0110

0.1489
0.0706




̂̃
G =




0.5396
0.0944

0.0794
0.1369

−0.3274
0.1332

0 0

−0.0050
0.0052

0.0197
0.0019

0 0 0

0.0014
0.0025

0.0028
0.0012

0.0091
0.0009

0 0

0.0256
0.0084

0 0 0.0757
0.0058

0

0.1488
0.0575

0 0 0 0.5222
0.0397




TQ(ϑ)exog = 1.48[0.48] LRT = 0.42[0.94] LRexog = 1.52[0.47]

Panel B

Correlations (relevance) Correlations (relevance, orthogonality)

ε̂a

υ̂Z1
0.32[0.00]

υ̂Z2
0.27[0.01]

ε̂a ε̂F ε̂M

υ̂Z1
0.31[0.00] −0.04[0.71] 0.09[0.40]

υ̂Z2
0.26[0.01] −0.11[0.30] 0.03[0.79]

NOTES: Estimated AC-SVAR for Yt := (at, UFt, UMt)
′, external instrument Zt :=

(∆houset, oilt)
′ and exogenous control variable Xt := (πt, srt)

′. Panel A: estimates. Left side,

CMD estimates of G̃1 with associated standard errors, ‘TQ(ϑ)exog’ is the overidentification re-

striction test for the null bF,a = 0 and bM,a = 0. Right side, ML estimates of G̃ with associated

standard errors, ‘LRT ’ is a test for the 3 overidenfication restrictions featured by the estimated

model, ‘LRexog’ is the overidentification test for the null bF,a = 0 and bM,a = 0. Numbers in

brackets are p-values. Panel B: ex-post correlations. Left side, ex-post correlations between the

structural shock ε̂a and the reduced form shocks υ̂Z1
and υ̂Z2

(relevance). Right side, ex-post

correlations between the structural shocks ε̂t := (ε̂at, ε̂Ft, ε̂Mt)
′ and the reduced form shocks υ̂Z1

and υ̂Z2
(relevance and orthogonality).
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FIGURE A.1: IRFs obtained from the AC-SVAR model for Yt := (at, UFt, UMt)
′ and external instrument Zt :=

(∆houset,∆hourst)
′, period 2008:M1-2015:M4 (T=88). Blue shaded areas denote 90%-bootstrap simultaneous ‘sup-t’ confidence

bands (Algorithm 3 in Montiel Olea and Plagborg-Møller, 2019). Responses are measured with respect to one standard deviation

changes in the structural shocks. The on-impact coefficients are estimated by imposing the null hypothesis bF,a = 0 and bM,a = 0 of

exogenous financial and macro uncertainty.
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FIGURE A.2: IRFs obtained from the Choleski-SVAR for Yt := (UFt, UMt, at)
′, period 2008:M1-2015:M4 (T=88). Blue lines

denote the IRF associated with the Choleski decomposition and dashed black lines denote the IRF obtained with the baseline case

propose in the Figure 1 of the paper. Responses are measured with respect to one standard deviation changes in the structural shocks.

The on-impact coefficients of the AC-SVAR model are estimated by imposing the null hypothesis bF,a = 0 and bM,a = 0 of exogenous

financial and macro uncertainty.
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FIGURE A.3: IRFs obtained from the AC-SVAR model for Yt := (at, UFt, UMt)
′, external instrument Zt := (∆houset, oilt)

′ and

exogenous control variable Xt := (πt, srt)
′, period 2008:M1-2015:M4 (T=88). Blue shaded areas denote 90%-bootstrap simultaneous

‘sup-t’ confidence bands (Algorithm 3 in Montiel Olea and Plagborg-Møller, 2019). Responses are measured with respect to one

standard deviation changes in the structural shocks. The on-impact coefficients are estimated by imposing the null hypothesis

bF,a = 0 and bM,a = 0 of exogenous financial and macro uncertainty.
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