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Abstract. Substantial evidence has accumulated in recent empirical works on the limited ability of the 

Nash equilibrium to rationalize observed behavior in many classes of games played by experimental 

subjects. This realization has led to several attempts aimed at finding tractable equilibrium concepts 

which perform better empirically, often by introducing a reference point to which players compare the 

available payoff allocations, as in impulse balance equilibrium and in the inequity aversion model. The 

purpose of this paper is to review these recent reference point literature and to advance two new, 

empirically sound, hybrid concepts.  
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From efficiency to equality: the “distributive” reference point  

 

In recent years experimental economists have accumulated considerable evidence that steadily 

contradicts the self-interest hypothesis embedded in equilibrium concepts traditionally studied in 

game theory, such as Nash’s. The evidence suggests that restricting the focus of analysis to the 

strategic interactions among perfectly rational players (exhibiting equilibrium behavior) can be 

limiting, and that 

considerations about fairness and reciprocity should be accounted for.  

In fact, while models based on the assumption that people are exclusively motivated by their 

material self-interest perform well for competitive markets with standardized goods, misleading 

predictions arise when applied to non-competitive environments, for example those characterized 

by a small number of players (cf. FEHR & SCHMIDT, 2000) or other frictions. For example 

KAHNEMAN, KNETSCH & THALER (1986) find empirical results indicating that customers are 

extremely sensitive to the fairness of firms’ short-run pricing decisions, which might explain the 

fact that some firms do not fully exploit their monopoly power. 

 

One prolific strand of literature on equity issues focuses on relative measures, in the sense that 

subjects are concerned not only with the absolute amount of money they receive but also about their 

relative standing compared to others. BOLTON (1991), formalized the relative income hypothesis 

in the context of an experimental bargaining game between two players. 

KIRCHSTEIGER (1994) followed a similar approach by postulating envious behavior. Both 

specify the utility function in such a way that agent i suffers if she gets less than player j, but she’s 

indifferent with respect to j’s payoff if she is better off herself. The downside of the latter 

specifications is that, while consistent with the behavior in bargaining games, they fall short of 

explaining observed behavior such as voluntary contributions in public good games.  

 

A more general approach has been followed by FEHR & SCHMIDT (1999), who instead of 

assuming that utility is either monotonically increasing or decreasing in the well being of other 

player, model fairness as self-centered inequality aversion. Based on this interpretation, subjects 

resist inequitable outcomes, that is they are willing to give up some payoff in order to move in the 

direction of more equitable outcomes. More specifically, a player is altruistic towards other players 

if their material payoffs are below an equitable benchmark, but feels envy when the material 

payoffs of the other players exceed this level. To capture this idea, the authors consider a utility 
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function which is linear in both inequality aversion and in the payoffs. Formally, for the two-player 

case ሺ݅  

 ൛࢞
        

Where  are player 1 and player 2’s payoffs respectively and ߚ  are player i’s inequality 

parameters satisfying the following conditions: ߚ  and  0 . 

The second term in the equation is the utility loss from disadvantageous inequality, while the third 

term is the utility loss from advantageous inequality. Due to the above restrictions imposed on the 

parameters, for a given payoff ݔ , player i’s utility function is maximized at ݔ , and the utility 

loss from disadvantageous inequality (ݔ ) is larger than the utility loss if player i is better off 

than player j (ݔ ). 

 

Fehr and Schmidt show that the interaction of the distribution of types with the strategic 

environment explains why in some situations very unequal outcomes are obtained while in other 

situations very egalitarian outcomes prevail. In referring to the social aspects introduced by this 

utility function, one could think of inequality aversion in terms of an interactive framing effect 

(reference point dependence).  

 

This payoff modification has proved successful in many applications, mainly in combination with 

the Nash equilibrium concept, and will therefore be employed in this study, although in conjunction 

with a different equilibrium type, as will be explained in the next section. 

 

The “psychological” reference point 

 

The predictive weakness of the Nash equilibrium is effectively pointed out by EREV & ROTH 

(1998), who study the robustness and predictive power of learning  models in experiments 

involving at least 100 periods of games with a unique equilibrium in mixed strategies. They 

conclude that “…in some of the games the [Nash] equilibrium prediction does very badly” and that 

a simple learning model can be used to predict, as well as explain, observed behavior on a broad 

range of games, without fitting parameters to each game. A similar approach, based ex-post and ex-

ante comparisons of the mean square deviations, will also be employed in this paper to assess to 

what extent the proposed hybrid model improves the fit of several games. 
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Based on the observation of the shortcomings of mixed Nash equilibrium in rationalizing observed 

behavior in many classes of games played by experimental subjects, an alternative tractable 

equilibrium has been suggested by SELTEN & CHMURA (forthcoming). IBE is based on learning 

direction theory (SELTEN & BUCHTA, 1999), which is applicable to the repeated choice of the 

same parameter in learning situations where the decision maker receives feedback not only about 

the payoff for the choice taken, but also for the payoffs connected to alternative actions. If a higher 

parameter would have brought a higher payoff, the player receives an upward impulse, while if a 

lower parameter would have yielded a higher payoff, a downward impulse is received. The decision 

maker is assumed to have a tendency to move in the direction of the impulse. IBE, a stationary 

concept which is based on transformed payoff matrices as explained in the next section, applies this 

mechanism to 2x2 games. The probability of choosing one of two strategies (for example Up) is 

treated as the parameter, which can be adjusted upward or downward. It is assumed that the second 

lowest payoff in the matrix is an aspiration level determining what is perceived as profit or loss. In 

impulse balance equilibrium expected upward and downward impulses are equal for each of both 

players simultaneously. 

 

The main result of the paper by Selten and Chmura is that, for the games they consider, impulse 

balance theory has a greater predictive success than the other three stationary concepts they 

compare it to: Nash equilibrium, sample-7 equilibrium and quantal response equilibrium. While 

having the desirable feature of being a parameter-free concept as the Nash equilibrium, and of 

outperforming the latter, the aspiration level framework (to be described) expose the theory to a 

critique regarding the use of transformed payoffs in place of the original ones for the computation 

of the equilibrium.  

 

The aspiration level can be thought of as a psychological reference point, as opposed to the social 

one considered when modeling inequality aversion: the idea behind the present work is that of 

utilizing IBE but replacing the aspiration level with inequity aversion (social) parameters. The 

motivation follows from the realization that in non-constant sum games (considered here) subjects’ 

behavior also reflects considerations of equity. In fact, while finite repetition does little to enlarge 

the scope for cooperation or retaliation, non-constant sum games offer some cooperation 

opportunities, and it seems plausible that fairness motives will play an important role in repeated 

play of this class of games. A suitable consequence of replacing the aspiration level framework with 
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the inequality aversion one is that the original payoffs can be utilized (and should, in order to avoid 

mixing social and psychological reference points). 

 

Experimental setup: IBE 

 

The table in Appendix A shows the 12 games, 6 constant sum games and 6 non-constant sum games 

on which Selten and Chmura have run experiments, which have taken place with 12 independent 

subject groups for each constant sum game and with 6 independent subject groups for each non-

constant sum game. Each independent subject group consists of 4 players 1 and 4 players 2 

interacting anonymously in fixed roles over 200 periods with random matching. In summary: 

 

Players: I={1,2} 

Action space: {U,D}x{L,R} 

Probabilities in mixed strategy: {ܲ ,1-ܲ } and {ܳ ,1-ܳ } 

Sample size: (54 sessions) x (16 subjects) = 864 

Time periods: T=200   

 

 In Appendix A, a non-constant sum game next to a constant sum game has the same best reply 

structure (characterized by the Nash equilibrium choice probabilities ܲ ) and is derived from the 

paired constant sum game by adding the same constant to player 1’s payoff in the column for R and 

2’s payoff in the row for U. Games identified by a smaller number have more extreme parameter 

values than games identifies by a higher number; for example, Game 1 and its paired non-constant 

sum Game 7 are near the border of the parameter space (ܲ 0.1   and ܳ 0.9), while Game 6 and 

its paired non-constant sum Game 12 are near the middle of the parameter space (ܲ  and 

=0.6).  

 

As pointed out, IBE involves a transition from the original game to the transformed game, in which 

losses with respect to the natural aspiration level get twice the weight as gains above this level. The 

impulse balance equilibrium depends on the best reply structure of this modified game, which is 

generally different from that of the original game, resulting therefore in different predictions for the 

games in a pair. 

The present paper utilizes the data on the experiments involving 6 independent subject groups for 

each of the 6 non-constant sum games (games 7 through 12 in Appendix A). As anticipated above, 

this class of games is particularly conceptually suitable to the application of the inequality aversion 



framework. Further, in completely mixed 2x2 games, mixed equilibrium is the unambiguous game 

theoretic prediction when they are played as non-cooperative one-shot games. Since non-constant 

sum games provide incentives for cooperation, such attempts to cooperation may have influenced 

the observed relative frequencies in Selten’s experiment. Along these lines, it is particularly 

relevant to see whether inequality aversion payoff modifications can help improve the fit with 

respect to these frequencies.       

 

The application of inequality aversion parameters to Impulse balance equilibrium provides an 

opportunity for testing Fehr & Schmidt’s fairness model in conjunction with the IBE, which  is 

itself a simple yet fascinating concept which has proven to be empirically successful in fitting the 

data in many categories of games and is nevertheless parsimonious due to the straight-forward 

formulation and parameter-free nature. By including a fairness dimension to it, the hope is to supply 

favorable empirical evidence and provide further stimulus to expand the types of games empirically 

tested. 

 

Formally, this involves first modifying the payoff matrices of each game in order to account for the 

inequality parameters ( β ,α ), than creating the impulse matrix based on which the probabilities are 

computed. In order to clarify the difference between the reference point utilized in Selten and 

Chmura (the aspiration level) and that utilized in this paper it is useful to start by summarizing the 

mechanics behind the computation of the IBE.  

 

Let’s consider the normal form game depicted in Figure 1 below, 

 

 

Fig.1: structure of the 2x2 games (arrows point in the direction of best replies) 

 

      L (ܳ )  R (1-ܳ௅) ௅ܽ௅ ௅  ௎ ܽோ ௎ ௎ +  ܿ  ;  ܾ  

↑ 

  ;  ܾ + ݀      

                     ↓ ܽ௅ ஽  ஽ ܽோ ோ ஽  ;  ܾ + ݀    + ܿ   ;  ܾ  

 

6  

 

 

where  and  ܿ   ܽ௅ , ܽோ , ܾ௎, ܾ஽ ൒ 0 ௅ , ܿோ , ݀௎ , ݀஽ ൐ 0
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ܿ௅  ோ ௎ , ݀஽ ௅, ܽோ௎, ܾ஽
௜ݏ ௅, ܽோ ௜ ௎ , ܾ஽ሻ 

௜

௜௜ ௜

௅ ௅௎ ܿோ

 and ܿ  are player 1’s payoffs in favor of U,D while ݀  are player 2’s payoffs in favour of 

L,R respectively. Note that player 1 can secure the higher one of ܽ  by choosing one of his pure 

strategies, and player 2 can similarly secure the higher one of ܾ . Therefore, the authors define 

the natural aspiration levels for the 2 players are given by: 

 =max(ܽ )   for i=1   and  ݏ =max(ܾ for i=2 

the transformed game (TG) is constructed by leaving player i’s payoff unchanged if it is less or 

equal to ݏ  and by reducing the difference of payoffs greater than si by the factor ½. Algebraically, 

calling x the payoffs, 

 

if x ≤ ݏ  => x’= x 

if x > ݏ  => x’= x-½(x-ݏ ) 

 

If after the play, player i could have obtained a higher payoff with the other strategy, she receives an 

impulse in the direction of the other strategy, of the size of the foregone payoff in the TG.  

 

 

Fig.2:Impulses in T.G. in the direction of unselected strategy        

 

      L (ܳ )  R (1-ܳ ) 

0 ; ݀ * * ; 0 

ܿ௅ ஽* ; 0 0 ; ݀ * 

 

 

The concept of impulse balance equilibrium requires that player 1’s expected impulse from U to D 

is equal to the expected impulse from D to U; likewise, pl.2’s expected impulse from L to R must 

equal the impulse from R to L. Formally, 

 ௎ܲܳோܿோ ஽ܳ௅ܿ௅௎ܲܳ௅݀௎ ஽ܳோ݀஽* =ܲ * 

*=ܲ *              

 

Which, after some manipulation, can be shown to lead to the following formulae for probabilities: 
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Experimental setup: equity-driven Impulse Balance Equilibrium 

 

Replacing the aspiration level framework with the inequality aversion one doesn’t require the 

computation of the TG based on aspiration level framing, as the original payoffs are now modified 

by including the inequality parameters ( β ,α ). Formally, recalling that: ࣯௜ ൌ ௜ݔ െ ௝ݔ൛ݔ௜݉ܽߙ െ0,݅ݔെ݅ݔݔܽ݉݅ߚെ0,݆ݔ 

௅ܽ௅  ௅   െ ሼܾ௎ݔ௜݉ܽߙ െ ܽ௅ െ ܿ௅ , 0ሽ െ ሼܽ௅ݔ௜݉ܽߚ  ൅ ܿ௅ െ ܾ௎ , 0ሽܾ௎ െ ሼܽ௅ݔ௝݉ܽߙ  ൅    ܿ௅   െ ܾ௎ , 0ሽ െ ሼܾ௎ݔ௝݉ܽߚ െ ܽ௅ െ ܿ௅  , 0 ܽோ െ ሼܾ௎ݔ௜݉ܽߙ ൅ ݀௎ െ ܽோ, 0ሽ െ ൛ܽோݔ௜݉ܽߚ െ ܾ௎ െ ݀௎ , 0ܾ௎ ௎ െ ሼܽோݔ௝݉ܽߙ െ ܾ௎ െ ݀௎, 0ሽ െ ሼܾ௎ݔ௝݉ܽߚ ൅ ݀௎ െ ܽோ, 0ሽ
 

Table 1: structure of the 2x2 games accounting for inequality aversion 

      L (ܳ )       R (1-ܳ௅) 

+  ܿ ;ሽ ൟ ;  

+ ݀        

                      ܽ௅ െ ሼܾ஽ݔ௜݉ܽߙ  ൅  ݀஽   െ ܽ௅, 0ሽ െ ሼെܾ஽ݔ௜݉ܽߚ െ ݀஽ ൅ ܽ௅, 0ሽܾ஽ ൅ ݀஽ െ ൛ܽ௅ݔ௝݉ܽߙ െ ܾ஽ െ ݀஽௅, 0ൟ െ ሼെܾ஽ݔ௝݉ܽߚ െ ݀஽ ൅ ܽ௅, 0ሽ ோ ோ െ ሼܾ஽ݔ௜݉ܽߙ െ ܽோ െ ܿோ  , 0ሽ െ ሼܽோݔ௜݉ܽߚ ൅ ܿோ െ ܾ஽ , 0ܾ஽ െ ሼܽோݔ௝݉ܽߙ ൅ ܿோ   െ ܾ஽ , 0ሽ െ ൛ܾ஽ݔ௝݉ܽߚ െ ܽோ െ ܿோ,   , 0  ;  

 

ܽ + ܿ ሽ; ൟ 
 

Based on these payoffs, the previous section’s computations can be conducted in order to find the 

impulse balance mixed strategy equilibria corresponding to specific values of β  andα . 

 

Two measures of the relative performance of the I.A.-adjusted Impulse Balance concept:   

best fit and predictive power 

 

Results in terms of Best fit 

 

The preceding analysis served as an introduction to the more systemic method utilized in the next 

paragraphs to assess the descriptive and predictive success of the “pure” impulse balance 

equilibrium in comparison to the proposed Inequality Aversion hybrid.  

Following a methodology which has been broadly utilized in the literature to measure the adaptive 

and predictive success of a point in a Euclidean space, the squared distance of observed and 

theoretical values is employed (cf. Erev & Roth, 1998 and Selten & Chmura). More precisely, the 

first part of the analysis consists, for each of the 6 non constant sum games, of a grid search with an 

MSD criterion on the ( β ,α ) parameter space to estimate the best fitting parameters, i.e. those that 

minimize the distance between the model and the data.  

Algebraically, the mean over the 6 games in the best fit row will be given by:  
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The inequality aversion parameters used in the hybrid model must satisfy the constraints ii αβ ≤

and 0 1≤i≤ β . The r evant parameter space under investigation is then given, for each el β ,by values 

α ∈[ β ,0.5]. Graphically the parameter space can be represented as follows are as follows:  

 

and α  β
 

Figure 3: The correspondence between 

 

 

 Table 1, a summary of the results of the explanatory power of the two models is presented for 

he reason of the two-fold comparison is that not only it is meaningful to assess whether the hybrid 

׊ β א ሾ0,0.35ሿ , α א ሾ β , 0.5ሿ  

   

 

In

each non constant sum game, starting from the transformed or the original payoffs, respectively. 

The comparisons are made both within game class in column 5 (e.g. within transformed game i, 

i=7,...,12), and across game class in the last column (e.g. between original game i and transformed 

game i).  

 

T

model can better approximate the observed frequencies than the I.B. concept, but it is especially 

important to answer the question: does the hybrid concept applied to the original payoffs of game i 
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able 2: Ex-post (best fit) descriptive power of hybrid model vs I.B. equilibrium  

outperform the ‘pure’ I.B. applied to the transformed payoffs? In other words, since the inequality 

aversion concept overlaps to a certain extent to that of having impulses in the direction of the 

strategy not chosen, applying the inequality aversion adjustment to payoffs that have already been 

transformed to account for the aspiration level will result in “double counting”. It is therefore more 

relevant to compare the best fit of  hybrid equilibrium on O.G. (see rows highlighted in blue)  to 

that obtained by applying impulse balance equilibrium to T.G.  

 
T

 

 

FREQUENCY 

 [fu; fl] 

N.E. 

[Pu;Ql]   

BEST FIT  I.B.+I.A. 

 [Pu;Ql]  

 ( β ,α ) 

IBE 

[Pu;Ql]   

 (0;0) 

I.B.+I.A 

ê  

IBE? 

O.G.+I.B.+I.A.

ê 

T.G.+IBE? 

TG7 [.141;.564]    (0;0)  634][.104;.634] [.104;. NO 

 

n.a. 

OG7 [.141;.564] [.091;.909]  [.099;.568] (.054;.055) 

  

[.091;.500] YES YES 

TG8 [.250;.586]   (.043;.065) [.258;.561] YES n.a. [.270;.586]

  

OG8 [.250;.586] [.182;.727]  [.257;.585] (.006;.468) 

 

[.224;.435] YES YES 

TG9 [.254;.827]  180;.827] (.07;.10) [.188;.764] YES n.a. [.

 

OG9 [.254;.827] [.273;.909] [.232;.840] (.325;.327)  [.162;.659] YES 

 

YES 

TG10 [.366;.699]  [.355;.759] (.089;.134)  [.304;.724] ES n.a. 

 

Y

OG10 [.366;.699] [.364;.818]  [.348;.717] (.250;.254)  

 

[.263;.616] YES YES 

TG11 [.311;.652]  357;.652] (.012;.018)  [.354;.646] YES n.a. [.

 

OG11 [.311;.652] [.364;.727]  [.344;.644] (.001;.425)  

 

[.316;.552] YES YES 

TG12 [.439;.604]  496;0.575]  (0;0) [.496;.575] NO n.a. [.

  

OG12 [.439;.604] [.455;.636]  [.439;.604] (.022;.393) 

 

[.408;.547] YES YES 

 

spection of Table 1 suggests a strong positive answer to the following two relevant questions In

regarding the ability of the proposed concept to fit the observed frequencies of play: within the 

same class of payoffs (TG or OG), is the descriptive power of the hybrid concept superior to that of 



the IBE? And, perhaps more importantly, is this still true when the two concepts are applied to their 

natural payoffs, namely the original and the transformed respectively? 

The last two columns of Table 1 contain the answers to the two questions, based on a comparison of 

the mean squared deviations of the predicted probabilities from the observed frequencies under the 

two methods.    

 

Results in terms of Predictive power 

 

The next step in evaluating the performance of the inequality aversion-adjusted impulse balance 

equilibrium concept is studying its ex ante predictive power. This is done by partitioning the data 

into subsets, and simulating each experiment using parameters estimated from the other 

experiments. By generating the MSD statistic repeatedly on the data set leaving one data value out 

each time, a mean estimate is found making it possible to evaluate the predictive power of the 

model. In other words, the behavior in each of the 6 non-constant sum games is predicted without 

using that game’s data, but using the data of the other 5 games to estimate the probabilities of 

playing up and down. By this cross-prediction technique (known as jackknifing), one can evaluate 

the stability of the parameter estimates, which shouldn’t be substantially affected by the removal of 

any one game from the sample. Erev & Roth (1998) based their conclusions on the predictive 

success and stability of their learning models by means of this procedure, and it has therefore been 

employed in this work.  

 

Table 2, above, shows summary MSD scores (100*Mean-squared Deviation) organized as follows: 

each of the first 6 columns represents one non-constant sum game, while the last column gives the 

average MSD over all games, which is a summary statistic by which the models can be roughly 

compared. The first three rows present the MSDs of the Nash equilibrium and of the I.B. 

equilibrium predictions (for β =0=α ) on the transformed and original payoffs respectively. The 

remaining three rows display MSDs of the I.A.+I.B. model on the original payoffs: in the fourth 

row, the parameters are separately estimated for each game (12 parameters in total);  in the fifth 

row, the estimated 2 parameters that best fit the data over all 6 games (and over all but Game 7) are 

employed (the same two β ,α  that minimize the average score over all games are used to compute 

the MSDs for each game); in the last row the accuracy of the prediction of the hybrid model is 

showed when behavior in each of the 6 games is predicted based on the 2 parameters that best fit 

the other 5 games (and excluding Game 7).   
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Table 3: MSD scores of the IBE and of the proposed equilibrium concept 

Model  G 7  G 8  G 9  G 10  G 11  G 12  Mean 

Nash equilibrium, O.G. 0 parameters (0;0) All games G8‐12     

6.076 

 

1.225 

 

.354 

 

.708 

 

.422 

 

.064 

 

1.475 

.555 

I.B. equilibrium, T.G.            s   

15 

 

35 

 

16 

 

24 

 

94 

 

05 

 

15 0 parameters  (0;0)All gameG8‐12    .3 .0 .4 .2 .0 .2 .2

.195 

I.B. equilibrium, O.G.           0 parameters(0;0)  All games G8‐12     

.330 

 

1.174 

 

1.825 

 

.878 

 

.497 

 

.209 

 

.819 

.917 

Hybrid by game, O.G.  12 parameters      All games                          .090 .003 .031 .033 .056 .000 

.025 G8‐12             

.035 

Hybrid best fit,   O.G.  2 parameters             All games  (.157,.160)  G8‐12  (.252,.257)  
 

 

.746 

- 

 

 

.178 

.042 

 

 

.428 

.098 

 

 

.152 

.033 

 

 

.140 

.173 

 

 

.030 

.034 

 

 

.279 

.076 

Hybrid predict,  O.G. 2 parameters         All games                                 G 7  Without   

 

2.220

- 

 

.238 

.044 

 

.585 

.149 

 

.186 

.033 

 

.141 

.189 

 

.031 

.035 

 

.567  

.09 

 

Table 3 summarizes further ev ence in favor of the newly de pulse 

e  ro  if t am  inequality aversion are 

arately in each gam e im eme  te f ion MSD are 

ignificant, both with respect to the Nash and impulse balance equilibrium. 

ven times smaller than 

stability of the parameters who survive the cross-validation test. One comforting consideration 

id veloped equity-driven im

balance equilibrium. One can se

allowed to be fit sep

 from the third w that he par eters of

e, th prov nts in rms o reduct  of 

s

Moreover, even when restricting the number of parameters to 2 (common to all games, cf. row 5 

“best fit”), the mean MSD is still more than five times smaller than Nash’s. If one doesn’t include 

the extremely high MSD reported in both cases for Game 7 (for reasons discussed below), the gap 

actually increases, as the hybrid concept’s MSD becomes more than se

Nash’s. With respect to the overall MSD mean of the IBE, when considering all games the hybrid 

has a higher MSD, although the same order of magnitude (.279 and .215 respectively). If one 

focuses only on games 8-12, again we have a marked superiority of the hybrid model over the IBE, 

as the MSD of the latter is more than twice that of the new concept.  

A similar pattern is appears in the last row of the table, concerning the predictive capability: if 

Game 7 is excluded, the values are in line with the ones obtained in the fifth row, indicating 
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ash and Hybrid predict is about 

in conjunction with preferences that are again allowed to be affected by the 

ounterparty’s fate, via the inequity aversion parameters. Before showing the results, which are 

all performance of this concept compared 

 the one examined in the previous sections, let’s briefly describe the QRE. The concept, 

regarding the appropriateness of the exclusion of Game 7 comes from the widespread anomalous 

high level of its MSD score in all rows of the table, which for both N

four times the corresponding mean level obtained over the six games. It is plausible that this 

evidence is related to the location of Game 7 in the parameter space. It is in fact located at near the 

border, as previously pointed out, and therefore may be subject to the overvaluation of extreme 

probabilities by the subjects due to overweighting of small probabilities. An addition to the present 

work, which is currently in progress, considers incorporating fairness motives in the quantal 

response equilibrium notion, one that has recently attracted considerable attention thanks to its 

ability to rationalize behavior observed in experimental games. In addition to providing an 

interesting case for comparison, it should also allow to shed light on the suspected anomalous 

nature of Game 7. 

 

Quantal Response Equilibrium and Inequity Aversion 

 

The former analysis has also been conducted utilizing the quantal response equilibrium concept 

(henceforth QRE) 

c

given in Table 4 and Table 5 and show an even better over

to

introduced by (Mckelvey, Palfrey and Thomas, 1995), models games with noisy players: these 

probabilistic choice models are based on quantal best responses to the behavior of the other parties, 

so that deviations from optimal decisions are negatively correlated with the associated costs. That is 

to say, individuals are more likely to select better choices than worse choices, but do not necessarily 

succeed in selecting the very best choice. In the exponential form of quantal response equilibrium, 

considered here, the probabilities are proportional to an exponential with the expected payoff 

multiplied by the logit precision parameter (ߣሻ in the exponent: as λ increases, the response 

functions become more responsive to payoff differences. Formally, ࢐࢏ࡼ ൌ  ࢑ሺುష೔ሻ       (2)࢏࣊ࣅࢋ࢐ሺುష೔ሻା࢏࣊ࣅࢋ࢐ሺುష೔ሻ࢏࣊ࣅࢋ

Where i,j=1,2 are the players (݇ ് ݆), ௜ܲ௝ is the probability of player i choosing strategy j and ߨ௜௝ is 

player i’s expected payoff when choosing strategy j given the other player is playing according to 

the probability distribution ܲି ௜. 
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on

on ble to Table 2, as it reports the results of comparisons between the 

ew hybrid model and the IBE concept, the former always outperforming the one employing the 

g QRE outperforms the 

Two measures of the relative performance of the I.A.-adjusted Quantal Resp se 

Equilibrium: best fit and predictive power. Results in terms of Best fit 

 

The following is a compani  ta

n

‘pure’ IBE on the transformed games. Note that the penultimate column now compares the 

performance of the two proposed concepts, showing that the one employin

in five of the six games
1
.  

 

 Table 4: Ex-post (best fit) descriptive power of QRE with inequity aversion 

 

 

FREQUENCY 

 [fu; fl] 

N.E. 

[Pu;Ql]   

BEST FIT  QRE+I.A. 

 [Pu;Ql] ( β ,α )   

 λ 

IBE 

[Pu;Ql]   

 (0;0) 

QRE+I.A 

ê  

O.G.+QRE+IA

ê 

IBE+I.A? T.G.+IBE? 

TG7 [.141;.564]  [.]  (;)  [.104;.634]  

 

n.a. 

OG7 [.141;.564] [.091;.909]  [.141;.564] (.105;.209) 

 λ=0.335 

[.091;.500] YES YES 

TG8 [.250;.586]  561][.] (.) 

  

[.258;.  n.a. 

OG8 [.250;.586] [.182;.727]  [.250;.586] (.097;.386) 

λ=0.335 

[.224;.435] YES YES 

TG9 [.254;.827]  [] (.) [.188;.764]  

 

n.a. 

OG9 [.254;.827] [.273;.909] [.254;.827] (.083;.316)  

λ=0.6 

[.162;.659] YES YES 

 

TG10 [.366;.699]  [.304;.724]  n.a. [.] (.)  

 

OG10 [.366;.699] [.364;.818]  [.366;.699] (.250;.254) 

λ=0.31 

[.263;.616] YES YES 

TG11 [.311;.652]  

 

[.354;.646] n.a. [] ()   

OG11 [.311;.652] [.364;.727]  [.311;.652] (.003;.02)  

λ=0.91 

[.316;.552] YES YES 

TG12 [.439;.604]  []  () 

  

[.496;.575]  n.a. 

OG12 [.439;.604] [.455;.636]  [.439;.604](.042;.137) 

λ=0.55 

[.408;.547] same YES 

 

                                                 
1 in game 12 they achieve a substantially equal equilibrium prediction. 
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As before, in order to assess the per rmance of the concepts over multiple games, the parameters 

t  the s  l  row le 5: the 

RE+IA concept displays a better fit than the IBE+IA (smaller mean square deviation) in all but 

fo

are res ricted to be ame over all the games, as shown in the penu timate in Tab

Q

game 11, achieving a mean MSD of .147 as opposed to .279 for the latter. As for the predictive 

power, measured through jackknifing (cross-predicting), when all games are considered the mean 

MSD is substantially lower for the QRE-based concept incorporating fairness motives, averaging 

.219 vs. a score of .567 for the IBE-based one. 

      

Table 5: MSD scores of the proposed equilibrium concepts 

Model  G 7  G 8  G 9  G 10  G 11  G 12  Mean 

Nash equilibrium, O.G. 0 parameters (0;0) All games   

6.076 

 

1.225 

 

.354 

 

.708 

 

.422 

  

.064 1.475 

 

I.B. equilibrium, O.G.           mes  .330 1.174 1.825 .878 .497 .209 .819 0 parameters(0;0)  All ga        

 

I.B. equilibrium, T.G.           0 parameters  (0;0)All games   

.315 

 

.035 

 

.416 

 

.224 

 

.094 

  

.205 .215 

 

Hybrid QRE by game, O.G. 
5.5* 2.4* 7.5* 6.4* 7.4* 5.7* 

10^-6 

3.3*10^-6  18 parameters         

10^-6 

 

10^-7 

 

10^-6 

 

10^-7 

 

10^-8 

  

Hybrid  best fit,   O.G.      parameters  ( β ,α , λ) 2 par.  IBE+IA  (.157,.160)  3 par.QRE+IA  (.147,.243,.43)  
 

 

.746 

.251 

 

 

.178 

.012 

 

 

.428 

.397 

 

 

.152 

.036 

  

 

.140 

.163 

 

.030 

.027 

 

 

.279 

.147 

Hybrid predict,  O.G. 2 par.  IBE+IA                                     2.220 .238 .585 .186 .141 .031 .567 3 par. QRE+IA                             

.415 

 

.016 

 

.640 

 

.038 

 

.177 

 

.029 

 

.219 

 

Two important considerations should be remarked at this point. Firstly, for what concerns the 

ut excluding ntially problem e QRE+IA concept 

n ili  ap to ns d gam SD 

cores are .147 and .215, respectively); this is noteworthy, since it wasn’t the case for the other 

overall fit, even witho  the pote atic game 7, th

outperforms the traditional impulse bala ce equ brium plied the tra forme es (M

s

hybrid concept
2
. Secondly, the above considerations are confirmed by the predictions obtained with 

                                                 
2 In fact, the ‘pure’ impulse balance equilibrium obtains dramatically higher MSD scores when the original games are 
employed in place of the transformed ones, with an almost four‐fold increase. The intuition behind this is, loosely 
speaking, that the IBE is not as parameter‐free as it looks: that is, by utilizing transformed payoffs for each game 
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version generalization of the quantal response 

quilibrium concept appears to emerge as the best performing in terms of goodness of fit among the 

the jackknifing technique: for the QRE+IA specification the mean MSD score based on cross-

predictions is not substantially higher than the one calculated when the parameters that best fit all 

games are employed (.219 and .147, respectively). This doesn’t hold for the IBE+IA concept, 

whose score roughly doubles from .279 to .567
3
.   

 

Based on the above comparisons, the inequity a

e

considered stationary concepts. Based on this realization and following the behavioral stationary 

concept interpretation of mixed equilibrium
4
, one may conclude that the proposed other-regarding 

generalization of the QRE is the behavioral stationary concept that best models the probability of 

choosing one of two strategies in various non constant-sum games spanning a wide parameter 

space. More specifically, even when restricting the degrees of freedom of the parametric models 

and comparing the goodness of fit utilizing the same parameters (β ,α , λ if any)  for all six games, 

the other-regarding QRE outperforms all of the other stationary concepts considered here. The 

order, starting with the most successful with the goodness of fit decreasing progressively, is the 

following (see the grey highlighted rows in Table 5): QRE+IA, IBE on the transformed games, 

IBE+IA and Nash equilibrium. 

 

Of course, the previous comparison is biased against the more parsimonious concepts, in particular 

e parameter-free Nash equilibrium and IBE concepts (see footnote 1 regarding the latter). In order 

 

 

       

th

to trade off the predictive parsimony of a theory against its descriptive power, one can employ 

Selten’s Measure of Predictive Success (Selten, 1991). This is currently ongoing work. 

 

 

 

 

 

 

                                                                                                                                                           
(although based on common definition of aspiration level), it effectively allows for game‐specific adjustments similar 
to those obtained by adding a parameter which can take different values in each game.         
3 Note also that the QRE+IA mean of the MSD when cross‐predicting is approximately equal to the mean score for the 
‘pure’ IBE on all transformed games, further confirming the stability of the parameters in the other‐regarding version 
of QRE.  
4 that sees it as the result of evolutionary (or learning) processes in a situation of frequently repeated play with two 
populations of randomly matched opponents. 
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ppendix A: Games utilized in Selten & Chmura; in the present paper only games 7 to 12 (non-

onstant sum games) are investigated.  

 

A

c
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