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Abstract
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1 Introduction

Adaptive learning has been used extensively in the macroeconomic literature to depart from

the assumption of rationality. An extensive treatise of adaptive learning in macroeconomics is

provided by Evans and Honkapohja (2001). In this framework, learning algorithms are used

to model how agents recursively estimate relationships between variables of their interest,

i.e., parameters in economic models. Two main forms of the learning algorithm are used in

the literature: decreasing gain (DG) and constant gain (CG) learning.

The most common instance of a DG algorithm is the recursive least squares, where

the gain coe¢cient is set equal to 1=t, t being the time period of the estimate, and all

observations are thus weighted equally: this is suitable for estimating quantities that are

believed to be constant over time. With a constant gain algorithm, instead, more recent

observations receive a higher weight, and the weights decrease geometrically with time: this

is usually employed when the estimated parameters are believed to change over time, as it

allows for better tracking.

A growing literature in applied macroeconomics has used CG learning to explain a range

of features, from the rise and fall of U.S. in�ation in the 70s and 80s (in particular, the

seminal works of Sargent (1999) and Sargent at el. (2006)) to the causes of business cycles

(e.g., Milani (2011) and Eusepi and Preston (2011)). Though there is no direct evidence

of the appropriate value for the gain parameter, Berardi and Galimberti (2017) provide a

thorough discussion of the role and estimate bands for the gain parameter in macroeconomic

applications. In general, higher gains imply faster reaction to changes, but more volatile

estimates.

The CG algorithm is a "reduced form" learning model, which could be derived as an

optimal solution of inference in a number of underlying frameworks. For example, Muth

(1960) has shown how adaptive expectations can be optimal under certain assumptions about

the structure of the variable being forecasted. A CG algorithm for estimating the (mean)

value of a variable, in fact, implements adaptive expectations, and as such it provides optimal

forecasts under conditions speci�ed in Muth (1960). Those conditions are quite restrictive

on the underlying process for the variable being forecasted, which must be representable as

an in�nite sum of current and past exogenous disturbances, with appropriate weights related

to the gain parameter.
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A CG algorithm can also be obtained through a Kalman �lter model, which implements

Bayesian updating in a state-space framework, with appropriate initial conditions. It is

well known that with a time-invariant state-space model, the Kalman gain converges to a

constant: choosing such constant as initial value for the gain, the Kalman �lter gives rise to

a CG algorithm. The natural interpretation of such gain coe¢cient is usually in terms of

the variances of disturbances in the measurement and transition equations.

I propose here instead an interpretation of the CG learning algorithm through a prob-

abilistic setting where Bayesian learners estimate recursively the value of an unobservable

variable through a signal. The underlying process for the variable being forecasted is not

speci�ed a priori through a parametric model, and only its probabilistic structure is de-

�ned. This framework allows for a novel interpretation of the gain coe¢cient in terms of the

probability of changes in the estimated quantities. I then assess the values of various gain

coe¢cients used in empirical studies against this background, deriving some implications on

the underlaying frequency of changes in the estimated parameters.

2 Constant gain algorithm and Bayesian learning

Recursive learning algorithms can represent optimal learning behavior under certain as-

sumptions about the underlying quantities to be learned. The simplest example is that of

a constant, for which a decreasing gain algorithm with gain equal to 1=t is optimal, as it

allows to estimate the sample mean. If the underlying variable to be estimated is instead

time-varying, the literature suggests that a constant gain algorithm should be used, as it

puts more weight on more recent observations and thus allows for better tracking.

2.1 Constant gain algorithm

Suppose agents need to estimate the (time-varying) mean of a random variable xt over time.

Denoting ~xt such estimate, the CG algorithm takes the form

~xt = ~xt�1 + g (xt � ~xt�1) = (1� g) ~xt�1 + gxt (1)

= g
t
X

j=2

(1� g)t�j xj + (1� g)
t�1 x1; (2)
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where I have used the assumption ~x1 = x1, since no previous information is available to

agents. The constant gain g determines the weight put on past observations, as

bt1 = (1� g)t�1 (3)

btj = g (1� g)t�j (4)

for j = 2; :::; t, where btj denotes the weight put at time t on time j � t observation.

The same relationship between gains and weights holds also for a multivariate model

where agents estimate a vector of time-varying coe¢cients through a linear regression model.

See Berardi and Galimberti (2013).

2.2 A probabilistic Bayesian learning framework

Consider a framework where agents are interested in estimating the value of an unobservable

variable �t, t � 1. Nature draws the value �t at some time t = 0 from an improper uniform

distribution over R. Consistently, agents have a �at (uninformative) prior on its value at

time t = 1. Nature can also re-draw, with some �xed and known probability 0 � � � 1, a

new value for the variable, again from an improper distribution over R, at the beginning of

each period t > 1. At every period t � 1 agents receive a signal xt on the value of �t, with

the form

xt = �t + vt; (5)

where vt is an i.i.d. random variable, normally distributed with zero mean and constant

variance �2v.

I �rst de�ne

�xtj�t =
1

t� j + 1

t
X

z=j

xz;

the best estimate of �t at time t if Nature had last re-drawn at (the beginning of) time j � t

and agents knew it. This is simply the mean of the sample of relevant observations for the

signal, since the last change in �t took place.

Given that agents don�t know if and when a change in the estimated variable took place,

their posterior mean for it at time t is then given by

~xt =

t
X

j=1

atj�x
t
j�t
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where

at1 = (1� �)t�1 (6)

atj = (1� �)t�j �; t � j > 1; (7)

with
t
X

j=1

atj = 1:

The coe¢cients atj capture the probability that each (truncated) series �x
t
j�t is the appro-

priate one for computing the conditional expected value of �t, that is, the probability that

Nature re-drew at the beginning of time j and never after. Clearly, (6)-(7) are the same as

(3)-(4) for � = g.

It is then possible to rewrite the posterior ~xt as a weighted sum of current and past values

of xt as

~xt =
t
X

j=1

htjxj; (8)

where

ht1 =
(1� �)t�1

t
(9)

htj = htj�1 +
(1� �)t�j �

t� j + 1
; t � j > 1: (10)

It can be shown that
Pt

j=1 h
t
j = 1. Clearly if � = 1 (�t changes for sure every period),

htj = 0 for j < t and h
t
j = 1 for j = t: only the last observation matters. If instead � = 0 (�t

constant) then all observations receive the same weight 1=t. This gives rise to a decreasing

gain algorithm, implementing recursive least squares (equivalent to stochastic gradient in

this case)

~xt = ~xt�1 +
1

t
(xt � ~xt�1)

with ~x0 = 0 (that is, ~x1 = x1), or, in non-recursive form,

~xt =
1

t

t
X

z=1

xz; (11)

which is simply the sample mean.

To better understand the weighting structure de�ned by (9)-(10), I propose Fig (1).
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Observation x1 is relevant for inference about the current value of �t only if Nature never re-

Figure 1: Weighting structure of signals.

drew over the whole sample period from 1 to t, which happened with probability (1� �)t�1:

in such case each observation in that sample should be weighted equally, with weight 1=t.

Observation x2 is relevant if Nature never re-drew (again, with weight 1=t), which happened

with probability (1� �)t�1, or if it re-drew at the beginning of period 2 and never after (and

in this case, with weight 1
t�1
), which happened with probability (1� �)t�2 �. And so on.

3 A comparison

In light of the proposed framework, it is instructive to analyze the relationship between the

adaptive learning gain g and the probability � in the Bayesian learning model. The gain

parameter in an adaptive learning algorithm determines the weight put on past observations:

with a decreasing gain 1=t, all observations receive equal weight; with a constant gain g,

instead, the weight decays exponentially with past observations. A similar interpretation

can be given to �, which represents the probability of a change in the variable �t happening

at each time t: this determines the probability that each observation from time j, 0 < j � t

is relevant for time t inference, which, together with the number of observations, determines

individual weights.

The weighting structure represented by (9)-(10) cannot be generated by a CG algorithm

for �nite t. Nevertheless, it provides a means to interpret the weighting implied by such

algorithm. Clearly, if one sets � = g then btj = a
t
j: if the constant gain is to be interpreted as
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the probability �, the weight put on individual observations through the CG algorithm are

the weights put on past truncated series of observations in the probabilistic Bayesian setting.

In such setting, weights on individual observations are instead given by (9)-(10), which, in a

non-recursive way, can be rewritten as

ht1 =
(1� �)t�1

t

htj =
(1� �)t�1

t
+

j
X

m=2

(1� �)t�m �

t�m+ 1
:

While the weighting structure on individual observations in the Bayesian framework

is more convoluted than that in the CG algorithm, both btj and the leading term in htj

(represented by (1��)t�j�
t�j+1

) decay exponentially, leading to similar weight pro�les on older

observations. In fact, for � = g, the leading term in htj is equal to
btj

t�j+1
.

Figure 2 shows btj and h
t
j, computed for � = g = 0:025 with t = 100. Figure 3 then shows

the same series, but for t = 1; 000. It can be seen that as t increases, btj and h
t
j get closer

to each other for small values of j, while for high values of j (that is, for observations closer

to the time of estimation) the di¤erence between the two terms remains largely the same.

Weights btj, j � 1, are independent of t (they depend instead on t�j; that is, b
t
j = b

t+k
j+k). The

same is not exactly true for htj, though quantitatively it is indeed the case that h
t
j ' h

t+k
j+k.

This is due to the fact that the leading j�1 terms out of the total j+k terms in ht+kj+k are the

same as the leading j�1 terms out of the total j terms in htj (the j
th term di¤ers by �), with

the additional k terms in ht+kj+k negligible in size. Thus the �nal end of the b and h curves

tend to remain at the same distance as t increases. The two curves, instead, get closer and

closer to each other on their initial part as t increases, because both tend to zero (weights

on observations farther back in time converge to zero under both weighting structures).

It can be seen that, despite being derived in di¤erent frameworks, the shape of the two

weighting structures is remarkably similar, leading to similar weighting on past information

in the two cases. Figure 4 shows the di¤erence �t = bt� ht (where bt and ht are the vectors
�

btj
	t

j=1
and

�

htj
	t

j=1
) for t = 1; 000 and � = g = 0:025.

4 Constant gains in the empirical literature

Using the framework developed above, one can interpret the constant gain coe¢cients that

have been found to �t the data well in empirical macroeconomic studies in terms of the
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Figure 2: Values of btj and h
t
j for t = 100:
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Figure 3: Values of btj and h
t
j for t = 1000:
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Figure 4: Values of �1000
j for g = 0:025.

implied probability of changes in the estimated parameters. Typical values used (estimated

or calibrated) in the empirical literature for the constant gain range from close to zero to

over 0:2, though most studies use values between 0:01 and 0:1, as reported in Berardi and

Galimberti (2017).

One can compute the implied probability of changes in the estimated parameters that

corresponds to a speci�c gain coe¢cient by �nding the � that, for a given g, minimizes the

sum of (squared) deviations between the weighting structure implied by the gain and the

weighting structure of the Bayesian framework. That is, one can compute

�̂t(g) = argmin
�
�t(g)0�t(g)

where the notation for �̂t(g) and �t(g) makes explicit the dependence on both t and g.

Fixing g, one can �nd the implied probability for a certain gain coe¢cient as a function of

the number of observations. Figure 5 shows such measure for g = 0:025. It can be seen

that for large enough values of t, �̂t(g = 0:025) stabilizes and becomes constant. One can

thus compute the value of �̂t(g) for large t,1 obtaining a function that gives the implied

(asymptotic) probability �̂ for any value of g. In particular, I restrict the range of g between

1I set t = 1; 000 in the computations.
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Figure 5: Values of �̂t(g = 0:025):

0:01 and 0:1, which contains most values used in the empirical literature. Figure 6 shows

the results. It can be seen that, for gains between 0:01 and 0:1, the implied probability of

changes in the estimated parameter(s) each period ranges from 0:31% (g = 0:01) to 3:59%

(g = 0:1).

5 Conclusions

This paper has proposed a probabilistic Bayesian framework which allows for the interpreta-

tion of the weighting structure of past observations implied by the CG learning algorithm in

terms of the probability of changes in the estimated parameters. It is then possible to map

the gain coe¢cients used in the empirical literature into implied probabilities. For example,

a gain of 0:025 corresponds to a probability of changes in the estimated parameter of 0:31%

every period, while a gain of 0:1 corresponds to a probability of 3:59%.
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