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Abstract 

This paper presents applications of our theory to description of particular economic problems. 

We give all definitions and equations in Part I and II of our work. Here we argue propagation 

of small perturbations of economic variables and transactions on economic space. We show 

that small perturbations may follow wave equations that have parallels to propagation of 

sound waves and surface waves in fluids. We underline that nature of economic waves is 

completely different from waves in physical fluids but parallels between them may be useful 

for their studies. Wave generation, propagation and interactions are the most general 

properties of any complex system. Descriptions of economic waves on economic space fill 

existing gap in economic modeling. Usage of economic space allows distribute agents by 

their risk ratings as coordinates. Agents on economic space cover economic domain bounded 

by minimum and maximum risk grades. Change of risk ratings of agents due to their 

economic activity, economic processes or other factors induce flows of economic variables, 

transactions and expectations. Borders of economic domain cause fluctuations of economic 

flows and mean risks and these fluctuations describe business cycles. For example 

fluctuations of credit flows model credit cycles, investment flows model investment cycles 

and etc. Further we model assets price disturbances as consequences of relations between 

transactions and expectations. As last economic sample we argue classical Black-Scholes-

Merton option pricing model and discuss problems those arise from modeling on economic 

space.  
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1. Introduction 

In this Part III of our work we apply of our model equations to description of particular 

economic problems. We describe: wave propagation of economic disturbances on economic 

domain; business cycles induced by fluctuations of economic flows on economic domain; 

asset pricing perturbations as result of equations on economic transactions and expectations 

and argue some hidden complexities of classical Black-Scholes-Merton (BSM) option 

pricing. We explain definitions and model equations in Part I and II (Olkhov, 2019c; 2019d). 

Introduction of economic space gives ground for description of wave propagation of 

disturbances of density functions of economic variables, transactions and expectations over 

economic space. Wave propagation describes general properties of any complex system like 

macroeconomics and finance and may be responsible for “fast” fluctuations of economic and 

financial variables. In Sec. 2 we describe wave propagation of small economic disturbances 

in the simple approximations that give self-consistent model of mutual dependence for two 

variables and their flows. Let’s consider economic agents with risk coordinates x=(x1,…xn) 

on economic domain (I.1.1): 0 ≤ 𝑥𝑖 ≤ 1 , 𝑖 = 1, … 𝑛    (1.1) 

Thus economic variables and transactions also are determined on economic domain with 

borders (1.1). Disturbances of economic variables or transactions near borders of economic 

domain induce waves that may propagate along borders and inside of economic domain. 

Wave propagation of disturbances of economic variables and transactions near borders of 

economic domain has parallels to surface wave propagation in fluids, but nature of economic 

waves has nothing common to waves in fluids. We describe surface-like economic waves in 

Sec.2. Borders of economic domain cause fluctuations of flows of economic variables and 

transactions on economic domain. These fluctuations describe change of direction of 

economic flows on economic domain (1.1) reduced by it’s borders. Flows of economic 

variables and transactions impact change of mean risks of these variables and transactions. 

Thus fluctuations of economic and financial flows on economic domain induce fluctuations 

of mean risks. In Sec. 3 we describe credits cycles, investment cycles and etc., as fluctuations 

of mean risks of these economic variables on economic domain. Asset pricing is one of most 

important issues of macro finance. In Part II we argue how asset pricing dynamics and 

fluctuations can be described via economic equations on transactions and expectations. Here 

in Sec. 4 we study particular cases of asset pricing dynamics and model price and return 

disturbances. In Sec. 5 we argue classical BSM treatment of option pricing and study simple 
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extensions of classical option equations induced by random motion of agents on economic 

domain. Conclusions are in Sec. 6. We use roman letters for scalars and bold for vectors. 

2. Economic waves  

Wave propagation of small disturbances is one of most general properties of any complex 

systems. In this Sec. we describe wave propagation of small disturbances of density functions 

of economic variables and transactions on economic domain (1.1) of economic space 

(Olkhov, 2016a-2017c).  

2.1. Waves of economic variables 

Any model of economic phenomena implies definite approximation. In this Sec we assume 

that equations (I.14; 17) on density functions of economic variables and their flows depend 

on other economic variables only. To simplify the problem we study mutual interactions 

between two economic variables and their flows. Such approximation permits describe self-

consistent model of mutual dependence between two variables and describe wave 

propagation of small disturbances of economic variables. Let’s study wave propagation of 

disturbances of economic variables on economic space (Olkhov, 2016a-2017a). As example 

let’s take familiar demand-price relations that propose price growth with rise of demand and 

demand decline as price increases. Let’s derive equations that describe wave propagation of 

perturbations of price and demand. Demand A(t,x) is additive variable and price p(t,x) is non-

additive. Supply S(t,x) of assets, commodities, service can be measured in physical units as 

cars, shares, tons et., and in currency units. For simplicity let’s assume that supply S(t,x) 

measured in physical units is constant S(t,x)=S - const., and supply B(t,x) measured in 

currency units equals product of S(t,x) and price p(t,x) 𝐵(𝑡, 𝒙) = 𝑆 𝑝(𝑡, 𝒙)   ;   𝑆 − 𝑐𝑜𝑛𝑠𝑡     (1.2) 

For such simplified assumptions demand A(t,x) and supply B(t,x) are additive variables and 

follow equations (I.14;17). We define flows of variables A(t,x) and B(t,x) in (I.6-10). Let’s 

take equations (I.14; 17) on economic variables A(t,x) and B(t,x) and their flows PA(t,x) and 

PB(t,x): 𝜕𝜕𝑡 𝐴(𝑡, 𝒙) + ∇ ∙ (𝐴(𝑡, 𝒙) 𝒗(𝑡, 𝒙)) = 𝐹𝐴(𝑡, 𝒙)    (2.1) 𝜕𝜕𝑡 𝐵(𝑡, 𝒙) + ∇ ∙ (𝐵(𝑡, 𝒙) 𝒖(𝑡, 𝒙)) = 𝐹𝐵(𝑡, 𝒙)    (2.2)  𝜕𝜕𝑡 𝑷𝐴(𝑡, 𝒙) + ∇ ∙ (𝑷𝐴(𝑡, 𝒙) 𝒗(𝑡, 𝒙)) = 𝑮𝐴(𝑡, 𝒙)   (2.3)  𝜕𝜕𝑡 𝑷𝐵(𝑡, 𝒙) + ∇ ∙ (𝑷𝐵(𝑡, 𝒙) 𝒖(𝑡, 𝒙)) = 𝑮𝐵(𝑡, 𝒙)   (2.4) 
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𝑷𝐴(𝑡, 𝒙) = 𝐴(𝑡, 𝒙) 𝒗(𝑡, 𝒙)  ;   𝑷𝐵(𝑡, 𝒙) = 𝐵(𝑡, 𝒙) 𝒖(𝑡, 𝒙)  (2.5) 

To describe Demand-Price model (2.1-2.5) let’s define functions FA(t,x) and FB(t,x). Let’s 

remind that ∇  −  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡;      ∇ ∙   − 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑑𝑖𝑣𝑖𝑟𝑔𝑒𝑛𝑐𝑒  (2.6) 

Let’s assume that function FA(t,x) is proportional to time derivative of supply B(t,x): 𝐹𝐴(𝑡, 𝒙) = 𝛼1 𝜕𝜕𝑡 𝐵(𝑡, 𝒙)  ;    𝐹𝐵(𝑡, 𝒙) = 𝛼2 𝜕𝜕𝑡 𝐴(𝑡, 𝒙)  ;    𝛼1 < 0 ;  𝛼2 > 0  (3.1) 

and function FB(t,x) is proportional to time derivative of demand A(t,x). These assumptions 

for α1 <0 give simple model of demand decline with price growth and price growth with 

demand increase for α2 >0. Indeed, due to assumption (1.2) supply B (t,x) measured in 

currency units is proportional to price p(t,x) and hence time derivative of supply B(t,x) equals 

time derivative of price p(t,x). To define functions GA(t,x) and GB(t,x) in equations (2.3; 2.4) 

let’s take  𝑮𝐴(𝑡, 𝒙) = 𝛽1∇𝐵(𝑡, 𝒙)  ;   𝑮𝐵(𝑡, 𝒙) = 𝛽2∇𝐴(𝑡, 𝒙)  ;    𝛽1 < 0  ;    𝛽2 > 0  (3.2) 

Relations (3.2) propose that demand velocity υ(t,x) decrease in the direction of economic 

domain with high supply prices (3.3) with ∇𝐵(𝑡, 𝒙) > 0       (3.3) 

and (3.2) represents that supply velocity u(t,x) grows up in the direction of economic domain 

with high demand (3.4):  ∇𝐴(𝑡, 𝒙) > 0       (3.4) 

Thus equations (2.1-2.4) take form:  𝜕𝜕𝑡 𝐴(𝑡, 𝒙) + ∇ ∙ (𝐴(𝑡, 𝒙) 𝒗(𝑡, 𝒙)) = 𝛼1 𝜕𝜕𝑡 𝐵(𝑡, 𝒙)    (4.1) 𝜕𝜕𝑡 𝐵(𝑡, 𝒙) + ∇ ∙ (𝐵(𝑡, 𝒙) 𝒖(𝑡, 𝒙)) = 𝛼2 𝜕𝜕𝑡 𝐴(𝑡, 𝒙)    (4.2)  𝜕𝜕𝑡 𝑷𝐴(𝑡, 𝒙) + ∇ ∙ (𝑷𝐴(𝑡, 𝒙) 𝒗(𝑡, 𝒙)) = 𝛽1∇𝐵(𝑡, 𝒙)    (4.3)  𝜕𝜕𝑡 𝑷𝐵(𝑡, 𝒙) + ∇ ∙ (𝑷𝐵(𝑡, 𝒙) 𝒖(𝑡, 𝒙)) = 𝛽2∇𝐴(𝑡, 𝒙)    (4.4) 𝛼1 < 0 ;  𝛼2 > 0  ;  𝛽1 < 0  ;    𝛽2 > 0     (4.5) 

To derive equations that describe wave propagation of disturbances of demand and price let’s 

take linear approximation for equations (4.1-4.4) for disturbances of demand A(t,x) and price 

p(t,x). Let’s take disturbances as follows: 𝐴(𝑡, 𝒙) = 𝐴0(1 +  𝜑(𝑡, 𝒙));   𝐵(𝑡, 𝒙) = 𝑆𝑝0(1 +  𝜋(𝑡, 𝒙))   (5.1) 

Relations (5.1) define dimensionless disturbances of demand φ(t,x) and price π(t,x). Let’s 

take that velocities υ(t,x) and u(t,x) are small and in linear approximation equations (4.1-4.4) 

take form: 
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𝜕𝜕𝑡 𝜑(𝑡, 𝒙) + ∇ ∙ 𝒗(𝑡, 𝒙) = 𝛼1𝐶 𝜕𝜕𝑡 𝜋(𝑡, 𝒙)   ;   𝐶 = 𝑆𝑝0𝐴0     (5.2) 𝐶 ( 𝜕𝜕𝑡 𝜋(𝑡, 𝒙) + ∇ ∙ 𝒖(𝑡, 𝒙)) = 𝛼2 𝜕𝜕𝑡 𝜑(𝑡, 𝒙)     (5.3) 𝜕𝜕𝑡 𝒗(𝑡, 𝒙) = 𝛽1𝐶∇𝜋(𝑡, 𝒙)  ;   𝐶 𝜕𝜕𝑡 𝒖(𝑡, 𝒙) = 𝛽2∇𝜑(𝑡, 𝒙)   (5.4) 

In Appendix A we show that equations (5.2-5.4) can take form of equations (5.5) on 

disturbances of demand φ(t,x) and price π(t,x): [(1 − 𝛼1𝛼2) 𝜕4𝜕𝑡4 + (𝛼1𝛽2 + 𝛽1𝛼2)∆ 𝜕2𝜕𝑡2 − 𝛽1𝛽2∆2]  𝜑(𝑡, 𝒙) = 0  (5.5) 

As we show in Appendix A for 12<0 for any negative 1<0 there exist domain with 

positive 2>0 for which equations on disturbances of demand φ(t,x) and price π(t,x) take 

form of bi-wave equation (5.6): ( 𝜕2𝜕𝑡2 − 𝑐12Δ)( 𝜕2𝜕𝑡2 − 𝑐22Δ)𝜑(𝑡, 𝒙) = 0     (5.6) 

with different values of wave speed c1 and c2 determined by 1 , 2,  1, 2 (A.5; 6). Bi-wave 

equations (5.6) describe more complex wave propagation than common second order wave 

equations. In Appendix A we show that equations (5.6) allow wave propagation of price 

disturbances π(t,x) (A.8) with exponential growth of amplitude as exp(γt). Thus exponential 

growth of small price disturbances π(t,x) may disturb sustainable economic evolution. 

2.2 Waves of transactions 

Transactions and their flows are determined on economic domain (II.1.1; 1.2):  𝒛 = (𝒙, 𝒚)  ;   𝒙 = (𝑥1 … 𝑥𝑛)  ;  𝒚 = (𝑦1 … 𝑦𝑛)   (6.1) 0 ≤ 𝑥𝑖 ≤ 1 , 𝑖 = 1, … 𝑛  ;   0 ≤ 𝑦𝑗 ≤ 1 , 𝑗 = 1, … 𝑛    (6.2) 

and are described by (II.5.9; 5.10). Let’s take transactions S(t,z) at z=(x,y) that describe 

supply of goods, commodities or assets from point x to y and may depend on macroeconomic 

variables, other transactions and expectations (Olkhov, 2017b; 2019d). Self-consistent 

description of transactions, expectation, variables and other transaction is a too complex 

problem. Let’s study simple self-consistent model of mutual interaction between two 

transactions and their flows. Let’s assume that transaction S(t,z), z=(x,y) supply goods or 

commodities from point x to point y as respond to demand D(t,z), z=(x,y) for these 

commodities from point y to point x. Let’s assume that interactions between transactions 

S(t,z) and D(t,z) and their flows P(t,z) and Q(t,z) are described by functions F1(t,z), F2(t,z) and 

G1(t,z), G2(t,z) and depend only on each other and their flows. Both transactions follow 

equations alike to (II.5.9; 5.10). Let’s define functions F1(t,z), F2(t,z) and G1(t,z), G2(t,z) for 
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equations on S(t,z) and D(t,z) and flows P(t,z) and Q(t,z) respectively as (see 2.5): 𝐹1(𝑡, 𝒛) = 𝛼1 ∇ ∙  𝑸(𝑡, 𝒛)  ;  𝐹2(𝑡, 𝒛) = 𝛼2 ∇ ∙  𝑷(𝑡, 𝒛)    (6.3) 𝑮1(𝑡, 𝒛) = 𝛽1 ∇𝐷(𝑡, 𝒛)   ;  𝑮2(𝑡, 𝒛) = 𝛽2 ∇𝑆(𝑡, 𝒛)    (6.4) 

Economic meaning of (6.3; 6.4) is follows. Due to (II.5.6) flows P(t,z) and Q(t,z) looks as: 𝑷(𝑡, 𝒛) = 𝑆(𝑡, 𝒛)𝒗(𝑡, 𝒛)   ;  𝒗(𝑡, 𝒛) = (𝝊𝒙(𝑡, 𝒛); 𝝊𝒚(𝑡, 𝒛))   (6.5) 𝑸(𝑡, 𝒛) = 𝐷(𝑡, 𝒛)𝒖(𝑡, 𝒛)   ;  𝒖(𝑡, 𝒛) = (𝒖𝒙(𝑡, 𝒛); 𝒖𝒚(𝑡, 𝒛))   (6.6) 

Velocity υx of supply flow P(t,z) describes motion of suppliers at and velocity υy describe 

motion of consumers on economic domain. Divergence in (6.3) describes sources and run-off 

of flows in a unit volume  𝑑𝑉 = 𝑑𝑉𝑥𝑑𝑉𝑦 

Volume dVx describes a unit volume of variable x and dVy describes a unit volume near 

variable y. Transactions S(t,z), z=(x,y) supply goods from a unit volume dVx near point x to a 

unit volume dVy near y. Transactions D(t,z) describe demand of goods from a unit volume 

dVy near y to a unit volume dVx near x. Divergence in (6.3) equals: ∇ ∙  𝑸(𝑡, 𝒛) = ∇𝑥 ∙  𝑸(𝑡, 𝒙, 𝒚) + ∇𝑦 ∙  𝑸(𝑡, 𝒙, 𝒚)    (6.7) 

Here x-divergence 𝛻𝑥 ∙  𝑄(𝑡, 𝒙, 𝒚) describes sources and sinks of demand flow Q(t,z) of 

suppliers at point x in a unit volume dVx . Divergence 𝛻𝑦 ∙  𝑄(𝑡, 𝒙, 𝒚)  – describes sources and 

sinks of demand flow Q(t,z) of consumers of goods, those who generate demand at point y in 

a unit volume dVy. Let’s treat  𝛻𝑥 ∙  𝑸(𝑡, 𝑥, 𝑦) < 0      (6.8) 

as sinks of demand flow into point x that is met by supply S(t,z) from point x. Let’s present 

divergence of supply flow P(t,z) (6.9) similar to (6.7): ∇ ∙  𝑷(𝑡, 𝒛) = ∇𝑥 ∙  𝑷(𝑡, 𝒙, 𝒚) + ∇𝑦 ∙  𝑷(𝑡, 𝒙, 𝒚)    (6.9) 

Here x-divergence 𝛻𝑥 ∙ 𝑃(𝑡, 𝒙, 𝒚) describes sources and sinks of supply flow P(t,z) of from x 

in a unit volume dVx. Relations (6.10) 𝛻𝑥 ∙  𝑷(𝑡, 𝑥, 𝑦) > 0      (6.10) 

describe sources of supply flow P(t,z) from point x to y. Due to (6.3; 6.4) equations on 

transactions S(t,z) and D(t,z) take form similar to (II.5.9): 𝜕𝜕𝑡 𝑆 + ∇ ∙ (𝑆 𝒗) = 𝛼1 ∇ ∙  𝑸(𝑡, 𝒛)      (7.1)  𝜕𝜕𝑡 𝐷 + ∇ ∙ (𝐷 𝒖) = 𝛼2 ∇ ∙  𝑷(𝑡, 𝒛)     (7.2) 

and equations on flows P(t,z) and Q(t,z) 𝑷(𝑡, 𝒛) = 𝑆(𝑡, 𝒛)𝒗(𝑡, 𝒛)   ;   𝑸(𝑡, 𝒛) = 𝐷(𝑡, 𝒛)𝒖(𝑡, 𝒛)    (7.3) 
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on 2n-dimensional economic domain z=(x,y) take form similar to (II.5.10): 𝜕𝜕𝑡 𝑷(𝑡, 𝒛) + ∇ ∙ (𝑷(𝑡, 𝒛) 𝒗(𝑡, 𝒛)) = 𝛽1 ∇𝐷(𝑡, 𝒛)      (7.4)  𝜕𝜕𝑡 𝑸(𝑡, 𝒛) + ∇ ∙ (𝑸(𝑡, 𝒛) 𝒖(𝑡, 𝒛)) = 𝛽2 ∇𝑆(𝑡, 𝒛)    (7.5) 

Equations (7.1; 7.2; 7.3; 7.4) cause equations on macroeconomic supply S(t) and demand D(t) 

(II.4.1). Functions S(t) and D(t) (7.6) describe macroeconomic supply and demand of selected 

goods, commodities etc. 𝑆(𝑡) = ∫ 𝑑𝒙𝑑𝒚  𝑆(𝑡, 𝒙, 𝒚)  ;   𝐷(𝑡) = ∫ 𝑑𝒙𝑑𝒚 𝐷(𝑡, 𝒙, 𝒚)   (7.6) 𝑑𝑑𝑡 𝑆(𝑡) = 0   ;    𝑑𝑑𝑡 𝐷(𝑡) = 0  ;  𝑑𝑑𝑡 𝑷(𝑡) = 0   ;    𝑑𝑑𝑡 𝑸(𝑡) = 0   (7.7) 

Relations (7.7) valid as integral of divergence over economic space equals zero due to 

divergence theorem (Gauss' Theorem) (Strauss, 2008, p.179) because no flows exist outside 

of economic domain and because transactions are equal zero outside of economic domain. 

Thus model interactions (6.3; 6.4) and equations (7.1-7.5) describe constant or slow-changing 

macroeconomic supply and demand, but allow model wave propagation of small disturbances 

of supply and demand. To derive wave equations let’s study small perturbations of 

transactions S(t,z) and D(t,z) and assume that velocities υ(t,z) and u(t,z) of supply and 

demand flows are small. Let’s take:  𝑆(𝑡, 𝒛) = 𝑆0(1 + 𝑠(𝑡, 𝒛)) ;  𝐷(𝑡, 𝒛) = 𝐷0(1 + 𝑑(𝑡, 𝒛))    (7.8) 𝑷(𝑡, 𝒛) = 𝑆0𝝊(𝑡, 𝒛)  ;  𝑸(𝑡, 𝒛) = 𝐷0𝒖(𝑡, 𝒛)     (7.9) 

and let’s assume that velocities υ(t,z) and u(t,z) in (7.9) are small. Relations (7.7) model S0 

and D0 that are constant or slow-changing to compare with small disturbances s(t,z) and 

d(t,z). Let’s take equations (7.1; 7.2; 7.4; 7.5) in linear approximation by perturbations s(t,z), 

d(t,z) (7.8) and υ(t,z) and u(t,z). 𝑆0 𝜕𝜕𝑡 𝑠(𝑡, 𝒛) + 𝑆0∇ ∙ 𝒗 = 𝛼1𝐷0∇ ∙ 𝒖   ;  𝐷0 𝜕𝜕𝑡 𝑑(𝑡, 𝒛) + 𝐷0∇ ∙ 𝒖 = 𝛼2𝑆0∇ ∙ 𝒗   (8.1) 𝑆0 𝜕𝜕𝑡 𝒗(𝑡, 𝒛) = 𝛽1𝐷0∇ 𝑑(𝑡, 𝒛) ;  𝐷0 𝜕𝜕𝑡 𝒖(𝑡, 𝒛) = 𝛽2𝑆0∇ 𝑠(𝑡, 𝒛)   (8.2) 

Equations (8.1; 8.2) cause (see Appendix B, B.5) equations on s(t,z), d(t,z) (8.3):  [ 𝜕4𝜕𝑡4 − 𝑎∆ 𝜕2𝜕𝑡2 + 𝑏∆2 ]𝑠(𝑡, 𝒛) = 0      (8.3) 

Equations (8.3) may take form of bi-wave equation (B.7):   ( 𝜕2𝜕𝑡2 − 𝑐12Δ) ( 𝜕2𝜕𝑡2 − 𝑐22Δ)𝑠(𝑡, 𝒛) = 0      (8.4) 

Wave propagation of small disturbances of supply s(t,z) and demand d(t,z) transactions 

induces wave propagation of disturbances of economic variables (B.14.1-B.16.5) determined 

by transactions S(t,x,y) and D(t,x,y). Bi-wave equations describe wave propagation of 



 8 

disturbances of economic variables induced by transactions and take form (B.17.3) similar to 

(8.4). Wave propagation of small disturbances of transactions induces fluctuations (B.18.1; 

18.2) of macroeconomic variables S(t) and D(t) (7.6). As we show in Appendix B 

disturbances s(t) of macroeconomic supply S(t) at moment t may grow up as exp(γt) for γ>0 

or dissipate to constant rate S0 for γ<0 and fluctuate with frequency ω. 

2.3 Economic surface-like waves 

In sections 2.1 and 2.2 we study wave propagation of small disturbances of densities 

functions of economic variables and transactions. These waves have parallels to sound waves 

in continuous media. Now let’s show that disturbances of velocities of transactions flows 

may be origin of waves alike to surface waves in fluids (Olkhov, 2017c). Let’s study simple 

model of economics under action of a single risk on 1-dimensional economic space. Hence 

economic transactions are determined on 2-dimensional economic domain (6.1; 6.2). Borders 

of economic domain establish bound lines for economic transactions. Disturbances of 

transactions near these bound lines may disturb bound lines and induce surface-like waves of 

along borders of economic domain. On other hand disturbances of transactions at bound lines 

may induce surface-like waves of perturbations that propagate inside economic domain and 

cause disturbances of transactions and economic variables far from borders of economic 

domain. Such surface-like waves may propagate along with growth of wave amplitude and 

thus impact of such waves of small perturbations may grow up in time. Thus description of 

economic surface-like waves may explain propagation and amplification of transactions 

disturbances near borders of economic domain. Let’s remind that borders of economic 

domain are areas with maximum or minimum risk ratings. Thus, for example, perturbations 

of transactions near maximum risk ratings may propagate inside economic domain to areas 

with low risk ratings and growth of amplitudes of such perturbation may hardly disturb 

economic processes with low risk ratings.  

For simplicity let’s consider same example as in sec. 2.2 and Appendix B. Let’s take model 

relations between supply transactions S(t,z) and Demand transactions D(t,z) on economic 

domain (6.1; 6.2), z=(x,y) and study small disturbances of transactions and flows similar to 

(7.8; 7.9) and equations (8.1; 8.2). Velocities of transactions on 2-dimensinal economic 

domain take form: 𝒗(𝑡, 𝑥, 𝑦) = (𝑣𝑥(𝑡, 𝑥, 𝑦); 𝑣𝑦(𝑡, 𝑥, 𝑦)) ; 𝒖(𝑡, 𝑥, 𝑦) = (𝑢𝑥(𝑡, 𝑥, 𝑦); 𝑢𝑦(𝑡, 𝑥, 𝑦)) (9.1) 

Let’s take that transactions D(t,z), z=(x,y) transfer demand request from consumes at y to 

suppliers at x. Hence velocities υx and ux along axis X describe motion of suppliers and 
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velocities υy and uy along Y describe motion of consumers of goods and services provided by 

suppliers. Let’s study possible waves that can be generated by disturbances (7.8; 7.9) near 

border y=1 of economic domain (6.1; 6.2). Border y=1 describes consumers with maximum 

risks. Let’s define perturbations of the border as y=ξ(t,x). Interactions between transactions 

S(t,z) and D(t,z) require that border y= ξ(t,x) should be common for both. Otherwise 

interaction between them will be violated. Time derivations of function y=ξ(t,x) define y-

velocities υy and uy at y= ξ(t,x) as: 𝜕𝜕𝑡 𝜉(𝑡, 𝑥) = 𝑣𝑦(𝑡, 𝑥, 𝑦 =  𝜉(𝑡, 𝑥)) = 𝑢𝑦(𝑡, 𝑥, 𝑦 =  𝜉(𝑡, 𝑥))   (9.2) 

Time derivation (9.2) describes velocities υy of consumers with maximum risks and velocities 

uy of demanders of goods. Let’s modify equations (8.2) and assume that near border y=1   𝑆0 𝜕𝜕𝑡 𝒗(𝑡, 𝒛) = 𝐷0(𝛽1∇ 𝑑(𝑡, 𝒛) + 𝒈) ;  𝐷0 𝜕𝜕𝑡 𝒖(𝑡, 𝒛) = 𝑆0(𝛽2∇ 𝑠(𝑡, 𝒛) + 𝒉) (9.3) 

As g and h we introduce constant economic or financial “accelerations” h=(hx,hy) and g=(gx, 

gy) that act on economic agents, supply S(t,z) and demand D(t,z) transactions along axes X 

and Y and prevent agents from taking excess risk. Let’s introduce functions G and H: 𝐺(𝑥, 𝑦) = 𝑔𝑥 𝑥 + 𝑔𝑦𝑦  ;  𝐻(𝑥, 𝑦) = ℎ𝑥  𝑥 + ℎ𝑦𝑦 ;  𝑔𝑥 , 𝑔𝑦, ℎ𝑥 , ℎ𝑦 − 𝑐𝑜𝑛𝑠𝑡   (9.4) 

Let’s assume that potentials φ and ψ determine velocities υ and u as:  𝝊 = ∇ 𝜑  ;   𝒖 = ∇ 𝜓      (9.5) 

Thus equations (8.2) on velocities take form: 𝑆0 𝜕𝜕𝑡 𝑣𝑥 = 𝐷0(𝛽1 𝜕𝜕𝑥 𝑑 − 𝑔𝑥) ;  𝑆0 𝜕𝜕𝑡 𝑣𝑦 = 𝐷0(𝛽1 𝜕𝜕𝑦 𝑑 − 𝑔𝑦)    (9.6) 𝐷0 𝜕𝜕𝑡 𝑢𝑥 = 𝑆0 (𝛽2 𝜕𝜕𝑥 𝑠 − ℎ𝑥) ; 𝐵0  𝜕𝜕𝑡 𝑢𝑦 = 𝑆0( 𝛽2 𝜕𝜕𝑦  𝑠 − ℎ𝑦)  (9.7) 

Relations (9.5) allow present (9.6; 9.7) as  𝑆0 𝜕𝜕𝑡 𝜕𝜕𝑥 𝜑 = 𝐷0(𝛽1 𝜕𝜕𝑥 𝑑 − 𝑔𝑥)    ;   𝑆0 𝜕𝜕𝑡 𝜕𝜕𝑦 𝜑 = 𝐷0(𝛽1 𝜕𝜕𝑦 𝑑 − 𝑔𝑦)  (9.8) 

 𝐷0 𝜕𝜕𝑡 𝜕𝜕𝑥 𝜓 = 𝑆0 (𝛽2 𝜕𝜕𝑥 𝑠 − ℎ𝑥)   ;  𝐷0  𝜕𝜕𝑡 𝜕𝜕𝑦 𝜓 = 𝑆0( 𝛽2 𝜕𝜕𝑦  𝑠 − ℎ𝑦)  (9.9) 

Then (9.4) supply s(t,x,y) and demand d(t,x,y) transactions can be written as: 𝛽2𝑆0𝑠(𝑡, 𝑥, 𝑦) = 𝑆0[ℎ𝑥(𝑥 − 1) + ℎ𝑦(𝑦 − 1)] + 𝐷0 𝜕𝜕𝑡  𝜓(𝑡, 𝑥, 𝑦)  (10.1) 𝛽1𝐷0𝑑(𝑡, 𝑥, 𝑦) = 𝐷0[𝑔𝑥(𝑥 − 1) + 𝑔𝑦(𝑦 − 1)] + 𝑆0 𝜕𝜕𝑡  𝜑(𝑡, 𝑥, 𝑦)  (10.2) 

For φ=ψ=0 (10.1; 10.2) describe steady state of supply s(t,x,y) and demand d(t,x,y) 

perturbations and on border y=1 s(t,x,y) and d(t,x,y) take form (10.3):  𝛽2𝑠(𝑡, 𝑥, 1) = ℎ𝑥(𝑥 − 1) ;   𝛽1𝑑(𝑡, 𝑥, 1) = 𝑔𝑥(𝑥 − 1)   (10.3) 

On surface y= ξ(t,x) disturbances s(t,x,y) and d(t,x,y) take form: 
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𝛽2𝑆0𝑠(𝑡, 𝑥, 𝑦)|𝑦= 𝜉(𝑡,𝑥) = 𝑆0[ℎ𝑥(𝑥 − 1) + ℎ𝑦(𝜉(𝑡, 𝑥) − 1)] +  𝐷0 𝜕𝜕𝑡  𝜓(𝑡, 𝑥, 𝜉(𝑡, 𝑥))  (10.4) 

 𝛽1𝐷0𝑑(𝑡, 𝑥, 𝑦)|𝑦= 𝜉(𝑡,𝑥) = 𝐷0[𝑔𝑥(𝑥 − 1) + 𝑔𝑦(𝜉(𝑡, 𝑥) − 1)] + 𝑆0 𝜕𝜕𝑡  𝜑(𝑡, 𝑥, 𝜉(𝑡, 𝑥))  (10.5) 

Let’s propose that perturbations y= ξ(t,x) near y=1 are small and assume that s(t,x,y) and 

d(t,x,y) take values s(t,x,1) and d(t,x,1) in a steady state for φ=ψ=0 on y=1 (10.3). Hence 

from (10.4; 10.5) obtain: 𝑆0ℎ𝑦(𝜉(𝑡, 𝑥) − 1) = − 𝐷0 𝜕𝜕𝑡  𝜓(𝑡, 𝑥, 𝜉(𝑡, 𝑥))     (10.6) 𝐷0𝑔𝑦(𝜉(𝑡, 𝑥) − 1) = −𝑆0 𝜕𝜕𝑡  𝜑(𝑡, 𝑥, 𝜉(𝑡, 𝑥))    (10.7) 

Hence obtain: 𝜉(𝑡, 𝑥) − 1 = − 𝐷0𝑆0ℎ𝑦  𝜕𝜕𝑡  𝜓(𝑡, 𝑥, 𝜉(𝑡, 𝑥)) = − 𝑆0𝐷0𝑔𝑦  𝜕𝜕𝑡  𝜑(𝑡, 𝑥, 𝜉(𝑡, 𝑥))  (10.8) 

Equations (10.8) determine relations between hy and gy 𝑆02ℎ𝑦 =  𝐷02𝑔𝑦 𝜕𝜕𝑡 𝜉(𝑡, 𝑥) = 𝜕𝜕𝑦  𝜓 = 𝜕𝜕𝑦  𝜑 = − 𝑆0𝐷0𝑔𝑦 𝜕2𝜕𝑡2  𝜑(𝑡, 𝑥, 𝑦 = 𝜉(𝑡, 𝑥))   (10.9) 

Equation (10.9) describes constraints on potentials φ and ψ at y=ξ(t,x). To derive equations 

on potentials φ and ψ let’s substitute (10.1; 10.2) into (8.1) and neglect all non-linear terms 

with potentials and financial “accelerations”. Equations on φ and ψ take form:  𝑆0 ( 𝜕2𝜕𝑡2 − 𝛼2𝛽1∆) 𝜑 = −𝛽1𝐷0∆𝜓  ;  𝐷0 ( 𝜕2𝜕𝑡2 − 𝛼1𝛽2∆) 𝜓 = −𝛽2𝑆0∆𝜑  ;   ∆= 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2  (11.1) 

From (11.1) obtain:  [( 𝜕2𝜕𝑡2  − 𝛼2𝛽1 ∆) ( 𝜕2𝜕𝑡2  − 𝛼1𝛽2 ∆) − 𝛽1𝛽2∆2 ] 𝜑 = 0    (11.2)  

Let’s take functions φ and ψ as:  𝜑 = 𝜓 = 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) 𝑓(𝑦 − 1)  ;   𝑓(0) = 1     (11.3) 

Let’s take into account that perturbations ξ(t,x) near steady boundary y=X are small and 

hence relations (10.9) for (11.3) at y=1 give: 𝜕𝜕𝑦  𝑓(0) = 𝑆0𝜔2𝐷0𝑔𝑦 > 0        (11.4) 

and substitute (11.3) into (11.2). Then (B.17.2) obtain equation on function f(y) as ordinary 

differential equation of forth order : (𝑞4 𝜕4𝜕𝑦4 + 𝑞2 𝜕2𝜕𝑦2 + 𝑞0) 𝑓(𝑦) = 0    (11.5) 𝑞4 = 𝑏   ;    𝑞2 = 𝑎𝜔2 − 2𝑏𝑘2   ;    𝑞0 = 𝜔4 − 𝑎𝜔2𝑘2 + 𝑏𝑘4
  (11.6) 

Characteristic equation (11.7) of equation (11.5) 𝑞4𝛾4 + 𝑞2𝛾2 + 𝑞0 = 0      (11.7) 



 11 

defines roots γ2
: 

𝛾1,22 =  −𝑞2+/−√𝑞22−4𝑞0𝑞42𝑞4 =  −𝑞2+/−𝜔2√𝑎2−4𝑏2𝑏    (11.8) 

For single positive root γ>0 obtain simplest potentials φ and ψ as: 𝜑 = 𝜓 = 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) 𝑒𝑥𝑝(𝛾(𝑦 − 1))  ;   𝛾 = 𝑆0𝜔2𝐷0𝑔𝑦 > 0   (12.1) 

Function y=ξ(t,x) (10.8) takes form: 𝜉(𝑡, 𝑥) = 1 − 𝑆0𝜔𝐷0𝑔𝑦 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) = 1 − √ 𝑆0𝛾𝐷0𝑔𝑦 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)  (12.2) 

Border y=1 define position of consumers for supply transactions s(t,x,y) and consumers as 

origin of demand for demand transactions d(t,x,y). Supply s(t,x,y) and demand d(t,x,y) waves 

at stationary border y=1 take form: 𝛽2𝑆0𝑠(𝑡, 𝑥, 1) = 𝑆0ℎ𝑥(𝑥 − 1) + 𝐷0𝜔 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)   (12.3) 𝛽1𝐷0𝑑(𝑡, 𝑥, 1) = 𝐷0𝑔𝑥(𝑥 − 1) + 𝑆0𝜔 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)  (12.4) 

Surface-like waves of supply transactions s(t,x,1) (12.3) reflect change of supply for 

consumers at y=1 from suppliers at x. Relations (12.4) describe change of demand from 

consumers at y=1 to suppliers at x. Integral of supply transactions s(t,x,1) by dx (12.3) along 

border y=1 over (0,1) define supply s(t,1) at risk border y=1 as function of time:  𝛽2𝑆0𝑠(𝑡, 1) =  𝑆0[1 − ℎ𝑥2 ] + 2 𝐷0𝜔𝑘 𝑠𝑖𝑛 (𝜔𝑡 − 𝑘2) 𝑠𝑖𝑛 (𝑘2)   (12.5) 

Function s(t,1) (12.5) describes fluctuations of supply to consumers at y=1 with frequency ω 

from all suppliers of the economy. Simplest solution (12.1) with γ>0 describe exponential 

dissipation of disturbances induced by surface-like waves inside macro domain y<1. 

Actually there might be surface-like waves that describe amplification of disturbances at y=1 

inside economic domain along axis Y for y<<1. For root γ2
>0 (11.8) let’s take two roots: 𝛾1,2 = +/− √𝛾2 

Then from (11.3; 11.4) obtain: 𝑓(0) = 𝜆1 + 𝜆2 = 1   ;    𝜕𝜕𝑦  𝑓(0) = 𝛾(𝜆1 − 𝜆2) = 𝑆0𝜔2𝐷0𝑔𝑦 > 0 

𝜆1 = 12 + 𝑆0𝜔22𝛾𝐷0𝑔𝑦    ;   𝜆2 = 12 − 𝑆0𝜔22𝛾𝐷0𝑔𝑦 𝜑 = 𝜓 = 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) [𝜆1 exp (𝛾(𝑦 − 1)) + 𝜆2 exp (−𝛾(𝑦 − 1))] 𝛽2𝑆0𝑠(𝑡, 𝑥, 𝑦) = 𝑆0[ℎ𝑥(𝑥 − 1) + ℎ𝑦(𝑦 − 1)] +  𝜔𝐷0  𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) [𝜆1 𝑒𝑥𝑝 (𝛾(𝑦 − 1))+ 𝜆2 𝑒𝑥𝑝 (−𝛾(𝑦 − 1))] 
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𝛽1𝐷0𝑑(𝑡, 𝑥, 𝑦) = 𝐷0[𝑔𝑥(𝑥 − 1) + 𝑔𝑦(𝑦 − 1)] +  𝜔𝑆0 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) [𝜆1 𝑒𝑥𝑝 (𝛾(𝑦 − 1))+ 𝜆2 𝑒𝑥𝑝 (−𝛾(𝑦 − 1))] 
and supply s(t,x,y) and demand d(t,x,y) transactions grow up as exponent for (y-1)<0  𝑠(𝑡, 𝑥, 𝑦)~𝑑(𝑡, 𝑥, 𝑦)~ 𝜆2 𝑒𝑥𝑝 (−𝛾(𝑦 − 1))   (12.6) 

This example shows that small disturbances of supply to consumers at y=1 may induce 

exponentially growing (12.6) disturbances of supply and demand at y<1 far from risk border. 

Suppliers at x may stop provide goods to consumers at y with high risks at border y=1 and 

redirect their supply to more secure consumers with y<1. 

3 Business cycles 

In Sec 2 we show that waves of small disturbances of economic variables or transactions on 

economic domain (6.1; 6.2) induce time fluctuations of small perturbations of 

macroeconomic variables. Velocities of these waves define time scales of such fluctuations. 

Let’s call these economic fluctuations as “fast” contrary to “slow” fluctuations of economic 

variables noted as business cycles. In this section we show that “slow” fluctuations of flows 

of variables and transactions can cause oscillations of credits, investment, demand and 

economic growth noted as business cycles. Business cycles as slow fluctuations of 

macroeconomic and financial variables as GDP, investment, demand and etc., for decades are 

under permanent research (Tinbergen, 1935, Schumpeter, 1939, Lucas, 1980, Kydland & 

Prescott, 1991, Zarnowitz, 1992, Diebold & Rudebusch, 1999; Kiyotaki, 2011; Jorda, 

Schularick & Taylor, 2016). Below we present approximation of the business cycles induced 

by flows of economic transactions (Olkhov, 2017b; 2019a). For simplicity let’s take same 

supply S(t,z) and demand D(t,z) transactions as in Sec.2 and let’s describe business cycles of 

supply and demand. Let’s take equations on S(t,z) and D(t,z) similar to (II. 5.9; 5.10) as: 𝜕𝜕𝑡 𝑆 + ∇ ∙ (𝑆𝒗) = 𝐹𝑆(𝑡, 𝒛) ;   𝜕𝜕𝑡 𝐷 + ∇ ∙ (𝐷𝒖) = 𝐹𝐷(𝑡, 𝒛)   (13.1)  𝜕𝜕𝑡 𝑷𝑆 + ∇ ∙ (𝑷𝑆 𝒗) = 𝑮𝑆(𝑡, 𝒛)   ;    𝜕𝜕𝑡 𝑷𝐷 + ∇ ∙ (𝑷𝐷 𝒖) = 𝑮𝐷(𝑡, 𝒛)  (13.2) 

For simplicity let’s study economic evolution under action of a single risk similar to sec.2.3 

and study business cycles on 2-dimensional economic domain (6.1; 6.2). Thus coordinates x 

describe evolution of suppliers with economic variable E and y evolution of consumers of 

variable E, z=(x,y). As variable E one may study any goods, commodities, credits, service, 

shares, assets and etc. To simplify model calculations let’s assume that supply transactions 

S(t,z) and their flows PS(t,z) depend on demand D(t,z) transactions and their flows PD(t,z) 
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only. We propose that demand transactions D(t,z) describe demand from consumers of 

variable E at y to suppliers at x. Let’s take FS and FD for (13.1) as (a and b – const): 𝐹𝑆(𝑡, 𝒛) = 𝑎 𝒛 ∙ 𝑷𝐷(𝑡, 𝒛) = 𝑎( 𝑥 ∙ 𝑃𝐷𝑥(𝑡, 𝒛) + 𝑦 ∙ 𝑃𝐷𝑦(𝑡, 𝒛))   (13.3) 𝐹𝐷(𝑡, 𝒛) = 𝑏 𝒛 ∙ 𝑷𝑆(𝑡, 𝒛) = 𝑏( 𝑥 ∙ 𝑃𝑆𝑥(𝑡, 𝒛) + 𝑦 ∙ 𝑃𝑆𝑦(𝑡, 𝒛))   (13.4) 

Relations (13.3-13.4) describe model with supply S(t,z) growth up if FS is positive and hence 

(13.3) for a>0 is positive if at least one component of demand velocities  𝒖(𝑡, 𝒛) = (𝑢𝑥(𝑡, 𝒛); 𝑢𝑦(𝑡, 𝒛))    (13.5) 

direct from safer to risky direction. In other words: if demand transactions D(t,z) flew into 

risky direction that can increase supply S(t,z). As well negative value of (13.3) models 

demand flows from risky to secure domain and cause decrease supply S(t,z) as suppliers may 

prefer more secure consumers. Such assumptions simplify relations between suppliers and 

consumers and neglect time gaps between providing supply from x to consumers at y and 

receiving demand from consumers at y to suppliers at x and neglect other factors that impact 

supply. Actually we neglect direct dependence of economic variables and transactions on risk 

coordinates of economic domain. This assumption simplifies the model and allows outline 

impact of mutual interactions between transactions S(t,z) and D(t,z) and their flows on the 

business cycle fluctuations of variable E. Let’s take GS(t,z) and GD(t,z) for (13.2) as:  𝑮𝑆𝑥(𝑡, 𝒛) = 𝑐𝑥𝑃𝐷𝑥(𝑡, 𝒛)  ;   𝑮𝑆𝑦(𝑡, 𝒛) = 𝑐𝑦𝑃𝐷𝑦(𝑡, 𝒛)   (13.6) 𝑮𝐷𝑥(𝑡, 𝒛) = 𝑑𝑥𝑃𝑆𝑥(𝑡, 𝒛)  ;   𝑮𝐷𝑦(𝑡, 𝒛) = 𝑑𝑦𝑃𝑆𝑦(𝑡, 𝒛)   (13.7) 

Equations (13.2; 13.6; 13.7) describe simple linear dependence between transaction flows 

PS(t,z) and PD(t,z). Integrals by dz over economic domain (6.1; 6.2) for components of flows 

due to (II. 4.1; 5.6; 5.7; 5.8) equal: 𝑷𝑆(𝑡) = ∫ 𝑑𝒛 𝑷𝑆(𝑡, 𝒛) = ∫ 𝑑𝑥𝑑𝑦  𝑆(𝑡, 𝒛)𝒗(𝑡, 𝒛) = 𝑆(𝑡)𝒗(𝑡)  ;  𝒗 = (𝑣𝑥; 𝑣𝑦) (13.8) 𝑷𝐷(𝑡) = ∫ 𝑑𝒛 𝑷𝐷(𝑡, 𝒛) = ∫ 𝑑𝑥𝑑𝑦  𝐷(𝑡, 𝒛)𝒖(𝑡, 𝒛) = 𝐷(𝑡)𝒖(𝑡)  ;  𝒖 = (𝑢𝑥; 𝑢𝑦) (13.9) 𝑆(𝑡) = ∫ 𝑑𝑥𝑑𝑦  𝑆(𝑡, 𝑥, 𝑦)  ;    𝐷(𝑡) = ∫ 𝑑𝑥𝑑𝑦  𝐷(𝑡, 𝑥, 𝑦)   (13.10) 

As we show in Appendix C, distributions of economic agents by their risk ratings as 

coordinates on economic domain permit derive mean risk coordinates for each economic 

variable of transactions (Olkhov, 2017d; 2019a). Relations (C.2.3) define mean risk XS(t) of 

suppliers S(t) with economic variable E and mean risk YC(t) of consumers of variable E: 𝑆(𝑡)𝑋𝑆(𝑡) = ∫ 𝑑𝑥𝑑𝑦  𝑥 𝑆(𝑡, 𝑥, 𝑦)   ;   𝑆(𝑡)𝑌𝐶(𝑡) = ∫ 𝑑𝑥𝑑𝑦  𝑦 𝑆(𝑡, 𝑥, 𝑦)  (14.1) 

We argue the business cycles of economic variables E (credit, investment, assets, 

commodities and etc.,) as processes induced and correlated with fluctuations of mean risks 

XS(t) of suppliers and mean risk YC(t) of consumers of variable E. Flows of economic 
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transactions of supply PS(t) and action (13.3, 13.4) of demand flows PD(t) cause fluctuations 

of mean risks XS(t) of suppliers and consumers YC(t) as well as mean risks of demanders YD(t) 

and XD(t) (14.2, 13.10): 𝐷(𝑡)𝑋𝐷(𝑡) = ∫ 𝑑𝑥𝑑𝑦  𝑥 𝐷(𝑡, 𝑥, 𝑦)   ;   𝐷(𝑡)𝑌𝐷(𝑡) = ∫ 𝑑𝑥𝑑𝑦  𝑦 𝐷(𝑡, 𝑥, 𝑦)  (14.2) 

We show in Appendix C (C.2.5-2.7) mean risk XS(t) (14.1) moves as  𝑑𝑑𝑡 𝑋𝑆(𝑡) = 𝑣𝑥(𝑡) + 𝑤𝑥(𝑡)     (14.3) 𝑤𝑥(𝑡) = [𝑋𝑆𝐹(𝑡) − 𝑋𝑆(𝑡)] 𝑑𝑑𝑡 𝑙𝑛𝑆(𝑡)     (14.4) 𝐹𝑆(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝐹𝑆(𝑡, 𝑥, 𝑦)     ;    𝑋𝑆𝐹(𝑡)𝐹𝑆(𝑡) = ∫ 𝑑𝑥𝑑𝑦  𝑥 𝐹𝑆(𝑡, 𝑥, 𝑦)  (14.5) 

Borders of economic domain (6.1, 6.2) reduce motion of mean risks (14.1,14.3) and thus 

velocities υx(t) (13.8) and wx(t) (14.4) should fluctuate and cause oscillations of mean risks. 

Frequencies of υx(t) describe impact of flow fluctuations and frequencies of wx(t) describe 

oscillations induced by interactions between supply and demand transactions. In Appendix C 

we study model equations (C.2.1-2.2) that describe fluctuations of macro supply S(t) (C.1.4) 

with variable E determined by flows PS(t), PD(t) (C.3.4-3.5) and derive relations for S(t) 

(C.5.6) in simple form as: 𝑆(𝑡) = 𝑆(0) + 𝑎[𝑆𝑥(1) sin 𝜔𝑡 + 𝑆𝑦(1) sin 𝜈𝑡] + 𝑎 𝑆𝑥(3)𝑒𝑥𝑝 𝛾𝑡   (14.6) 

Relations (14.6) model the business cycles with frequencies ω and ν of macro supply S(t) 

with variable E accompanied by exponential growth as exp(γt) due to economic growth of 

S(t). Hence (14.6) may model credit cycles determined by fluctuations of creditors with 

frequencies ω and borrowers with frequencies ν with exponential growth as exp(γt) of credits 

provided in economy due to economic growth. The same approach may model investment 

cycles, consumption cycles and etc. 

4 Expectations, price and return 

Assets pricing is the key issue of modern finance. Assets pricing research account thousands 

studies and we chose (Campbell, 1985; Campbell and Cochrane, 1995; Heaton and Lucas, 

2000; Cochrane, 2001; Cochrane and Culp, 2003; Cochrane, 2017) for clear, precise and 

general treatment of the problem. Expectations as factors that impact assets pricing are 

studied at least since Muth (1961) and (Fama, 1965; Lucas, 1972; Sargent and Wallace, 1976; 

Hansen and Sargent, 1979; Blume and Easley, 1984; Brunnermeier and Parker, 2005; 

Dominitz and Manski, 2005; Greenwood and Shleifer, 2014; Lof, 2014; Manski, 2017). 

Assets pricing and return are studied by (Keim and Stambaugh, 1986; Mandelbrot, Fisher and 

Calvet, 1997; Brock and Hommes, 1998; Fama, 1998; Plerou et.al., 1999; Andersen et.al., 
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2001; Gabaix et.al., 2003; Stanley et.al., 2008; Hansen, 2013; Greenwald, Lettau and 

Ludvigson, 2014;  Gontis et.al., 2016; van Binsbergen and Koijen, 2017) and present only 

small part of publications. Below we study a simple case and describe possible impact of 

expectations on transactions, assets pricing and return (Olkhov, 2018; 2019b).  

Let’s study transactions with particular assets E at Exchange. Let’s assume that agents 

perform different parts of transactions with assets E at Exchange under different expectations. 

Each transaction defines quantity Q of assets E (for example number of shares) and cost or 

value C of the deal. Obvious relations define assets price p of this transaction: 𝐶 = 𝑝𝑄 

Transactions performed under different expectations may have different quantity, cost and 

asset price. Let’s assume that agent i at point x have k,l=1,..K different expectations 

exi(k,l;t,x) that approve transactions bsi(k,l;t,x) of asset E with Exchange: 𝒃𝒔𝑖(𝑘, 𝑙; 𝑡, 𝒙) = (𝑄𝑖(𝑘; 𝑡, 𝒙); 𝐶𝑖(𝑙; 𝑡, 𝒙))     (15.1) 

Here Qi(k;t,x) and Ci(l;t,x)– quantity and cost of transaction performed by agent i under 

expectation k,l. We propose that decision on quantity Qi(k;t,x) of transaction is taken under 

expectation of type k and decision on cost Ci(l;t,x) of transaction is taken under expectation 

of type l. Let’s define expectations exi(k,l;t,x) as: 𝒆𝒙𝑖(𝑘, 𝑙; 𝑡, 𝒙) = (𝑒𝑥𝑄𝑖𝑘(𝑘; 𝑡, 𝒙), 𝑒𝑥𝐶𝑖(𝑙; 𝑡, 𝒙)) ;  𝑘, 𝑙 = 1, … 𝐾  (15.2) 

Expectations exQi(k;t,x) and exCi(l;t,x) approve quantity Q and cost C of the transaction 

bsi(k,l;t,x). Relations (II, 2.1, 2.2, 7.2) for define macro transaction BS(k,l;t,x) under 

expectation of type k,l=1,…K as 𝑩𝑺(𝑘, 𝑙; 𝑡, 𝒙) = (𝑄(𝑘; 𝑡, 𝒙); 𝐶(𝑙; 𝑡, 𝒙)) = ∑ 𝒃𝒔𝑖(𝑘, 𝑙; 𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙); ∆   (15.3) 𝑄(𝑘; 𝑡, 𝒙) = ∑ 𝑄𝑖(𝑘; 𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆      ;     𝐶(𝑡, 𝒙) = ∑ 𝐶𝑖(𝑙; 𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆  

Similar to (II, 7.5-7.7) let’s introduce expected transactions Et(k,l;t,x)at point x as 𝑬𝒕(𝑘, 𝑙; 𝑡, 𝒙) = (𝐸𝑡𝑄(𝑘; 𝑡, 𝒙); 𝐸𝑡𝐶(𝑙; 𝑡, 𝒙))     (15.4) 𝐸𝑡𝑄(𝑡, 𝒙) = ∑ 𝑒𝑥𝑄𝑖(𝑘; 𝑡, 𝒙)𝑄𝑖(𝑘; 𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆  

𝐸𝑡𝐶(𝑙; 𝑡, 𝒙) = ∑ 𝑒𝑥𝐶𝑖(𝑙; 𝑡, 𝒙)𝐶𝑖(𝑙; 𝑡, 𝒙)𝑖∈𝑑𝑉(𝒙);∆  

Let’s study relations between transactions BS(k,l;t) (15.3) and expected transactions Et(k,l;t) 

(15.4) of entire economics as functions of time t only: 𝑩𝑺(𝑘, 𝑙; 𝑡) = ∫ 𝑑𝒙   𝑩𝑺(𝑘, 𝑙; 𝑡, 𝒙)  ;    𝑬𝒕(𝑘, 𝑙; 𝑡) = ∫ 𝑑𝒙   𝑬𝒕(𝑘, 𝑙; 𝑡, 𝒙) ; 𝑘, 𝑙 = 1, . . 𝐾   (15.5) 
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Integrals in (15.5) define BS(k,l;t) all transactions with asset E made by all agents of entire 

economics at Exchange under expected transactions Et(k,l;t). Due to equations (5.1-5.3), 

(8.1, 8.2) and (9.1, 9.2) equations on (15.5) take form: 𝑑𝑑𝑡 𝑄(𝑘; 𝑡) = 𝐹𝑄(𝑘; 𝑡) ;  𝑑𝑑𝑡 𝐶(𝑙; 𝑡) = 𝐹𝐶(𝑙; 𝑡)       (15.6) 𝑭(𝑘; 𝑡) = (𝐹𝑄; 𝐹𝐶);  𝐹𝑄(𝑘; 𝑡) = ∫ 𝑑𝒙 𝐹𝑄(𝑘; 𝑡, 𝒙)  ;  𝐹𝐶(𝑙; 𝑡) = ∫ 𝑑𝒙 𝐹𝐶(𝑙; 𝑡, 𝒙) (15.7) 𝑑𝑑𝑡 𝐸𝑡𝑄(𝑘; 𝑡) = 𝐹𝑒𝑄(𝑘; 𝑡) ;  𝑑𝑑𝑡 𝐸𝑡𝐶(𝑙; 𝑡) = 𝐹𝑒𝐶(𝑙; 𝑡)      (15.8) 𝑭𝒆(𝑘, 𝑙; 𝑡) = (𝐹𝑒𝑄; 𝐹𝑒𝐶) ; 𝐹𝑒𝑄(𝑘; 𝑡) = ∫ 𝑑𝒙 𝐹𝑒𝑄(𝑘; 𝑡, 𝒙); 𝐹𝑒𝐶(𝑙; 𝑡) = ∫ 𝑑𝒙 𝐹𝑒𝐶(𝑙; 𝑡, 𝒙)(15.9) 

Relations (15.1-15.3) define expectations Exkl(t) of entire economics as: 𝑬𝒙(𝑘, 𝑙; 𝑡) = (𝐸𝑥𝑄; 𝐸𝑥𝐶) 𝐸𝑡𝑄(𝑘; 𝑡) = 𝐸𝑥𝑄(𝑘; 𝑡)𝑄(𝑘; 𝑡)       ;        𝐸𝑡𝐶(𝑙; 𝑡) = 𝐸𝑥𝐶(𝑙; 𝑡)𝐶(𝑙; 𝑡)  (15.10) 

Equations (15.6-9) describe transactions BS(k,l;t) (15.5) with assets E of the entire economics 

under expectations Ex(k,l;t) (15.10). Let’s describe a model of mutual action between small 

disturbances of transactions and expectations in a linear approximation. Let’s consider (15.6-

9) and assume that mean transactions BS0(k,l;t) and Et0(k,l;t) are slow to compare with small 

dimensionless disturbances bs(k,l;t) and et(k,l;t) and let’s take BS0(k,l) and Et0(k,l) as const. 

Due to (15.3-5): 𝑩𝑺(𝑘, 𝑙; 𝑡) = (𝑄; 𝐶);  𝑄(𝑘; 𝑡) = 𝑄0𝑘(1 + 𝑞(𝑘; 𝑡));  𝐶(𝑙; 𝑡) = 𝐶0𝑙(1 + 𝑐(𝑙; 𝑡))  (16.1)  𝑬𝒕(𝑘, 𝑙; 𝑡) = (𝐸𝑡𝑄(𝑘; 𝑡); 𝐸𝑡𝐶(𝑙; 𝑡))       (16.2) 𝐸𝑡𝑄(𝑘; 𝑡) = 𝐸𝑡𝑄0𝑘 (1 + 𝑒𝑡𝑞(𝑘; 𝑡)) ; 𝐸𝑡𝐶(𝑙; 𝑡) = 𝐸𝑡𝐶0𝑙(1 + 𝑒𝑡𝑐(𝑙; 𝑡))   (16.3) 

Equations on small disturbances bs(k,l;t) and et(k,l;t) take form: 𝑄0𝑘  𝑑𝑑𝑡 𝑞(𝑘; 𝑡) = 𝑓𝑞(𝑘; 𝑡) ; 𝐶0𝑙 𝑑𝑑𝑡 𝑐(𝑙; 𝑡) = 𝑓𝑐(𝑙; 𝑡)     (16.2) 𝐸𝑡𝑄0𝑘  𝑑𝑑𝑡 𝑒𝑡𝑞(𝑘; 𝑡) = 𝑓𝑒𝑞(𝑘; 𝑡) ; 𝐸𝑡𝐶0𝑙  𝑑𝑑𝑡 𝑒𝑡𝑐(𝑙; 𝑡) = 𝑓𝑒𝑐(𝑙; 𝑡)   (16.3) 𝐹𝑒𝑄𝑘 = 𝐹𝑒𝑄0𝑘 + 𝑓𝑒𝑄(𝑘; 𝑡) ; 𝐹𝑒𝐶𝑙 = 𝐹𝑒𝐶0𝑙 + 𝑓𝑒𝑐(𝑙; 𝑡 )    (16.4) 

Let’s assume that factors fq(k;t) and fc(l;t) in (16.2) depend on disturbances of expected 

transactions etq(k;t) and etc(l;t) and feq(k;t) and fec(l;t) in (16.3) depend on disturbances of 

q(k;t) and c(l;t). For linear approximation by disturbances let’s take (16.2-3) as: 𝑄0𝑘  𝑑𝑑𝑡 𝑞(𝑘; 𝑡) = 𝑎𝑞𝑘𝐸𝑡𝑄0𝑘𝑒𝑡𝑞(𝑘; 𝑡)  ;  𝐶0𝑙 𝑑𝑑𝑡 𝑐(𝑙; 𝑡) = 𝑎𝑐𝑙𝐸𝑡𝐶0𝑙  𝑒𝑡𝑐(𝑙; 𝑡)  (16.5) 𝐸𝑡𝑄0𝑘  𝑑𝑑𝑡 𝑒𝑡𝑞(𝑘; 𝑡) = 𝑏𝑒𝑞𝑘𝑄0𝑘𝑞(𝑘; 𝑡)  ;  𝐸𝑡𝐶0𝑙 𝑑𝑑𝑡 𝑒𝑡𝑐(𝑙; 𝑡) = 𝑏𝑒𝑐𝑙𝐶0𝑙 𝑐(𝑙; 𝑡)  (16.6) 𝜔𝑞𝑘2 = −𝑎𝑞𝑘𝑏𝑒𝑞𝑘 > 0  ;  𝜔𝑐𝑙2 = − 𝑎𝑐𝑙𝑏𝑒𝑐𝑙 > 0    (16.7) 

If relations (16.7) are valid, then (16.5-6) are equations for harmonic oscillators:  



 17 

( 𝑑2𝑑𝑡2 + 𝜔𝑞𝑘2  ) 𝑞(𝑘; 𝑡) = 0  ;   ( 𝑑2𝑑𝑡2 + 𝜔𝑐𝑙2  ) 𝑐(𝑙; 𝑡) = 0   (16.8) ( 𝑑2𝑑𝑡2 + 𝜔𝑞𝑘2  ) 𝑒𝑡𝑞(𝑘; 𝑡) = 0  ;  ( 𝑑2𝑑𝑡2 + 𝜔𝑐𝑙2  ) 𝑒𝑡𝑐(𝑙; 𝑡) = 0  ; 𝑘, 𝑙 = 1, . . 𝐾 (16.9) 

Simple solutions of (16.8) for dimensionless disturbances qk(t) and cl(t): 𝑞(𝑘; 𝑡) = 𝑔𝑞𝑘𝑠𝑖𝑛𝜔𝑞𝑘𝑡 + 𝑑𝑞𝑘𝑐𝑜𝑠𝜔𝑞𝑘𝑡     (17.1) 𝑐(𝑙; 𝑡) = 𝑔𝑐𝑙𝑠𝑖𝑛𝜔𝑐𝑙𝑡 + 𝑑𝑐𝑙𝑐𝑜𝑠𝜔𝑐𝑙𝑡     (17.2) 𝑔𝑞𝑘, 𝑑𝑞𝑘 , 𝑔𝑐𝑙, 𝑑𝑐𝑙 ≪ 1       (17.3) 

Relations (17.1-3) describe simple harmonic fluctuations of disturbances of volume Q(k;t) 

and cost C(l;t) of transactions BS(k,l;t) performed under different expectations Ex(k,l;t) 

(16.10).  

Price fluctuations. Let’s note price of transaction made by all agents of entire economics 

under expectations of type k, l as p(k,l;t) 𝐶(𝑘, 𝑙; 𝑡) = 𝑝(𝑘, 𝑙; 𝑡)𝑄(𝑘, 𝑙; 𝑡)    (18.1) 

Now for convenience let’s call C(k,l;t) as cost of transaction made under expectation of type l 

for volume Q(k,l;t) of transaction made under expectation of type k. Thus transaction 

BS(k,l;t) has cost C(k,l;t) made under expectation of type l and volume Q(k,l;t) of transaction 

made under expectation of type k. Double indexes (k,l) determine transaction with cost under 

expectation l and volume under expectation k. Sum of transactions BS(k,l;t) (16.1) by all 

expectations k,l=1,…K define transactions BS(t) in the entire economics: 𝑩𝑺(𝑡) = (𝑄(𝑡); 𝐶(𝑡))  ;   𝑄(𝑡) =  ∑ 𝑄(𝑘, 𝑙; 𝑡)𝑘𝑙 ;    𝐶(𝑡) =  ∑ 𝐶(𝑘. 𝑙; 𝑡)𝑘,𝑙  (18.2) 

Price p(t) of transactions BS(t) (18.2) equals: 𝐶(𝑡) = 𝑝(𝑡)𝑄(𝑡)        (18.3) 

Let’s study disturbances of cost C(t), volume Q(t) and price p(t) for  (18.3) as: 𝑄(𝑡) =  ∑ 𝑄0𝑘𝑙(1 + 𝑞(𝑘, 𝑙; 𝑡))𝑘,𝑙 = 𝑄0 ∑ 𝜆𝑘𝑙(1 + 𝑞(𝑘, 𝑙; 𝑡))𝑘,𝑙     (18.4) 𝐶(𝑡) =  ∑ 𝐶0𝑘𝑙(1 + 𝑐(𝑘, 𝑙; 𝑡))𝑘,𝑙 = 𝐶0 ∑ 𝜇𝑘𝑙(1 + 𝑐(𝑘, 𝑙; 𝑡))𝑘,𝑙    (18.5) 

Relations (18.4) describe impact of dimensionless disturbances q(k,l;t) on volume Q(t) and 

(18.5) describe impact of dimensionless disturbances c(k,l;t) on cost C(t) of transactions. 𝑄0 = ∑ 𝑄0𝑘𝑙𝑘,𝑙   ;   𝜆𝑘𝑙 = 𝑄0𝑘𝑙𝑄0   ;  𝐶0 = ∑ 𝐶0𝑘𝑙𝑘,𝑙   ;   𝜇𝑘𝑙 = 𝐶0𝑘𝑙𝐶0    ;   ∑ 𝜆𝑘𝑙 =  ∑ 𝜇𝑘𝑙 = 1   (18.6) 

Relations (18.3) define price p(t) for Q(t) (18.4) and C(t) (18.5): 𝑝(𝑡) = 𝐶(𝑡)𝑄(𝑡) = ∑ 𝐶(𝑘,𝑙;𝑡)𝑘,𝑙∑ 𝑄(𝑘,𝑙;𝑡)𝑘,𝑙       ;      𝑝0 = 𝐶0𝑄0 = ∑ 𝐶0𝑘𝑙𝑘,𝑙∑ 𝑄0𝑘𝑙𝑘,𝑙     (18.7) 

In linear approximation by disturbances q(k,l;t) and c(k,l;t) price p(t) (18.7) take form: 
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𝑝(𝑡) = 𝐶(𝑡)𝑄(𝑡) = 𝐶0 ∑ 𝜇𝑘𝑙(1 + 𝑐(𝑘, 𝑙; 𝑡))𝑘,𝑙𝑄0 ∑ 𝜆𝑘𝑙(1 + 𝑞(𝑘, 𝑙; 𝑡))𝑘,𝑙 = 𝑝0 [1 + ∑ 𝜇𝑘𝑙𝑐(𝑘, 𝑙; 𝑡)𝑘,𝑙 − ∑ 𝜆𝑘𝑙𝑞(𝑘, 𝑙; 𝑡)𝑘,𝑙  ] 𝑝(𝑡) = 𝑝0[1 + 𝜋(𝑡)] = 𝑝0[1 + ∑ (𝜇𝑘𝑙𝑐(𝑘, 𝑙; 𝑡)𝑘,𝑙 − 𝜆𝑘𝑙𝑞(𝑘, 𝑙; 𝑡))]   (18.8) 

Dimensionless fluctuations of price π(t) (18.8) equals weighted sum of disturbances q(k,l;t) 

and c(,lk;t) as (18.9): 𝜋(𝑡) = ∑ 𝜇𝑘𝑙𝑘,𝑙 𝑐(𝑘, 𝑙; 𝑡) − 𝜆𝑘𝑙𝑞(𝑘, 𝑙; 𝑡)    (18.9) 

Now let’s take (18.1) and present π(t) in other form:  𝐶(𝑘, 𝑙; 𝑡) = 𝐶0𝑘𝑙[1 + 𝑐(𝑘, 𝑙; 𝑡)] = 𝑝0𝑘𝑙[1 + 𝜋(𝑘, 𝑙; 𝑡)]𝑄0𝑘𝑙[1 + 𝑞(𝑘, 𝑙; 𝑡)]  (19.1) 

From (18.6-7) and (19.1) in linear approximation by c(k,l;t), π(k,l;t) and q(k,l;t) obtain: 𝐶0𝑘𝑙 = 𝑝0𝑘𝑙𝑄0𝑘𝑙    ;      𝑐(𝑘, 𝑙; 𝑡) = 𝜋(𝑘, 𝑙; 𝑡) + 𝑞(𝑘, 𝑙; 𝑡)   (19.2) 

Let’s substitute (19.2) into (18.9): 𝜋(𝑡) = ∑ 𝜇𝑘𝑙𝜋(𝑘, 𝑙; 𝑡)𝑘,𝑙 + ∑ (𝜇𝑘𝑙 − 𝜆𝑘𝑙)𝑘,𝑙 𝑞(𝑘, 𝑙; 𝑡)   (19.3) 

Relations (19.3) describe price perturbations π(t) as weighted sum of partial price 

disturbances π(k,l;t) and volume disturbances q(k,l;t). Thus statistics of price disturbances 

π(t) is defined by statistics of partial price disturbances π(k,l;t) and statistics of volume 

disturbances qk(k,l;t).  

Return perturbations. Price disturbances (19.3) cause perturbations of return r(t,d):  𝑟(𝑡, 𝑑) = 𝑝(𝑡)𝑝(𝑡−𝑑) − 1       (20.1) 

Let’s introduce partial returns r(k,l;t,d) for price p(k,l;t) (18.1) and “returns” w(k,l;t,d) for 

volumes Q(k,l;t) (18.2): 𝑟(𝑘, 𝑙; 𝑡, 𝑑) = 𝑝(𝑘,𝑙;𝑡)𝑝(𝑘,𝑙;𝑡−𝑑) − 1      ;      𝑤(𝑘, 𝑙; 𝑡, 𝑑) = 𝑄(𝑘,𝑙;𝑡)𝑄(𝑘,𝑙;𝑡−𝑑) − 1   (20.2) 

Let’s assume for simplicity that mean price p0kl and trade volumes Q0kl are constant during 

time term d and (18.7; 19.3) present (20.1, 20.2) as  𝑟(𝑡, 𝑑) = 𝜋(𝑡)−𝜋(𝑡−𝑑)1+𝜋(𝑡−𝑑)   ;   𝑤(𝑘, 𝑙; 𝑡, 𝑑) = 𝑞(𝑘,𝑙;𝑡)−𝑞(𝑘,𝑙;𝑡−𝑑)1+𝑞(𝑘,𝑙;𝑡−𝑑)    (20.3) 𝑟(𝑡, 𝑑) = ∑ 𝜇𝑘𝑙 1+𝜋(𝑘,𝑙;𝑡−𝑑)1+𝜋(𝑡−𝑑) 𝑟(𝑟, 𝑙; 𝑡, 𝑑) + ∑(𝜇𝑘𝑙 − 𝜆𝑘𝑙) 1+𝑞(𝑘;𝑡−𝑑)1+𝜋(𝑡−𝑑) 𝑤(𝑘, 𝑙; 𝑡, 𝑑) (20.4) 

Let’s define  𝜀𝑘𝑙(𝑡 − 𝑑) = 𝜇𝑘𝑙 1+𝜋(𝑘;𝑡−𝑑)1+𝜋(𝑡−𝑑)     ;   𝜂𝑘𝑙(𝑡 − 𝑑) = (𝜇𝑘𝑙 − 𝜆𝑘𝑙) 1+𝑞(𝑘;𝑡−𝑑)1+𝜋(𝑡−𝑑)  (20.5) ∑ [𝜀𝑘𝑙(𝑡 − 𝑑)𝑘,𝑙 + 𝜂𝑘𝑙(𝑡 − 𝑑)] = 1      (20.6) 𝑟(𝑡, 𝑑) = ∑ 𝜀𝑘𝑙𝑘,𝑙 (𝑡 − 𝑑)𝑟(𝑘, 𝑙; 𝑡, 𝑑) + ∑ 𝜂𝑘𝑙𝑘,𝑙 (𝑡 − 𝑑)𝑤(𝑘, 𝑙; 𝑡, 𝑑)  (20.7) 

Relations (20.6-7) describe return (20.1) as sum of partial returns and volume “returns” 

w(k,l;t,d) (20.2, 20.3). Sum for coefficients μkl and μkl-λkl for price p(t) (18.7; 19.3) and εkl(t) 
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and ηkl(t) for return r(t,d) (20.1) equals unit but (19.3) and (20.7) can’t be treated as averaging 

procedure as some coefficients μkl-λkl and ηkl(t) should be negative. If mean price (19.2) 

p0kl=p0 for all pairs of expectations (k,l) then from (18.6, 18.7) obtain 𝑝0𝑘𝑙 = 𝑝0 = 𝑐𝑜𝑛𝑠𝑡 →  𝜆𝑘𝑙 = 𝜇𝑘𝑙  ;   𝜂𝑘𝑙(𝑡) = 0 for all 𝑘, 𝑙  (20.8) 

and relations (19.3; 20.7) take simple form 𝜋(𝑡) = ∑ 𝜇𝑘𝑙𝑘,𝑙 𝜋(𝑘, 𝑙; 𝑡)     (20.9)  𝑟(𝑡, 𝑑) = ∑ 𝜇𝑘𝑙𝑘,𝑙 1+𝜋(𝑘,𝑙;𝑡−𝑑)1+𝜋(𝑡−𝑑) 𝑟(𝑘, 𝑙; 𝑡, 𝑑) = ∑ 𝜇𝑘𝑙𝑘,𝑙 𝜋(𝑘,𝑙;𝑡)−𝜋(𝑘,𝑙;𝑡−𝑑)1+𝜋(𝑡−𝑑)   (20.10) 

Thus assumption (20.8) on prices (19.2) for all pairs of expectations (k,l) cause representation 

(20.9, 20.10) of price disturbances π(t) as weighted sum of partial price disturbances π(k,l;t) 

for different pairs of expectations (k,l). Otherwise price disturbances π(t) should take (19.3) 

and depend on volume perturbations q(k,l;t). Assumption (20.8) cause returns as (20.10), 

otherwise returns take (20.7). Actually expectations are key factors for market competition 

and different expectations (k,l) should cause different mean partial prices p0kl. That should 

cause complex representation of price (19.3) and return (20.7) disturbances as well as impact 

volatility and statistic distributions of price and return disturbances.  

5 Option pricing 

Option pricing accounts thousands articles published since classical Black, Scholes (1973) 

and Merton (1973) (BSM) studies (Hull and White, 1987; Hansen, Heaton, and Luttmer, 

1995; Hull, 2009). Current observations of market data show that option pricing don’t follow 

Brownian motion and classical BSM model (Fortune, 1996). Stochastic volatility is only one 

of factors that cause BSM model violation (Heston, 1993, Bates, 1995). Studies of economic 

origin of price stochasticity are important for correct modeling asset and option pricing. We 

propose that economic space modeling may give new look on description of asset 

stochasticity and option pricing. Indeed, economic space establishes ground for description of 

density functions of economic variables and transactions. On other hand economic space 

allows describe price evolution of assets for selected agent in a random economic 

environment. Random evolution of risk coordinates of selected assets impact assets and 

option pricing. Nevertheless it is clear that Brownian motion models don’t fit real market 

option pricing, simple Brownian considerations allow argue some hidden complexities of 

option pricing problem. Below we discuss classical BSM treatment of option pricing based 

on assumption of price Brownian motion (Hull, 2009). We start with classical BSM 

approximation and describe model for option price caused by Brownian motion of economic 

agent on economic space that gives generalization of the classical BSM equations (Olkhov, 
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2016a-2016c). Further we argue BSM assumptions and restrictions that arise from previous 

Section and may impact assets and option pricing models.  

Let’s start with classical derivation of the BSM (Hull, 2009) based on assumption that price p 

of selected agent’s assets obeys Brownian motion dW(t) with volatility σ and linear trend 𝜐: 𝑑𝑝(𝑡) = 𝑝 𝜐 𝑑𝑡 + 𝑝𝜎𝑑𝑊(𝑡)  ;    < 𝑑𝑊(𝑡) >= 0; < 𝑑𝑊(𝑡)𝑑𝑊(𝑡) > = 𝑑𝑡  (21.1) 

Assumptions (21.1) give the classical BSM equation for the option price V(p;t) for risk-free 

rate r (Hull, 2009): 𝜕𝑉𝜕𝑡 + 𝑟𝑝 𝜕𝑉𝜕𝑝 + 12 𝜎2𝑝2 𝜕2𝜕𝑝2 𝑉 =  𝑟𝑉     (21.2) 

In Sec.4 we use coordinates x to define positions of agents those involved in transactions at 

Exchange with assets of selected agent A. Let’s note y as coordinates of selected agent A(t,y). 

Let’s assume that price p of assets of selected agent A(t,y) depends on time t and on risk 

coordinates y as p(t,y). Let’s propose that disturbances of risk coordinates y of selected agent 

A(t,y) follow Brownian motion dY(t) on n-dimensional economic space: 𝑑𝒚 =  𝒗𝑑𝑡 +  𝑑𝒀(𝑡)    ;  𝑑𝒀(𝑡) = (𝑑𝑌1, . . 𝑑𝑌𝑛)   ;    < 𝑑𝑌𝑖(𝑡) > = 0 (21.3) < 𝑑𝑌𝑖(𝑡)𝑑𝑌𝑗(𝑡) > = 𝜂𝑖𝑗  𝑑𝑡      ;    < 𝑑𝑊(𝑡) 𝑑𝑌𝑖(𝑡) > = 𝑏𝑖 
Factors ηii describe volatility of Brownian motion dYi along axis i and ηij for i≠j describe 

correlations between Brownian motions dYi along axes i and dYj along axes j. Factors bi – 

describe correlations between Brownian motion dW and dYi along axes i. Now let’s extend 

assumption (21.1) and let’s propose (21.4) that price p(t,y) depend on time t and on Brownian 

motion dY(t) (21.3) of selected agent A(t,y) on economic space: 𝑑𝑝(𝑡, 𝒚) = p 𝜐 𝑑𝑡 + p𝜎𝑑𝑊(𝑡)  + p 𝒌 ∙ 𝑑𝒀     ;   𝒌 = (𝑘1, … 𝑘𝑛) −  𝑐𝑜𝑛𝑠𝑡  (21.4) 

Similar to (Hall, 2009) for risk-free rate r from (21.4) obtain extension of the classical BSM 

equation (21.2) for the option price V(p;t,y) on n-dimensional economic space (Olkhov, 

2016c) : 𝜕𝑉𝜕𝑡 + 𝑟𝑝 𝜕𝑉𝜕𝑝 + 𝑟𝑦𝑖 𝜕𝑉𝜕𝑦𝑖 + 12 𝑝2𝑞2 𝜕2𝑉𝜕𝑝2 + 𝑝(𝜎𝑏𝑖 + 𝑘𝑗 𝜂𝑗𝑖) 𝜕2𝑉𝜕𝑝𝜕𝑦𝑖 + 𝜂𝑖𝑗2 𝜕2𝑉𝜕𝑦𝑖𝜕𝑦𝑗 = 𝑟𝑉 (21.5) 𝑞2 = (𝜎2 + 𝑘𝑖 𝑘𝑗  𝜂𝑖𝑗 + 2𝜎𝑘𝑖 𝑏𝑖 ) ;   𝑖, 𝑗 = 1, … 𝑛 

Additional parameters ki, bi, ηij, i,j=1,…n, define volatility q
2
 and coefficients for additional 

terms of equation (21.5) and impact option price V(p;t,y). Extension (21.5) of the classical 

BSM equations (21.2) may uncover hidden complexities of option pricing that have origin in 

the random motion of agents A(t,y) on economic space. As special case for (21.5) one can 

study equation on option price V(p;t,y) on 1-dimensional economic space for σ=0 without 

classical BSM assumptions (21.1): 
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𝜕𝑉𝜕𝑡 + 𝑟𝑝 𝜕𝑉𝜕𝑝 + 𝑟𝑦 𝜕𝑉𝜕𝑦 + 12 𝑝2𝑘2𝜂 𝜕2𝑉𝜕𝑝2 + 𝑝𝑘𝜂 𝜕2𝑉𝜕𝑝𝜕𝑦 + 𝜂2 𝜕2𝑉𝜕𝑦2 = 𝑟𝑉   (21.6) 

Equations (21.6) describe option price V(p;t,y) of assets which price p(t,y) depends only on 

Brownian motion dY(t) (21.3) of agents coordinates y on 1-dimensional economic space. 

Let’s mention that assumptions (21.3, 21.4) simplify assets pricing model that we argue in 

Sec.4. Indeed, in Sec.4 we discuss that asset price and its disturbances should depend on 

relations between transactions and expectations. Thus assumptions on Brownian motion 

(21.3) of coordinates of selected agent A(t,y) on economic space should impact transactions 

with assets of particular agent A(t,y) and corresponding expectations. Let’s take relations 

(19.3) for price disturbances π(t,y) of assets of selected agent A(t,y) with coordinates y 𝜋(𝑡, 𝒚) = ∑ 𝜇𝑘𝑙𝑘,𝑙 𝜋(𝑘, 𝑙; 𝑡, 𝒚) + ∑ (𝜇𝑘𝑙 − 𝜆𝑘𝑙)𝑘,𝑙 𝑞(𝑘, 𝑙; 𝑡, 𝒚)   (22.1) 

Let’s remind that π(k,l;t,y) describe partial price disturbances of assets of agent A(t,y) for 

transactions of all economic agents with Exchange made under expectations of type k for 

decisions on trading volume Q(k,l;t,y) and expectations of type l for decisions on cost 

C(k,l;t,y) of transaction. As we mention in Sec.4, if partial price p0kl (19.2) is constant for all 

type of expectations k,l then price disturbances π(t,y) take form (20.9) and equal weighted 

sum of partial prices π(k,l;t,y). Otherwise price disturbances π(t,y) should depend on 

disturbances of partial prices π(k,l;t,y) and on perturbations of trading volumes q(k,l;t,y). 

Let’s mention that statistic distribution of price disturbances π(t,y) (22.1) may depend also on 

coefficients λkl and μkl (18.6) that can fluctuate due to random change of coordinates of 

selected agent A(t,y). Possible impact of these numerous factors on option pricing should be 

studied further. 

6. Conclusions  

There are endless economic and financial problems that should be described. In this paper we 

present only few to demonstrate advantages of our approach to economic theory. We develop 

economic theory on base of well known economic notions – economic agents, economic and 

financial variables and transactions, expectations of economic agents and risk ratings of 

economic agents. Economic modeling for decades use these notions. Our contribution to 

economic theory is follows. First, we propose distribute economic agents by their risk ratings 

as their coordinates on economic space. Second, we propose move from description of 

separate agents, their variables, transactions and expectations on economic space to 

description of aggregated, averaged density functions of variables, transactions and 

expectations on economic space. To make this transition we introduce two scales: dV and Δ . 

Scale dV define averaging over economic space and scale Δ define averaging over the time. 
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Thus different scales Δ = 1 day, 1 month, 1 year describe different approximation of 

economy. All other considerations are consequences of these two steps. 

We regard risks as main drivers of macroeconomic evolution and development. Any 

beneficial economic activity is related with risks and no risk-free financial success is 

possible. We propose that risk-free treatments of economic problems have not too much 

economic sense. Change of risk rating of economic agents due to their economic activity, 

their financial transactions with other agents, their economic and financial expectations, 

market trends, regulatory or technology changes, political, climate and other reasons induce 

change of risk ratings that cause motion of mean macroeconomic risks and flows of 

economic and financial variables and transactions on economic space. Motion of mean risks 

and economic flows impact evolution of macroeconomic states and cycles. We regard 

description of mean risks and economic flows as one of major problems of economic theory.  

Any economic motions and flows are accompanied by generation of small perturbations of 

economic variables, transactions and expectations. Description of propagation of small 

economic and financial disturbances on economic space reflect most general problem of 

evolution of any complex system. Economic and financial dynamics are accompanied by 

generation, propagation and interactions of numerous economic waves of variables, 

transactions and expectations on economic domain. Wave propagation of small perturbations 

on economic space may explain interactions between different markets, industries, countries 

and describe transfer of economic and financial influence over macroeconomics. Total 

distinction of economic processes from physical problems cause room for amplification of 

small economic and financial perturbations during wave propagation over economic domain. 

Growth of wave amplitudes of economic disturbances during propagation on economic space 

may impact huge perturbations and shocks of entire macroeconomics. In Sec. 2 we describe 

cases of economic wave propagation of perturbations of variables and transactions. We 

describe economic waves that have parallels to sound waves and to surface waves. Economic 

sound-like waves describe propagation of variables and transactions density perturbations 

through economic domain. Economic surface-like waves describe propagation of 

perturbations along borders of economic domain. Such diversity has analogy in 

hydrodynamics but nature and properties of economic waves are completely different. 

Borders of economic domain reduce area for economic agents by minimum and maximum 

risk grades. Thus borders reduce flows of economic variables and transactions on economic 

domain and cause fluctuations of these economic flows. Fluctuations of economic flows of 

variables and transactions induce fluctuations of corresponding mean risks. In Sec 3 we 
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regard fluctuations of mean risks and fluctuations of economic flows as characters of 

business cycles. Fluctuations of credit mean risks reflect credit cycles, fluctuations of 

investment mean risks reflect investment cycles and so on. Interactions between major 

economic and financial variables cause correlations of corresponding cycles. Description of 

these fluctuations requires relatively complex economic equations. 

Evolution of economic variables is performed by transactions between agents. Agents take 

decisions on economic and financial transactions under numerous expectations. Agents form 

their expectations on base of macroeconomic and financial variables, transactions, market 

regulatory and technology trends, expectations of other agents and etc. Relations between 

economic and financial variables, transactions and expectations establish a really complex 

system. Assets pricing problem is only one that is determined by relations between 

transactions and expectations. In Sec. 4 we describe simple relations between transactions 

and expectations and model assets price disturbances as consequences of perturbations of 

transactions made under numerous expectations. As last economic example in Sec.5 we argue 

classical Black-Scholes-Merton (BSM) option price model. We show that economic space 

uncovers hidden complexities of classical BSM model and discuss relations between 

modeling price disturbances and option pricing.  

As sample of items that differs our approach from general equilibrium let’s outline factors dV 

and Δ (I. 2-4) that determine densities of economic variables, transactions and expectations. 

Factors dV are responsible for averaging over scales of economic space and Δ define 

averaging over time scales. For example Δ=1 day, 1 month or 1 year determine different 

economic models with time averaging during 1 day, 1 month or 1 year. Thus each particular 

economic model describes processes with approximation determined by factors dV and Δ. 

That seems important for comparison of model predictions with economic observations. As 

we know there are no similar scales in general equilibrium models.  

Let’s underline that we present only essentials of economic theory and many problems should 

be studied further. Econometric problems and observation of economic and financial 

variables, transactions and expectations of agents and agents risk assessment are among the 

central. Up now there are no sufficient econometric data required to establish distribution of 

economic agents by their risk ratings as coordinates on economic space. Nevertheless we 

hope that our model may be useful for better understanding and description of economic and 

financial processes.  
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Appendix A.  

Wave equations for economic variables 

Let’s start with equations (5.2) and take time derivative. We obtain with help of (5.4): 𝜕2𝜕𝑡2 𝜑(𝑡, 𝒙) = 𝛼1𝐶 𝜕2𝜕𝑡2 𝜋(𝑡, 𝒙) − 𝛽1𝐶∆𝜋(𝑡, 𝒙)    (A.1) 

We have the similar equation from (5.3) and (5.4):  𝐶 𝜕2𝜕𝑡2 𝜋(𝑡, 𝒙) = 𝛼2 𝜕2𝜕𝑡2 𝜑(𝑡, 𝒙) − 𝛽2∆𝜑(𝑡, 𝒙)    (A.2) 

Thus for (A.1) and (A.2) obtain: (1 − 𝛼1𝛼2) 𝜕2𝜕𝑡2 𝜑(𝑡, 𝒙) = −𝛼1𝛽2∆𝜑(𝑡, 𝒙) − 𝛽1𝐶∆𝜋(𝑡, 𝒙)   (A.3) 

Let’s take second time derivative from (A.3) and with (A.1; A.2) obtain for φ(t,x) and π(t,x): [(1 − 𝛼1𝛼2) 𝜕4𝜕𝑡4 + (𝛼1𝛽2 + 𝛽1𝛼2)∆ 𝜕2𝜕𝑡2 − 𝛽1𝛽2∆2]  𝜑(𝑡, 𝒙) = 0  (A.4) 

To derive wave equations let’s take Fourier transform by time and coordinates or let’s 

substitute the wave type solution φ(t,x)  = φ(x-ct). Than (A.4) takes form  (1 − 𝛼1𝛼2)𝑐4 + (𝛼1𝛽2 + 𝛼2𝛽1)𝑐2 − 𝛽1𝛽2 = 0   (A.5) 𝑎 = 1 −  𝛼1𝛼2 > 1 ;  𝑏 = 𝛼1𝛽2  + 𝛼2𝛽1  < 0  ;   𝑑 =  𝛽1𝛽2 < 0 

For positive roots c
2 𝑐1,22 = −𝑏+/−√𝑏4+4𝑎𝑑2𝑎       (A.6) 

equation (A.4) takes form of bi-wave equation (A.7) for φ(t,x) and π(t,x):  ( 𝜕2𝜕𝑡2 − 𝑐12Δ)( 𝜕2𝜕𝑡2 − 𝑐22Δ)𝜑(𝑡, 𝒙) = 0     (A.7) 

Bi-wave equations (A.7) describe propagation of waves with two different speeds c1 and c2. 

If α1 and α2 equals zero, there are no wave equations and (A.4) take form  [ 𝜕4𝜕𝑡4 − 𝑑∆2] 𝜑(𝑡, 𝒙) = 0;   𝑑 < 0    
Due to (1) supply B(t,x) is proportional to price p(t,x) and supply disturbances are 

proportional to price disturbances π(t,x) (5.1). Let’s take π(t,x) as: 𝜋(𝑡, 𝒙) = 𝜋0 cos(𝒌 ∙ 𝒙 − 𝜔𝑡) exp(𝛾𝑡 + 𝒑 ∙ 𝒙)  ;    𝜋0 ≪ 1    (A.8) 

Here kx is scalar product of vectors k and x. For price disturbances π(t,x) (A.8) equation 

(A.4) becomes a system of two equations: 

 𝑎[(𝛾2 − 𝜔2)2 − 4𝛾2𝜔2] + 𝑏 [(𝑝2 − 𝑘2)(𝛾2 − 𝜔2) + 4𝛾𝜔 𝒌 ∙ 𝒑] − 𝑑[(𝑝2 − 𝑘2)2  −4( 𝒌 ∙ 𝒑 )2] = 0      (A.9) 4𝑎𝜔𝛾(𝛾2 − 𝜔2) + 𝑏[ 2𝜔𝛾 (𝑝2 − 𝑘2) − 2(𝛾2 − 𝜔2) 𝒌 ∙ 𝒑 ] + 4𝑑(𝑝2 − 𝑘2) 𝒌 ∙ 𝒑 = 0 

Let’s study simple case. Let’s p=0. Then (A.9) takes form: 
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𝑎[(𝛾2 − 𝜔2)2 − 4𝛾2𝜔2]  − 𝑏𝑘2(𝛾2 − 𝜔2) − 𝑑𝑘4  = 0 𝛾2 − 𝜔2 =  𝑏𝑘22𝑎   ;   4𝑎𝑑 + 𝑏2 < 0    (A.10) 

Thus due to (A.10) roots c
2

1,2 (A.6) of equations (A.5) become complex numbers. 𝛾4 − 𝑏𝑘22𝑎  𝛾2 + 𝑘4(𝑏2 + 4𝑎𝑑)16𝑎2 = 0  ;  𝛾21,2 = 𝑘24𝑎  (𝑏 +/−√−4𝑎𝑑  ) 

Thus γ2
 >0 for 𝛾2 = 𝑘24𝑎  (𝑏 + √−4𝑎𝑑  ) > 0    ;      𝜔2 = 𝑘24𝑎  (−𝑏 + √−4𝑎𝑑  ) > 0  

For γ > 0 wave amplitude (A.8) grows up as exp(γt). Thus waves of small price disturbances 

π(t,x) can propagate on economic domain with exponential growth of amplitude in time and 

that may disturb sustainable economic evolution. 

  



 26 

 Appendix B 

Wave equations for perturbations of economic transactions  

Let’s start with equation for perturbations of supply s(t,z) (8.1) and take time derivative ∂/∂t: 𝑆0 𝜕2𝜕𝑡2 𝑠(𝑡, 𝒛) + 𝑆0∇ ∙ 𝜕𝜕𝑡 𝒗 = 𝛼1𝐷0∇ ∙ 𝜕𝜕𝑡 𝒖    (B.1) 

and substitute equations on velocity υ(t,z) and u(t,z) (8.2): 𝑆0 𝜕2𝜕𝑡2 𝑠(𝑡, 𝒛) − 𝛼1𝛽2𝑆0∆ 𝑠(𝑡, 𝒛) = −𝛽1𝐷0∆ 𝑑(𝑡, 𝒛)    (B.2) 

The same obtain for equation for perturbations of demand d(t,z): 𝐷0 𝜕2𝜕𝑡2 𝑑(𝑡, 𝒛) = 𝛼2𝛽1𝐷0∆ 𝑑(𝑡, 𝒛) − 𝛽2𝑆0∆ 𝑠(𝑡, 𝒛)    (B.3) 

Let’s take second derivative by time ∂2/∂t2
 of (B.2): 𝑆0 𝜕4𝜕𝑡4 𝑠(𝑡, 𝒛) − 𝑆0𝛼1𝛽2∆ 𝜕2𝜕𝑡2 𝑠(𝑡, 𝒛) = −𝐷0𝛽1∆ 𝜕2𝜕𝑡2 𝑑(𝑡, 𝒛) 

and substitute (B.3): 𝑆0 [ 𝜕4𝜕𝑡4 𝑠(𝑡, 𝒛) − 𝛼1𝛽2∆ 𝜕2𝜕𝑡2 𝑠(𝑡, 𝒛) − 𝛽1𝛽2∆2 𝑠(𝑡, 𝒛)] = −𝐷0𝛼2𝛽1𝛽1∆2𝑑(𝑡, 𝒛) (B.4) 

Now take operator ∆ of (B.2) and obtain:  𝑆0 𝜕2𝜕𝑡2 ∆𝑠(𝑡, 𝒛) − 𝑆0𝛼1𝛽2∆2𝑠(𝑡, 𝒛) = −𝐷0𝛽1∆2 𝑑(𝑡, 𝒛) 

and substitute into (B.4) obtain equations for perturbations of supply s(t,z) and demand d(t,z): [ 𝜕4𝜕𝑡4 − (𝛼1𝛽2 + 𝛼2𝛽1)∆ 𝜕2𝜕𝑡2 + 𝛽1𝛽2(𝛼1𝛼2 − 1)∆2]  𝑠(𝑡, 𝒛) = 0  (B.5) 

Let’s define 𝑎 = (𝛼1𝛽2 + 𝛼2𝛽1)    ;    𝑏 = 𝛽1𝛽2(𝛼1𝛼2 − 1)   (B.6) 

Let’s take  𝑠(𝑡, 𝒛) = 𝑠(𝒛 − 𝒄𝑡) 

and (B.5) takes form of bi-wave equation: ( 𝜕2𝜕𝑡2 − 𝑐12Δ) ( 𝜕2𝜕𝑡2 − 𝑐22Δ) 𝑠(𝑡, 𝒛) = 0 ;   𝒛 = (𝒙, 𝒚)   (B.7) 𝑐1,24 − 𝑎𝑐1,22 + 𝑏 = 0 

1. For a>0 ; b>0  there are two positive roots for squares of velocities c
2
 𝑐1,22 = 𝑎+/−√𝑎2−4𝑏2 > 0    (B.8) 

2. For a>0 ; b<0 or for a<0 ; b<0  there is one positive root for speed square 𝑐12 = 𝑎+√𝑎2−4𝑏2 > 0     (B.9) 

3. For a<0 ; b>0 there are no positive roots and thus no wave regime. 

For each positive square of speed c
2 
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𝑐2 = 𝑐𝑥2 + 𝑐𝑦2 > 0     (B.10) 

Here cx 
2
 – describes wave speed of suppliers along axes x and cy 

2
 – describes wave speed of 

consumers of goods along axes y. Thus single positive value of c
2
 means that there can be a 

lot of different waves of supply perturbations with different wave speed cx along axes x and 

speed cy along axes y. The same value c
2
 (B.8) or (B.9) may induce waves of supply s(t,z) and 

demand d(t,z) perturbations with different waves speed cs of supply and cd of demand that 

fulfill the conditions (B.10): 𝒄𝒔 = (𝒄𝒔𝒙 ;  𝒄𝒔𝒚)  𝑐𝑠2 = 𝑐𝑠𝑥2 + 𝑐𝑠𝑦2 > 0    (B.11) 𝒄𝒅 = (𝒄𝒅𝒙 ;  𝒄𝒅𝒚)   𝑐𝑑2 = 𝑐𝑑𝑥2 + 𝑐𝑑𝑦2 > 0    (B.12) 𝒄𝒔 = (𝒄𝒔𝒙 ;  𝒄𝒔𝒚)  ≠  𝒄𝒅 = (𝒄𝒅𝒙 ;  𝒄𝒅𝒚)  𝑏𝑢𝑡  𝑐𝑠2 = 𝑐𝑑2  > 0  
Let show that equations (B.5) allow propagation of supply disturbances waves with 

amplitudes growing as exponent. Let take s(t,z) as: 𝑠(𝑡, 𝒛) = cos(𝜔𝑡 − 𝒌 ∙ 𝒛) exp(𝛾𝑡)  ;    𝒌 = (𝒌𝑥, 𝒌𝑥)   (B.13) 

Function (B.13) satisfies equations (B.5) if: 

 𝜔2 = 𝛾2 +  𝑎𝑘22     4𝛾2𝜔2 = 𝑘4  (𝑏 − 𝑎24 ) > 0  ;  4𝑏 > 𝑎2 

 𝛾2 = 𝑘2 √4𝑏+3𝑎2−2𝑎8 > 0   𝜔2 =  𝑘2 √4𝑏+3𝑎2+2𝑎8 > 0 

For γ > 0 wave amplitude grows up as exp(γt). Let’s show that equations (8.1; 8.2) on 

disturbances of supply transactions from x to y and demand transactions from y to x induce 

equations on perturbations of economic variables – densities of supply Sout(t,x) from point x, 

supply Sin(t,y) to point y, demand Dout(t,y) from point y and demand Din(t,x) at point x and 

their flows. To do that let’s take integral by dy over economic domain (II.1.1; 1.2). Due to 

(II.3) supply Sout(t,x) from point x and supply Sin(t,y) to point y are defined as: 𝑆𝑜𝑢𝑡(𝑡, 𝒙) = ∫ 𝑑𝒚  𝑆(𝑡, 𝒙, 𝒚)  ;   𝑆𝑖𝑛(𝑡, 𝒚) = ∫ 𝑑𝒙  𝑆(𝑡, 𝒙, 𝒚)    (B.14.1) 

and use (7.3) to define their flows Pout(t,x) and Pin(t,y) : 𝑷𝑜𝑢𝑡(𝑡, 𝒙) = ∫ 𝑑𝒚  𝑷(𝑡, 𝒙, 𝒚)  ;   𝑷𝑖𝑛(𝑡, 𝒚) = ∫ 𝑑𝒙  𝑷(𝑡, 𝒙, 𝒚)  (B.14.2) 

The similar relations define demand Dout(t,y) from point y and demand Din(t,x) at point x and 

their flows: 𝐷𝑜𝑢𝑡(𝑡, 𝒚) = ∫ 𝑑𝒙  𝐷(𝑡, 𝒙, 𝒚)  ;   𝐷𝑖𝑛(𝑡, 𝒙) = ∫ 𝑑𝒚  𝐷(𝑡, 𝒙, 𝒚)  (B.14.3) 𝑸𝑜𝑢𝑡(𝑡, 𝒚) = ∫ 𝑑𝒙  𝑸(𝑡, 𝒙, 𝒚)  ;   𝑸𝑖𝑛(𝑡, 𝒙) = ∫ 𝑑𝒚  𝑸(𝑡, 𝒙, 𝒚)  (B.14.4) 

Economic meaning of supply Sout(t,x) - it is  total  supply of selected goods, commodities etc., 

from point x. Function Sin(t,y) describes total supply of selected goods to point y. Economic 

density function Dout(t,y) describes total demand from point y and Din(t,x) – total demand at 
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point x from entire economy. Equations on density functions Sout(t,x), Sin(t,y), Din(t,x), 

Dout(t,y) and their flows can be derived from (7.1; 7.2; 7.4; 7.5). Let’s take integrals by dx or 

dy over economic space: 𝜕𝜕𝑡 𝑆𝑜𝑢𝑡(𝑡, 𝒙) + ∇ ∙ (𝑆𝑜𝑢𝑡 𝒗𝒐𝑢𝑡) = 𝛼1 ∇ ∙  𝑸𝑖𝑛(𝑡, 𝒙)    (B.15.1)  𝜕𝜕𝑡 𝐷𝑖𝑛(𝑡, 𝒙) + ∇ ∙ (𝐷𝑖𝑛 𝒖𝒊𝒏) = 𝛼2 ∇ ∙  𝑷𝑜𝑢𝑡(𝑡, 𝒙)   (B.15.2) 𝜕𝜕𝑡 𝑷𝑜𝑢𝑡(𝑡, 𝒙) + ∇ ∙ (𝑷𝑜𝑢𝑡 𝒗𝑜𝑢𝑡) = 𝛽1 ∇𝐷𝑖𝑛(𝑡, 𝒙)     (B.15.3)  𝜕𝜕𝑡 𝑸𝑖𝑛(𝑡, 𝒙) + ∇ ∙ (𝑸𝑖𝑛 𝒖𝑖𝑛) = 𝛽2 ∇𝑆𝑜𝑢𝑡(𝑡, 𝒙)   (B.15.4) 𝑷𝑜𝑢𝑡(𝑡, 𝒙) = 𝑆𝑜𝑢𝑡(𝑡, 𝒙)𝒗𝑜𝑢𝑡(𝑡, 𝒙)  ;   𝑸𝑖𝑛(𝑡, 𝒙) = 𝐷𝑖𝑛(𝑡, 𝒙)𝒖𝑖𝑛(𝑡, 𝒙)  (B.15.5) 

Similar equations are valid for Sin(t,y), Dout(t,y) and their flows Pin(t,y), Qout(t,y). To derive 

wave equations on disturbances of Sout(t,x), Din(t,x) and their flows let’s take integrals by dy 

of (7.8; 7.9): 𝑆𝑜𝑢𝑡(𝑡, 𝒙) = 𝑆0𝑜𝑢𝑡(1 + 𝑠𝑜𝑢𝑡(𝑡, 𝒙)) ; 𝐷𝑖𝑛(𝑡, 𝒙) = 𝐷0𝑖𝑛(1 + 𝑑𝑖𝑛(𝑡, 𝒙)) (B.16.4) 𝑷𝑜𝑢𝑡(𝑡, 𝒙) = 𝑆0𝑜𝑢𝑡𝝊𝑜𝑢𝑡(𝑡, 𝒙)  ;  𝑸𝑖𝑛(𝑡, 𝒙) = 𝐷0𝑖𝑛𝒖𝑖𝑛(𝑡, 𝒙)    (B.16.5) 

Equations on disturbances sout(t,x), din(t,x) and their flows are similar to (8.1; 8.2) but 

perturbations depend on x only: 𝜕𝜕𝑡 𝑠𝑜𝑢𝑡(𝑡, 𝒙) + 𝑆0∇ ∙ 𝒗𝑜𝑢𝑡 = 𝛼1𝐷0∇ ∙ 𝒖𝑖𝑛(𝑡, 𝒙)    (B.16.6) 𝜕𝜕𝑡 𝑑𝑖𝑛(𝑡, 𝒙) + 𝐷0∇ ∙ 𝒖𝑖𝑛 = 𝛼2𝑆0∇ ∙ 𝒗𝑜𝑢𝑡(𝑡, 𝒙)    (B.16.7) 𝑆0 𝜕𝜕𝑡 𝒗𝑜𝑢𝑡(𝑡, 𝒛) = 𝛽1∇ 𝑑(𝑡, 𝒙) ;  𝐷0 𝜕𝜕𝑡 𝒖𝑖𝑛(𝑡, 𝒙) = 𝛽2∇ 𝑠(𝑡, 𝒙)  (B.16.8) 

Equations on disturbances sout(t,x) and din(t,x) as well on sin(t,x) and dout(t,x) take form 

similar to (B.5; B.6): [ 𝜕4𝜕𝑡4 − 𝑎∆ 𝜕2𝜕𝑡2 + 𝑏∆2] 𝑠𝑜𝑢𝑡(𝑡, 𝒙) = 0    (B.17.1) 

Let’s argue signs of α1, α2, β1, β2. Positive divergence 𝐷0∇ ∙ 𝒖𝑖𝑛(𝑡, 𝒙) > 0 for disturbances of 

demand flow means that demand flows out of a unit volume dV at point x and thus reduce 

amount of demand at x. Decline of demand may decline supply sout(t,x) and hence we take 

α1<0. As well positive divergence 𝑆0∇ ∙ 𝒗𝑜𝑢𝑡(𝑡, 𝒙) > 0 for disturbances of supply flow means 

that supply flows out of a unit volume dV at point x and hence decline supply at x. Reduction 

of supply at x may increase demand at this point and we take α2>0. Equations (B.16.8) model 

relations between supply flows S0υ(t,x) and gradient of demand perturbations. We propose 

that supply flows S0υ(t,x) grow up in the direction of higher demand determined by gradient 

of demand perturbations ∇𝑑(𝑡, 𝒙) and thus take β1>0. As well demand flows D0u(t,x) decline 
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in the direction of higher supply determined by gradient of supply perturbations ∇𝑠(𝑡, 𝒙) and 

thus take β2<0. Hence we obtain: 𝛼1 < 0  ;  𝛼2 > 0  ; 𝛽1 > 0  ;    𝛽2 < 0   (B.17.2) 𝑎 = (𝛼1𝛽2 + 𝛼2𝛽1) > 0 ;  𝑏 = 𝛽1𝛽2(𝛼1𝛼2 − 1) > 0  
and due to (B.8) there are two positive roots for c

2
 of (B.7). Same considerations are valid for 

equations on sin(t,x) and dout(t,x). Thus disturbances of economic variables sout(t,x) and 

din(t,x) follow bi-wave equations  ( 𝜕2𝜕𝑡2 − 𝑐12Δ)( 𝜕2𝜕𝑡2 − 𝑐22Δ)𝑠(𝑡, 𝒙) = 0    (B.17.3) 

Wave equations (B.7) on transactions disturbances induce similar wave equations on 

disturbances of –in and –out economic variables that are determined by transactions. Let’s 

show that these waves induce small fluctuations of macroeconomic variables. Let’s study 

economics under action of a single risk. Due to (II.1.1; 1.2) transactions are defined on 2-

dimensional economic domain. For (7.8) and (B.13) macroeconomic supply S(t) at moment t 

(II.4.1; 4.2) 𝑆(𝑡) = 𝑆0(1 + 𝑠(𝑡)) ;    𝑠(𝑡) = ∫ 𝑑𝑥𝑑𝑦10  𝑠(𝑡, 𝑥, 𝑦)   (B.18.1) 𝑠(𝑡) = 4 exp (𝛾𝑡)𝑘𝑥𝑘𝑦 cos (𝑘𝒙+𝑘𝑦2 − 𝜔𝑡) 𝑠𝑖𝑛 𝑘𝒙2  𝑠𝑖𝑛 𝑘𝒚2    (B.18.2) 

Hence disturbances s(t) of macroeconomic supply S(t) at moment t may grow up as exp(γt) 

for γ>0 or dissipate to constant rate S0 for γ<0 and fluctuate with frequency ω. 
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Appendix C 

The business cycle equations 

Let’s show that macroeconomic supply S(t) and demand D(t) follow fluctuations that can be 

treated as business cycles. To derive equations on S(t) and D(t) as (II.4.1) let’s take integral 

by dz=dxdy of (13.1; 13.3): 𝑑𝑑𝑡 𝑆(𝑡) = 𝑑𝑑𝑡 ∫ 𝑑𝒛 𝑆(𝑡, 𝒛) = − ∫ 𝑑𝒛  𝛻 ∙ (𝒗(𝑡, 𝒛)𝑆(𝑡, 𝒛)) + 𝑎 ∫ 𝑑𝒛  𝒛 ∙ 𝑷𝐷(𝑡, 𝒛) (C.1.1) 

First integral in the right side (C.1.1) is integral of divergence over 2-dimensional economic 

domain (6.1; 6.2) and due to divergence theorem (Strauss 2008, p.179) it equals integral of 

flux through surface of economic domain and hence equals zero as no economic fluxes exist 

outside of economic domain (6.1; 6.2). Let’s define Pz(t) and Dz(t) as: 𝑃𝑆𝑧(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝑥𝑃𝑆𝑥(𝑡, 𝑥, 𝑦) + 𝑦𝑃𝑆𝑦(𝑡, 𝑥, 𝑦) = 𝑃𝑆𝑥(𝑡) + 𝑃𝑆𝑦(𝑡)   (C.1.2) 𝑃𝐷𝑧(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝑥𝑃𝐷𝑥(𝑡, 𝑥, 𝑦) + 𝑦𝑃𝐷𝑦(𝑡, 𝑥, 𝑦) = 𝑃𝐷𝑥(𝑡) + 𝑃𝐷𝑦(𝑡) (C.1.3) 

Due to (C.1.1-1.3) equations on S(t) and D(t) take form: 𝑑𝑑𝑡 𝑆(𝑡) = 𝑎 [𝑃𝐷𝑥(𝑡) + 𝑃𝐷𝑦(𝑡) ]     ;        𝑑𝑑𝑡 𝐷(𝑡) = 𝑏 [𝑃𝑆𝑥(𝑡) + 𝑃𝑆𝑦(𝑡)] (C.1.4) 

To derive equations on Pz(t) and Dz(t) let’s use equations (13.2; 13.4) on flows PS(t), PS(t) 

and matrix operators as (13.6; 13.7).  𝑃𝑆𝑥(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝑃𝑆𝑥(𝑡, 𝑥, 𝑦) = 𝑆(𝑡)𝑣𝑥(𝑡)    (C.1.5)  𝑃𝑆𝑦(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝑃𝑆𝑦(𝑡, 𝑥, 𝑦) = 𝑆(𝑡)𝑣𝑦(𝑡)    (C.1.6) 𝑃𝐷𝑥(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝑃𝐷𝑥(𝑡, 𝑥, 𝑦) = 𝐷(𝑡)𝑢𝑥(𝑡)    (C.1.7)  𝑃𝐷𝑦(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝑃𝐷𝑦(𝑡, 𝑥, 𝑦) = 𝐷(𝑡)𝑢𝑦(𝑡)    (C.1.8) 

Similar to (C.1.1) from (13.2; 13.6; 13.7) for (C.1.5- C.1.8) obtain: 𝑑𝑑𝑡 𝑃𝑆𝑥(𝑡) = 𝑐1𝑃𝐷𝑥(𝑡)   ;    𝑑𝑑𝑡 𝑃𝐷𝑥(𝑡) = 𝑑1𝑃𝑆𝑥(𝑡)     (C.2.1) 𝑑𝑑𝑡 𝑃𝑆𝑦(𝑡) = 𝑐2𝑃𝑆𝑦(𝑡)   ;    𝑑𝑑𝑡 𝑃𝐷𝑦(𝑡) = 𝑑2𝑃𝑆𝑦(𝑡)     (C.2.2) 

As we mentioned before, flows (C.1.5-1.8) can’t have constant sign of velocities (C.1.5-1.8). 

Indeed, let’s define mean risk XS(t) of suppliers with variable E and mean risk YC(t) of 

consumers of variable E as: 𝑆(𝑡)𝑋𝑆(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝑥 𝑆(𝑡, 𝑥, 𝑦)  ;   𝑆(𝑡)𝑌𝐶(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝑦 𝑆(𝑡, 𝑥, 𝑦)  (C.2.3) 

It is easy to show that for FS(t,x,y)=0 one derive from (13.1; 13.8): 𝑑𝑑𝑡 𝑆(𝑡) = 0 ;  𝑆(𝑡) = 𝑆0 = 𝑐𝑜𝑛𝑠𝑡;   𝑑𝑑𝑡 𝑋𝑆(𝑡) = 𝑣𝑥(𝑡) ;  𝑑𝑑𝑡 𝑌𝐶(𝑡) = 𝑣𝑦(𝑡)  (C.2.4) 

Thus in the absence of interaction FS(t,x,y)=0 mean risk XS(t) of suppliers of variable E 

moves along axis X with velocity υx(t) (C.2.4) and mean risk YC(t) of consumers of variable E 
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moves along axis Y with velocity υy(t) (C.2.4). Borders of economic domain reduce motion of 

mean risks. Hence velocities υx(t) and υy(t) must change sign and should fluctuate. Let’s 

underline that relations (C.2.3, 2.4) simplify real economic processes as we neglect 

interactions between transactions FS(t,x,y) and neglect direct dependence of economic 

variables and transactions on risk coordinates z=(x,y) on economic domain. Indeed, risks 

impact on economic performance and activity of economic agents. Thus change of risk 

coordinates should change value of density functions of economic variables and transactions. 

Starting with (13.1) it is easy to show that in the presence of interactions between supply 

S(t,x,y) and demand D(t,x,y) transactions mean risks XS(t) of suppliers of variable E change 

due to two factors as: 𝑑𝑑𝑡 𝑋𝑆(𝑡) = 𝑣𝑥(𝑡) + 𝑤𝑥(𝑡)     (C2.5) 𝑤𝑥(𝑡) = [𝑋𝑆𝐹(𝑡) − 𝑋𝑆(𝑡)] 𝑑𝑑𝑡 𝑙𝑛𝑆(𝑡)    (C.2.6) 𝐹𝑆(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝐹𝑆(𝑡, 𝑥, 𝑦)  ;    𝑋𝑆𝐹(𝑡)𝐹𝑆(𝑡) = ∫ 𝑑𝑥𝑑𝑦  𝑥 𝐹𝑆(𝑡, 𝑥, 𝑦)   (C.2.7) 

Here υx(t) is determined by (13.8) and velocity wx(t) (C.2.6, 2.7) describes motion (C.2.5) of 

mean risk XS(t) (C.2.3) of suppliers along axis X due to interaction FS(t,x,y) (13.1) of supply 

and demand transactions. Mean risk XS(t) of suppliers and mean risk YC(t) of consumers 

(C.2.3) of variable E on economic domain (6.1; 6.2) are reduced by borders of economic 

domain (C.2.8):  0 ≤ 𝑋𝑆(𝑡) ≤ 1  ;   0 ≤ 𝑌𝐶(𝑡) ≤ 1      (C.2.8) 

Hence velocities υx(t) (C.1.5-1.8) and wx(t) (C.2.6-7) should fluctuate as (C.2.8) reduce 

motion of mean risks (C.2.3, 2.5). Thus (C.2.5) describes two sources of fluctuations caused 

by velocities υx(t) (C.1.5-1.8) and wx(t) (C.2.6-7). Let’s model fluctuations of flows PS(t) and 

PD(t) by equations (C.2.1-2) that describe harmonique oscillations with frequencies ω, ν: 𝜔2 = −𝑐1𝑑1 > 0  ;    𝜈2 = −𝑐2𝑑2 > 0    (C.3.1) [ 𝑑2𝑑𝑡2 + 𝜔2 ] 𝑃𝑆𝑥(𝑡) = 0  ;   [ 𝑑2𝑑𝑡2 + 𝜔2 ] 𝑃𝐷𝑥(𝑡) = 0    (C.3.2) [ 𝑑2𝑑𝑡2 + 𝜈2 ] 𝑃𝑆𝑦(𝑡) = 0   ;   [ 𝑑2𝑑𝑡2 + 𝜈2 ] 𝑃𝐷𝑦(𝑡) = 0    (C.3.3) 

Frequencies ω describe oscillations of mean risk XS(t) (C.2.3-2.4) of suppliers along axis X 

and ν describe oscillations of consumers mean risk YC(t) along axis Y. Solutions (C.3.1-3.3): 𝑃𝑆𝑥(𝑡) = 𝑃𝑆𝑥(1) sin 𝜔𝑡 + 𝑃𝑆𝑥(2) cos 𝜔𝑡 ; 𝑃𝑆𝑦(𝑡) = 𝑃𝑆𝑦(1) sin 𝜈𝑡 + 𝑃𝑆𝑦(2) cos 𝜈𝑡    (C.3.4) 𝑃𝐷𝑥(𝑡) = 𝑃𝐷𝑥(1) sin 𝜔𝑡 + 𝑃𝐷𝑥(2) cos 𝜔𝑡 ; 𝑃𝐷𝑦(𝑡) = 𝑃𝐷𝑦(1) sin 𝜈𝑡 + 𝑃𝐷𝑦(2) cos 𝜈𝑡 (C.3.5) 
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To derive equations on Pz(t) and Dz(t) let’s derive equations on their components PSx(t), 

PSy(t), PDx(t), PDy(t) (C.1.2;1.3) and use equations (13.2; 13.6). Let’s multiply equations 

(13.2) by z=(x,0) and take integral by dxdy 𝑑𝑑𝑡 𝑃𝑆𝑥(𝑡) = 𝑑𝑑𝑡 ∫ 𝑑𝑥𝑑𝑦 𝑥𝑃𝑆𝑥(𝑡, 𝑥, 𝑦) = ∫ 𝑑𝑥𝑑𝑦 [−𝑥 𝜕𝜕𝑥 (𝑣𝑥 𝑃𝑆𝑥) + 𝑐1𝑥𝑃𝐷𝑥(𝑡, 𝑥, 𝑦)] 
− ∫ 𝑑𝑥𝑑𝑦 𝑥 𝜕𝜕𝑥 (𝑣𝑥 𝑃𝑆𝑥) = ∫ 𝑑𝑥𝑑𝑦 𝑣𝑥2(𝑡, 𝑥, 𝑦)𝑆(𝑡, 𝑥, 𝑦) 

For PSx(t), PSy(t), PDx(t), PDy(t) (C.1.2;1.3) obtain equations: 𝑑𝑑𝑡 𝑃𝑆𝑥(𝑡) = 𝐸𝑆𝑥(𝑡) + 𝑐1𝑃𝐷𝑥(𝑡)  ;    𝑑𝑑𝑡 𝑃𝐷𝑥(𝑡) = 𝐸𝐷𝑥(𝑡) + 𝑑1𝑃𝑆𝑥(𝑡) 𝑑𝑑𝑡 𝑃𝑆𝑦(𝑡) = 𝐸𝑆𝑦(𝑡) + 𝑐2𝑃𝐷𝑥(𝑡)  ;    𝑑𝑑𝑡 𝑃𝐷𝑦(𝑡) = 𝐸𝐷𝑦(𝑡) + 𝑑2𝑃𝑆𝑦(𝑡) 

Let’s use (13.10) and denote ESx(t,x,y), ESy(t,x,y), EDx(t,x,y) EDy(t,x,y) and ESx(t), ESy(t), 

EDx(t) EDy(t) as: 𝐸𝑆𝑥(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝐸𝑆𝑥(𝑡, 𝑥, 𝑦) = ∫ 𝑑𝑥𝑑𝑦 𝑣𝑥2(𝑡, 𝑥, 𝑦)𝑆(𝑡, 𝑥, 𝑦) = 𝑆(𝑡)𝑣𝑥2(𝑡) (C.4.1) 𝐸𝑆𝑦(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝐸𝑆𝑦(𝑡, 𝑥, 𝑦) = ∫ 𝑑𝑥𝑑𝑦 𝑣𝑦2(𝑡, 𝑥, 𝑦)𝑆(𝑡, 𝑥, 𝑦) = 𝑆(𝑡)𝑣𝑦2(𝑡) (C.4.2) 𝐸𝐷𝑥(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝐸𝐷𝑥(𝑡, 𝑥, 𝑦) = ∫ 𝑑𝑥𝑑𝑦 𝑢𝑥2(𝑡, 𝑥, 𝑦)𝐷(𝑡, 𝑥, 𝑦) = 𝐷(𝑡)𝑢𝑥2(𝑡) (C.4.3)  𝐸𝐷𝑦(𝑡) = ∫ 𝑑𝑥𝑑𝑦 𝐸𝐷𝑦(𝑡, 𝑥, 𝑦) = ∫ 𝑑𝑥𝑑𝑦 𝑢𝑦2(𝑡, 𝑥, 𝑦)𝐷(𝑡, 𝑥, 𝑦) = 𝐷(𝑡)𝑢𝑦2(𝑡)  (C.4.4) 

Equations on PSx(t), PSy(t), PDx(t), PDy(t) take form: [ 𝑑2𝑑𝑡2 + 𝜔2] 𝑃𝑆𝑥(𝑡) = 𝑑𝑑𝑡 𝐸𝑆𝑥(𝑡) + 𝑐1𝐸𝐷𝑥(𝑡) ; [ 𝑑2𝑑𝑡2 + 𝜔2] 𝑃𝐷𝑥(𝑡) = 𝑑𝑑𝑡 𝐸𝐷𝑥(𝑡) + 𝑑1𝐸𝑆𝑥(𝑡) (C.4.5) [ 𝑑2𝑑𝑡2 + 𝜈2] 𝑃𝑆𝑦(𝑡) = 𝑑𝑑𝑡 𝐸𝑆𝑦(𝑡) + 𝑐2𝐸𝐷𝑦(𝑡) ;  [ 𝑑2𝑑𝑡2 + 𝜈2] 𝑃𝐷𝑦(𝑡) = 𝑑𝑑𝑡 𝐸𝐷𝑦(𝑡) + 𝑑2𝐸𝑆𝑦(𝑡) (C.4.6) 

Equations (C.4.5-4.6) describe fluctuations of PSx(t), PSy(t), PDx(t), PDy(t) with frequencies ω 

and ν under action of ESx, ESy, EDx, EDy (C.4.1-4.4). To close system of ordinary 

differential equations (C.4.5-4.6) let’s define equations on ESx, ESy, EDx, EDy. Let’s outline 

that relations (C.4.1-4.4) are proportional to product of supply S(t) and velocity square υ2
(t) 

and looks alike to energy of a particle with mass S(t) and velocity square velocity υ2
(t). We 

underline that this is only similarity between (C.4.1-4.5) and energy of a particle and have no 

further analogies. To define equations on (C.4.1-4.5) let’s propose that: 𝜕𝜕𝑡 𝐸𝑆𝑥(𝑡, 𝑥, 𝑦) + 𝜕𝜕𝑥 (𝑣𝑥𝐸𝑆𝑥) = 𝜇1𝐸𝐷𝑥  ;   𝜕𝜕𝑡 𝐸𝐷𝑥(𝑡, 𝑥, 𝑦) + 𝜕𝜕𝑥 (𝑢𝑥𝐸𝐷𝑥) = 𝜂1𝐸𝑆𝑥   (C.5.1) 𝜕𝜕𝑡 𝐸𝑆𝑦(𝑡, 𝑥, 𝑦) + 𝜕𝜕𝑦 (𝑣𝑦𝐸𝑆𝑦) = 𝜇2𝐸𝐷𝑦  ;   𝜕𝜕𝑡 𝐸𝐷𝑦(𝑡, 𝑥, 𝑦) + 𝜕𝜕𝑦 (𝑢𝑦𝐸𝐷𝑦) = 𝜂2𝐸𝑆𝑥   (C.5.2) 𝛾12 = 𝜇1𝜂1 > 0  ;  𝛾22 = 𝜇2𝜂2 > 0      (C.5.3) 

Equations (C.5.1-3) give equations on ESx(t), ESy(t), EDx(t), EDy(t) [ 𝑑2𝑑𝑡2 − 𝛾12 ] 𝐸𝑆𝑥(𝑡) = 0  ;   [ 𝑑2𝑑𝑡2 − 𝛾12 ] 𝐸𝐷𝑥(𝑡) = 0    (C.5.4) 
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[ 𝑑2𝑑𝑡2 − 𝛾22 ] 𝐸𝑆𝑦(𝑡) = 0  ;   [ 𝑑2𝑑𝑡2 − 𝛾22 ] 𝐸𝐷𝑦(𝑡) = 0    (C.5.5) 

Let’s explain economic meaning of (C.5.1-5.5): “energies” ESx(t), ESy(t), EDx(t), EDy(t) 

grow up or decay in time by exponent exp(γ1t) and exp(γ2 t)  that can be different for each risk 

axis. Here γ1 define exponential growth or decay in time of ESx(t) induced by motion of 

suppliers along axis X and γ2 describe exponential growth or decrease in time of ESy(t), 

induced by motion of consumers along axis Y. The same valid for EDx(t) and EDy(t) 

respectively. Solutions of (C.5.4-5.5; C.4.5-4.6) with exponential growth have form: 𝐸𝑆𝑥(𝑡) = 𝐸𝑆𝑥(1) 𝑒𝑥𝑝 𝛾1𝑡   ;  𝐸𝑆𝑦(𝑡) = 𝐸𝑆𝑦(1) 𝑒𝑥𝑝 𝛾2𝑡 𝐸𝐷𝑥(𝑡) = 𝐸𝐷𝑥(1) 𝑒𝑥𝑝 𝛾1𝑡  ;   𝐸𝐷𝑦(𝑡) = 𝐸𝐷𝑦(1) 𝑒𝑥𝑝 𝛾2𝑡 𝑃𝑆𝑥(𝑡) = 𝑃𝑆𝑥(1) sin 𝜔𝑡 + 𝑃𝑆𝑥(2) cos 𝜔𝑡 + 𝑃𝑆𝑥(3) 𝑒𝑥𝑝 𝛾1𝑡 𝑃𝑆𝑦(𝑡) = 𝑃𝑆𝑦(1) sin 𝜈𝑖𝑡 + 𝑃𝑆𝑦(2) cos 𝜈𝑖𝑡 + 𝑃𝑆𝑦(3) 𝑒𝑥𝑝 𝛾2𝑡 𝑃𝐷𝑥(𝑡) = 𝑃𝐷𝑥(1) sin 𝜔𝑡 + 𝑃𝐷𝑥(2) cos 𝜔𝑡 + 𝑃𝐷𝑥(3) 𝑒𝑥𝑝 𝛾1𝑡 𝑃𝐷𝑦(𝑡) = 𝑃𝐷𝑦(1) sin 𝜈𝑖𝑡 + 𝑃𝐷𝑦(2) cos 𝜈𝑖𝑡 + 𝑃𝐷𝑦(3) 𝑒𝑥𝑝 𝛾2𝑡 

Macroeconomic supply S(t) of variable E as solution of (C.1.4) takes form: 𝑆(𝑡) = 𝑆(0) + 𝑎[𝑆𝑥(1) sin 𝜔𝑡 + 𝑆𝑥(2) cos 𝜔𝑡 + 𝑆𝑦(1) sin 𝜈𝑡 + 𝑆𝑦(2) cos 𝜈𝑡] + 𝑎[𝑆𝑥(3)𝑒𝑥𝑝 𝛾1𝑡 +𝑆𝑦(3) 𝑒𝑥𝑝 𝛾2𝑡]   (C.5.6) 

Initial values and equations (C.1.4-C.5.5) define simple but long relations on constants Sx(j), 

Sy(j), j=0,..3 and we omit them here. Similar relations valid for demand D(t). 
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