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Abstract

This paper examines the market-wide effects of front-running and information-sharing by
dealers in a quantitive microstructure model of Forex trading. Recent investigations by gov-
ernment regulators and court proceedings reveal that there has been widespread sharing of
information among Forex dealers working at major banks, as well as the regular front-running
of large customer orders. I use the model to study the effects of unilateral front-running, where
individual dealers trade ahead of their own customer orders; and collusive front-running where
individual dealers trade ahead of another dealer’s customer order based on information that was
shared among a group of dealers. I find that both forms of front-running create an information
externality that significantly affects order flows and Forex prices by slowing down the process
through which inter-dealer trading aggregates information from across the market. Font-running
reduces dealers’ liquidity provision costs by raising the price customers pay to purchase Forex,
and lowering the price they receive when selling Forex. These cost reductions are substantial;
they lower costs by more than 90 percent. Front-running also affects other market participants
that are not directly involved in front-running trades. The information externality makes these
participants less willing to speculate on their private information when trading with dealers.
This indirect effect of front-running can reduce participants’ expected returns by as much as 10
percent. My analysis also shows that collusive front-running has larger effects on order flows
than unilateral front-running because information-sharing reduces the risks dealers face when
trading ahead of customer orders. However, in other respects, the effects of collusive and uni-
lateral front-running are quite similar. Greater collusion lowers the costs of providing liquidity
and it reduces other participants’ expected returns, but the effects are small.
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Introduction

Foreign currency (Forex) trading appears to take place in a highly competitive environment. Since

the mid-1990s, major currencies have traded almost continuously between large numbers of counter-

parties on multiple electronic platforms in high volumes and with very tight bid-ask spreads. How-

ever, in recent years, government regulators and enforcement authorities across the globe undertook

investigations into whether many of the world’s largest dealer-banks were acting anti-competitively

in the Forex market. Between 2014 and 2015 reports issued by the U.S. Department of Justice, the

Commodity Futures Trading Commission, New York Department of Financial Services, the U.K.

Financial Conduct Authority, and the Swiss Financial Market Supervisory Authority all concluded

that dealer-banks engaged in a range of collusive conduct aimed at manipulating the Forex bench-

marks, specifically the ECB and WMR Fixes.1 The investigators also found that the dealer-banks

had engaged in other forms of anticompetitive conduct, including the collusive sharing of informa-

tion and front-running. Following these reports, the U.S Department of Justice and the Federal

Reserve Board indicted and placed lifetime bans on more than a dozen individual FX dealers and

in 2017 a dealer was convicted of wire fraud for his part in a scheme to front-run a $3.5 billion

trade.2 In addition, multiple law-suites have been brought before the courts in the United States

and Canada alleging that dealer-banks engaged in anti-competitive behavior that harmed investors.

By the end of 2018, these investigations and law-suites produced fines and settlements totaling over

$11 billion.

This paper examines how the anti-competitive behavior identified by government regulators

and enforcement authorities affects the spot Forex market. In particular, I use a quantitative

microstructure model to analyze how the collusive sharing of information and front-running by

dealer-banks impacts the behavior of Forex prices, trading flows and the welfare of all market

participants. According to the investigations and court proceedings, there has been wide-spread

information-sharing among dealer-banks concerning their inventory positions and pending customer

Forex orders (i.e., orders from non-dealers). I use the model to examine how such information-

1Information on these investigations can be found at: DOJ Press Release, Five Major Banks Agree
to Parent Level Guilty Pleas (May 20, 2015), https://www.justice.gov/opa/pr/five-major-banks-agree-parent-
level-guilty-pleas. CFTC Press Release No. 7056-14, CFTC Orders Five Banks to Pay over $1.4 Bil-
lion in Penalties for Attempted Manipulation of Foreign Exchange Benchmark Rates (Nov. 12, 2014),
http://www.cftc.gov/PressRoom/PressReleases/pr7056-14. DFS Press Release, NYDFS Announces Barclays to
Pay $2.4 Billion, Terminate Employees for Conspiring to Manipulate Spot FX Trading Market (May 20, 2015),
http://www.dfs.ny.gov/about/press/pr1505201.htm. FCA Press Release, FCA fines five banks 1.1 billion for FX fail-
ings and announces industry-wide remediation program (Nov. 12, 2014), http://www.fca.org.uk/news/fca-fines-five-
banks-for-fx-failings. FINMA Press Release, FINMA sanctions foreign exchange manipulation at UBS (Nov. 12,
2014), http://www.finma.ch/e/aktuell/pages/mm-ubs-devisenhandel-20141112.aspx.

2See, U.S. v. Johnson, No. 16-cr-457-NCG-1 (E.D.N.Y.).
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sharing affects trading across the market. The investigations also revealed that the dealer-banks

regularly front-run large customer orders. In this practice, a dealer establishes a speculative position

before executing the customer’s order so as to profit from its effect on prices. For example, a dealer

will buy Forex before executing a large Forex purchase on behalf of a customer with the aim of

making a capital gain from the rise in prices produced by the execution of the large purchase. I use

the model to study the effects of unilateral front-running, where individual dealers “trade ahead”

of their own customer orders; and collusive front-running where individual dealers trade ahead of

another dealer’s pending customer order based on information that was shared among a group of

dealers.

The model I develop extends earlier multiple-dealer models of Forex trading in Lyons (1997),

Evans and Lyons (2002) and Evans (2011). The model describes trading between a large num-

ber of dealer-banks (hereafter dealers), and two groups of customers called investors and hedgers.

Trading takes place between dealers in the wholesale tier of the market, and between dealers and

their customers in the retail tier. Dealers are risk-averse and choose their trades and price-quotes

optimally in both tiers of the market. Investors are also risk averse and optimally determine the

orders they place with dealers in the retail tier. In contrast, dealers receive orders from hedgers that

are determined by an exogenous liquidity factor. The model provides a rich environment to study

the market-wide effects of information-sharing and front-running. In particular, I analyze how the

equilibrium behavior of prices and trading flows change when dealers share information about their

customer orders, and when they front-run hedgers’ orders, both unilaterally and collusively.

My analysis produces several noteworthy findings:

1. In the absence of front-running, the sharing of customer-order information among dealers

increases the volatility of aggregate inter-dealer order flows but has little impact on equilibrium

prices or the welfare of dealers and investors.

2. Risk-averse dealers have a strong incentive to unilaterally front-run their own customer orders,

even when the execution of those orders has no impact on prices.

3. In an equilibrium where dealers have the opportunity to front-run their own customer orders,

trading ahead of those orders creates an information externality that has significant effects on

trading flows and prices. The externality slows down the process by which inter-dealer trading

aggregates the information that is ultimately embedded into the prices, which in turn affects

the trading decisions of both dealers and investors.

4. Front-running reduces the costs dealers incur from providing liquidity to hedgers. It raises the

price hedgers pay when they are net purchasers of Forex, and reduces the price they receive

2



they are net sellers of Forex. These effects are substantial. They reduce dealers’ costs of

providing liquidity by more than 90 percent.

5. Front-running also affects the welfare of dealers and investors. The information externality

makes risk-averse investors less willing to speculate on their private information when trading

with dealers, so they make smaller trading profits when that information becomes embedded

in future prices. This indirect effect of front-running can reduce investors’ expected returns

by as much as 10 percent. The reduction in investors’ trading profits also benefits dealers,

accounting for approximately half of the reduction in the total costs of providing liquidity

across the market.

6. Collusive front-running has larger effects on aggregate inter-dealer order flows than unilateral

front-running because information-sharing reduces the risks dealers face when trading ahead

of customer orders. In other respects, the effects of collusive and unilateral front-running are

quite similar. Greater collusion lowers the costs of providing liquidity to customers, and it

reduces investors trading profits, but the effects are small.

It is worth emphasizing that these results address the impact of information-sharing and front-

running across the entire market. In particular, my analysis looks beyond the direct impact of shared

information or front-running by individual dealers to consider their equilibrium effects on the trading

decisions of other dealers and investors. This perspective counters the widespread assumption that

the effects of front-running are not market-wide (Kyle and Viswanathan, 2008). It is also empirically

important because even though dealer information-sharing and front-running appear to have been

widespread, it is unlikely to have directly involved more than a small fraction of all trades in the

market. In my analysis, dealers do not front-run investors’ trades or share information about those

trades, so the impact of information-sharing and front-running on investors occurs indirectly via

changes in the behavior of equilibrium prices. In this sense, the fall in investors’ returns represents

collateral damage from dealer front-running.

The model shows that front-running by individual dealers has a market-wide impact because it

creates an externality that affects how the information contained in external Forex orders becomes

embedded in the prices dealers quote. In the absence of front-running, dealers trade in the wholesale

tier to replenish their inventories after filling investor orders from earlier in the day. As in other

models (e.g., Lyons, 1997, and Evans, 2011), the aggregate order flow produced by this inter-dealer

trading contains information on the market-wide imbalance in investors’ orders, which dealers then

use to revise their price quotes. Front-running disrupts this process. When individual dealers learn

about their future orders from hedgers, the information becomes an additional factor determining

the trades they initiate with other dealers. This means that the aggregate order flow produced by
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inter-dealer trading now contains information on the imbalance in past external orders from investors

and future orders from hedgers. Because dealers draw inferences from order flow about the price

they should quote to share risk efficiently across the market, when the information conveyed by

order flow changes, so too do dealer’s inferences and the prices they quote based on a given order

flow. Thus, front-running affects the determinants of aggregate order flow and its price-impact.

These equilibrium effects feedback on dealers’ decisions to front-run in the wholesale tier, and they

affect how investors trade in the retail tier.

This paper contributes to the literature on the manipulation of securities prices; originating

with Hart (1977), Vila (1989), and Allen and Gale (1992). Its closest antecedents in that literature

appear in the work on dual and predatory trading.3 Rochet and Vila (1994) examine a static dual

trader model in which a monopolist trades on his own account and processes all the liquidity trades

from retail customers. They show that the equilibrium does not depend on whether the monopolist

sees the liquidity trades because the price-impact of order flow endogenously adjusts to changes in

the monopolists’ information. This irrelevance result counters the widespread intuition that dual

trading must harm liquidity traders, as a monopolist will exploit information about liquidity trades

that drive prices away from true asset values. However, the irrelevance result breaks down in a

dynamic setting. Bernhardt and Taub (2008) show that a monopolist with knowledge of current

and future liquidity trades can gain by front-running future liquidity trades. Predatory trading

models examine situations where some traders become aware of another trader’s need to liquidate a

position. In Brunnermeier and Pedersen (2005), so-called predator traders sell ahead of or alongside

the liquidating trader, before reversing their positions. Bessembinder et al. (2016) examine how

this particular type of strategic trading depends on the price-impact of trades and on competition

between the predators (see, also: Admati and Pfleiderer, 1991, Carlin, Lobo, and Viswanathan,

2007, and Schied and Schöneborn, 2009). My analysis contains elements of both the dual and

predatory theories. Forex dealers act as dual traders insofar as they fill the external orders from

customers in the retail tier and initiate trades with other dealers in the wholesale tier of the market.

Dealers also could be viewed as engaging in predatory trading when they use the information on

the pending external orders they receive from hedgers to trade strategically in the wholesale tier.

This paper is also related to research on Forex benchmarks, such as the WMR and ECB Fixes.

Melvin and Prins (2015) drew attention to the fact that global portfolio managers have a strong

3Models of security price manipulation cover a wide range of topics; including manipulation in futures via corners
and squeezes (see, e.g., Kumar and Seppi, 1992) and the manipulation of closing equity prices (see, e.g., Cushing and
Madhavan, 2000, Hillion and Suominen, 2004, and Comerton-Forde and Putnignvs, 2011), but these models have
limited applicability to Forex market. Manipulation via corners and squeezes is impractical for major currencies,
while pump-and-dump schemes requiring the release of credible but false information that moves Forex prices are
implausible. Evans (2018) discusses the differences between the manipulation of closing equity prices and Forex
benchmarks.
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hedging incentive to submit orders that execute at the Fix price, particularly at the end of each

month. According to the reports issued by government regulators, transcripts from electronic chat-

rooms show that a number of dealers collusively front-ran the Fix orders they received from portfolio

managers and others. In Evans (2018), I found that Forex prices were unusually volatile around

WMR 4:00 pm Fix, and that Forex returns were negatively correlated either side of 4:00 pm (see, also

Ito and Yamada, 2015). Furthermore, these empirical findings were inconsistent with a competitive

model of Fix trading. In that model, dealers do not front-run their Fix orders because the associated

gain is offset by an endogenous change in the composition of the orders. In this paper, dealers

can distinguish between customers who have price-insensitive reasons for trading (i.e., hedgers)

and price-sensitive reasons (i.e., investors), and can front-run the price-insensitive orders. The

front-running of selected customer orders is consistent with the evidence provided by government

regulators and trial testimony. Osler and Turnbull (2017) also study dealer trading around the

Fix in a model where trades are assumed to have a permanent price-impact that is proportional

to the size of order flow. They emphasize that dealers trade strategically; front-running their own

Fix orders and anticipating how the front-running by other dealers affects prices. Strategic trading

also plays an important role in my model because it determines how aggregate order flows convey

information that dealers use to quote prices. Unlike Osler and Turnbull (2017) and other strategic

trading models, the price-impact of trade is determined endogenously in my model from dealers’

optimal quotes.

The remainder of the paper is structured as follows: Section 1 presents the model. The next

section examines the equilibrium where dealers have no opportunity to share information about or

front-run their customer orders. This serves as a benchmark for the rest of the analysis. Section

3 introduces front-running. I first examine why dealers have an incentive to unilaterally front-

run their own customer orders in the benchmark equilibrium. Next, I analyze the equilibrium

effects of unilateral front-running by all dealers. Section 4 considers the effects of collusive front-

running where dealers share information about pending external orders. Section 5 examines how

information-sharing and front-running affect dealers’ and investors’ welfare. Section 6 concludes.

1 The Benchmark Model

I study the effects of dealer collusion and front-running in a standard microstructure model of OTC

Forex trading. The overall structure of the model extends Evans (2011) with an additional round

of trading and the inclusion of two types of Forex customers. This section presents the benchmark

version of the model in which collusion and front-running are absent. In the following sections, I

introduce dealer front-running and collusion and study how these activities affect the equilibrium.
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Figure 1: Benchmark Model Timing
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1.1 Overview

The model describes trading between a large number of dealers, investors, and hedgers over a trading

day. There is one risky asset that represents Forex and one risk-free asset with a daily return of 1+r.

Market participants comprise a continuum of investors, a continuum of hedgers, and a finite number

of Forex dealers. Both investors and dealers are risk-averse and choose their trades optimally, while

hedgers trade for exogenous reasons. There are four rounds of trading each day; denoted as i, ii, iii

and iv. When necessary, I use the notation Xt:j to identify variable X in round j = {i, ii, iii iv}

on day t. Figure 1 shows the sequence of events.
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At the start of round i on day t, public information arrives in the form of a payoff, Pt, paid

to the current holders of Forex. Each investor n also receives foreign income, Y n
t . This is private

information to each investor and provides their motive for trading Forex. Next, each dealer d

simultaneously and independently quotes a scalar price, Sd
t:i, at which they will fill investors’ orders

to buy or sell Forex. Prices are observed by all dealers and investors and are good for orders of

any size. Each investor n then places their optimally chosen order, On
t:i, where positive (negative)

values denote purchases (sales) of Forex. Orders may be placed with more than one dealer. If two

or more dealers quote the same price, the order is randomly assigned among them. Dealers then fill

the investors’ orders they receive.

Round II is a round of inter-dealer trading. As above, each dealer d simultaneously and inde-

pendently quotes a scalar price Sd
t:ii at which they will trade Forex with other dealers. Quoted prices

are observed by all and are good for inter-dealer trades of any size. Each dealer then simultane-

ously and independently trades on the quotes. I denote the Forex orders made by dealer d as T d
t:ii

and orders received by dealer d as Zd
t:ii. When dealer d initiates a purchases (sale) of Forex, T d

t:ii is

positive (negative). Positive (negative) values of Zd
t:ii denote purchases (sales) of Forex initiated by

another dealer. Once again, trading with multiple dealers is feasible. If multiple dealers quote the

same price, trades are allocated equally between them. At the end of round-ii trading all dealers

observe aggregate inter-dealer order flow, Xt:ii =
P

d

d=1 T
d
t:ii.

At the start of round iii, dealers quote prices Sd
t:iii at which they will fill Forex orders from

investors, hedgers and other dealers. Each investor n and hedger h then place their orders, On
t:iii

and H
h
t:iii, with dealers following the protocol in round i. Dealers then engage in another round of

inter-dealer trading (as in round ii) and fill their orders from investors and hedgers. At the end of

the round, all dealers observe aggregate inter-dealer order flow, Xt:iii =
P

d

d=1 T
d
t:iii.

Finally, to begin round iv, all dealers quote prices Sd
t:iv for investor and inter-dealer trades.

Investors then place their orders O
n
t:iv with dealers. After dealers have filled these orders, they

engage in inter-dealer trade as in rounds ii and iii.

Before describing the details of the model, a few comments concerning its structure are in

order. In this benchmark configuration, the model describes the process through which inter-dealer

trading aggregates the information contained in investor and hedgers’ orders, and dealers use their

observations on aggregate order flow to embed that information into their price quotes. Investors’

orders in rounds i, iii and iv convey information about foreign income, while hedgers’ orders convey

information about exogenous shocks to aggregate hedging demand. Inter-dealer trading in rounds

ii and iii aggregates the information from earlier customer orders. In Section 3, I make one small

modification to accommodate front-running: hedgers must now place their orders with dealers

immediately after they observe round-ii prices. This means that dealers have advanced information
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on the hedgers’ orders they must fill in round iii when they trade with other dealers in round ii.

One focal point of my analysis is on how dealers use this information. Notice, also, that dealers

use their observations on aggregate orders flows from inter-dealer trading in rounds ii and iii to

determine the prices they quote at the start of the next trading round. Thus, the price-impact of

order flow is determined endogenously as part of the model’s equilibrium.

1.2 Market Participants

1.2.1 Investors

There are a continuum of investors indexed by n ∈ [0, 1]. Each investor chooses Forex orders on

day t to maximize expected utility defined over wealth on day t+ 1:

Un
t:j = E

⇥

−ω exp(−ωWn
t+1:i)|Ω

n
t:j

⇤

, (1)

with ω > 0, where Wn
t+1:i is the wealth of investor n at the start of round i on day t + 1, and Ωn

t:j

is the information available to the investor when making their round j trading decision. Investors

receive two pieces of information in round i: public information on the Forex payoff and private

information on their foreign income. The payoff follows a random walk with daily increments,

Pt = Pt�1 + Vt, Vt ∼ i.i.d.N(0,σ2
v
), (2)

while foreign income comprises an aggregate component Yt and an idiosyncratic component εnt ,

Y n
t = Yt + εnt εnt ∼ i.i.d.N(0,σ2

ε). (3)

Investors do not initially observe either income component but the value of Yt is inferred from

their observation of dealers’ price quotes over the trading day. I denote the set of d = 1, 2..d price

quotes in round j by {Sd
t:j}. Investors’ information evolves as Ωn

t:i =
�

{Sd
t:i}, Y

n
t ,Pt,Ω

n
t�1:iv

 

and

Ωn
t:j = {{Sd

t:j},Ω
n
t:j�1} for rounds j = {ii, iii, iv}.

Investors place Forex orders with dealers at the start of rounds i, iii and iv that maximize

expected utility subject to the following sequence of budget constraints:

Wn
t:iv = An

t:iii∆St:iv +An
t:i∆St:iii +Wn

t:i + St:iY
n
t , (4a)

Wn
t+1:i = An

t:ivRt+1 + (1 + r)Wn
t:iv, (4b)

where ∆St:j = St:j−St:j�1 is the change in price between rounds j−1 and j, Rt+1 = St+1:i+Pt+1−
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(1 + r)St:iv is the overnight excess return on Forex, and An
t:j is investor n’s holding of Forex after

trading in round j. In round i, investor n chooses an order of On
t:i = An

t:i−An
t�1:iv−Y n

t , where An
t:i is

their desired round-i position that maximizes Un
t:i subject to (4) with information Ωn

t:i. In round iii,

the investor’s order is On
t:iii = An

t:iii−An
t:i, where their choice for An

t:iii maximizes Un
t:iii subject to (4)

with information Ωn
t:iii. Similarly, their round iv order is O

n
t:iv = An

t:iv − An
t:iii, where the choice for

An
t:iv maximizes Un

t:iv subject to (4b) with information Ωn
t:iv. Thus, positive (negative) values for On

t:j

represent investors’ purchase (sale) orders of Forex because they facilitate an increase (decrease) in

their desired Forex position. Notice, also, that the Forex orders placed in any round will generally

differ across investors because they are determined by different information and existing positions.

Despite this heterogeneity in investors’ orders, it turns out that in equilibrium investors hold the

entire stock of Forex overnight. I denote this stock by At =
´ 1
0 An

t:ivdn.

1.2.2 Hedgers

Hedgers provide a source of external Forex orders that do not depend on Forex prices or other

market conditions. There is a continuum of hedgers indexed by h ∈ [0, 1] who place Forex orders

H
h
t at the start of round iii. Individual hedger’s orders comprise a common component Ht and

an idiosyncratic component ξht . The common component depends on the stock of Forex held by

investors overnight, and a random shock:

Ht = (1− ψ)At�1 +Ht Ht ∼ i.i.d.N(0,σ2
h
), (5)

with 0 < ψ < 1. This specification implies that hedgers Forex orders on day t are exogenous with

respect to Forex trading on day t. I assume that Ht depends on At�1 for analytical convenience -

it ensures that At follows a stationary AR(1) process in equilibrium which simplifies the analysis.

1.2.3 Dealers

Dealers play a central role in the model. Unlike investors and hedgers, there are d dealers in the

market (indexed by d) that act strategically when choosing their price quotes and engaging in inter-

dealer trade. These quote and trading decisions take the form of a multi-stage simultaneous move

game. One stage of the game occurs at the start of each round when dealers must simultaneously

quote prices, {Sd
t:j}. The other stage occurs in rounds ii, iii and iv when each dealer simultaneously

initiates trades against other dealers’ quotes. At each decision point on day t, dealer d chooses a

quote or trade that maximizes expected utility defined over wealth on day t+1, given the equilibrium

decisions of other dealers. The resulting quotes and trades identify a Bayesian-Nash Equilibrium

(BNE).
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Dealers receive three types of information during the trading day: (i) public information on the

Forex payoff in round i, (ii) market-wide information on prices and aggregate inter-dealer order

flows, and (iii) private information on the Forex orders they receive from investors, hedgers, and

other dealers. It proves useful to distinguish between the information available to dealer d at the

start of each round j, Id
t:j , and the information available when trading decisions are made, Fd

t:j .

During day t, these information sets evolve according to

Id
t:i =

n

Pt,F
d
t�1:iv

o

, Fd
t:i = {{Sd

t:i}, I
d
t:i}, (6a)

Id
t:ii =

n

O
d
t:i,F

d
t:i

o

, Fd
t:ii =

n

{Sd
t:ii}, I

d
t:ii

o

, (6b)

Id
t:iii =

n

Xt:ii, Z
d
t:ii,F

d
t:ii

o

, Fd
t:iii =

n

O
d
t:iii,H

d
t , {S

d
t:iii}, I

d
t:iii

o

, (6c)

Id
t:iv =

n

Xt:iii, Z
d
t:iii,F

d
t:iii

o

, Fd
t:iv =

n

O
d
t:iv, {S

d
t:iv}, I

d
t:iv

o

. (6d)

Each dealer d enters day t with information Fd
t�1:iv and observes the new Forex payoff Pt, so they

begin with information Id
t:i =

�

Pt,F
d
t�1:iv

 

when quoting round-i prices. After round-i prices have

been quoted, dealer d’s information is Fd
t:i = {{Sd

t:i}, I
d
t:i}. By the start of round ii, the dealer has

additional information on the investors’ orders received in round i, which are denoted by O
d
t:i, so

Id
t:ii =

�

O
d
t:i,F

d
t:i

 

. This information is supplemented by dealers’ round-ii quotes {Sd
t:ii} before the

dealer trades in round ii using Fd
t:ii =

�

{Sd
t:ii}, I

d
t:ii

 

. By the start of round iii, the dealer knows the

orders he received from other dealers during round ii, Zd
t:ii, and aggregate order flow, Xt:ii, so these

variables appear in Id
t:iii. Next, dealers quote round iii prices and receive orders from investors and

hedgers, Od
t:iii and H

d
t , so these variables add to the information used in making round-iii trading

decisions Fd
t:iii. By the start of round iv, each dealer knows the orders they received from other

dealers and aggregate order flow from round iii, so these variables appear in Id
t:iv. Finally, by the

time dealers trade in round iv, they know prices {Sd
t:iv} and investors’ orders, Od

t:iv.

Each dealer d quotes prices and makes trading decisions to maximize expected utility

Ud
t:j = E

h

−ω exp(−ωW d
t+1:i)|Ω

d
t:j

i

, (7)

where W d
t+1:i is the wealth of dealer d at the start of round i on day t+1, and Ωd

t:j is the information

available to the dealer when making the decision (i.e., Ωd
t:j = Id

t:j when the dealer quotes prices and

Ωd
t:j = Fd

t:j when the dealer initiates inter-dealer trades). Because all price quotes are observable to

market participants and are good for any amount, the BNE strategy for each dealer is to quote a

common price at the start of each trading round (i.e., Sd
t:j = St:j for d = 1, 2, ..d). Below I show how

this price depends on dealers’ common information, It:j = ∩dI
d
t:j . The BNE strategy for dealers’

10



inter-dealer trades in rounds ii, iii and iv take the form:

T d
t:ii = ℘d

t:ii + E
h

Zd
t:ii|F

d
t:ii

i

−Ad
t:i, (8a)

T d
t:iii = ℘d

t:iii + E
h

Zd
t:iii|F

d
t:iii

i

+H
d
t +O

d
t:iii −Ad

t:ii, and (8b)

T d
t:iv = ℘d

t:iv + E
h

Zd
t:iv|F

d
t:iv

i

+O
d
t:iv −Ad

t:iii, (8c)

where ℘d
t:j , denotes the dealer’s desired position in round j, and Ad

t:j is the dealer’s actual Forex

holding at the end of round j. In words, the dealer’s BNE strategy is to initiate trades that achieve

their desired position net the orders from investors, hedgers and other dealers they expect to fill. In

rounds iii and iv dealers condition their trades on the orders from investors Od
t:j and hedgers Hd

t . In

contrast, dealers cannot condition their trades on the orders from other dealers, Zd
t:j , because inter-

dealer trading decisions are made simultaneously. Instead, their BNE strategy is based on expected

orders, E[Zd
t:j |F

d
t:j ]. As a consequence, dealers actual end-of-round positions are Ad

t:j = ℘d
t:j − ξdt:j ,

where ξdt:j = Zd
t:j − E[Zd

t:j |F
d
t:j ] is the error in forecasting the incoming orders from other dealers.

Dealers choose their desire positions ℘d
t:j to maximize expected utility subject to the sequence

of the budget constraints:

W d
t:ii = W i

d,t +Ad
t:i∆St:ii, (9a)

W d
t:iii = W d

t:ii + (℘d
t:ii − ξdt:ii)∆St:iii, (9b)

W d
t:iv = W d

t:iii + (℘d
t:iii − ξdt:iii)∆St:iv, and (9c)

W d
t+1:i = (1 + r)W d

t:iv + (℘d
t:iv − ξdt:iv)Rt+1, (9d)

where Ad
t:i = Ad

t�1:iv −O
d
t:i. In round ii, dealer d chooses ℘d

t:ii to maximize Ud
t:ii subject to (9) with

information Fd
t:ii. To implement this choice, they initiate inter-dealer trades T d

t:ii identified in (8a).

Similarly, dealer d chooses ℘d
t:iii to maximize Ud

t:iii with information Fd
t:iii, and ℘d

t:iv to maximize Ud
t:iv

with information Fd
t:iv both subject to (9), and these choices are implemented by trades T d

t:iii and

T d
t:iv identified in (8b) and (8c). Notice that all of these decisions take account of the fact that the

orders from other dealers are in general unpredictable, so the associated forecast errors ξdt:j represent

an additional source of risk.

1.3 Market Clearing Conditions

There are three sets of market clearing conditions to consider: those for investors’ orders, hedgers’

orders, and inter-dealer trading. In round i, the aggregate imbalance in investors’ orders, Ot:i defined

11



by the integral on the left, must equal the sum of the orders received by the d dealers, on the right.

ˆ 1

0
(An

t:i −An
t�1:iv − Y n

t:i)dn = Ot:i =
X

d

d=1
O

d
t:i. (10)

Furthermore, in the BNE where all dealers quote the same prices, investors’ orders are randomly

assigned across dealers. I therefore assume that the order received by dealer d is O
d
t:i =

1
d
Ot:i + ζdt:i

with ζdt:i ∼ i.d.N(0,σ2
ζ ). The allocation shocks ζdt:i are negatively correlated across the dealers, with

correlation ρ = −(d − 1)�1, so that
P

d

d=1 ζ
d
t:i = 0, as required by market clearing.

In rounds iii and iv, market clearing similarly requires that

ˆ 1

0
(An

t:iii −An
t:i)dn = Ot:iii =

X

d

d=1
O

d
t:iii, (11a)

ˆ 1

0
(An

t:iv −An
t:iii)dn = Ot:iv =

X

d

d=1
O

d
t:iv (11b)

The orders received by individual dealers in rounds iii and iv are subject to mean-zero normally

distributed allocation shocks, ζdt:iii and ζdt:iv, respectively. The market clearing condition for round-iii

hedge orders is given by
1
ˆ

0

H
h
t dh = Ht =

X

d

d=1
H

d
t (12)

As above, the hedge orders received by dealer d are H
d
t = Ht + ηdt with ηdt ∼ i.d.N(0,σ2

η), where ηdt

is an allocation shock which is negatively correlated across dealers so that
P

d

d=1η
d
t = 0.

The market clearing condition for inter-dealer trades is given by

X

d

d=1
Zd
t:j =

X

d

d=1
T d
t:j = Xt:j for j = {ii,iii, iv}. (13)

Here, the sum of orders received by dealers on the left equals the total imbalance in orders initiated

by dealers, which in turn defines aggregate inter-dealer order flow. Under the trading protocol,

orders are equally split between dealers quoting the same price, so in the BNE each dealer receives

a equal fraction of aggregate order flow: Zd
t:j =

1
d
Xt:j .

In all the equilibria I study, investors hold the entire stock of Forex overnight. Daily changes

in this stock, At, must therefore reflect differences between aggregate foreign income received by

investors and the aggregate imbalance in Forex orders by hedgers: At = At�1+Yt−Ht. Combining

this expression with equation (5) gives

At = ψAt�1 + Yt −Ht. (14)
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Since both Yt and Ht are mean-zero random variables, the Forex stock follows a stationary AR(1)

process. Forex prices are ultimately driven by this process and the random walk for the Forex payoff

in (2).

2 The Benchmark Equilibrium

An equilibrium in the benchmark model comprises: (i) the BNE strategies that identify the prices

dealers quote at the start of each trading round, (ii) the inter-dealer trades initiate by dealers in

rounds ii, iii and iv, and (iii) the set of investors’ orders in rounds i, iii and iv. All of these trading

decisions must be optimal in the sense that they maximize the expected utility of the respective

agent based on the available information and they must be consistent with market clearing given the

exogenously determined orders of hedgers. I further restrict my attention to efficient risk-sharing

equilibria in which investors and hedgers hold the entire stock of Forex overnight. The focus on

such equilibria is standard (see, e.g., Lyons, 1997, Evans and Lyons, 2002, and Evans, 2011), and is

consistent with the empirical fact that dealers generally do not hold open positions overnight and

the half-lives of the intraday positions are measured in minutes (see, e.g., Lyons, 1995, and Bjønnes

and Rime, 2005).

The following theorem describes the benchmark equilibrium.4

Theorem 1. In an efficient risk-sharing equilibrium, overnight returns and intraday price changes

follow

Rt ≡ St:i + Pt − (1 + r)St�1:iv = ΛiAt�1 +
1+r
r Vt, (15a)

∆St:ii ≡ St:ii − St:i = 0, (15b)

∆St:iii ≡ St:iii − St:ii = ΛiiiAt�1 −
1

1�ψ+rΛYt −
1
ψ
ΛivYt, and (15c)

∆St:iv ≡ St:iv − St:iii = ΛivAt�1 +
1
ψ
ΛivYt +

1
1�ψ+rΛHt, (15d)

where Λ = Λi + Λiii + Λiv for some coefficients Λi. Investors’ orders in rounds i and iii are given

by

O
n
t:i = βy

i
Y n
t + βa

i
At�1, and (16a)

O
n
t:iii = βy

iii
Yt + βa

iii
At�1, (16b)

4Mathematical derivations and proofs are in the Appendix.
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for some coefficients βj. Unexpected order flows from inter-dealer trading in rounds ii and iii are

Xt:ii − E[Xt:ii|It:ii] = Γ
yYt, and (17a)

Xt:iii − E[Xt:iii|It:iii] = Γ
hHt, (17b)

for some coefficients Γy and Γh, where It:j = ∩dI
d
t:j denote dealers’ common information at the

start of round j.

2.1 Qualitative Analysis

To explain the economic intuition behind this equilibrium, it is useful to start with the determination

of round iv prices. Efficient risk-sharing requires that the outstanding stock of Forex is held by

the continuum of investors rather than any of the d dealers at the end of the day. In equilibrium,

dealers have sufficient information to find this price by inverting investors’ aggregate demand for

Forex to give

St:iv =
1
X

i=1

⇣

1
1+r

⌘i
E[Pt+i − ΛAt+i�1|It:iv],

= 1
rPt −

1
1�ψ+rΛAt, (18)

where Λ = Λi + Λiii + Λiv. The second line in this expression follows from the processes for Pt

and At in (2) and (14). The Λi coefficients identify equilibrium expected returns and price changes:

E [Rt|It�1:iv] = ΛiAt�1, E [∆St:iii|It:i] = ΛiiiAt�1, and E [∆St:iv|It:i] = ΛivAt�1. Equation (18)

shows that dealers quote a round-iv price equal to the present value of future payoffs adjusted for

the risk premia necessary to ensure efficient current and future risk-sharing.

The evolution of prices, investors orders and aggregate order flow shown in Theorem 1 represent

the process through which dealers acquire the information needed to quote St:iv. Dealers observe the

value of Pt directly, and the information is immediately incorporated into their round i quote, as is

reflected in (15a). In contrast, dealers become informed about the value of At (= ψAt�1+Yt−Ht) via

trading. In particular, dealers learn about foreign income Yt through a two-stage process. In the first

stage dealers receive information via investors’ round-i orders because they (optimally) depend on

each investors’ income, Y n
t = Yt+εnt , as shown in (16a). Because dealers use the orders they received

in round i as the basis for their inter-dealer trades in round ii, in the second stage the information

originally contained in investors’ orders is revealed to dealers by their observation on aggregate

order flow Xt:ii. Equation (17a) shows that unexpected order flow is proportional to foreign income

Yt. Dealers incorporate this information into their round iii quotes, so Yt contributes to ∆St:iii,
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as shown by (15c). Dealers learn about the hedging shock Ht through an analogous process. The

inter-dealer trades initiated in round iii depend, in part, on the hedgers’ orders each dealer receives

at the start of the round and so carry information about Ht. This information is aggregated and

revealed to all dealers by order flow Xt:iii, as is shown by (17b). In sum, inter-dealer trading in

rounds ii and iii aggregates the information about foreign income and the hedging shock that is

initially conveyed to dealers in dispersed form by investors’ round-i orders, and hedgers’ round-iii

orders. Dealers then embed this information into the prices they quote in rounds iii and iv, so as

to achieve an efficient risk-sharing allocation by the end of the day.

In anticipation of the analysis below, it proves useful to examine two features of this process

in greater detail. The first concerns the dependency of investors’ round-i orders on their foreign

income, Y n
t . Investors choose these orders optimally, so it is worthwhile examining how and why

these choices depend on Y n
t . The second feature concerns the link between dealers’ trading decisions

in rounds ii and iii and aggregate order flows, Xt:ii and Xt:iii. Again, inter-dealer trades are chosen

optimally (as part of each dealer’s BNE strategy), so it is useful to understand why the values of

Xt:ii and Xt:iii induced by these trades convey information on Yt and Ht.

To begin, consider the equations that describe investor n0s optimal Forex holdings:

An
t:i = Θ

n
i|siii

E[St:iii − St:i|Ω
n
t:i] +Θ

n
i|siv

E[∆St:iv|Ω
n
t:i] +Θ

n
i|rE[Rt+1|Ω

n
t:i], (19a)

An
t:iii = Θ

n
iii|siv

E[∆St:iv|Ω
n
t:iii] +Θ

n
iii|rE[Rt+1|Ω

n
t:iii], and (19b)

An
t:iv = Θ

n
iv|rE[Rt+1|Ω

n
t:iv], (19c)

where the coefficients, Θn
i|j , Θ

n
iii|j and Θn

iv|j depend on the conditional second moments of ∆St:iii,

∆St:iv and Rt+1. Here we see that the investor’s optimal Forex holdings depend linearly on expected

future intraday changes in prices and overnight returns. As in standard mean-variance portfolio

problems, the round-iv choice is proportional to the expected overnight return E[Rt+1|Ω
n
t:iv]. In this

instance the coefficient Θn
iv|r equals 1/(ωV[Rt+1|Ω

n
t:iv]), were V[.|.] denotes the conditional variance.

In the earlier rounds, the investor faces a more complex problem of exploiting expected price changes

in the near term while hedging against future risks. These hedging motives make An
t:i and An

t:iii

dependent on the expected overnight return E[Rt+1|Ω
n
t:], and An

t:i dependent on E[∆St:iv|Ω
n
t:i].

By definition, the round-i order of investor n is O
n
t:i ≡ An

t:i − An
t�1:iv − Y n

t . Combing this

expression with (19a) and the equilibrium price dynamics in (15) gives

O
n
t:i =

n

1
ψ
Λiv(Θ

n
i|siv

−Θ
n
i|siii

)− 1
1�ψ+rΛΘ

n
i|siii

+Θ
n
i|rΛi

o

E[Yt|Ω
n
t:i]

+
n

Θ
n
i|siii

Λiii +Θ
n
i|siv

Λiv + ψΘn
i|rΛi − 1

o

At�1 − Y n
t . (20)
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The first term on the right-hand-side identifies the impact of private information on An
t:i. Because

each investors’ income comprises an aggregate and idiosyncratic component, their estimate of of Yt

is given by

E[Yt|Ω
n
t:i] = Gn

y
Y n
t , with Gn

y
=

σ2
y

σ2
y
+ σ2

ε

.

Thus, foreign income Y n
t has both an indirect speculated effect on the investor’s order via the first

term in (20), and a direct effect via the last term. The strength of the speculative effect depends

on the precision of the information as measured by the gain coefficient Gn
y
. It also depends on

the investor’s risk aversion and the “riskiness” of future returns via the Θn
i|j coefficients. So, taken

together, the size of the speculative effect depends on the precision of the information in Y n
t and the

willingness of the investor to speculate on the information. This endogenous link between foreign

income and investors’ orders plays an important role in the analysis below.

Next, I consider the link between aggregate order flow and inter-dealer trades in round ii. In

equilibrium dealers do not hold overnight Forex positions, so their round ii trades from (8a) become

T d
t:ii = ℘d

t:ii + E
⇥

Zd
t:ii|Ω

d
t:ii

⇤

+ O
d
t:i, where O

d
t:i denotes the investors’ orders received by dealer d in

round i. Furthermore, because dealers quote the same round-ii price, they expect to receive an equal

fraction of aggregate order flow from other dealers: E
⇥

Zd
t:ii|Ω

d
t:ii

⇤

= 1
d
E
⇥

Xt:ii|Ω
d
t:ii

⇤

. Combining these

expressions with the definition of aggregate order flow, gives

Xt:ii =
X

d

d=1
℘d
t:ii +

1
d

X

d

d=1
E[Xt:ii|Ω

d
t:ii] +Ot:i, (21)

where Ot:i =
P

d

d=1O
d
t:i is the aggregate imbalance in the investors’ round-i orders. This imbal-

ance contains information concerning Yt because it aggregates investors’ orders in (16a): Ot:i =
´ 1
0 {βy

i
Y n
t:i + βa

i
At�1} dn = βy

i
Yt + βa

i
At�1. Thus, order flow aggregates information on foreign in-

come because each dealer follows a BNE trading strategy that conditions on a subset of investors’

round-i orders that individually contain dispersed information on Yt.

Equation (21) identifies two further channels of information aggregation. The first operates

through the aggregation of dealers’ positions,
P

d

d=1 ℘
d
t:ii. Each dealer’s desired position can be

written as

℘d
t:ii = Φ

d
ii|siii

E[∆St:iii|Ω
d
t:ii] + Φ

d
ii|siv

E[∆St:iv|Ω
d
t:ii], and (22a)

℘d
t:iii = Φ

d
iii|siv

E[∆St:iv|Ω
d
t:iii], (22b)

where the coefficients Φd
ii|j and Φd

iii|j are determined by the conditional second moments of ∆St:iii,

∆St:iv and unexpected inter-dealer orders. Notice that each dealers’ round-ii position, ℘d
t:ii depends

on their private forecasts for ∆St:iii and ∆St:iv. In equilibrium, these forecasts depend on the
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dealer’s estimate of Yt:

E[∆St:iii|Ω
d
t:ii] = ΛiiiAt�1 − ( 1

1�ψ+rΛ+ 1
ψ
Λiv)E[Yt|Ω

d
t:ii], and

E[∆St:iv|Ω
d
t:ii] = ΛivAt�1 +

1
ψ
ΛivE[Yt|Ω

d
t:ii].

Because dealers quote the same round-i price, they receive a random fraction of investors orders,

O
d
t:i =

1
d
Ot:i+ ζdt:i, which represent a noisy signal on Yt. Each dealer can therefore estimate Yt based

on these orders as

E[Yt|Ω
d
t:ii] = Gd

y
(Od

t:i − E[Od
t:i|I

d
t:i]) = Gd

y
( 1
d
βy

i
Yt + ζdt:i), with Gd

y
=

1
d
βy

i
σ2
y

( 1
d
βy

i
)2σ2

y
+ σ2

ζ

.

Consequently, round-ii order flow aggregates the private information dealers use to determine their

desired position via the
P

d

d=1 ℘
d
t:ii term in (21). The remaining channel of information aggregate op-

erates through dealers’ expectations of incoming orders,
P

d

d=1 E
⇥

Zd
t:ii|Ω

d
t:ii

⇤

= 1
d

P

d

d=1 E[Xt:ii|Ω
d
t:ii].

In this case dealers use their private estimates of income to compute E
⇥

Xt:ii|Ω
d
t:ii

⇤

= ΓyE[Yt|Ω
d
t:ii],

which forms part of the BNE trading strategy.

Round-iii order flow aggregates information in an analogous manner. In this case the counterpart

to equation (21) is

Xt:iii =
X

d

d=1
℘d
t:iii +

1
d

X

d

d=1
E[Xt:iii|Ω

d
t:iii] +Ht +Ot:iii +Ot:i. (23)

The last three terms equal the difference between the aggregate imbalance in round-iii orders by

investors and hedgers Ht+Ot:iii =
P

d

d=1(H
d
t +O

d
t:iii), and existing dealer holdings

P

d

d=1A
d
t:ii, which

equal −Ot:i by market clearing. The aggregate imbalance in hedge orders aggregates information

on the Ht shock directly, because Ht = (1− ψ)At�1 +Ht. By contrast, the aggregate imbalance in

investors’ orders, Ot:iii, carries no new information because Yt was revealed to dealers by Xt:ii. As

in round ii, order flow also aggregates the private information dealers use to forecast returns and

incoming orders. In this case, hedge orders are the source of dealers’ private information, producing

estimates of Ht:

E[Ht|Ω
d
t:iii] = Gd

h
(Hd

t − E[Hd
t |I

d
t:iii]) = Gd

h
( 1
d
Ht + ηdt ), wih Gd

h
=

1
d
σ2
h

( 1
d
)2σ2

h
+ σ2

η

.

These estimates provide dealers’ forecasts of E[∆St:iv|Ω
d
t:iii] used to determine desired positions ℘d

t:iii,

and their forecasts E
⇥

Xd
t:iii|Ω

d
t:iii

⇤

.

One further feature of the benchmark equilibrium deserves comment: the origin of the At�1
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terms in (15). Under efficient risk sharing, investors hold the available stock of Forex overnight,

so At =
´ 1
0 Ah

t dn =
´ 1
0 Θn

iv|rE[Rt+1|Ω
n
t:iv]dn. In equilibrium, investors have common forecasts of

returns (i.e., E[Rt+1|Ω
n
t:iv] = E[Rt+1|It:iv] for all n), so this condition pins down the overnight risk

premium as

E[Rt+1|It:iv] = ΛiAt, with Λi =

⇢
ˆ 1

0
Θ

n
iv|rdn

��1

. (24)

The intraday risk premia are similarly determined by market clearing. In particular, (21) and (23)

imply that
P

d

d=1 E[℘
d
t:ii|It:i] = −E[Ot:i|It:i] and

P

d

d=1 E
⇥

℘d
t:iii|It:i

⇤

= −E[Ht +Ot:iii +Ot:i|It:i]. The

left-hand-side of these equations identify the expected dealer demand to hold Forex in rounds ii and

iii, while the right-hand-side identifies the available supply from the external orders from investors

and hedgers. When combined with (19) and (22), these expressions imply that

E[∆St:iii|It:i] = ΛiiiAt�1, Λiii =
1− ψΘ

i|RΛi

Φ
ii|siii +Θ

i|siii

−
Φ

ii|siv +Θ
i|siv

Φ
ii|siii +Θ

i|siii

Λiv, (25a)

E[∆St:iv|It:i] = ΛivAt�1, Λiv =
ψ(1−Θ

iii|RΛi)

Φ
iii|siv +Θ

iii|siv

, (25b)

where Φj|i =
P

d

d=1Φ
d
j|i and Θi|j =

´ 1
0 Θn

i|jdn. Notice that the intraday premia depend on both

dealers’ and investors’ preferences via the Φj|i and Θi|j terms, whereas the overnight premia reflect

investors’ preferences alone. In general, the intraday risk premia are smaller when there are a larger

number of dealers available to share the (ex ante) risks of open intraday positions.

2.2 Quantitative Analysis

The equations describing the benchmark equilibrium in Theorem 1 contain coefficients that are

themselves defined by a set of highly non-linear equations. It is therefore necessary to consider

numerical solutions to these equations if we are to examine the benchmark equilibrium in any

greater detail. I will also use these numerical solutions to study the effects of front-running and

information-sharing below.

Table 1 shows the parameter values used in the numerical analysis of the benchmark equilibrium.

I set the number of dealers in the market to 20. This choice is consistent with the fact that most

Forex dealing activity is concentrated in ten or so global banks. The daily interest rate r is set equal

to 0.0001, which implies an annualized rate of approximately two percent. Investors and dealers

are assumed to have the same preferences, with a coefficient of absolute risk aversion ω equal to 2.

The ψ coefficient governing the equilibrium At process is 0.999. This choice makes daily changes in

Forex prices extremely hard to forecast.
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Table 1: Parameter Values

Parameter Value

Number of dealers d 20
Risk free rate r 0.0001
Risk aversion ω 2
AR(1) coeff. ψ 0.999

Payoff Shocks σv 0.00001
Income Shocks σy 0.007
Hedge Shocks σh 0.0035

Investor Gain Gn
y

[0.0001,.......0.01]

Dealer Gain Gd
h

[0.02,.......0.04]

Notes: The table shows the parameter values used in the numerical

analysis of the benchmark equilibrium.

Three shocks drive Forex prices in the model: the payoff shocks Vt, the shocks to foreign income

Yt, and the shocks to hedgers’ Forex orders, Ht. I calibrate the standard deviations of these shocks

so that payoff shocks account for approximately ten percent of the daily change in Forex prices. In

equilibrium Vt shocks are directly incorporated into dealers’ quotes whereas Yt and Ht shocks affect

quotes via their impact on order flows. So this calibration ensures that order flows are the proximate

cause of approximately 90 percent of the variance in equilibrium Forex prices. My calibration also

implies that the Ht shocks contribute 20 percent of the variance in At. This means that shocks to

foreign income are the primary driver of external Forex orders.

The two remaining parameters have important quantitative implications for the benchmark

equilibrium. The inferences investors draw about aggregate income Yt depend on the relative

variance of idiosyncratic income shocks σ2
ε and aggregate income σ2

y
: E[Yt|Ω

n
t:i] = Gn

y
Y n
t , where

Gn
y
= σ2

y
/(σ2

y
+ σ2

ε). To examine how the precision of these inferences affect the equilibrium, I

consider different values for σ2
ε than imply gain coefficients Gn

y
ranging from 0.0001 to 0.01. Larger

values for Gn
y

imply that individual investors’ income Y n
t conveys more precise information about

aggregate income, which they take into account when determining their Forex orders.

The second parameter affects dealers’ inferences concerning the Ht shock based on hedgers’

orders: E[Ht|Ω
d
t:iii] = Gd

h
( 1
d
Ht + ηdt ), where Gd

h
= ( 1

d
σ2
h
)/(( 1

d
)2σ2

h
+ σ2

η). Here I consider different
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values for the variance of the distribution shock σ2
η that imply gain coefficients ranging from 0.02 to

0.04. Again, larger values for the gain coefficient imply that dealers have more precise information

about Ht based on the hedgers’ orders they receive.5 I also assume that the distribution shocks

affecting hedgers’ orders have the same variance as the distribution shocks affecting the investors’

orders dealers receive in rounds i and iii: i.e., σ2
ζ = σ2

η.

Figure 2 plots six key coefficients from the benchmark equilibrium. Panels A and B plot the

coefficients governing the intraday risk premia, Λiii and Λiv, against the investor gain coefficient

Gn
y

for the case where the dealers’ gain Gd
h

equals 0.02 and 0.04. In this calibration of the model

Λi = 0.02, so the intraday risk premia implied by the values of Λiii and Λiv are an order of magnitude

smaller than the overnight risk premia. These plots show that the intraday risk premia are smaller

(in absolute value) in equilibria where investors have more precise information about aggregate

income; i.e., where Gn
y

is larger. Intuitively, investors require less compensation for holding risky

intraday Forex positions when they have more precise information about the shock to aggregate

income that affects intraday changes in Forex prices. Panels A and B also show that Λiii and Λiv

are smaller in equilibria where hedgers’ orders contain more precise information on the Ht shocks.

Again, this feature arises because dealers face less risk from intraday price changes.

Panels C and D show how the sensitivity of dealers’ desired positions (in rounds ii and iii)

to expected price changes varies across the equilibria. As one would expect, dealers take more

aggressive positions in equilibria where they have more precise information (i.e., the Φd
ii|siii

and

Φd
iii|siv

are bigger in equilibria where the dealers’ gain Gd
h

is larger), because the risk associated with

Ht shocks is smaller. Notice, also, that dealers take on more aggressive positions in equilibria where

investors have more precise information. This feature arises because dealers learn more about Yt

based on the investors’ orders they receive in round i. When individual investors have more precise

information about aggregate income, their round-iorders contain a larger speculative component, so

the orders received by each dealer are more informative about Yt. In other words, dealers become

more aggressive in their position-taking when they obtain more precise price-relevant information

from external orders.

The lower panels of Figure 2 show how aggregate order flow in rounds ii and iii relate to the

Yt and Ht shocks across the equilibria. Recall that unexpected order flow in round ii is given by

Xt:ii − E[Xt:ii|It:ii] = ΓyYt. The plots in Panel E show that Γy is more negative in equilibria where

5For more perspective on the size of the gain coefficients, it is useful to compare the conditional and unconditional
variances of the underlying variables. The variance of foreign income conditioned on an investor’s round-i information
is V[Yt|Ω

n

t:i] = (1 − Gn

y
)σ2

y
, so values for Gn

y
between 0.0001 to 0.01 mean that an observation on Y

n

t reduces the
conditional variance for Yt by between 0.01 and 1 percent. The conditional variance of Ht based on dealers’ hedge
orders is V[Ht|Ω

d

t:iii] = (1 −

1

d
Gd

h
)σ2

h
, so the values for Gd

h
imply that the conditional variance is reduced by between

0.1 and 0.2 percent.
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Figure 2: Benchmark Equilibrium

0 0.2 0.4 0.6 0.8 1

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1

0.4

0.401

0.402

0.403

0 0.2 0.4 0.6 0.8 1

30

40

50

60

0 0.2 0.4 0.6 0.8 1

118

118.2

118.4

118.6

0 0.2 0.4 0.6 0.8 1

-4

-2

0

0 0.2 0.4 0.6 0.8 1

40

50

60

70

80

90

100

Notes: The figure plots coefficients from the benchmark equilibrium against the

investors gain, Gn

y
×100, for the case where the dealers’ gain Gd

h
equals 0.02 (solid

plots) and 0.04 (dashed plots).

investors and dealers have more precise information. As was noted above, investors’ round-i orders

contain a larger speculative component when they have more precise information, so that dealers’

round-ii trading strategies are more sensitive to aggregate income. In addition, dealers learn more

about Yt from the investors’ orders they receive and so aim to take more aggressive round-ii positions.
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The net effect is that positive income shocks induced individual dealers to initiate greater sales of

Forex in inter-dealer trading, which in aggregate produces a larger unexpected negative order flow.

The incentives for dealers to take aggressive round-ii positions are magnified when they have more

precise information about Ht shocks, so income shocks have larger order flow effects under these

circumstances. In round iii, unexpected order flow is given by Xt:iii − E[Xt:iii|It:iii] = ΓhHt. As

panel F shows, the size of the Γh coefficient does not vary across equilibria with different investor

gain coefficients. By round iii the value of Yt is common knowledge to dealers and investors, so

the precision of investors’ round-i information is no longer relevant. In contrast, the precision of

dealers’ information concerning Ht has a sizable impact on Γh. When dealers receive more precise

information concerning a positive Ht shock from the hedgers’ orders they receive, they aim to

take more aggressive long positions and so initiate larger purchases in inter-dealer trading which in

aggregate produce a larger positive order flow.

To summarize, in the benchmark equilibrium dispersed information about the Yt and Ht shocks

is transmitted to dealers via the external orders they receive from investors and hedgers, aggregated

via inter-dealer trading, and then embedded into Forex prices.

3 Front-Running

I make one small modification to the model in order to accommodate front-running. I now assume

that hedgers place their Forex orders immediately after dealers quote prices at the start of round

ii rather than at the start of round iii. This means that dealers know the hedgers’ orders they

will need to fill at the end of round iii before they begin inter-dealer trading in round ii. The new

timing of events in rounds ii and iii are shown in Figure 3.

In this section, I analyze how dealers trade on hedger-order information in round ii and how

the trades affect round iii prices and other aspects of the equilibrium. To facilitate this analysis, I

proceed in two steps. First, I consider how an individual dealer would act if he alone had access to

hedgers’ orders at the start of round ii. Then, I analyze the equilibrium in which all dealers receive

their hedgers’ orders in round ii.

3.1 Unilateral Front-Running

To examine the incentives for front-running, consider how a single dealer (d = 1) would use the

information contained in hedgers’ orders received in round ii if prices still followed the benchmark

equilibrium process in (15). Because hedgers’ orders are exogenous, the orders received by the

dealer at the start of round ii are still given by H
1
t = Ht + η1t . The dealer can therefore estimate

Ht before the start of round-ii inter-dealer trading as E[Ht|Ω
1
t:ii] = Gd

h
( 1
d
Ht + η1t ). Recall that in
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Figure 3: Front-Running Model Timing
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Dealers	observe	aggregate	order	flow:	*":$$$ 	

	 	 	

	 	 	

	
Notes: Modified timing of trades in Front-Running Model. Changes shown in bold type.

the benchmark equilibrium Ht shocks have no effect on ∆St:iii because round-ii order flow only

reveals the value of Yt. So the advanced information on Ht contained in the hedgers’ orders has no

forecasting power for the near-term change in prices, ∆St:iii. In contrast, the advanced information

is useful in forecasting ∆St:iv because dealers incorporate the value of Ht revealed by round-iii order

flow when quoting prices at the start of round iv. In particular, the dealer’s forecast is now given

by

E[∆St:iv|Ω
1
t:ii] = ΛivAt�1 +

1
ψ
ΛivE[Yt|Ω

1
t:ii] +

1
1�ψ+rΛE[Ht|Ω

1
t:ii].

As above, the dealer 1 initiates inter-dealer trades in round ii according to T 1
t:ii = ℘1

t:ii +
1
d
E
⇥

Xt:ii|Ω
1
t:ii

⇤

+ O
1
t:i, so advanced information can affect his trade by changing either the desired

position ℘1
t:ii and/or expected order flow E

⇥

Xt:ii|Ω
1
t:ii

⇤

. Under the assumption that the dealer ig-

nores the effects of his own trades on equilibrium order flow, the advanced information only affects

the desired position. In particular, from (22a) the change in the desired position due to advanced

information is 1
1�ψ+rΦ

d
ii|siv

ΛE[Ht|Ω
1
t:ii]. In the benchmark equilibrium, dealers choose their round-ii

positions to hedge against future shocks with a positive value for the Φd
ii|siv

coefficient. Consequently,

the effect of advanced information that produces a positive value for E[Ht|Ω
1
t:ii] is to increase their

orders to purchase Forex from other dealers in round ii. In other words, the dealer will infer from

hedgers’ orders to purchase Forex that they should to aim to take a larger round-ii position as
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a hedge against the likelihood that dealers will quote higher round-iv prices to accommodate a

positive Ht shock.

This analysis illuminates several important points. First, the dealer uses the advanced informa-

tion about the hedgers’ Forex orders to “trade ahead” of those orders. Ceteris paribus, the dealer

initiates Forex purchases (sales) in inter-dealer trading when he knows that he must fill hedgers

Forex purchase (sales) orders in the future. Second, the incentive for dealers to front-run hedgers’

orders only arises here because dealers use to the information in those orders to better hedge against

future shocks. If dealers chose their round-ii positions without regard to hedging future shocks (i.e.,

if Φ1
ii|siv

= 0), advanced information on hedgers’ orders would have no effect on their round-ii trading

decisions. Actual Forex dealers often refer to the front-running of external orders as “pre-hedging”;

apparently to suggest that their trades are aimed at reducing their own risks. The analysis here

provides some support for this view insofar as front-running only appears because the dealer aims

to better hedge against the price-impact of future shocks.

Finally, it is important to recognize that this is a partial equilibrium analysis of front-running

because I assumed that the change in the dealer’s round-ii trades had no effect on the benchmark

equilibrium. This may be approximately true when there are a large number of dealers in the

market and the unilateral front-running by one dealer occurs without the knowledge of the others.

Under these special circumstances, front-running has no impact on other market participants and

the benefit to the dealer comes solely from enhanced hedging. Note that there is no increase in

dealers’ expected trading profit because the difference in their round-ii position is uncorrelated with

∆St:iii. So the increase in the dealer’s expected utility from using advanced information arises from

a reduction in the conditional variance of their future wealth.

3.2 Multilateral Front-Running

Since there is a clear incentive for any dealer to unilaterally front-run, it is unreasonable to assume

that prices and order flows will continue to follow the benchmark equilibrium process when many

dealers have advanced knowledge of their hedgers’ orders. Rather, in equilibrium, round-ii order flow

will reflect the decisions of these dealers to front-run, which will, in turn, affect the determination

of prices and order flows in subsequent trading rounds. I now examine the behavior of prices and

order flows in an equilibrium where all dealers receive advanced knowledge of their hedgers’ orders

in round ii.
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Theorem 2. In an efficient risk-sharing equilibrium with multilateral front-running, overnight re-

turns and intraday price changes follow

Rt = ΛiAt�1 +
1+r
r Vt, (26a)

∆St:ii = 0, (26b)

∆St:iii = ΛiiiAt�1 + λiii(Xt:ii − E[Xt:ii|It:ii]), and (26c)

∆St:iv = ΛivAt�1 + λiv1
(Xt:iii − E[Xt:iii|It:iii]) + λiv2

(Xt:ii − E[Xt:ii|It:ii]), (26d)

for some coefficients Λi and λi. Investors’ orders in rounds i and iii are given by

O
n
t:i = βy

i
Y n
t + βa

i
At�1, and (27a)

O
n
t:iii = βy

iii
Y n
t + βx

iii
(Xt:ii − E[Xt:ii|It:ii]) + βa

iii
At�1, (27b)

for some coefficients βj. Unexpected order flows from inter-dealer trading in rounds ii and iii are

Xt:ii − E[Xt:ii|It:ii] = Γ
y

ii
Yt + Γ

h

ii
Ht, and (28a)

Xt:iii − E[Xt:iii|It:iii] = Γ
y

iii
Yt + Γ

h

iii
Ht, (28b)

for some coefficients Γy

i and Γh

i , where It:j denotes dealers’ common information at the start of

round j.

Theorem 2 shows that multilateral front-running has far-reaching effects on the behavior of

equilibrium prices, order flows and investors’ Forex orders. In this equilibrium, unexpected aggregate

order flows in rounds ii and iii depend on both the Yt and Ht shocks. As a consequence, while

dealers continue to use aggregate order flows to determine the prices to quote in rounds iii and iv,

these flows contain different information about the underlying Yt and Ht shocks. So while (26c)

and (26d) link ∆St:iii and ∆St:iv to order flows, actual price changes are different functions of

the underlying shocks than in the benchmark equilibrium. Multilateral front-running also affects

investors’ orders. Equation (27a) shows that investors’ round-i orders take the same form as in

the benchmark equilibrium, but the coefficients are quantitatively different. In round iii, investors’

orders depend on individual income Y n
t (rather than Yt) and on unexpected order flow from round

ii.

To understand the economics behind these equilibrium effects, it is useful to again start with

the determination of round iv prices. In the benchmark equilibrium, order flows in rounds ii and

iii sequentially reveal the value of the Yt and Ht shocks so that dealers can quote a round-iv price

that achieves efficient risk-sharing. This remains true in the front-running equilibrium, but dealers
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learn the value of the Yt and Ht shocks using the order flows from rounds ii and iii. Thus the price

dealers quote in round iv still takes the form shown in equation (18).

Front-running has more far-reaching effects on dealers’ round-iii quotes because order flow in

round ii no longer reveals the value of Yt. The reason is that dealers’ front-running trades create an

information externality. Each dealer finds it optimal to initiate trades using their private estimates

of Yt and Ht, but these actions make aggregate order flow dependent on both shocks, so it is

impossible for dealers to precisely estimate either Yt or Ht from their observations on Xt:ii. Thus,

in comparison with the benchmark equilibrium, the information externality slows down the process

by which inter-dealer trading aggregates the information on Yt contained in investors’ orders.

The slowing down of information aggregation has several effects on the equilibrium. First, the

price dealers quote in round iii depends on their common estimate of Yt, E[Yt|Xt:ii], rather than

its actual value. This means that uncertainty concerning Yt, and its impact on prices, is not fully

resolved until round iv, which is a period later in the benchmark equilibrium. Second, dealers also

base their round-iii quotes on their estimate of Ht, E[Ht|Xt:ii], because this ensures efficient risk-

sharing. As a result, Ht shocks affect round-iii prices, via their impact on E[Yt|Xt:ii] and E[Ht|Xt:ii].

This represents a new source of risk that investors will factor into their round-i orders. Third, the

impact of Ht shocks on round-iii prices creates a stronger incentive for dealers to front-run their

hedgers’ orders. Recall that there was only a hedging incentive to front-run when prices follow the

benchmark equilibrium process. In this equilibrium dealers also have a speculative incentive to front-

run because they have private information concerning Ht that will affect ∆St;iii. This dependency

is similar to the “free-riding” feature of dealer front-running in Osler and Turnbull (2017).

Figure 4 provides more perspective on the front-running equilibrium. The figure plots the values

for the risk premia coefficients, Λiii and Λiv, and the order flow coefficients, Γy

ii
, Γh

ii
, Γy

iii
, and Γh

iii

from the front-running and benchmark equilibria against investors’ gain coefficient Gn
y

(as in Figure

2). I compare the equilibria in the case where Gd
h
= 0.02 so hedgers’ orders provide dealers with

relatively imprecise information about Ht. All the other parameters are set to the values shown in

Table 1.

Panels A and B of Figure 4 compare the risk premia coefficients across the two equilibria. To

interpret these plots, recall that E [∆St:iii|It:i] = ΛiiiAt�1 and E [∆St:iv|It:i] = ΛivAt�1, so lower

values for the coefficients imply smaller positive premia when dealers and investors collectively hold

long Forex positions. The plots in panels A and B show that font-running reduces the risk premium

required to hold long positions during rounds ii and iii. Recall that these premia provide the

compensation necessary to share risk efficiently across investors and dealers. In the front-running

equilibrium, dealers have advanced information on their hedgers’ orders, which reduces the risk

they face in round ii. At the same time, the information externality created by front-running makes
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Figure 4: Front-Running Equilibrium I
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∆St:iii susceptible to Ht shocks, which increases the risk faced by investors. These forces push the

round ii premium in opposite directions, but on balance the effects on dealers’ risk dominate. So,

as panel A shows, the premium is smaller than in the benchmark equilibrium. Panel B shows that

front-running significantly reduces the risk premium in round iii. In the benchmark equilibrium,

the risk premium primarily compensates investors for the risk associated with the impact of Ht

shocks on ∆St:iv. This risk is diminished in the front-running equilibrium because the change in

prices ∆St:iii provides investors with (imprecise) information on Ht.

The remaining panels in Figure 4 compare the order flow coefficients in the front-running and

benchmark equilibria. The plots for Γy

ii
and Γh

ii
in panels C and D show that Yt and Ht shocks have

roughly opposite impacts on round-ii order flow in the front-running equilibrium. Efficient risk-

sharing requires that prices in rounds iii and iv incorporate information on Yt−Ht that dealers learn

from order flows in rounds ii and iii. So dealers initiate trades in round ii based on E[Yt −Ht|Ω
d
t:ii]

using the information on Yt from their round-i investors’ orders and information on Ht from their

pending hedgers’ orders. As a result, dealers have both a speculative and hedging motive to trade

in the same direction as their investor and hedgers’ orders. Positive Yt shocks that induce investors

to sell Forex to dealers across the market in round i produce negative order flow in inter-dealer

trading, as shown by the plot for Γy

ii
in panel C. Similarly, positive Ht shocks that produce pending

hedgers’ orders to purchase Forex from dealers across the market, produce positive order flow as

dealers “trade ahead” of their pending orders, so the values for Γh

ii
are positive as shown in panel

D. Notice, also, that both shocks have smaller impacts on order flow in equilibria where investors

have more precise information about income (i.e., in equilibria where Gn
y

is larger). In these cases,

investors’ round-i orders contain a larger speculate component so dealers are more likely to find

themselves with large unwanted inventory positions that mitigate the impact of pending hedgers’

orders on their round-ii trades.

Finally, panels E and F show how front-running affects the composition of order flow in round

iii. Because the information externality makes it impossible to precisely infer Yt or Ht from Xt:ii,

dealers still have an incentive to use their private estimates of Yt and Ht in their round-iii trading

strategies. As in round ii, this private information is aggregated into order flow via inter-dealer

trading. We see in panel E that Yt shocks have a positive impact on unexpected order flow via

this aggregation process. The plots for Γh

iii
in panel F show that Ht shocks have a much larger

positive impact on order flow in the front-running equilibrium than in the benchmark equilibrium.

The reason is that round-ii order flow provides dealers with more precise information about Ht in

the front-running equilibrium so that their round-iii trades use this information more aggressively.

Figure 5 shows how front-running affects the behavior of equilibrium prices. Recall that dealers

quote prices as part of their BNE strategies, so the price-impact of shocks varies with these strategies
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Figure 5: Front-Running Equilibrium II
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across different equilibria.6 Panel A plots the values for 1
1�ψ+rΛ in the front-running and benchmark

equilibria against the investors’ gain coefficient Gn
y
. These coefficients identify the cumulative effects

6This feature differentiates my analysis from earlier research on dual and strategic trading (cited above) in which
the price-impact of trade is specified exogenously.
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of Ht − Yt shocks on dealers’ quotes by round iv. The cumulative price effects are approximately

two percent smaller in the front-running equilibrium because dealers and investors require smaller

risk premia to hold long intraday Forex positions, as discussed above.

The remaining panels in Figure 5 plot the price-impact coefficients that measure how dealers’

revise their price quotes in response to unexpected order flow. The coefficients λiii and λiv1
identify

how dealers revise their quotes at the start of rounds iii and iv in response to the unexpected

aggregate order flows they observe at the end of the previous rounds. These coefficients are uniformly

positive, indicating the dealers revise their quotes upwards (downwards) in response to unexpected

positive (negative) flows. Panel B shows that the coefficient λiii is much less sensitive to differences in

the precision of investors information (measured by Gn
y
) than in the benchmark equilibrium. Because

Yt and Ht shocks have approximately symmetric impacts on round-ii order flows, dealers draw

similar inferences from their observations on these flows across different values for Gn
y
. By contrast,

the impact of Yt shocks on round-ii order flows varies with Gn
y

in the benchmark equilibrium, so

dealers adjust their inferences. Panel C shows that the price-impact of round-iii order flow is

much smaller in the front-running than the benchmark equilibrium. In general, the price-impact

coefficients depend on the incremental information carried by the flow. The price-impact coefficient

is large in the benchmark equilibrium because the round-iii flow fully reveals the value of Ht, which

is important in determining the round-iv price level that shares risk efficiently. By contrast, in

the front-running equilibrium, the round-iii flow provides incremental information on Yt and Ht

that have opposite risk-sharing implications for round-iv prices. The plots in panel D show that

dealers also use the information in round-ii flows when quoting round-iv prices. These flows contain

information about the intraday risk premia embedded in round-iii prices that must be adjusted so

that round-iv prices share risk efficiently. These adjustments are very small in both the front-

running and benchmark equilibria.

To summarize, multilateral front-running has far-reaching effects on the behavior of equilib-

rium prices and order flows. These effects originate with the information externality induced by

front-running that alters the composition and price-impact of order flows, and the optimal trading

decisions of dealers and investors. I next examine how these effects depend on the degree of collusion

among dealers

4 Front-Running with Collusion

To this point, I have considered the effects of front-running in equilibria where the hedgers’ orders

received by each dealer contained relatively imprecise information about aggregate shocks. I now

analyze how the effects of front-running change when dealers can make more precise inferences about
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aggregate shocks through the collusive sharing of information on hedgers’ orders. This analysis is

motivated by the many regulator reports (cited in the Introduction) that document how dealers at

major banks collusively shared information about their pending external orders.

To study the effects of collusion, I assume that the d dealers in the market are split into equal

groups of size g. Dealers within each group share information on the hedgers’ orders they receive in

round ii before making their own trading decisions. To keep things simple, I assume that there is

no netting of hedgers’ orders among the dealers in each group, so collusion only involves the sharing

of information.

Recall that the hedgers’ orders received by dealer d are Hd
t = 1

d
Ht+ηdt , where Ht is the aggregate

imbalance in hedgers’ orders and ηdt ∼ N(0,σ2
η) is a distribution shock that allocates orders across

dealers. These shocks are negatively correlated across dealers with correlation ρ = −
1

d�1 to ensure

that
P

d

d=1 η
d
t = 0. In the absence of collusion, each dealer’s estimate of Ht is based on their own

hedgers’ orders. But if a dealer is part of a collusive group with g members, they can obtain

a more precise estimate of Ht based on the net imbalance in the orders received by the group:

H
g

t =
P

d2g
H

d
t . Aggregating across dealers gives H

g

t = g

d
Ht + ηg

t , where ηg

t =
P

d2g
ηdt is the group

distribution shock which has a mean of zero and variance equal to d�g

d�1gσ
2
η. The estimate of Ht for

dealers in a group of size g is therefore

E[Ht|Ω
g

t:ii] = Gg

h
(Hg

t − E[Hg

t |It:ii]) = Gg

h
(
g

d
Ht + ηg

t ), where Gg

h
=

g

d
σ2
h

(g
d
)2σ2

h
+ d�g

d�1gσ
2
η

.

Dealers put more weight on the unexpected imbalance in the groups’ hedge orders H
g

t as the size

of the group rises because the gain coefficient Gg

h
is increasing in g. Since the distribution shocks

ηdt are negatively correlated across dealers, aggregating orders across dealers in the group produces

a more precise signal on Ht, so the unexpected values for H
g

t are given greater weight in dealers’

estimates.

Figure 6 illustrates how different values for the group gain coefficient Gg

h
affect the front-running

equilibria. The figure plots the values for the risk premia coefficients, Λiii and Λiv, and the order

flow coefficients, Γy

ii
, Γh

ii
, Γy

iii
, and Γh

iii
in equilibria where Gg

h
= {0.02, 0.03, 0.04}. If we assumed that

the gain for an individual dealer is Gd
h
= 0.02, these values correspond to groups ranging between

one and 10 dealers. Since there are only a total of 20 dealers in model, these plots provide a good

indication of how large differences in the degree of collusion affects the equilibria.

Figure 6 shows that collusion among dealers has a much larger impact on the composition of order

flows than on the intraday risk premia. In panels A and B, there are only small differences between

the risk premia coefficients, Λiii and Λiv, across the three sets of equilibria. Collusion among dealers

reduces the risk they face in holding intraday positions, but it generally increases the risks investors
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Figure 6: Front-Running Equilibrium III
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Notes: The figure plots coefficients from the front-running equilibrium against the

investors gain, Gn
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×100. Solid, dashed and dot-dashed lines plot coefficients from

equilibria with the dealers’ group gain Gg

h
equal to 0.02, 0.03 and 0.04, respectively.

All other parameters are equal to the values in Table 1
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face as front-running makes round-iii prices susceptible to Ht shocks. The plots in panels A and

B show how these different factors are reflected in the risk premia across equilibria with different

degrees of dealer collusion and varying precision in investors’ information. Notice that greater

collusion either increases or reduces Λiii and Λiv depending on precision of investors’ information.

This non-monotonicity appears in other features of the front-running equilibria examined below.

The effects of collusion on round-ii order flow are shown in panels C and D. When information

on hedgers’ orders is shared among a larger group of dealers, individual dealers face less risk from Ht

shocks. As a consequence, the dealers aim for round-ii positions ℘d
t:ii that make more aggressive use

of their forecasts for ∆St:iii and ∆St:iv. Since these forecasts depend on the shared information in

hedgers orders and information contained in round-i investors’ orders, the trades initiated by each

colluding dealer in round ii become more dependent on external trades. In aggregate, this greater

dependency means that Yt shocks have a larger (negative) impact on (unexpected) order flow, as

shown in panel C. Similarly, the plots in panel D show that Ht shocks have a larger positive impact

on order flow when there is more collusion among dealers. Collusion also affects the composition of

order flow in round iii. As in round ii, greater collusion leads dealers to make more aggressive use of

their forecasts for ∆St:iv. In this case, dealers use their shared information on hedgers orders, and

the information in the investor orders they individually received in rounds i and iii. In aggregate,

this makes round-iii order flow more susceptible to Yt and Ht shocks, as can be seen in panels E

and F.

In this model, hedgers’ orders are strictly exogenous so the orders received by each dealer do

not depend on whether they engage in unilateral or collusive front-running. In contrast, investors

choose their orders in rounds i and iii optimally, so the investor orders received by each dealer are

potentially impacted by the equilibrium price effects of collusive front-running even though there is

no opportunity for a dealer to front-run their investor orders. Figure 7 provides information on this

market-wide effect.

Theorems 1 and 2 showed that each investor’s round-i order follows O
n
t:i = βy

i
Y n
t + βa

i
At�1.

Panels A and B of Figure 7 show how the βy

i
coefficient varies with the investor’s gain coefficient Gn

y

in the benchmark and front-running equilibria. Individual investors use the information in their own

foreign income Y n
t to establish speculative round-i positions. When this information is imprecise,

the speculative positions are very small, so their orders simply hedge foreign income which makes

βy

i
close to −1. In equilibria where investors have more precise information, they use their round-

i orders to take larger speculative positions, which makes the βy

i
coefficient more negative. The

plots in panel A and B show that investors’ orders have a smaller speculative component in the

front-running equilibria. In other words, investors establish smaller speculative positions in round i

when they recognize that dealers are front-running hedgers’ orders. Panel B also shows that there
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Figure 7: Investors’ Orders
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Notes: Panels A and B plot the income coefficient for investors’ round-i orders. Panel C plots

the income coefficient for investors’ round-iii orders in the benchmark and front-running equilibria.

Panel D plots the order flow coefficient on investors’ round-iii orders in the front-running equilibria.

Solid, dashed and dot-dashed lines plot coefficients from the front-running equilibria with the dealers’

gain Gd

h
equal to 0.02, 0.03 and 0.04, respectively. Dotted lines plot coefficients from the benchmark

equilibria with Gd

h
= 0.02. All other parameters are equal to the values in Table 1

are negligible differences between the βy

i
coefficients across front-running equilibria with different

degrees of collusion. It appears that the presence of front-running rather than the degree of collusive

front-running has the greatest impact on investors’ willingness to take speculative round-i positions.

The lower panels of Figure 7 show how front-running and collusion affect the determinants of

investors’ round-iii orders. In the benchmark equilibrium investors learn the value of Yt by the start
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of round iii, so Yt supplants Y n
t as the determinant of their individual orders: On

t:iii = βy

iii
Yt+βa

iii
At�1.

Panel C shows that βy

iii
increases with the precision of investor’s information because under efficient

risk sharing the intraday risk premium induces investors to hold longer Forex positions in round iii.

In the front-running equilibrium the information externality prevents investors from learning the

value of Yt by the start of round iii, so their orders depend on Y n
t and round-ii order flow (which

they infer from ∆St:iii and At�1):

O
n
t:iii = βy

iii
Y n
t + βx

iii
(Xt:ii − E[Xt:ii|It:ii]) + βa

iii
At�1.

The plots in Panel C show that the βy

iii
coefficients are larger in the presence of front-running which

indicates that investors are more willing to take speculative positions in round iii based on the

private information in Y n
t . This arises because Yt shocks contribute to unexpected order flow in

round-iii that dealers use to quote prices in round iv. Consequently, investors’ income Y n
t has

forecasting power for ∆St:iv. In a sense, the information externality created by front-running shifts

investors’ speculative activity from round i to round iii. Panel D shows how the degree of collusion

affects the dependency of investors’ orders on prior unexpected order flow, Xt:ii − E[Xt:ii|It:ii].

Investors use Xt:ii − E[Xt:ii|It:ii] to update their estimates of Yt and Ht, which in turn affect their

forecasts for ∆St:iv and Rt+1. The plots show that the net effect of the information conveyed by

positive order flow is that investors increase their purchases of Forex in order to establish larger long

speculative positions. This effect is larger when investors have more precise private information on

Yt and when the degree of collusion is lower because in both instances the incremental information

conveyed by order flow is diminished.

These results show that the degree of collusive front-running primarily affects the composition

of equilibrium order flows and the determinants of investors’ orders. However, all in all, it appears

that equilibrium trading patterns are affected more by the presence of front-running than by the

degree to which dealers engage in collusive front-running.

5 Front-Running, Collusion and Trading Profits

To this point my analysis has focused on how front-running and collusion affect the behavior of

equilibrium prices, orders flows, and external orders. In this section, I examine how front-running

impacts dealers’ and investors’ welfare. Clearly, as part of a BNE strategy, individual dealers must

benefit from front-running given the trading decisions of other dealers. However, since front-running

creates an information externality, it is much less clear how dealers’ welfare compares between the

benchmark and the front-running equilibria. Furthermore, if dealers are better off in the front-
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running equilibrium, is this because they make more profitable trades with hedgers, investors, or

both? In other words, do dealers benefit from front-running at the expense of just hedgers (i.e. the

counter-parties in the front-run orders), or at the expense of both hedgers and investors?

To address these questions, it is useful to examine the equilibrium dynamics of investors’ and

dealers’ wealth. In the case of investors, the budget constraints in (4) can be rewritten as

Wn
t+1:i = An

t:ivRt+1 + (1 + r) {Wn
t:i + St:iY

n
t }+ (1 + r)

�

An
t�1:iv(St:iv − St:i)

 

+Π
n
t , (29a)

where Π
n
t = (1 + r) {(On

t:iii +O
n
t:i)∆St:iv +O

n
t:i∆St:iii} . (29b)

Equation (29a) decomposes next day’s wealth into four components: the excess return on the

overnight Forex position, An
t:ivRt+1; the return on prior wealth and foreign income (1 + r) ×

{Wn
t:i + St:iY

n
t }; the intraday capital gain on prior Forex holdings, (1 + r)

�

An
t�1:iv(St:iv − St:i)

 

;

and intraday trading profits, Πn
t . Because investors hold identical overnight positions in the bench-

mark and front-running equilibria, in aggregate these positions equal the entire stock of Forex so

At =
´ 1
0 An

t:ivdn = An
t:iv for all n. The overnight return and intraday capital gain components are

therefore identical across investors. Equation (29b) shows how trading profits are determined by

the intraday capital gains on positions the investor establishes through their orders in rounds i and

iii.

In the case of dealers, the budget constraints in (9) can be rewritten as

W d
t+1:i = (1 + r)W d

t:i +Π
d
t , (30a)

where Π
d
t = (1 + r)

n

(℘d
t:iii − ξdt:iii)∆St:iv + (℘d

t:ii − ξdt:ii)∆St:iii −O
d
t:i∆St:ii

o

. (30b)

Since dealers do not hold Forex overnight in any equilibria, next day’s wealth depends on just prior

wealth and the dealer’s trading profits, Πd
t . Equation (30b) shows how these profits depend on the

intraday capital gains dealers obtain on their end-of-round Forex positions. For example, dealers

have a position of −O
d
t:i at the end of round i after filling the investors’ orders they receive of Od

t:i.

Each dealer’s position at the end of rounds ii and iii depends on their desired position and the

unexpected orders they must fill from other dealers, ℘d
t:j − ξdt:j . Notice that the hedgers’ orders and

investors’ round-iii orders received by dealer d affect profits via their impact on desired positions

℘d
t:j , whereas the external orders received by all dealers affect positions via unexpected inter-dealer

orders ξdt:j , and price changes ∆St:j .

The trading profits of investors and dealers are linked by the market clearing conditions. In
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particular, combining (29b), (30b) with (10) - (13), we find that the trading profits of all dealers

are

Π
d

t ≡

d
X

d=1

Π
d
t = −(1 + r) {(Ot:iii +Ot:i)∆St:iv +Ot:i∆St:iii}− (1 + r)(Ht∆St:iv), (31)

where Ot:j and Ht are the aggregate imbalances in orders from investors and hedgers. The first

term on the right-hand-side is equal to minus one times the aggregate trading profits of investors:

−

´ 1
0 Πn

t dn, while the second term identifies the cost of filling hedgers’ orders: Ct = (1+r)(Ht∆St:iv).

These costs are equal to the capital gain the dealers would have captured if they had filled hedgers’

orders at the round-iv price rather than the round-iii price. Equation (31) shows that any increase

in the aggregate trading profits of dealers caused by front-running must either come from a fall in

investors’ trading profits
´ 1
0 Πn

t dn, and/or a reduction in the hedge order costs Ct.

Figure 8 shows how trading profits and costs are distributed across investors and dealers in the

benchmark equilibrium. Panel A plots the return investors expect on their overnight and intraday

positions E[An
t:ivRt+1 + (1 + r)

�

An
t�1:iv(St:iv − St:i)

 

] against the investor gain coefficient Gn
y

for

two values of the dealers’ gain: Gd
h
= {0.02, 0.04}. Expected overnight returns are unaffected by

the precision of either investors’ or dealers’ information because under complete risk sharing the

overnight risk premia only reflects investors’ preferences. Thus the plots in Panel A show that the

precision of investors’ and dealers’ information have some impact on the expected capital gains on

intraday positions (i.e., E[(1 + r)
�

An
t�1:iv(St:iv − St:i)

 

), but the effects are very small. Panel B

shows that investors’ information has a much larger impact on their expected trading profits, E[Πn
t ].

Expected trading profits increase proportionately with the gain coefficient Gn
y

because investors

willingness to take speculative positions with their round-i orders critically depends on the precision

of their information concerning Yt. When investors have more precise information, they are willing

to take larger speculative positions which, in expectation, produce greater trading profits. Notice,

also, that investors’ expected trading profits are not materially affected by the precision of dealers’

information. Panel B plots E[Πn
t ] against Gn

y
for Gd

h
= {0.02, 0.04}, but the two plotted lines are

indistinguishable. The lower panels of Figure 8 show how the precision of information affects dealer

welfare. Panel C plots expected trading losses across all dealers, −E[Πd

t ] , which mirror investors’

expected profits in panel B. Panel D shows the expected hedge cost E[Ct] as a fraction of expected

trading losses, −E[Πd

t ]. Providing liquidity to hedgers adds approximately 23 percent to dealers’

overall expected losses. The plots in panel D are similar in shape to those in panel A because E[Ct]

depends on the size of the intraday round-iii risk premia.

Figure 8 shows that dealers’ expected losses are minimally affected by the gain coefficient Gd
h
.

One might have anticipated that dealers’ losses would be smaller when they have more precise

information on the aggregate imbalance in hedgers orders because they would have been willing to
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Figure 8: Benchmark Profits and Costs
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Notes: Panel A plots the return investors expect on their overnight and intraday positions

E[An
t:ivRt+1+(1+r)

�

An
t−1:iv(St:iv − St:i)

 

]. Panel B plots investors’ expected trading profits, E[Πn
t
].

Panels C and D plot the expected dealer loss −E[Πd

t
] and the ratio of the expected hedge order costs

to the expect loss, −E[Ct]/E[Π
d

t
], respectively. All variables multiplied by 1000 and plotted against

the investor gain coefficient, Gn

y
× 100. Each panel contains solid and dashed lines from the bench-

mark equilibria with the dealers’ gain Gd

h
equal to 0.02 and 0.04, respectively (but the lines are only

distinguishable in panels A and D). All other parameters are equal to the values in Table 1

take more aggressive speculative positions. However, in the benchmark equilibrium greater precision

only directly impacts inter-dealer trading in round iii. Consequently, it affects the distribution of

trading profits across dealers, but not the expected aggregate profit. One important implication

of this result is that the collusive sharing of information about hedgers’ orders does not materially
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Figure 9: Front-Running Profits and Costs
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]. Panel B plots investors’ expected trading profits, E[Πn
t
].

Panels C and D plot the expected dealer loss −E[Πd

t
] and the expect cost of filling hedgers’ orders

E[Ct]. All variables are plotted as fractions of the corresponding value in the benchmark equilibrium

(with Gd

h
= 0.02) against the investor gain coefficient, Gn

y
× 100. Solid, dashed and dot-dashed lines

plot coefficients from the front-running equilibria with Gg

h
equal to 0.02, 0.03 and 0.04, respectively.

improve aggregate dealer profits when dealers are unable to front-run the orders. Information-

sharing does have some influence on the size of intraday risk premia and expected hedge costs,

but these effects are very small when compared to investors’ expected trading profits. So, in sum,

collusive information-sharing without front-running doesn’t appear to materially lower investors’

expected returns and trading profits.
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The effects of front-running on returns, trading profits, and costs are illustrated in Figure 9.

Panel A shows investors’ expected returns in the front-running equilibria as a fraction of expected

returns in the benchmark equilibria (with Gd
h
= 0.02) from collusive front-running equilibria where

Gg

h
= {0.02, 0.03, 0.04}. The figure shows that front-running lowers expected returns by a little more

than two percent (depending on the value for the investors’ gain Gn
y
) across equilibria with different

degrees of collusion. These effects primarily reflect the impact of front-running on the intraday risk

premia. Panel B plots investors’ expected trading profits in the front-running equilibria as a fraction

of profits in the benchmark equilibria. In this case, front-running reduces expected profits between

approximately two and ten percent. Investors are most adversely affected by front-running in cases

where they have more precise information about foreign income, measured by large values for Gn
y
.

By comparison, the impact of front-running on investors’ profits is only minimally affected by the

degree of collusion.

The lower panels of Figure 9 show how front-running impacts dealers’ expected losses. Panel C

plots expected losses for all dealers in the collusive font-running equilibria as a fraction of expected

losses in the benchmark equilibrium. The plot shows that front-running produces sizable reductions

in dealers’ losses ranging from approximately 20 to 12 percent. Front-running benefits dealers most

when investors have very imprecise information about foreign income. Under these circumstances,

investors’ round-i orders have a smaller speculative component, so dealers are less likely to find

themselves with a large unwanted position that inhibits their willingness to front-run their pending

hedgers’ orders in round ii. Front-running also significantly lowers the expected cost of providing

liquidity to hedgers, E[C]. Panel D plots E[C] in the three front-running equilibria as a fraction of

the expected cost in the benchmark equilibria. The plots show that front-running almost eliminates

these costs unless investors have very imprecise information, and even then the costs fall by over 90

percent.

Two aspects of these findings are particularly noteworthy. First, front-running by dealers has

an adverse effect on all other market participants. As I noted in the introduction, the standard

view of regulators and legal plaintiffs is that dealer front-running primarily harms the entity that

submits the front-run order; i.e., the hedgers in this model. In contrast, the results above show that

front-running can have significant adverse effects on investors’ trading profits even through dealers

had no opportunity to front-run investors’ orders. Second, information-sharing among dealers has

rather minor welfare effects in the front-running equilibria. Figures 6 and 7 showed that aggregate

order flows and investors’ trades varied significantly across equilibria with different values for Gg

h
,

but the plots in Figure 9 are very similar. It appears that the presence or absence of front-running

has much larger welfare implications than the degree to which dealers collusively front-run external

orders.
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To understand why front-running adversely affects investors’ trading profits, it is useful to con-

sider the source of these profits in the benchmark equilibrium. Figure 7 showed that investors’

round-i trades had a larger speculative component when they had more precise private information

on Yt. On average these positions generate trading profits on investors’ round-i trades as the infor-

mation on Yt is aggregated by inter-dealer trading and incorporated into round-iii prices, and these

profits are higher in expectation when investors take larger speculative positions (see Figure 8). By

round iii, investors’ private information makes no contribution to their trading profits because the

value of Yt can be inferred from public information. So their round-iii trades are simply used to

establish a position that benefits from the intraday risk premium. Front-running reduces investors’

expected trading profits through two channels. First, it makes investors less willing to take spec-

ulative positions based on their own private information in round i. Second, the dependency of

investors’ round iii orders on round-ii order flow creates a problem of “rational confusion” (see, e.g.,

Bacchetta and van Wincoop, 2008). Investors cannot differentiate between the effects of Yt and Ht

shocks on order flow, so inevitably their round-iii orders contain “mistakes” that were missing in

the benchmark equilibrium.

Front-running also effects the prices hedgers pay to fill their orders. In all equilibria, positive Ht

shocks raise the price dealers quote in round iv to ensure efficient risk-sharing, but in the presence

of front-running, positive Ht shocks also raise prices in round iii via their impact on order flow.

Consequently, positive Ht shocks not only increase hedgers’ net orders to purchase Forex, but also

raise the price hedgers pay in aggregate to have those orders filled. Similarly, negative Ht shocks

reduce round-iii prices in the front-running equilibrium and increase the net sales of Forex by

hedgers, so front-running reduces the prices hedgers receive in aggregate for their net Forex sales.

Clearly, these effects of front-running benefit dealers. In particular, they contribute to dealers’

trading profits by reducing the capital gains that are missed when hedgers’ orders are filled at the

round-iii price rather than the round-iv price.

Finally, let us turn to the effects of collusion. The plots in Figure 9 shows that collusive front-

running harms investors marginally more than unilateral front-running, but it is the existence of

front-running that does most of the harm. The reason is that front-running with or without collusion

creates the information externality that fundamentally changes the behavior of Forex prices and

order flows. In the absence of front-running, collusion between dealers doesn’t change the process

by which the information contained in order flow is embedded into prices, so its effects on investors

and hedgers are very small.
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6 Conclusion

The analysis in this paper shows that front-running affects the behavior of Forex prices and or-

der flows in ways that impact all market-participants. These market-wide effects appear because

front-running creates an externality that slows down the aggregation of information by inter-dealer

trading. Hitherto, regulators and plaintiffs have focused on how front-running directly affects the

counter-parties in front-run trades, but my analysis shows that this perspective is too narrow. Front-

running directly benefits dealers by shifting the cost of providing liquidity to their counter-parties

(i.e. hedgers), but it also harms investors that have no direct involvement in the front-running trades

because they are less willing to take speculative positions based on their own private price-relevant

information. This collateral harm to investors may be more empirically significant than the direct

harm suffered by dealers’ counter-parties because front-running trades likely represent a very small

fraction of all trades in the market.

Many regulator reports highlight the fact that Forex dealers at several major banks used elec-

tronic chat rooms to share information on their inventory positions and customer orders. My

analysis shows that while the sharing of information on customer orders has equilibrium effects

that impact all participants, in and of itself, such information-sharing has relatively minor effects

on welfare. As a result, the welfare implications of unilateral and collusive front-running are quite

similar. However, this finding comes with a caveat. My analysis focuses on equilibria in which

information-sharing occurs symmetrically across all dealers. Collusive front-running may have dif-

ferent equilibrium implications when some dealers share information on pending customer orders

while others keep their customer order information confidential. I leave this as a topic for future

research.
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Appendix

This appendix provides the derivations of key equations in the text and the proofs of the Theorems

1 and 2.

A.1 Derivations

The following lemma is used to derive the equations for investors’ and dealers’ optimal Forex holdings

in (19) and (22):

Lemma. Let Z = κ(a) +Υ0X +X 0ΞX , where X is a k × 1 vector of normally distributed random

variables with zero means and covariance Σ. Ξ is a symmetric k × k matrix, Υ is a k × 1 vector

function of the scalar a and κ(a) is a function of a. Provided that Θ = I − 2ΞΣ is positive definite,

U = Eexp(Z) = |Θ|�1/2 exp
�

δ +Υ
0µ+ 1

2Υ
0Θ�1

ΣΥ
�

. (A.32)

Differentiating U with respect to a gives the following first order condition

∂κ

∂a
+

∂Υ

∂a

⇣

1
2

⇣

Θ�1
Σ+

⇥

Θ�1
Σ
⇤0
⌘

Υ

⌘

= 0, (A.33)

where ∂Υ
∂a = [∂Υ1

∂a , ∂Υ2

∂a , ...].

Derivation of Equation (19)

Consider investor n’s choice for An
t:iv in round iv. In both the benchmark and front-running equilib-

ria, overnight returns are Rt+1 = ΛiAt+
1+r
r Vt+1. Since Vt+1 is a normal random variable and At is

know to investors by round iv, Rt+1 is normally distributed conditional on information, Ωn
t:iv. Choos-

ing An
t:iv to maximize expected utility Un

t:iv subject to (4b) is therefore equivalent to maximizing

E[An
t:ivRt+1|Ω

n
t:iv]−

1
2ωV[A

n
t:ivRt+1|Ω

n
t:iv]. The resulting first-order condition implies that

An
t:iv = Θ

n
iv|rE[Rt+1|Ω

n
t:iv], with Θ

n
iv|r =

1

ωV[Rt+1|Ωiv

n,t]
(A.34)

as shown in (19c).

In round i the investor chooses An
t:i to maximize E

⇥

−ω exp(−ωWn
t+1:i)|Ω

n
t:i

⇤

subject to (4). In

both the benchmark and front-running equilibria, intraday price changes and overnight returns are

linear functions of normally distributed random variables, so applying the Lemma, the investor’s



problem is equivalent to minimizing −U in (A.32), with

Z = −ωWn
t+1:i = κ + Γ

0X + X 0ΞX ,

κ = −ω(1 + r)
⇥

(Wn
t:i + St:iY

n
t ) +Ai

n,tE[St:iii − St:i|Ω
n
t:i] + E[An

t:iii|Ω
n
t:i]E[∆St:iv|Ω

n
t:i]
⇤

− ωE[An
t:iv|Ω

n
t:i]E[Rt+1|Ω

n
t:i],

Υ =

2

6

6

6

6

6

6

4

−ω(1 + r)E[∆St:iv|Ω
n
t:i]

−ωE[Rt+1|Ω
n
t:i]

−ωE[An
t:iv|Ω

n
t:i]

−ω(1 + r)An
t:i
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t:iii|Ω

n
t:i]

3
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, X =
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t:iii|Ω

n
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t:iv|Ω
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U[∆St:iii|Ω
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n
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,

and Ξ =
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0 0 0 0 −ω(1 + r)

0 0 −ω 0 0

0 0 0 0 0
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, (A.35)

where U[χ|Ωn
t:j ] = χ−E[χ|Ωn

t:j ] for any variable χ. The first-order condition for An
t:i is

0 = −ω(1 + r)En
t:i(St:iii − St:i) +

h

0 0 0 −ω(1 + r) 0
i

⇥

ψi

ij
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,
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h

Ψi

ij
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= 1
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(I − 2ΞΣ)�1Σ+
⇥

(I − 2ΞΣ)�1Σ
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0
⌘

and Σ = V[X|Ωn
t:i], where X and Ξ are defined

in (A.35). It proves convenient to rewrite this equation as

h

1 −Ψi

14ω(1 + r)
i
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n
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#

. (A.36)

In round iii the investor chooses An
t:iii to minimizing −U in (A.32), with Z = −ωWn

t+1:i =

A.1



κ + Γ0X + X 0ΞX ,

κ = −ω [(1 + r)An
t:iiiE[∆St:iv|Ω

n
t:iii] + E[An

t:iv|Ω
n
t:iii]E[Rt+1|Ω

n
t:iii]] ,
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(A.37)

The first order condition for An
t:iii is

0 = −ω(1 + r)E[∆St:iv|Ω
n
t:iii] +

h

0 0 −ω(1 + r)
i
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Ψ
iii

ij

⇤

2

6

4

−ωE[Rt+1|Ω
n
t:iii]

−ωE[An
t:iv|Ω

n
t:iii]

−ω(1 + r)An
t:iii

3

7

5
,
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(I − 2ΞΣ)�1Σ+
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(I − 2ΞΣ)�1Σ
⇤
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⌘

and Σ = V[X|Ωn
t:iii] where X and Ξ are

defined in (A.37). Again, it is convenient to rewrite this equation as

E[∆St:iv|Ω
n
t:iii] = ω(1 + r)Ψiii

33A
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t:iii + ω

h

Ψiii
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. (A.38)

To find investors round i position, we take expectations conditional on Ωn
t,i on both sides of this

equation and combine the result with (A.36) to give
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.

Using the fact that E[An
t:iv|Ω

n
t:i] = Θn

iv|rE[Rt+1|Ω
n
t:i], from (A.34) we can rewrite this expression as

"
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t:i]

#

= 1
ω(1+r)

"

Ψi

44 Ψi

45

0 Ψiii

33

#

�1

×

 "

1 −ω(1 + r)Ψi

14

0 1

#"

E[St:iii − St:i|Ω
n
t:i]

E[∆St:iv|Ω
n
t:i]

#

− ω

"

Ψi

24 +Ψi

34Θ
n
iv|r

Ψiii

13 +Ψiii

23Θ
n
iv|r

#

E[Rt+1|Ω
n
t:i]

!

.

A.2



The first row of this matrix equation gives the equation for An
t:i shown in (19a).

To find investors round iii position, we combine (A.38) with the fact that E[An
t:iv|Ω

n
t:iii] =

Θn
iv|rE[Rt+1|Ω

n
t:iii] from (A.34) to give
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n
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Ψiii

13 +Ψiii

23Θ
n
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33

E[Rt+1|Ω
n
t:iii],

as shown in equation (19b).

Derivation of Equation (22)

In round iii, dealers choose ℘d
t:iii to maximize Ud

t:iii with information Ωd
t:iii. In both the benchmark

and front-running equilibria, the dealers’ budget constraint becomes

W d
t+1:i = (1 + r)

h

W i

d,t − Zd
t:i∆St:ii + (℘d

t:ii − ξdt:ii)∆St:iii + (℘d
t:iii − ξdt:iii)∆St:iv

i

.

By Lemma, choosing ℘d
t:iii to maximize −E[exp(−θW d

t+1:i)|Ω
d
t:iii] is equivalent to minimizing −U in

(A.32), with Z = −ωW d
t+1:i = κ +Υ0X + X 0ΞX , where
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(A.39)

The first order condition for ℘d
t:iii is
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⇥
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and Σ = V[X|Ωd
t:iii] where X and Ξ are

defined in (A.39). This expression simplifies to

℘d
t:iii = Φ

d
iii|siv

E[∆St:iv|Ω
d
t:iii] where Φ

d
iii|siv

=
1 + ω(1 + r)Ψiii

21
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,

as shown in (22b).

In round ii, dealers choose ℘d
t:iito minimizing −U in (A.32), with Z = −ωW d

t+1:i = κ + Υ0X +
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X 0ΞX , where

κ = −ω(1 + r)
h
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The first order condition for ℘d
t:ii is

0 = −ω(1 + r)E[∆St:iii|Ω
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,

with
h
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ij
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(I − 2ΞΣ)�1Σ+
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(I − 2ΞΣ)�1Σ
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and Σ = V[X|Ωd
t:iii] where X and Ξ are defined

in (A.40). Simplifying this expression using the fact that E[℘d
t:iii|Ω

d
t:ii] = Φd

iii|siv
E[∆St:iv|Ω

d
t:ii] gives
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as shown in (22a).

Dealer Price Quotes

Since dealers simultaneously quote prices at the start of each round, and prices are good for orders

of any size, all dealers must quote the same price to avoid the expected utility loss associated

with arbitrage. This means that equilibrium prices can only be a function of dealers common

information at the start of each trading round, It,j =
T

d I
d
t,j . This restriction allows us to derived

the following equations for prices from the market clearing and efficient risk-sharing that apply in
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both the benchmark and front-running equilibria:

St:i = St:ii (A.41a)

St:ii = E [St:iii|It:ii] +
Φ

ii|siv

Φ
ii|siii

E [∆St:iv|It:ii] +
1

Φ
ii|siii

E [Zt:i| It:ii] (A.41b)

St:iii = E [St:iv |It:iii] +
1

Φ
iii|siv

E [Ht +Ot:iii +Ot:i| It:iii] (A.41c)

St:iv = 1
1+rE[St+1:i + Pt+1|It:iv]−

1
(1+r)Θ

iv|r
E [At|It:iv] (A.41d)

where Φj|i =
P

d

d=1Φ
d
j|i and Θi|j =

´ 1
0 Θn

i|jdn.

To derive these equations, first note that in an efficient risk sharing equilibrium, investors hold

the entire stock of Forex in round iv, so

At =

ˆ 1

0
An

t:ivdn =

ˆ 1

0
Θ

n
iv|rE[Rt+1|Ω

n
t:iv]dn.

Dealers’ common information It:iv is a subset of investors information Ωn
t:iv, so applying the Law of

Iterated expectations

E [At|It:iv] =

✓
ˆ 1

0
Θ

n
iv|rdn

◆

E[Rt+1|It:iv]. (A.42)

Combining this equation with the definition of overnight returns, gives (A.41d).

In round iii, market clearing implies

Xt:iii =
X

d

d=1
℘d
t:iii +

1
d

X

d

d=1
E
h

Xt:iii|Ω
d
t:iii

i

+Ht +Ot:iii +Ot:i. (A.43)

Substituting for ℘d
t:iii from (22b), taking expectations conditioned on It:iii, and simplifying gives

0 = Φ
iii|sivE [∆St:iv |It:iii] + E [Ht +Ot:iii +Ot:i| It:iii] , (A.44)

where Φ
iii|siv =

P

d

d=1Φ
d
iii|siv

. Rearranging this equation using the fact that ∆St:iv = St:iv − St:iii,

produces (A.41c).

In round ii, market clearing implies

Xt:ii =
X

d

d=1
℘d
t:ii +

1
d

X

d

d=1
E
h

Xt:ii|Ω
d
t:ii

i

+Ot:i. (A.45)

As above, we substitute for ℘d
t:ii from (22a), take expectations conditioned on It:ii and simplify to
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obtain

0 = Φ
ii|siiiE[∆St:iii|It:ii] + Φ

ii|sivE[∆St:iv|It:ii] + E [Zt:i|It:ii] , (A.46)

where Φ
ii|siii =

P

d

d=1Φ
d
ii|siii

and Φ
ii|siv =

P

d

d=1Φ
d
ii|siv

. Rearranging this equation produces (A.41b).

Finally, dealers quote the same price in rounds i and ii to eliminate the risk of capital losses

from filling investors’ round-i orders. These losses arise from the (Ad
t�1:iv −O

d
t:i)∆St:ii term in (9a).

This is feasible because there is no change in dealers’ common information between the start of

rounds iand ii.

Risk Premia

In both the benchmark and front-running equilibria, dealers’ observations on Xt:ii and Xt:iii are

sufficient to reveal the values of Yt and Ht by the start of round iv, so dealers’ estimates of At

are E[At|It:iv] =
P

1

j=0(Yt�j − Ht�j) = At. Combining this result with (A.42) gives the following

equation for the overnight risk premium

E[Rt+1|It:iv] = Θ
�1
iv|rAt = ΛiAt,

as shown in (24).

The first step in determining the intraday risk premia is to identify aggregate investors’ orders.

Combining the definitions On
t:i ≡ An

t:i−An
t�1:iv−Y n

t and O
n
t:iii ≡ An

t:iii−An
t:i with (19) and aggregating,

gives

Ot:i =

ˆ 1

0

n

Θ
n
i|siii

E[∆St:iii|Ω
n
t:i] +Θ

n
i|siv

E[∆St:iv|Ω
n
t:i] +Θ

n
i|rE[Rt+1|Ω

n
t:i]
o

dn−At�1 − Yt,

(A.47a)

Ot:iii +Ot:i =

ˆ 1

0

n

Θ
n
iii|siv

E[∆St:iv|Ω
n
t:iii] +Θ

n
iii|RE[Rt+1|Ω

n
t:iii]
o

dn−At�1 − Yt. (A.47b)

To find the round iii premium, E [∆St:iv|It:i], we take expectations on both sides of (A.47b)

E [Ot:iii +Ot:i| It:i] = Θ
iii|sivE[∆St:iv|It:i] +Θ

iii|RE[Rt+1|It:i]−At�1 − E [Yt| It:i] ,

=
�

Θ
iii|sivΛiv +Θ

iii|RΛi − 1
�

At�1, (A.48)

where Θ
iii|siv =

´ 1
0 Θn

iii|siv
dn and Θ

iii|R =
´ 1
0 Θn

iii|Rdn. Notice that E [Yt| It:i] = 0 because Yt is an

i.i.d. mean-zero variable and dealers have no information about the realization of Yt at the start of
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round i. Next, we take expectations of (A.44) conditioned It:i to give

0 = Φ
iii|sivE [∆St:iv |It:i] + E [Ht +Ot:iii +Ot:i| It:i] . (A.49)

Since dealers have no common information at the start of round i about the Ht shock, E [Ht| It:i] =

(1 − ψ)At�1. Combining this condition with (A.48), (A.49) and the definition, E [∆St:iv|It:i] =

ΛivAt�1, gives

0 =
⇥

Φ
iii|sivΛiv +

�

Θ
iii|sivΛiv +Θ

iii|RΛiψ − 1
�

+ 1− ψ
⇤

At�1.

This condition must hold for all values of At�1, so

Λiv =
ψ(1− ΛiΘiii|R)

Φ
iii|siv +Θ

iii|siv

,

as shown in (25b).

To find the round ii premium, E [∆St:iii|It:i], we take expectations on both sides of (A.47a)

E [Ot:i| It:i] = Θ
i|siiiE[∆St:iii|It:i] +Θ

i|sivE[∆St:iv|It:i] +Θ
i|rE[Rt+1|It:i]−At�1 − E [Yt| It:i] ,

= Θ
i|siiiΛiiiAt�1 +Θ

i|sivΛivAt�1 +Θ
i|rΛiAt�1 −At�1,

where Θ
i|siii =

´ 1
0 Θn

i|siii
dn, Θ

i|siv =
´ 1
0 Θn

i|siv
dn and Θ

i|r =
´ 1
0 Θn

i|rdn. We then combine this equation

with the expectation of (A.46)

0 = Φ
ii|siiiE[∆St:iii|It:i] + Φ

ii|sivE[∆St:iv|It:i] + E [Zt:i|It:i] ,

to give

0 =
⇥

Φ
ii|siiiΛiii + Φ

ii|sivΛiv +
�

Θ
i|siiiΛiii +Θ

i|sivΛiv +Θ
i|rΛiψ − 1

�⇤

At�1.

As above, the term in [.] must equal zero, which implies that

Λiii =
1−Θ

i|rΛiψ

Φ
ii|siii +Θ

i|siii

−

✓

Φ
ii|siv +Θ

i|siv

Φ
ii|siii +Θ

i|siii

◆

Λiv,

as shown in (25a).
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Returns and Intraday Price Changes

In both the benchmark and front-running equilibria, intraday price changes and overnight returns

implied by dealers’ quotes are given by

Rt = ΛiAt�1 +
1+r
r Vt, (A.50a)

∆St:iii = ΛiiiAt�1 −
1
rΛ(E[At|It:iii]− E[At|It:ii]), (A.50b)

+Φ
�1
iii|siv

{E [Ht +Ot:iii +Ot:i| It:iii]− E [Ht +Ot:iii +Ot:i| It:ii]} ,

∆St:iv = ΛivAt�1 −
1
rΛ(At − E[At|It:iii])

= −Φ
�1
iii|siv

{E [Ht +Ot:iii +Ot:i| It:iii]− E [Ht +Ot:iii +Ot:i| It:ii]} . (A.50c)

To derive these equations, we first identify the prices dealers quote in round iv. (25a) and

(A.41d) imply that E [St+1:iv − St+1:i|It:iv] = (Λiv + Λiii)E [At|It:iv]. Combining this expression

with (25a) and iterating forward gives

St:iv =
1
X

i=1

⇣

1
1+r

⌘i
E[Pt+1 − ΛAt+i�1|It:iv], (A.51)

where Λ = Λi + Λiii + Λiv. Substituting for the Pt process from (2) and the At process from (14),

(A.51) simplifies to

St:iv = 1
rFt −

Λ

1�ψ+rAt. (A.52)

By definition, St:i = E [St:iv |It:i]− (Λiv + Λiii)At�1, so substituting for St:iv gives

St:i =
1

r
Pt −

h

ψ
1�ψ+rΛ+ Λiii + Λii

i

At�1.

Leading this expression forward by one day, and substituting in the definition for overnight returns

produces

Rt+1 = St+1:i + Pt+1 − (1 + r)St:iv =
1 + r

r
Vt+1 + ΛiAt,

as shown in (A.50a).

To find expressions for the intraday price changes, we first use (A.41c) to substitute for St:iii in
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the definition ∆St:iii = ΛiiiAt�1 + St:iii − E[St:iii|It:ii]. This produces

∆St:iii = ΛiiiAt�1 + E [St:iv |It:iii]− E [St:iv |It:ii]

+ Φ
�1
iii|siv

{E [Ht +Ot:iii +Ot:i| It:iii]− E [Ht +Ot:iii +Ot:i| It:ii]} ,

= ΛiiiAt�1 −
1

1�ψ+rΛ(E[At|It:iii]− E[At|It:ii])

+ Φ
�1
iii|siv

{E [Ht +Ot:iii +Ot:i| It:iii]− E [Ht +Ot:iii +Ot:i| It:ii]} ,

as shown in (A.50b ). Equation (A.41c) also implies that

∆St:iv = −Φ
�1
iii|siv

E [Ht +Ot:iii +Ot:i| It:iii] + St:iv − [St:iv |It:iii] ,

= −Φ
�1
iii|siv

E [Ht +Ot:iii +Ot:i| It:ii] + St:iv − [St:iv |It:iii]

− Φ
�1
iii|siv

(E [Ht +Ot:iii +Ot:i| It:iii]− E [Ht +Ot:iii +Ot:i| It:ii]) ,

= ΛivAt�1 −
1

1�ψ+rΛ(At − E[At|It:iii])

− Φ
�1
iii|siv

(E [Ht +Ot:iii +Ot:i| It:iii]− E [Ht +Ot:iii +Ot:i| It:ii]) ,

as shown in (A.50c).

A.2 Proof of Theorem 1

There are two steps in the Proof: In step 1, I show that intraday price changes and overnight returns

follow (15) under the conjectured equilibrium process for aggregate inter-dealer order flows in (17).

In step 2 I verify that the optimal trading decisions of dealers and investors produce these order

flows.

Step One

Since aggregate order flows augment dealers’ common information at the start of rounds iii and iv

under the conjectured process for order flows in (17), dealers have common knowledge concerning Yt

when quoting round iii prices, and common knowledge concerning Ht when quoting round iv prices.

Consequently, At − E[At|It:iii] = −Ht and E [Ht +Ot:iii +Ot:i| It:iii] − E [Ht +Ot:iii +Ot:i| It:ii] =

E [Ot:iii +Ot:i| It:iii]− E [Ot:iii +Ot:i| It:ii] = −ςYt, for some unknown parameter ς. Hence

∆St:iv = ΛivAt�1 +
1

1�ψ+rΛHt + Φ
�1
iii|siv

ςYt,

A.9



and so

E[∆St:iv|Ω
n
t:iii] = ΛivAt�1 + Φ

�1
iii|siv

ςYt.

Overnight returns are Rt+1 =
1+r
r Vt+1 + ΛiAt, so

E[Rt+1|Ω
n
t:iii] = Λi (Yt + ψAt�1) .

Substituting these equations into (A.47b) gives

Ot:iii +Ot:i =

ˆ N

0

n

Θ
n
iii|siv

⇣

ΛivAt�1 + Φ
�1
iii|siv

ςYt

⌘

+Θ
n
iii|RΛi (Yt + ψAt�1)

o

dn−At�1 − Yt,

=
⇣

Θ
iii|sivΦ

�1
iii|siv

ς +Θ
iii|RΛi − 1

⌘

Yt +
�

Θ
iii|sivΛiv +Θ

iii|RΛiψ − 1
�

At�1.

So −ς = Θ
iii|sivΦ

�1
iii|siv

ς +Θ
iii|RΛi − 1. Solving for ς gives ς =

1�Θ
iii|RΛi

1+Θ
iii|sivΦ

−1

iii|siv

and hence

Ot:iii +Ot:i = −
Φ

iii|sivΛiv

ψ
Yt +

�

Θ
iii|sivΛiv +Θ

iii|RΛiψ − 1
�

At�1.

Now from (A.50b)

∆St:iii = ΛiiiAt�1 −
1

1�ψ+rΛ(E[At|It:iii]− E[At|It:ii])

+ Φ
�1
iii|siv

{E [Ht +Ot:iii +Ot:i| It:iii]− E [Ht +Ot:iii +Ot:i| It:ii]} ,

= ΛiiiAt�1 −

⇣

1
1�ψ+rΛ+ 1

ψ
Λiv

⌘

Yt

as shown in (15c). Similarly, At − E[At|It:iii] = −Ht, so (A.50c) becomes

∆St:iv = ΛivAt�1 −
1

1�ψ+rΛ(At − E[At|It:iii])

− Φ
�1
iii|siv

(E [Ht +Ot:iii +Ot:i| It:iii]− E [Ht +Ot:iii +Ot:i| It:ii]) ,

= ΛivAt�1 +
1
ψ
ΛivYt +

1
1�ψ+rΛHt

as shown in (15d). This completes our verification of (15).

Step Two

Now we verify that equilibrium order flows follow (17). To begin, consider the implications of (15)

for investors’ individual forecasts. Recall that individual investors estimate aggregate foreign income

in round i based on their own income is Y n
t = Yt+ εnt , where Yt and εnt are i.i.d. mean zero random
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variables with variances, σ2
y

and σ2
ε , respectively. By the Projection Theorem, E[Yt|Ω

n
t:i] = Gn

i
Y n
t ,

with Gn
y
= σ2

y

σ2
y
+σ2

ε

. In the benchmark equilibrium, investors hold the entire stock of Forex overnight,

so At�1 = E[At�1|Ω
n
t:i]. Combining these results with (15c) and (15d), gives

E[∆St:iii|Ω
n
t:i] = ΛiiiAt�1 −

⇣

1
1�ψ+rΛ+ 1

ψ
Λiv

⌘

Gn
y
Y n
t ,

E[∆St:iv|Ω
n
t:i] = ΛivAt�1 +

1
ψ
ΛivG

n
y
Y n
t , and

E[Rt+1|Ω
n
t:i] = ΛiψAt�1 + ΛiG

n
y
Y n
t .

Substituting these forecasts in into (A.47a) gives the following expression for investors’ round-

iorders:

Ot:i =

ˆ 1

0

n

−Θ
n
i|siii

⇣

1
1�ψ+rΛ+ 1

ψ
Λiv

⌘

Gn
y
Y n
t +Θ

n
i|siv

1
ψ
ΛivG

n
y
Y n
t +Θ

n
i|rΛiG

n
y
Y n
t

o

dn− Yt

+

ˆ 1

0

n

Θ
n
i|siii

ΛiiiAt�1 +Θ
n
i|siv

ΛivAt�1 +Θ
n
i|rΛiψAt�1 −At�1

o

dn,

=
hn

1
ψ
Λiv(Θi|siv −Θ

i|siii)−
1

1�ψ+rΛΘi|siii +Θ
i|rΛi

o

Gn
y
− 1
i

Yt

+
�

Θ
i|siiiΛiii +Θ

i|sivΛiv +Θ
i|rΛiψ − 1

 

At�1,

= βy

i
Yt + βa

i
At�1,

Next, consider the implications of (15) for dealers’ forecasts. In round i, each dealer receives

a random allocation of investors orders (because dealers quote the same round-i price), so O
d
t:i =

1
d
Ot:i + ζdt:i, with

P

d

d=1 ζ
d
t:i = 0. Their best estimate of foreign income based on this order is

E[Yt|Ω
d
t:ii] = Gd

y
(Od

t:i − E[Od
t:i|I

d
t:i]) = Gd

y
( 1
d
βy

i
Yt + ζdt:i), where Gd

y
=

1
d
βy

i
σ2
y

( 1
d
βy

i
)2σ2

y
+ σ2

ζ

.

Dealers’ individual forecasts in round ii are therefore

E[∆St:iii|Ω
d
t:ii] = E[∆St:iii|It:ii]−

⇣

1
1�ψ+rΛ+ 1

ψ
Λiv

⌘

Gd
y

⇣

1
d
βy

i
Yt + ζdt:i

⌘

and

E[∆St:iv|Ω
d
t:ii] = E[∆St:iv|It:ii] +

1
ψ
ΛivG

d
y

⇣

1
d
βy

i
Yt + ζdt:i

⌘

.
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Combining equations (22) and (21)gives

U [Xt:ii| It:ii] =
X

d

d=1
Φ
d
ii|siii

n

E[∆St:iii|Ω
d
t:ii]− E[∆St:iii|It:ii]

o

+
X

d

d=1
Φ
d
ii|siv

n

E[∆St:iv|Ω
d
t:ii]− E[∆St:iv|It:ii]

o

+ 1
d

X

d

d=1

n

E[Xt:ii|Ω
d
t:ii]− E[Xt:ii|It:ii]

o

+Ot:i − E[Ot:i|It:ii].

So substituting in dealers’ forecasts

U [Xt:ii| It:ii] = −

X

d

d=1
Φ
d
ii|siii

n⇣

1
1�ψ+rΛ+ 1

ψ
Λiv

⌘

Gd
y

⇣

1
d
βy

i
Yt + ζdt:i

⌘o

+
X

d

d=1
Φ
d
ii|siv

n

1
ψ
ΛivG

d
y

⇣

1
d
βy

i
Yt + ζdt:i

⌘o

+
X

d

d=1

1
d
Γ

y

ii
Gd

y

⇣

1
d
βy

i
Yt + ζdt:i

⌘

+ βy

i
Yt,

=
nh

Φ
ii|siv

1
ψ
Λiv − Φ

ii|siii

⇣

1
1�ψ+rΛ+ 1

ψ
Λiv

⌘

+ Γ
y

ii

i

1
d
Gd

y
+ 1
o

βy

i
Yt,

= Γ
y

ii
Yt.

This verifies that round-ii order flow follows (17a) with

Γ
y

ii
=

βy

i

1− 1
d
Gd

y
βy

i

n

1 +
h

Φ
ii|siv

1
ψ
Λiv − Φ

ii|siii

⇣

1
1�ψ+rΛ+ 1

ψ
Λiv

⌘i

1
d
Gd

y

o

.

Finally, to verify that round iii order flow follows (17b), we note that (15) implies

E[∆St:iv|Ω
d
t:iii] = E[∆St:iv|It:iii] +

1
1�ψ+rΛE[Ht|Ω

d
t:iii].

Each dealer receives a hedging order of Hd
t = 1

d
Ht + ηdt , with

P

d

d=1 η
d
t = 0, so their estimate of the

Ht shock is

E[Ht|Ω
d
t:iii] = Gd

h
(Hd

t − E[Hd
t |I

d
t:iii]) = Gd

h
( 1
d
Ht + ηdt ) where Gd

h
=

1
d
σ2
h

( 1
d
)2σ2

h
+ σ2

η

.
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We now combine this equation with ( 22) and (23) to give

U [Xt:iii| It:iii] =
X

d

d=1
Φ
d
iii|siv

⇣

E[∆St:iv|Ω
d
t:iii]− E[∆St:iv|It:iii]

⌘

+ 1
d

X

d

d=1

⇣

E
h

Xt:iii|Ω
d
t:iii

i

− E [Xt:iii|It:iii]
⌘

+ (Ht +Ot:iii +Ot:i)− E [Ht +Ot:iii +Ot:i| It:iii] ,

=
X

d

d=1
Φ
d
iii|siv

1
1�ψ+rΛE[Ht|Ω

d
t:iii] +

X

d

d=1

1
d
Γ

h

iii
E[Ht|Ω

d
t:iii] +Ht,

=
X

d

d=1
Φ
d
iii|siv

1
1�ψ+rΛG

d
h
( 1
d
Ht + ηdt ) +

X

d

d=1

1
d
Γ

h

iii
Gd

h
( 1
d
Ht + ηdt ) +Ht,

= Φ
iii|siv

1
1�ψ+rΛ

1
d
Gd

h
Ht + Γ

h

iii
Gd

h

1
d
Ht +Ht,

=
n

Φ
iii|siv

1
1�ψ+rΛ

1
d
Gd

h
+ Γ

h

iii

1
d
Gd

h
+ 1
o

Ht,

= Γ
h

iii
Ht.

This verifies that round-iii order flow follows (23) with

Γ
h

iii
=

1 + Λ

1�ψ+r
1
d
Gd

h
Φ

iii|siv

1− 1
d
Gd

h

.

⌅

A.3 Proof of Theorem 2

The Proof proceeds in four steps. In step one, I compute the conditional expectations and second

moments for individual investors given the conjectured behavior of equilibrium prices in (26) and

order flows in (28). Step two repeats these calculations for individual dealers. In step three, I verify

that the equilibrium order flows follow (28). In the last step, I verify that equilibrium prices follow

(26).

Before getting into the details, it is useful to rewrite equilibrium equations for ∆St:iii and ∆St:iv

in terms of the exogenous shocks:
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∆St:iii = ΛiiiAt�1 + λiiiΓ
y

ii
Yt + λiiiΓ

h

ii
Ht,

= ΛiiiAt�1 + By

ii
Yt + Bh

ii
Ht,

∆St:iv = ΛivAt�1 + λiv1
(Γy

iii
Yt + Γ

h

iii
Ht) + λiv2

(Γy

ii
Yt + Γ

h

ii
Ht),

= ΛivAt�1 + (λiv1
Γ

y

iii
+ λiv2

Γ
y

ii
)Yt + (Γh

iii
+ λiv2

Γ
h

ii
)Ht,

= ΛivAt�1 + By

iii
Yt + By

iii
Ht.

Step One

Individual investors choose their round-i orders based on their conditional expectations for Yt and

Ht and their associated variances. As above, the conditional moments for Yt are

E[Yt|Ω
n
t:i] =

σ2
y

σ2
y
+ σ2

ε

(Yt + εnt ) = Gn
y
Y n
t , and V[Yt|Ω

n
t:i]=σ2

y
−

σ4
y

σ2
y
+ σ2

ε

= (1− Gn
y
)σ2

y
,

and those for Ht are E[Ht|Ω
n
t:i] = 0 and E[Ht|Ω

n
t:i]=σ2

h
. On the basis of these estimates, investor n’s

private forecasts are

E[∆St:iii|Ω
n
t:i] = By

ii
Gn

y
Y n
t + ΛiiiAt�1,

E[∆St:iv|Ω
n
t:i] = By

iii
Gn

y
Y n
t + ΛivAt�1,

E[Rt+1|Ω
n
t:i] = Λi (ψAt�1 + Gn

y
Y n
t ) .

In round iii, investors estimate Yt and Ht based on Y n
t and round-ii order flow – which is derived

from their observation of prices and knowledge of At�1 as: U[Xt|It:ii] = λ�1
iii

(∆St:iii − ΛiiiAt�1).

Applying the Projection Theorem, we find that

E[Yt|Ω
n
t:iii] =

h

σ2
y

Γy

ii
σ2
y

i

"

σ2
y
+ σ2

ε Γy

ii
σ2
y

Γy

ii
σ2
y

(Γy

ii
)2 σ2

y
+ (Γh

ii
)2 σ2

h

#

�1 "

Yt + εnt

U[Xt|It:ii]

#

= Kn
y|Y Y

n
t +Kn

y|XU[Xt|It:ii],

V[Yt|Ω
n
t:iii] = σ2

y
−

h

σ2
y

Γy

ii
σ2
y

i

"

σ2
y
+ σ2

ε Γy

ii
σ2
y

Γy

ii
σ2
y

(Γy

ii
)2 σ2

y
+ (Γh

ii
)2 σ2

h

#

�1 "

σ2
y

Γy

ii
σ2
y

#

,
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and

E[Ht|Ω
n
t:iii] =

⇥

Γ
h

ii
σ2
y

⇤

h

(Γy

ii
)2 σ2

y
+ (Γh

ii
)2 σ2

h

i

�1
U[Xt|It:ii] = Kn

h|XU[Xt|It:ii],

V[Ht|Ω
n
t:iii] = σ2

h
−

⇥

Γ
h

ii
σ2
h

⇤

h

(Γy

ii
)2 σ2

y
+ (Γh

ii
)2 σ2

h

i

�1
⇥

Γ
h

ii
σ2
h

⇤

=
⇣

1− Γ
h

ii
Kn

h|X

⌘

σ2
h
.

The investor’s private round-iii forecasts are therefore

E[∆St:iv|Ω
n
t:iii] = By

iii

⇣

Kn
y|Y Y

n
t +Kn

y|XU[Xt|It:ii]
⌘

+ Bh

iii
Kn

h|XU[Xt|It:ii] + ΛivAt�1,

E[Rt+1|Ω
n
t:iii] = Λi

⇣

Kn
y|Y Y

n
t +Kn

y|XU[Xt|It:ii]
⌘

− ΛiK
n
h|XU[Xt|It:ii] + ΛiψAt�1.

These forecasts are used to compute investors’ round-iii orders in Step Three.

Step Two

Individual dealers initiate their inter-dealer trades in round ii base on their private estimates of Yt

and Ht that are conditioned on the orders they receive from investors in round i and the hedgers in

round ii. These estimates are given by

E[Yt|Ω
d
t:ii] =

1
d
βy

i
σ2
y

( 1
d
βy

i
)2σ2

y
+ σ2

ζ

⇣

1
d
βy

i
Yt + ζdt:i

⌘

= Gd
y

⇣

1
d
βy

i
Yt + ζdt:i

⌘

, and

E[Ht|Ω
d
t:ii] =

1
d
σ2
h

( 1
d
)2σ2

h
+ σ2

η

⇣

1
d
Ht + ηdt

⌘

= Gd
h

⇣

1
d
Ht + ηdt

⌘

.

The dealer’s forecasts for ∆St:iii and ∆St:iv are therefore

E[∆St:iii|Ω
d
t:ii]− E[∆St:iii|It:ii] = By

ii
Gd

y

⇣

1
d
βy

i
Yt + ζdt:i

⌘

+ Bh

ii
Gd

h

⇣

1
d
Ht + ηdt

⌘

, and

E[∆St:iv|Ω
d
t:ii]− E[∆St:iv|It:ii] = By

iii
Gd

y

⇣

1
d
βy

i
Yt + ζdt:i

⌘

+ By

iii
Gd

h

⇣

1
d
Ht + ηdt

⌘

.

In round iii, each dealer revises their estimates of Yt and Ht to incorporate information in

round-ii order flow and the round-iii orders they receive from investors. The revised estimates are

E[Yt|Ω
d
t:iii] =

h

Kd
y|Oi

Kd
y|Oiii

Kd
y|X

i

2

6

4

1
d
βy

i
Yt + ζdt:i

1
d
βy

iii
Yt +

1
d
βx

iii
U[Xt|It:ii] + ζdt:iii

U[Xt|It:ii]

3

7

5
,
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where

h

Kd
y|Oi

Kd
y|Oiii

Kd
y|X

i

=
h

1
d
βy

i
σ2
y

βiiiσ
2
y

Γy

ii
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The individual dealer’s forecast for ∆St:iv is computed from these estimates as

E[∆St:iv|Ω
d
t:iii] = By

iii
E[Yt|Ω

d
t:iii] + Bh

iii
E[Ht|Ω

d
t:iii] + ΛivAt�1.

We also require forecasts based on dealers’ common information. The order flow equations in

(28) imply that
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=

"

Γy

ii
Γh

ii

Γy

iii
Γh

iii

#

�1 "

U[Xt|It:ii]

U[Xt|It:iii]

#

=
1

Γy

ii
Γh

iii
−Γh

ii
Γy

iii

"

Γh

iii
−Γh

ii

−Γy

iii
Γy

ii

#"

U[Xt|It:ii]

U[Xt|It:iii]

#
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(A.53)

Thus, values of Yt and Ht are common knowledge among dealers by the start of round iv: i.e.,

E[Yt|It:iv] = Yt and E[Ht|It:iv] = Ht. In round ii, the estimates of Yt and Ht are conditioned on

order flow from round ii:

E [Yt| It:iii] = K
y|XU[Xt|It:ii] and E [Ht| It:iii] = K

h|XU[Xt|It:ii]

where

K
y|X =
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ii
σ2
y
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ii
)2 σ2

y
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)2 σ2

h

and K
h|X=
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h

(Γy
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)2 σ2

y
+ (Γh

ii
)2 σ2

h

.
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In round ii the estimates of Yt and Ht are equal to the unconditional expectations: i.e., E[Yt|It:ii] = 0

and E[Ht|It:ii] = 0. Below we use the differences between dealers’ individual and common estimates,

which are given by
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d
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From these results, we can compute the difference between dealers’ individual and common forecasts

as
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Step Three

In this step, we compute unexpected aggregate order flows in rounds i and iii. For round i, we first

combine equations (22) and (21) to give
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d
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Φ
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+U[Ot:i|It:ii]. (A.55)

The last term in this expression is the unexpected aggregate imbalance in investors’ round-i orders.

To find this term, we compute the round-i order from investor n:

O
n
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n
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as shown in (27a). Aggregating across investors gives

Ot:i = βy

i
Yt + βa

i
At�1, (A.56)
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so the last term in (A.55), U[Ot:i|It:ii] = βy

i
Yt.

The other terms in (A.55) come from the dealers’ forecasts computed in Step Two:

U [Xt:ii| It:ii] =
X

d

d=1
Φ
d
ii|siii

By

ii
Gd

y

⇣

( 1
d
βy

i
)Yt + ζdt:i

⌘

+
X

d

d=1
Φ
d
ii|siii

Bh

ii
Gd

h

⇣

1
d
Ht + ηdt

⌘

+
X

d

d=1
Φ
d
ii|siv

By

iii
Gd

y

⇣

( 1
d
βy

i
)Yt + ζdt:i

⌘

+
X

d

d=1
Φ
d
ii|siv

Bh

iii
Gd

h

⇣

1
d
Ht + ηdt

⌘

+ 1
d

X

d

d=1
Γ

y

ii
Gd

y

⇣

( 1
d
βy

i
)Yt + ζdt:i

⌘

+ 1
d

X

d

d=1
Γ

h

ii
Gd

h

⇣

1
d
Ht + ηdt

⌘

+ βy

i
Yt,

which simplifies to
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This is the form of the round-ii order flow equation (28a). Equating coefficients on Yt and Ht gives
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, and (A.57a)
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The equilibrium values of Γy

ii
and Γh

ii
must satisfy these equations.

Next, we turn to the round-iii flow. As above, (22) and (23) imply that
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The first term on the right-hand-side uses the difference between dealers’ private forecasts and their

common forecast for ∆St:iv, which was compute in (A.54). The next term is the analogous difference

in forecasts for order flow:
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The aggregate imbalance in hedgers’ orders is given by Ht = (1−ψ)At�1+Ht, so the third term in

(A.55) is

U [Ht| It:iii] = U [Ht| It:iii] = Ht −K
h|XU[Xt|It:ii].

To find the last term, we consider the round-iii order from investor n:
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which is the same form as (27b). The last term in (A.58) is computed by aggregating investors

orders from rounds i and iii:
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The unexpected portion of Ot:iii +Ot:i, based on dealer common round-iii information is therefore
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Substituting all of these results into the order flow equation gives
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So collecting terms
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This is the form of equation (28b) with

Γ
y

iii
= πxΓ

y

ii
+ πy, (A.59a)

Γ
h

iii
= πxΓ

h

ii
+ πh, (A.59b)

πx = Φ
iii|siv

h

By

iii

⇣

Kd
y|X +Kd

y|Oiii

( 1
d
βx

iii
)−K

y|X

⌘

+ Bh

iii

⇣

Kd
h|X −K

h |X

⌘i

+
h

Γ
y

iii

⇣

Kd
y|X +Kd

y|Oiii

( 1
d
βx

iii
)−K

y|X

⌘

+ Γ
h

iii

⇣

Kd
h|X −K

h|X

⌘i

−K
h|H − (βy

i
+ βy

iii
)K

y|X , (A.59c)

πh = Φ
iii|sivB

h

iii
Kd

h|H
1
d
+ Γ

h

iii

1
d
Kd

h|H + 1, and (A.59d)

πy = Φ
iii|sivB

y

iii

⇣

Kd
y|Oi

( 1
d
βy

i
) +Kd

y|Oiii

�

1
d
βy

iii

�

⌘

+ Γ
y

iii

h

Kd
y|Oi

( 1
d
βy

i
) + Γ

y

iii
Kd

y|Oiii

�

1
d
βy

iii

�

i

+ (βy

i
+ βy

iii
). (A.59e)

As above, the equilibrium values of Γy

iii
and Γh

iii
must satisfy these equations.

Step Four

The final step in the Proof is to verify that ∆St:iii and ∆St:iv follow the processes in (26c) and

(26d). Equation (A.50b) gives the general equation for ∆St:iii. To use this equation, we compute
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and
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Substituting these terms into (A.50b) gives
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This is the form of equation (26c) with
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Equation (A.50c) gives the general equation for ∆St:iv. To use this equation, I compute
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Substituting (A.62) and (A.61) into (A.50c) produces
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