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Abstract

This paper proposes generalisations of the Realized GARCH model by Hansen et al. (2012),
in three different directions. First, heteroskedasticity of the noise term in the measurement
equation is taken into account. Namely, the variance of the measurement error is assumed to
be time-varying as a function of an estimator of the Integrated Quarticity obtained from intra-
daily returns. Second, in order to account for attenuation bias effects, the volatility dynamics
are allowed to depend on the accuracy of the realized measure. This is achieved by letting the
response coefficient of the lagged realized measure be a function of the time-varying variance
of the volatility measurement error. This feature allows the model to assign more weight to
lagged volatilities when they are more accurately measured. Finally, a further extension is
proposed by introducing an additional explanatory variable into the measurement equation,
aiming to quantify the bias due to the effect of jumps.

JEL Codes: C58, C22 ,C53.

Keywords: Realized GARCH, Realized Volatility, Realized Quarticity, Jumps.

1 Introduction

It is widely acknowledged that the use of realized volatility measures (Hansen and Lunde,
2011) can be beneficial for improving the accuracy of volatility forecasts on a daily scale. This
is typically done by choosing one of the following approaches.

First, dynamic models can be directly fitted to time series of realized measures.
Examples include the Heterogeneous AutoRegressive (HAR) (Corsi, 2009) and the class of
Multiplicative Error Models (MEM) (Engle, 2002; Engle and Gallo, 2006). A drawback of this
approach is that the focus is on the estimation of the expected level of the realized measure,
rather than on the estimation of the conditional variance of returns. As it will be clarified
in the next section, realized measures are designed to consistently estimate the integrated
variance which is related to but different from the conditional variance. Namely, in the
absence of microstructure noise and jumps, the integrated variance can be interpreted as
an unbiased estimator of the conditional variance of returns.

The second approach makes use of time series models for daily returns, e.g. GARCH-
type models, where the conditional variance is driven by one or more realized measures.
The main idea is to replace a noisy volatility proxy, such as the squared daily returns
used in standard GARCH models, with a more efficient realized measure. Differently from
the above-mentioned approach, in this case, both low (daily returns) and high (realized
measures) frequency information are employed in the model. Examples of models falling
within this class include the HEAVY model of Shephard and Sheppard (2010) and the
Realized GARCH model of Hansen et al. (2012). These two models are closely related
but, nevertheless, they are characterised by some distinctive features. HEAVY models are
designed for the generation of multi-step ahead forecasts, guaranteed by the inclusion of a
dynamic updating equation for the conditional expectation of the chosen realized measure.
On the other hand, Realized GARCH models include a measurement equation allowing to
gain, in a fully data-driven fashion, deeper insight on the statistical properties of the realized
measure and its relationship with the latent volatility.
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A complication arising with both approaches is that realized measures are noisy estimates
of the underlying integrated variance, generating a classical errors-in-variables problem.
This typically leads to the rise of what is often called attenuation bias. More precisely,
the estimated response of the conditional variance to the past realized measure will be
negatively biased, compared to what we would have found replacing the realized measure
by the latent integrated variance. Although it is evident that correcting for this attenuation
bias can potentially lead to improved volatility forecasts, this issue has not received much
attention in the literature. Recently, Bollerslev et al. (2016) found that, in a HAR model,
letting the volatility persistence depend on the estimated degree of measurement error leads
to remarkable improvements in the model’s predictive performance. In the same vein,
Shephard and Xiu (2016) found evidence that, in a GARCH-X model, the magnitude of the
response coefficients associated with different realized volatility measures is related to the
quality of the measure itself. Finally, Hansen and Huang (2016) observe that the response of
the current conditional variance to past unexpected volatility shocks is negatively correlated
with the accuracy of the associated realized volatility measure.

In this paper we develop a novel modelling approach that accounts for the attenuation
bias effect in a natural and fully data-driven way. To this purpose, we first extend the
standard Realized GARCH model by letting the variability of the measurement error vary
over time as a function of an estimator of the integrated quarticity of intra-daily returns.
In this way, we obtain a model-based time-varying estimate of the accuracy of the realized
measure used. Consequently, we adjust the volatility dynamics for attenuation bias effects by
allowing the response coefficient of the lagged realized volatility to depend on this quantity.
In particular, the model is designed so that more weight is given to lagged volatilities when
these are more accurately measured. Finally, the proposed modelling approach is further
extended to explicitly model the impact of jumps on the predicted conditional variance
of returns. This is achieved by introducing into the measurement equation an additional
component that controls for the amount of bias generated by the occurrence of jumps. A
notable feature of the proposed solution is that the jump correction only occurs on days in
which jumps are effectively observed, while resorting to the use of more efficient standard
measures, such as realized variances and kernels, in jumps-free periods.

The paper is organised as follows. In Section 2 the basic theoretical framework behind
the computation of realized measures is reviewed, while Section 3 discusses the Realized
GARCH model of Hansen et al. (2012). Section 4 illustrates the proposed time-varying
parameter heteroskedastic Realized GARCH model. A jumps-free setting is considered
first, then a modification of the proposed model, explicitly taking into account the impact
of jumps, is introduced. QML estimation of the proposed models is discussed at the end
of the same section. Sections 5 to 7 are dedicated to the empirical application. Section 5
presents the main features of the data used for the analysis; Section 6 focuses on the in-
sample performance of the proposed models, taking the standard Realized GARCH model
as a benchmark, whereas the out-of-sample forecasting performance is analysed in Section 7.
Finally, Section 8 concludes.

2 Realized measures: a short review

In recent years, the availability of high-frequency financial market data has enabled
researchers to build reliable measures of the latent daily volatility, based on the use of intra-
daily returns. In the econometric and financial literature, these are widely known as realized
volatility measures. The theoretical background to these measures is given by the dynamic
specification of the price process in continuous time. Formally, let the logarithmic price pt of
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a financial asset be determined by the stochastic differential process

d pt = µtdt +σtdWt +dJt 0 ≤ t ≤ T , (1)

where µt and σt are the drift and instantaneous volatility processes, respectively, whilst Wt is
a standard Brownian motion; σt is assumed to be independent of Wt and Jt is a finite activity
jump process. Under assumption of jump absence (dJt = 0) and a frictionless market, the
logarithmic price pt follows a semi-martingale process.

In that case, the Quadratic Variation (QV ) of log-returns rt = pt − pt−1 coincides with the
Integrated Variance (IV ), given by

IVt =
∫ t

t−1

σ2
s ds . (2)

In the absence of jumps, microstructure noise and measurement error, Barndorff-Nielsen
and Shephard (2002) show that IV is consistently estimated by Realized Volatility (RV )

RVt =
M

∑
i=1

r2
t,i , (3)

where
rt,i = pt−1+i∆ − pt−1+(i−1)∆

is the i-th ∆-period intraday return, M = 1/∆. Although IV and the conditional variance of
returns do not coincide, there is a precise relationship between these two quantities: under
standard integrability conditions (Andersen et al., 2001) it can be shown that

E(IVt |Ft−1) = var(rt |Ft−1) ,

where Ft−1 denotes the information set at time (t−1). In other words, the optimal forecast of
IV can be interpreted as the conditional variance of returns and the difference between these
two quantities is given by a zero mean error.

Barndorff-Nielsen and Shephard (2002) show that RV consistently estimates the true
latent volatility, when ∆ −→ 0, but in practice, due to data limitations, the following results
hold

RVt = IVt + εt (4)

and
εt ∼ N(0,2∆IQt), (5)

where IQt =
∫ t

t−1 σ4
s ds is the Integrated Quarticity (IQ). This, in turn, can be consistently

estimated as

RQt =
M

3

M

∑
i=1

r4
t,i . (6)

On the other hand, if jumps are present, QV will differ from IV , with the difference given
by the accumulated squared jumps. Formally, let

dJt = ktdqt ,

where kt = pt − pt− is the size of the jump in the log-price pt and qt is a counting process, with
possibly time-varying intensity λt , such that

P(dqt = 1) = λtdt .
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Then, under the assumptions in Andersen et al. (2007)

RVt →
p

QVt = IVt + ∑
t−1≤s≤t

k2(s) .

Hence, RV is a consistent estimator of QV , but not of IV . An alternative here is to use
jump-robust estimators, such as the Bipower and Tripower Variation (Barndorff-Nielsen and
Shephard, 2004), minRV or medRV (Andersen et al., 2012), that are consistent for IV even in
the presence of jumps. In the empirical applications carried out in this work, among the
different proposals arising in the literature, focus here is put on the medRV estimator, mainly
for theoretical reasons. Specifically, Andersen et al. (2012) show that in the jump-free case
“the medRV estimator has better theoretical efficiency properties than the tripower variation measure
and displays better finite-sample robustness to both jumps and the occurrence of “zero” returns in
the sample”. In addition, unlike the Bipower Variation measure, for the medRV estimator an
asymptotic limit theory in the presence of jumps is available.

The medRV estimator proposed by Andersen et al. (2012) is

medRVt =
π

6−4
√

3π

(
M

M−2

)
M−1

∑
i=2

med (|rt,i−1|, |rt,i|, |rt,i+1|)2 . (7)

Nevertheless, in the jump-free case, these jump-robust estimators are substantially less
efficient than the simple RV estimator: i.e. Bipower and Tripower Variation, medRV and minRV
are all asymptotically normal, with asymptotic variance proportional (up to different scale
factors) to the IQ (Andersen et al., 2012). Further, in presence of jumps, this quantity will
be not consistently estimated by RQ; thus, some alternative jump-robust estimator will
be needed. For the same reasons discussed above, focus here is on the medRQ estimator
proposed by Andersen et al. (2012)

medRQt =
3πM

9π +72−52
√

3

(
M

M−2

)
M−1

∑
i=2

med (|rt,i−1|, |rt,i|, |rt,i+1|)4 . (8)

A further issue is how to consistently estimate QV in the presence of market microstructure
frictions. In this direction, several estimators are proposed in the literature to mitigate the
influence of market microstructure noise, such as the Two Time Scales approach of Zhang
et al. (2005), the Realized Kernel of Barndorff-Nielsen et al. (2008) and the pre-averaged RV

of Jacod et al. (2009), among others. In this paper, the Realized Kernel (RK) is employed,
specified as

RK =
H

∑
h=−H

K

(
h

H +1

)

ζH , ζH =
M

∑
j=|h|+1

rt,irt,i−|h| , (9)

where K(·) is a kernel weight function and H a bandwidth parameter†.

3 Realized GARCH models

The Realized GARCH (RGARCH), introduced by Hansen et al. (2012), extends the class of
GARCH models by first replacing squared returns, as the driver of the volatility dynamics,
with a more efficient proxy, such as a RV measure. With this change alone, the resulting

†For details about the optimal choice of the kernel type and the bandwidth selection see Barndorff-Nielsen
et al. (2009).
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specification can be seen as a GARCH-X model, where the realized measure is used as
an explanatory variable. A second extension is that the Realized GARCH “completes” the
GARCH-X, by adding a measurement equation that explicitly models the contemporaneous
relationship between the realized measure and the latent conditional variance.

Formally, let {rt} be a time series of stock returns and {xt} be a time series of realized
measures of volatility. Focus here is on the logarithmic RGARCH model, defined via

rt = µt +
√

ht zt , (10)

log(ht) = ω +β log(ht−1)+ γ log(xt−1) , (11)

log(xt) = ξ +ϕ log(ht)+ τ(zt)+ut , (12)

where ht = var(rt |Ft−1) is the conditional variance and Ft−1 the historical information set at
time t−1. To simplify the exposition, in the reminder, it is assumed that the conditional mean
µt = E(rt |Ft−1) = 0. The innovations zt and ut are assumed to be mutually independent, with

zt
iid∼ (0,1) and ut

iid∼ (0,σ2
u ).

The function τ(zt) can accommodate leverage effects, since it captures the dependence
between returns and future volatility. A common choice (see e.g. Hansen et al. (2012)), found
to be empirically satisfactory, is

τ(zt) = τ1 zt + τ2(z
2
t −1) .

Substituting the measurement equation into the volatility equation, the model implies an
AR(1) representation for log(ht)

log(ht) = (ω +ξ γ)+(β +ϕγ)log(ht−1)+ γ wt−1 , (13)

where wt = τ(zt) + ut and E(wt) = 0. The coefficient (β + ϕγ) reflects the persistence in
(the logarithm of) volatility, whereas γ represents the impact of both the lagged return and
realized measure on future (log-)volatility. To ensure the volatility process ht is stationary the
required restriction is β +ϕγ < 1.

Compared to the linear RGARCH, the log-linear specification has two main advantages:
first, it is more flexible, since no constraints on the parameters are required in order to
ensure positivity of the conditional variance, which holds automatically by construction;
and second, the logarithmic transformation substantially reduces, but does not eliminate,
the heteroskedasticity of the measurement equation error term. For these reasons, this paper
exclusively focuses on the log-linear specification of the Realized GARCH model.

4 Time Varying Coefficient Heteroskedastic Realized GARCH

models with dynamic attenuation bias

In this section a generalisation of the basic Realized GARCH specification is proposed that
accounts and allows for the natural heteroskedasticity of the measurement error ut , as well
as for dynamic attenuation bias.

In a jump-free world, any consistent estimator of the IV can be written as the sum of the
conditional variance plus a random innovation. Since the variance of this innovation term is
function of the IQ, it seems natural to model the variance of the noise ut in equation (12) as
function of the RQ. Thus, it is assumed that the measurement noise variance is time-varying,

i.e. ut
iid∼ (0,σ2

u,t). In order to model the time-varying variance of the measurement noise, the
specification

σ2
u,t = exp

{

δ0 +δ1log
(√

RQt

)}

(14)

6



is considered, where the exponential formulation guarantees the positivity of the estimated
variance, without imposing constraints on the parameters δ0 and δ1. The resulting model
is denoted the Heteroskedastic Realized GARCH (HRGARCH). It is easy to see that the
homoskedastic Realized GARCH is nested within this class, by setting δ1 = 0, and that this
restriction can be tested by means of a simple Wald statistic.

In order to account for dynamic attenuation effects in the volatility persistence, in the
sense of Bollerslev et al. (2016), the basic HRGARCH specification is further extended,
allowing for time-varying persistence in the volatility equation. This is achieved by letting γ ,
the impact coefficient of the lagged realized measure, depend on the time-varying variance
of the measurement noise ut . In line with Bollerslev et al. (2016), the impact of past realized
measures on current volatility is expected to be down-weighted in periods in which the
efficiency of the realized measure is low. The resulting model is called the Time Varying
Heteroskedastic Realized GARCH (TV-HRGARCH).

The volatility updating equation of the TV-HRGARCH is given by

log(ht) = ω +β log(ht−1)+ γt log(xt−1) , (15)

where
γt = γ0 + γ1 σ2

u,t−1 (16)

and σ2
u,t follows the specification in (14). Accordingly, as its fixed coefficients counterpart, the

TV-HRGARCH can be represented in terms of a time-varying coefficients AR(1) model for
log(ht)

log(ht) = (ω +ξ γt)+(β +ϕγt)log(ht−1)+ γt wt−1. (17)

Also in this case, the simple Realized GARCH can be obtained by imposing the restriction
δ1 = γ1 = 0.

The setting which has been considered so far does not allow for the occurrence of jumps.
Consideration is now given to a variant of the proposed modelling approach that, in order to
capture this additional source of bias, features a jumps component as an additional variable
in the measurement equation. This is achieved by adding the log-ratio between a non jump-
robust realized measure xt , such as the standard RV estimator or the RK, and a jump-robust
realized measure xJ

t , as an explanatory variable. In the empirical application, as anticipated
in Section 2, the medRV estimator proposed by Andersen et al. (2012) is employed.

Generally, let Ct = xt/xJ
t . In the limit, this ratio will converge in probability to the ratio

between QV and IV . Values of Ct > 1 are interpreted as providing evidence of jumps occurring
at time t, while the discrepancy between the two measures is expected to disappear in absence
of jumps, leading to values of Ct ≈ 1. Naturally, sampling variability will play a role here and
values Ct < 1 will be possible, in a small proportion of cases. This is compatible with the fact
that the observed Ct is given by the combination of a latent signal C̄t ≥ 1 and a measurement
error, thus explaining observed values of Ct below the threshold 1. A simple way to avoid
observations below 1 is to truncate the distribution of Ct at this threshold, setting all the
values below the truncation point equal to 1 (see e.g. Andersen et al. (2007) for a similar
approach). However, this does not ensure consistent filtering of the measurement error (the
truncation on the left tail is somewhat arbitrary and the right tail would be untouched)
with the potential drawback of introducing an additional source of bias into the analysis.
Therefore, taking into account the limited empirical incidence of values of Ct < 1, it is decided
to work with uncensored values of Ct .

After adding the bias correction variable Ct , the proposed modified measurement
equation is

log(xt) = ξ +ϕlog(ht)+η log(Ct)+ τ(zt)+u∗t (18)
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or equivalently
log(x∗t ) = ξ +ϕlog(ht)+ τ(zt)+u∗t , (19)

where log(x∗t ) = log(xt/C
η
t ).

Considering the chosen RGARCH and the AR(1) representation for the log-conditional
variance, it follows that

log(ht) = (ω +ξ γ)+(β +ϕγ)log(ht−1)+ γ w∗
t−1 , (20)

where
w∗

t = τ(zt)+u∗t

and
u∗t = log(x∗t )−ξ −ϕlog(ht)− τ(zt). (21)

By substituting equation (21) in (20), the log-conditional variance can be alternatively written
as

log(ht) = ω +β log(ht−1)+ γ log(xt−1)− γη log(Ct−1) (22)

or equivalently
log(ht) = ω +β log(ht−1)+ γ log(x∗t−1). (23)

In this modified framework, looking at equation (22), it then turns out that the log-
conditional variance log(ht) is driven not only by past values of the realized measure but
also, with opposite sign, by past values of the associated bias. The additional parameter
η allows to adjust the contribution of Ct−1. From a different point of view, equations (19)
and (23) suggest that the volatility updating equation can be rewritten in a form similar to
that of the standard RGARCH model, with the substantial difference that volatility changes
are driven instead by the bias-corrected measure log

(
xt−1/C

η
t−1

)
= log

(
x∗t−1

)
; the amount of

correction is determined by the estimated scaling parameter η . This specification, of course,
extends to the HRGARCH and TV-HRGARCH models.

By simple algebra it is easy to show that

log(x∗t ) = log(xt)−η log(Ct)

= log(xt)−η [log(xt)− log(xJ
t )]

= (1−η)log(xt)+η log(xJ
t ).

If 0 < η < 1, as it results from our empirical analysis, log(x∗t ) is a weighted average of log(xt)
and log(xJ

t ) and the parameter η can be seen as the weight to be assigned to the jump-robust
log-transformed realized measure log(xJ

t ), whereas (1−η) is the weight corresponding to the
non-jump robust realized measure log(xt). If η = 0, log(x∗t ) coincides with the non-robust
realized measure log(xt), while for η = 1, log(x∗t ) reduces to the jump robust log-transformed
realized measure log(xJ

t ).
In the remainder, to distinguish models incorporating the bias correction variable Ct in

the measurement equation, these models will be denoted by addition of the superscript “ ∗ ”,
namely: RGARCH∗, HRGARCH∗ and TV-HRGARCH∗.

The model parameters can be estimated by standard Quasi Maximum Likelihood (QML)
techniques. Let Yt indicate any additional explanatory variable eventually included in the
measurement equation. Following Hansen et al. (2012), the quasi log-likelihood function,
conditionally on past information Ft−1 and Yt , is given by

L (r,x;θ) =
T

∑
t=1

log f (rt ,xt |Ft−1,Yt) ,
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where θ = (θ ′
h,θ

′
x,θ

′
σ )

′ with θ h, θ x and θ σ respectively being the vectors of parameters
appearing in the volatility equation (θ h), in the level of the measurement equation (θ x) and
in the noise variance specification (θ σ ).

An attractive feature of the Realized GARCH structure is that the conditional density
f (rt ,xt |Ft−1,Yt) can be easily decomposed as

f (rt ,xt |Ft−1,Yt) = f (rt |Ft−1) f (xt |rt ;Ft−1,Yt).

Assuming a Gaussian specification for zt and ut , such as zt
iid∼ N(0,1) and ut

iid∼ N(0,σ2
u ), the

quasi log-likelihood function is

L (r,x;θ) =−1

2

T

∑
t=1

log(2π)+ log(ht)+
r2

t

ht
︸ ︷︷ ︸

ℓ(r)

+−1

2

T

∑
t=1

log(2π)+ log(σ2
u )+

u2
t

σ2
u

︸ ︷︷ ︸

ℓ(x|r)

. (24)

Since standard GARCH models do not include an equation for xt , the overall maximised
log-likelihood values given by RGARCH models are not comparable to those returned
from the estimation of standard GARCH-type models; the former will tend to be
larger. Nevertheless, the partial log-likelihood value of the returns component, ℓ(r) =

∑
T
t=1 log f (rt |Ft−1), can be still meaningfully compared to the maximised log-likelihood value

achieved for a standard GARCH type model.

5 The Data

To assess the performance of the proposed models, an empirical application to four stocks
traded on the Xetra Market in the German Stock Exchange has been performed. This section
presents the salient features of the data analysed. In particular, the following assets are
considered: Allianz (ALV), a financial services company dealing mainly with insurance and
asset management; Bayerische Motoren Werke (BMW), a company engaged in vehicle and
engine manufacturing; Metro Group (MEO), a cash and carry group and RWE (RWE), a
company providing electric utilities.

The original dataset included tick-by-tick data on transactions (trades only) in the period
02/01/2002 to 27/12/2012. The raw data are cleaned, using the procedure described in
Brownlees and Gallo (2006), then converted to an equally spaced series of five-minute log-
returns, which are aggregated on a daily basis to: compute a time series of 2791 daily
log-returns; two different realized volatility measures, RV and RK; the jump-robust medRV
estimator and two realized quarticity measures, RQ and medRQ. Only continuous trading
transactions during the regular market hours 9:00 am - 5:30 pm are considered.

Table 1 reports some descriptive statistics for daily log-returns (rt), RV , RK and medRV ;
as well as for the bias correction variables related to RVt and RKt , denoted by CRV

t and CRK
t ,

respectively. For ease of presentation, the values associated with RV and RK are multiplied
by 100. The daily returns have standard deviation typically around 0.020 and are slightly
skewed, negatively so for ALV, BMW and MEO, but positively for RWE. Furthermore, the
high kurtosis values indicate much heavier tails than the normal distribution, as expected.
Looking at the realized measures, all RV and RK series present very strong positive skew;
medRV has smaller standard deviations than RV and RK as it could be expected given its
jump-robustness. The bias correction variables CRV

t and CRK
t have mean slightly above one

and positive skewness. Their minimums are ≈ 0.75 and maximums ∈ [2.66,3.70]. This
preliminary analysis suggests that the impact of jumps (Ct > 1) is more important and
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Table 1: Summary statistics

Min. 1Qu. Med. Mean 3Qu. Max. S.dev. Skew. Kurt.

rt

ALV -0.147 -0.010 0.000 -0.001 0.008 0.135 0.021 -0.066 8.402

BMW -0.135 -0.010 0.000 0.000 0.010 0.153 0.020 -0.039 7.497

MEO -0.150 -0.010 -0.001 -0.001 0.009 0.122 0.019 -0.377 8.900

RWE -0.108 -0.009 0.000 -0.001 0.008 0.097 0.016 0.065 7.415

RVt ×100

ALV 0.002 0.011 0.021 0.050 0.047 1.732 0.089 6.999 93.681

BMW 0.004 0.016 0.028 0.045 0.051 0.842 0.057 5.254 49.634

MEO 0.004 0.016 0.026 0.045 0.048 1.047 0.060 5.030 48.277

RWE 0.003 0.012 0.020 0.034 0.035 1.011 0.046 6.635 92.977

RKt ×100

ALV 0.002 0.011 0.021 0.049 0.047 1.730 0.089 7.012 94.289

BMW 0.004 0.016 0.028 0.045 0.050 0.842 0.056 5.289 50.367

MEO 0.004 0.015 0.025 0.044 0.047 1.041 0.059 5.077 49.355

RWE 0.003 0.012 0.019 0.033 0.035 1.009 0.045 6.703 96.421

medRVt ×100

ALV 0.002 0.010 0.019 0.045 0.043 1.606 0.083 7.241 99.614

BMW 0.003 0.014 0.025 0.041 0.046 0.773 0.052 4.999 44.906

MEO 0.002 0.013 0.023 0.040 0.042 1.032 0.053 5.395 61.048

RWE 0.002 0.011 0.018 0.031 0.032 0.876 0.042 5.991 75.030

CRV
t = RVt

medRVt

ALV 0.760 1.000 1.100 1.134 1.219 2.655 0.195 1.536 7.596

BMW 0.738 0.996 1.093 1.126 1.213 3.131 0.191 1.867 11.612

MEO 0.744 1.015 1.120 1.162 1.263 3.704 0.223 2.355 17.469

RWE 0.742 1.003 1.092 1.127 1.213 2.751 0.187 1.635 8.842

CRK
t = RKt

medRVt

ALV 0.747 0.989 1.090 1.123 1.208 2.654 0.193 1.567 7.835

BMW 0.736 0.984 1.080 1.114 1.196 3.126 0.190 1.889 11.761

MEO 0.741 1.005 1.105 1.148 1.243 3.670 0.221 2.399 17.998

RWE 0.742 0.988 1.076 1.111 1.195 2.747 0.185 1.684 9.111

Summary statistics of daily log-returns rt , daily Realized Variance RVt∗ (∗: ×100), daily Realized Kernel

RKt∗ (∗: ×100), daily medRVt∗ (∗: ×100), bias correction variable CRV
t for RVt and bias correction variable CRK

t for

RKt . Sample period: January 2002 – December 2012. Min.: Minimum; 1Qu.: First Quartile; Med.: Median; Mean;

3Qu.: Third Quartile; Max.: Maximum; S.dev.: Standard deviation; Skew.: Skewness; Kurt.: Kurtosis.

prevalent compared to the measurement error bias (Ct < 1). These aspects are also confirmed
by the distributional information on Ct presented in Table 2. Only approximately 5% of
observations have Ct below 0.90.

Figure 1 displays the daily returns for the four analysed stocks. These reveal three periods
of high volatility common to all assets: the first relates to the dot com bubble in 2002; the
second is the financial crisis starting in mid 2007 and peaking in 2008; the crisis in Europe
then progressed from the banking system to a sovereign debt crisis, with the highest turmoil
level in the late 2011, the 3rd period. These are clearly evident in Figure 2, reporting the time
plots of the daily 5-minute RV series.

Finally, Figure 3 shows the evolution of the bias correction variables Ct over time. This
fluctuates approximately around a base level ≈ 1, with an evident positive skewness due to
the the upward peaks (jumps), while downward variations due to measurement noise appear
to be much less pronounced and negligible.
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Table 2: Ct distribution for RV and RK

Distribution of CRV
t Distribution of CRK

t

ALV BMW MEO RWE ALV BMW MEO RWE

0% 0.760 0.738 0.744 0.742 0.747 0.736 0.741 0.742

5% 0.894 0.893 0.900 0.895 0.887 0.883 0.892 0.883

10% 0.930 0.930 0.941 0.931 0.923 0.919 0.929 0.919

25% 1.000 0.996 1.015 1.003 0.989 0.984 1.005 0.988

50% 1.100 1.093 1.120 1.092 1.090 1.080 1.105 1.076

75% 1.219 1.213 1.263 1.213 1.208 1.196 1.243 1.195

90% 1.375 1.354 1.428 1.359 1.362 1.342 1.410 1.343

95% 1.492 1.475 1.565 1.477 1.472 1.463 1.542 1.453

100% 2.655 3.131 3.704 2.751 2.654 3.126 3.670 2.747

Figure 1: Time series of daily log-returns

Daily log-returns for the stocks ALV (top-left), BMW (top-right), MEO (bottom-left) and RWE (bottom-right) for

the full sample period 02/01/2002 – 27/12/2012.
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Figure 2: Daily Realized Volatility

Daily Realized Volatility computed using a sampling frequency of 5 minutes. ALV (top-left), BMW (top-right),

MEO (bottom-left) and RWE (bottom-right). Full sample period 02/01/2002 – 27/12/2012.

Figure 3: Time series of daily bias correction variable CRV
t

Daily bias correction variable CRV
t = RVt/medRVt for the stocks ALV (top-left), BMW (top-right), MEO (bottom-

left) and RWE (bottom-right) for the full sample period 02/01/2002 – 27/12/2012.

12



6 In-sample analysis

This section discusses the in-sample performance of the proposed models. The full data is
employed here and focus is on the log-linear specification. It is worth noting that in presence
of jumps, RQt could itself be affected by bias. So as a robustness check, in addition to the
jump free models (RGARCH, HRGARCH and TV-HRGARCH) and the models in which
the impact of jumps is considered in the measurement equation (RGARCH∗, HRGARCH∗

and TV-HRGARCH∗), we also consider a variant of the latter class of models where, in
the specification of σ2

u,t , RQt is replaced by the jump-robust estimator medRQ. In order to
distinguish this class of models the subscript “MRQ” has been used.

6.1 In-sample estimation results

Estimation results using the 5-min RV as realized measure are reported in Table 3,
showing parameter estimates and robust standard errors (in small font underneath), together
with values of the log-likelihood L (r,x), partial log-likelihood ℓ(r) and Bayesian Information
Criterion (BIC), for the four analysed stocks ‡.

The parameter ω is in most cases not significant, except for the TV-HRGARCH
specifications, where its value is considerably greater than other models, since it is influenced
by the dynamics of the time-varying coefficient γt . The parameter β is between 0.565 and
0.752, always taking the highest value for HRGARCH and the lowest for TV-HRGARCH,
whereas ϕ takes values close to one with a limited variability across different models. This
suggests that the log-transformed realized measure log(xt) is roughly proportional to the
log-conditional variance. These results are in line with the findings in Hansen et al. (2012).
The parameters of the leverage function τ(z) are always significant (except for τ1 using the
RGARCH∗ for MEO stock), with τ1 negative and τ2 positive, as expected.

The parameter δ1 is always positive and statistically significant at the 0.05 level, thus
giving empirical confirmation to the intuition that the variance of the measurement error
σ2

u,t is time-varying and, in accordance with the asymptotic theory, suggesting that this is
positively related to the IQ. This also implies that σ2

u,t tends to take on higher values in
periods of turmoil and lower values when volatility tends to stay low, as it can be easily seen
in Figure 4 which compares the constant variance σ2

u estimated by RGARCH with the time-
varying variance σ2

u,t given by the HRGARCH model. For the four analysed stocks, the trend
of σ2

u,t follows the dynamics of the realized measure, being higher in turbulent periods and
lower in calm periods, while the constant variance σ2

u estimated within the RGARCH (red
line in the plots) is approximately equal to the average level of the time-varying variance of
the measurement noise.

Another key parameter is the coefficient γ , which summarises the impact of the realized
measure on future volatility. It ranges from 0.240 to 0.402 for both RGARCH and HRGARCH
and its value is generally increased by the introduction of the bias correction variable Ct

in the measurement equation; this provides additional evidence supporting the idea that
accounting for jumps further reduces the attenuation bias effect on γ . For the TV-HRGARCH
this effect is explained, in an adaptive fashion, by the time-varying coefficient γt , depending
on the past noise variance σ2

u,t−1 through the slope coefficient γ1. This is always positive
and statistically significant at the 0.05 level, except for the TV-HRGARCH∗

MRQ model fitted
to RWE, with an associated p-value of 0.107. Interestingly, in the TV-HRGARCH∗ and TV-

‡Differently from Hansen et al. (2012) positive values are obtained for the log-likelihood. This is mainly due
to the fact that they use percentage log-returns, which approximately fall in the range (-30, 30). It follows that
the conditional variances are often above 1, returning positive log-variances that multiplied by -1 in the log-
likelihood, explaining the comparatively large negative log-likelihoods that they typically get.
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Table 3: In-Sample Estimation Results using 5-minutes Realized Volatility

ω γ γ0 γ1 β ξ ϕ τ1 τ2 η σ2
u δ0 δ1 ℓ(r) L (r,x) BIC

ALV

RGARCH 0.008 0.402 - - 0.598 -0.399 0.953 -0.069 0.108 - 0.185 - - 7609.434 6006.082 -4.281
(0.102) 0.032 0.031 (0.217) 0.027 0.008 0.007 0.008

HRGARCH 0.009 0.381 - - 0.620 -0.473 0.948 -0.069 0.111 - - -0.405 0.162 7609.002 6032.686 -4.297
(0.097) 0.030 0.029 0.217 0.027 0.007 0.007 (0.286) 0.034

TV-HRGARCH 1.995 - 0.489 1.060 0.565 -0.462 0.949 -0.069 0.111 - - -0.394 0.166 7611.877 6063.920 -4.317
0.292 0.049 0.206 0.032 0.203 0.025 0.007 0.006 (0.228) 0.027

RGARCH∗ 0.002 0.408 - - 0.590 -0.382 0.960 -0.068 0.107 0.398 0.180 - - 7609.635 6042.332 -4.304
(0.099) 0.031 0.031 (0.207) 0.026 0.008 0.006 0.045 0.008

HRGARCH∗ 0.010 0.392 - - 0.607 -0.471 0.953 -0.068 0.110 0.388 - -0.493 0.154 7609.412 6066.969 -4.319
(0.085) 0.030 0.030 0.179 0.022 0.007 0.006 0.043 (0.296) 0.035

TV-HRGARCH∗ 1.265 - 0.446 0.747 0.575 -0.466 0.952 -0.069 0.110 0.285 - -0.530 0.151 7610.934 6082.354 -4.327
0.336 0.049 0.206 0.033 0.189 0.023 0.007 0.006 0.049 (0.284) 0.034

HRGARCH∗
MRQ 0.010 0.394 - - 0.605 -0.467 0.954 -0.069 0.110 0.403 - -0.539 0.145 7609.429 6065.011 -4.318

(0.094) 0.030 0.030 0.202 0.025 0.007 0.006 0.043 (0.299) 0.035

TV-HRGARCH∗
MRQ 1.534 - 0.449 0.885 0.579 -0.469 0.954 -0.069 0.110 0.466 - -0.499 0.151 7613.060 6083.501 -4.328

0.381 0.053 0.211 0.032 0.182 0.023 0.007 0.006 0.043 (0.291) 0.034

BMW

RGARCH 0.044 0.304 - - 0.705 -0.520 0.927 -0.029 0.082 - 0.171 - - 7470.471 5976.587 -4.260
(0.111) 0.027 0.025 (0.325) 0.040 0.008 0.006 0.007

HRGARCH 0.036 0.280 - - 0.727 -0.591 0.924 -0.032 0.086 - - 0.321 0.270 7470.853 6026.783 -4.293
(0.100) 0.025 0.023 (0.314) 0.039 0.008 0.006 (0.309) 0.039

TV-HRGARCH 1.614 - 0.410 0.617 0.692 -0.577 0.926 -0.032 0.085 - - 0.147 0.250 7469.434 6053.708 -4.310
0.316 0.039 0.143 0.025 0.234 0.029 0.008 0.006 (0.218) 0.027

RGARCH∗ 0.047 0.309 - - 0.699 -0.526 0.930 -0.029 0.081 0.277 0.169 - - 7471.600 5993.826 -4.270
(0.110) 0.027 0.026 (0.314) 0.039 0.008 0.006 0.057 0.006

HRGARCH∗ 0.039 0.285 - - 0.722 -0.588 0.927 -0.031 0.085 0.223 - 0.201 0.256 7471.749 6037.920 -4.298
(0.087) 0.025 0.023 0.259 0.032 0.008 0.006 0.053 (0.310) 0.039

TV-HRGARCH∗ 1.358 - 0.389 0.524 0.696 -0.588 0.926 -0.032 0.085 0.138 - 0.115 0.247 7470.247 6058.335 -4.310
0.324 0.040 0.135 0.025 0.258 0.032 0.008 0.006 0.055 (0.248) 0.031

HRGARCH∗
MRQ 0.041 0.287 - - 0.720 -0.574 0.928 -0.031 0.084 0.243 - -0.097 0.212 7471.793 6024.967 -4.289

(0.107) 0.026 0.024 (0.330) 0.041 0.008 0.006 0.054 (0.359) 0.044

TV-HRGARCH∗
MRQ 1.067 - 0.349 0.469 0.707 -0.522 0.935 -0.031 0.083 0.309 - -0.117 0.211 7469.812 6035.934 -4.294

0.259 0.034 0.125 0.024 0.263 0.033 0.008 0.005 0.053 (0.300) 0.037
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Table 3 continued

ω γ γ0 γ1 β ξ ϕ τ1 τ2 η σ2
u δ0 δ1 ℓ(r) L (r,x) BIC

MEO

RGARCH -0.080 0.252 - - 0.740 -0.082 0.985 -0.018 0.082 - 0.189 - - 7463.731 5828.595 -4.154
(0.097) 0.025 0.024 (0.364) 0.043 0.009 0.007 0.007

HRGARCH -0.077 0.240 - - 0.752 -0.157 0.982 -0.023 0.090 - - -0.045 0.209 7463.768 5860.955 -4.174
(0.095) 0.023 0.023 (0.371) 0.044 0.008 0.006 (0.294) 0.036

TV-HRGARCH 1.433 - 0.339 0.699 0.712 -0.178 0.978 -0.024 0.090 - - -0.225 0.188 7469.276 5890.380 -4.193
0.275 0.041 0.152 0.026 (0.345) 0.041 0.008 0.006 (0.242) 0.030

RGARCH∗ -0.072 0.257 - - 0.734 -0.117 0.987 -0.016 0.081 0.362 0.185 - - 7464.330 5860.417 -4.174
(0.119) 0.025 0.024 (0.443) 0.053 (0.009) 0.007 0.054 0.007

HRGARCH∗ -0.069 0.246 - - 0.745 -0.181 0.984 -0.022 0.089 0.341 - -0.151 0.198 7464.372 5888.727 -4.191
(0.088) 0.023 0.023 (0.333) 0.039 0.008 0.006 0.052 (0.286) 0.035

TV-HRGARCH∗ 0.945 - 0.307 0.487 0.722 -0.191 0.980 -0.023 0.089 0.253 - -0.278 0.183 7467.683 5905.626 -4.201
(0.252) 0.035 0.145 0.025 (0.361) 0.042 0.008 0.006 0.055 (0.270) 0.034

HRGARCH∗
MRQ -0.066 0.248 - - 0.744 -0.193 0.982 -0.020 0.088 0.362 - -0.253 0.180 7464.360 5883.987 -4.188

(0.117) 0.025 0.023 (0.456) 0.054 0.008 0.007 0.052 (0.313) 0.038

TV-HRGARCH∗
MRQ 1.222 - 0.314 0.633 0.721 -0.211 0.980 -0.020 0.088 0.430 - -0.308 0.174 7470.239 5903.041 -4.199

0.324 0.042 0.175 0.025 (0.338) 0.040 0.008 0.007 0.051 (0.287) 0.035

RWE

RGARCH -0.406 0.315 - - 0.644 0.736 1.067 -0.041 0.082 - 0.162 - - 7991.189 6569.620 -4.685
0.115 0.031 0.029 0.373 0.043 0.008 0.006 0.007

HRGARCH -0.366 0.292 - - 0.671 0.606 1.058 -0.040 0.083 - - 0.293 0.262 7989.793 6614.132 -4.714
0.151 0.030 0.024 (0.551) 0.063 0.007 0.005 0.371 0.044

TV-HRGARCH 0.933 - 0.389 0.613 0.634 0.660 1.063 -0.041 0.083 - - -0.128 0.212 7992.232 6631.893 -4.724
0.319 0.043 0.195 0.028 (0.520) 0.059 0.007 0.005 (0.321) 0.038

RGARCH∗ -0.410 0.317 - - 0.640 0.743 1.072 -0.041 0.080 0.284 0.160 - - 7991.585 6588.595 -4.696
0.153 0.034 0.029 (0.509) 0.058 0.008 0.006 0.057 0.007

HRGARCH∗ -0.377 0.294 - - 0.666 0.639 1.064 -0.040 0.082 0.245 - 0.179 0.250 7990.196 6628.284 -4.721
0.157 0.031 0.025 (0.570) 0.065 0.007 0.005 0.053 (0.404) 0.048

TV-HRGARCH∗ 0.458 - 0.357 0.374 0.646 0.675 1.067 -0.040 0.082 0.180 - -0.046 0.223 7991.355 6638.507 -4.726
(0.320) 0.040 0.159 0.027 (0.544) 0.062 0.007 0.005 0.054 (0.344) 0.041

HRGARCH∗
MRQ -0.379 0.295 - - 0.665 0.649 1.065 -0.041 0.081 0.271 - 0.115 0.236 7990.271 6622.699 -4.717

0.122 0.028 0.025 (0.430) 0.049 0.007 0.005 0.053 (0.402) 0.047

TV-HRGARCH∗
MRQ 0.284 - 0.338 0.303 0.654 0.677 1.069 -0.041 0.081 0.308 - -0.119 0.209 7990.301 6627.033 -4.718

(0.316) 0.033 (0.188) 0.025 (0.409) 0.047 0.007 0.005 0.055 (0.440) 0.052

In-sample parameter estimates for the full sample period 02 January 2002 - 27 December 2012. ℓ(r): partial log-likelihood. L (r,x): log-likelihood. BIC: Bayesian Information

Criterion. Standard errors are reported in small font under the parameters value: in parenthesis parameter not significant at 5%.
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Figure 4: Constant versus time-varying variance of the noise ut of the HRGARCH fitted using
the 5 minute RV

The Figure shows the constant variance σ2
u (red-line) estimated with RGARCH together with the time-varying

variance σ2
u,t (black-line) estimated with HRGARCH. Both models have been fitted taking the 5-minutes RV as

volatility proxy. Full sample period 02 January 2002 - 27 December 2012.

HRGARCH∗
MRQ models, the introduction of the bias correction variable in the measurement

equation has the effect of reducing the value of the fitted γ1, compared to what we find for
the TV-HRGARCH.

The value of γ1 determines the amount by which the response to past volatility is corrected
to account for attenuation bias effects. Since γ1 is always positive and log(xt) is negative, when
the lagged variance of the error term of the realized measure σ2

u,t−1 is high, the impact of
the lagged log-transformed realized measure log(xt−1) on log(ht) will be negative and lower
than what would have been implied by the same value of log(xt−1) in correspondence of a
lower value of σ2

u,t−1. Said differently, the impact of xt−1 on ht will be down-scaled towards

zero when σ2
u,t−1 increases. Equivalently, variations in ht (∇ht = ht − ht−1) will be negatively

correlated with the values of γt and σ2
u,t−1. These results are in line with the recent findings of

Bollerslev et al. (2016).
Figure 5 displays the time plot of the γt coefficient for the four considered stocks. It is

evident that when the variance of the measurement error is high, γt is also high, leading to a
less substantial increase of ht compared to days in which, ceteris paribus, σ2

u,t is low and the
realized measure provides a stronger more reliable signal. Further, the value of γt tends to be
higher than the value of the time invariant γ estimated within the RGARCH and HRGARCH
models.

Finally, it is interesting to note that, for each series, the variance σ2
u∗ of the measurement

equation error u∗t of the RGARCH∗ model is slightly lower than what observed for the
RGARCH model, providing evidence of an improved goodness of fit in the modified
measurement equation and efficiency of the bias corrected realized measure x∗t . In this
context, an important role is played by the smoothing parameter η , determining the amount
of jump-implied bias correction associated to the ratio Ct . Overall, the variability of the
estimated η coefficients across assets makes evident the flexibility of our modelling approach:
the amount of smoothing in log(x∗t ) is not arbitrarily chosen, but data driven through the
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estimated parameter η .
Reminding the interpretation of η discussed in Section 4, since the estimated η results

lower than 0.5 for all the analysed assets, the impact of the realized measure log(xt) is, on
average, greater than the impact of the jump-robust realized measure log(xJ

t ). Furthermore,
as a general trend we observe that, for all stocks, the fitted value of η tends to be higher
for heteroskedastic models relying on the jump robust quarticity estimator medRQ, (TV-)
HRGARCH∗

MRQ, rather than for models based on RQ, (TV-)HRGARCH∗.

Figure 5: Time-varying coefficient γt given by the TV-HRGARCH model

The Figure shows the time-varying coefficient γt = γ0 + γ1σ2
u,t−1

for the full sample period 02 January 2002 - 27

December 2012.

As a further robustness check, all the models are re-estimated using the 5-minute Realized
Kernel as volatility proxy. The results and conclusions are very similar to those obtained
using the 5-minute RV . The estimated parameters and standard errors obtained using RK

as a volatility proxy have been reported in Table 8 in the Empirical Appendix. In the next
subsection we provide a detailed analysis of the goodness of fit achieved through the models
considered.

6.2 Log-likelihood analysis

To evaluate the performance of the estimated models we first refer to the commonly used
Bayesian Information Criterion (BIC).

From the top panel of Table 4 it clearly emerges that the specifications accounting for
both heteroskedasticity and attenuation bias effects, within the class of models corrected
by the Ct variable, tend to minimise the BIC. In particular, the TV-HRGARCH∗ features the
lowest value of the considered information criterion in three cases out of four, whereas for the
stock ALV the TV-HRGARCH∗

MRQ prevails, closely followed by the TV-HRGARCH∗ model.
Interestingly, in the latter case, the parameter η given by the use of medRQt instead of RQt as
state variable of σ2

u,t into TV-HRGARCH∗ specification, takes on the highest estimated values
within the class of models built using information on Ct (see Table 3), meaning that the jump-
robust realized measure medRV has an higher impact in determining volatility dynamics for
ALV compared to the other stocks. The bottom panel of Table 4 shows that similar results
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Table 4: BIC in-sample comparison

ALV BMW MEO RWE

RV

RGARCH -4.281 -4.260 -4.154 -4.685

HRGARCH -4.297 -4.293 -4.174 -4.714

TV-HRGARCH -4.317 -4.310 -4.193 -4.724

RGARCH∗ -4.304 -4.270 -4.174 -4.696

HRGARCH∗ -4.319 -4.298 -4.191 -4.721

TV-HRGARCH∗ -4.327 -4.310 -4.201 -4.726

HRGARCH∗
MRQ -4.318 -4.289 -4.188 -4.717

TV-HRGARCH∗
MRQ -4.328 -4.294 -4.199 -4.718

RK

RGARCH -4.271 -4.250 -4.137 -4.674

HRGARCH -4.288 -4.283 -4.157 -4.704

TV-HRGARCH -4.306 -4.297 -4.171 -4.711

RGARCH∗ -4.299 -4.262 -4.163 -4.688

HRGARCH∗ -4.314 -4.290 -4.180 -4.714

TV-HRGARCH∗ -4.320 -4.300 -4.186 -4.716

HRGARCH∗
MRQ -4.312 -4.281 -4.177 -4.710

TV-HRGARCH∗
MRQ -4.323 -4.286 -4.187 -4.710

BIC values for the analysed models using the 5-min RV (first panel) and the 5-min RK (second panel). Best models

are reported in bold.

Table 5: Likelihood Ratio statistics computed using the RGARCH as benchmark model

ALV BMW MEO RWE Average

RV

HRGARCH 53.208 100.392 64.72 89.024 76.836

TV-HRGARCH 115.676 154.242 123.57 124.546 129.508

RGARCH∗ 72.500 34.478 63.644 37.950 52.143

HRGARCH∗ 121.774 122.666 120.264 117.328 120.508

TV-HRGARCH∗ 152.544 163.496 154.062 137.774 151.969

HRGARCH∗
MRQ 117.858 96.76 110.784 106.158 107.890

TV-HRGARCH∗
MRQ 154.838 118.694 148.892 114.826 134.312

RK

HRGARCH 54.932 98.828 64.582 89.456 76.949

TV-HRGARCH 112.462 146.648 112.002 117.262 122.093

RGARCH∗ 84.232 42.500 81.208 46.534 63.619

HRGARCH∗ 134.232 127.994 136.640 125.086 130.988

TV-HRGARCH∗ 160.270 162.366 161.556 139.658 155.962

HRGARCH∗
MRQ 130.434 102.370 127.622 114.492 118.730

TV-HRGARCH∗
MRQ 167.740 124.328 164.730 122.190 144.747

apply when the 5-min Realized Kernel is used as realized measure in the measurement
equation xt . In this case, the BIC is minimised by TV-HRGARCH∗ for BMW and RWE and by
TV-HRGARCH∗

MRQ, again closely followed by TV-HRGARCH∗, for ALV and MEO.
The BIC analysis also suggests that the standard Realized GARCH provides the highest

BIC values, but the simple inclusion of the Ct variable (RGARCH∗) remarkably improves the
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fit highlighting the importance of modelling the bias due to the occurrence of jumps.
Information criteria, such as BIC, can be used to compare competing models, but they

do not allow to assess the statistical significance of differences in goodness of fit among
candidate models. Since the Realized GARCH can be obtained as a special case of each of
the models estimated in the previous section, we refer to the Likelihood Ratio Test (LRT) to
perform pairwise comparisons of the performance of the proposed models with that of the
simple RGARCH, taken as a benchmark. The LRT statistic for the i-th model is then given
by:

LRTi =−2 [L (r,x)RGARCH −L (r,x)i] .

It is worth remarking that, in a ML context, the LRT statistic is asymptotically distributed as a
χ2 random variable with degrees of freedom given by the number of constrained parameters
under the null. However, if the estimation is carried out through QML, the usual χ2 value
corresponding to the desired statistical significance should be considered as approximate,
since the statistical test behaves asymptotically as a weighted sum of independent chi-
squares (it is necessary to compute critical values by numerical simulation). In our analysis
we compute p-values referring to the χ2 distribution and hence these are not exact but should
be considered only “indicative of significance” (see also (Hansen et al. (2012))).

Table 5 presents the values of LRT statistic both for RV (top panel) and RK (bottom panel).
In all the cases, the benchmark model is rejected. Even in the case of the simple HRGARCH
model, the LRT statistics are always remarkably larger than the indicative χ2

1 critical value,
providing evidence in favour of the heteroskedastic nature of the measurement error ut , in
agreement with our findings in subsection 6.1.

Summarising: the in-sample results show that the introduction of heteroskedasticity and
time-varying persistence, as well as the bias correction for jumps and measurement errors,
has positive effects on the accuracy of the estimated volatility. Consequently, in sample, the
proposed specifications show notable improvements over the standard RGARCH in terms of
goodness of fit. Overall, the models incorporating heteroskedasticity, time-varying volatility
response coefficient and jumps correction are those returning the best performances.

7 Out-of-sample Analysis

In this section, the out-of-sample predictive ability of the models estimated in Section 6 is
assessed via a rolling window forecasting exercise, using an estimation window of 1500 days.
The out-of-sample period starts on 26 November 2007 and includes 1270 daily observations,
covering the credit crisis and the turbulent period from November 2011 to the beginning of
2012. For the sake of brevity, we only report results obtained for models fitted using the 5-min
RV as volatility proxy. However, very similar performances are obtained when the 5-min RV

is replaced by the 5-min RK estimator (the results are reported in the Empirical Appendix).
In order to assess the forecasting performance of the proposed models, the predictive

(quasi) log-likelihood and the QLIKE loss function (Patton, 2011) are employed.
Furthermore, the Model Confidence Set (MCS) of Hansen et al. (2011) is used to evaluate
the comparative predictive ability of all the models, considering a confidence level of 75%. In
particular, the Semi-Quadratic statistic, based on a block-bootstrap procedure with 5000 re-
samples, is employed to sequentially test the hypothesis of equal predictive ability, where the
optimal block length has been chosen through the method described in Patton et al. (2009). It
is worth noting that the QLIKE loss function specifically measures the ability in forecasting
the conditional variance of returns, while the predictive log-likelihood assesses the ability of
a given model to predict the conditional distribution of (rt ,xt |Ft−1,Yt), thus considering both
components of the Realized GARCH quasi likelihood.
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Table 6: Predictive log-likelihood using 5-min RV as volatility proxy (top): in bold the
preferred model according to predictive log-likelihood. MCS p-values of predictive log-

likelihood (bottom): in box models ∈ 75% MCS. The p-values refer to the negative predictive
log-likelihoods.

ALV BMW MEO RWE

RGARCH 2617.961 2478.886 2498.497 2938.425

HRGARCH 2635.038 2500.582 2542.889 2974.401

TV-HRGARCH 2654.591 2515.229 2560.055 2982.102

RGARCH∗ 2634.241 2488.724 2523.193 2958.191

HRGARCH∗ 2651.794 2507.150 2560.524 2987.250

TV-HRGARCH∗ 2660.343 2517.435 2569.528 2990.083

TV-HRGARCHMRQ 2633.243 2495.127 2535.734 2964.466

HRGARCH∗
MRQ 2651.363 2502.983 2555.388 2983.233

TV-HRGARCH∗
MRQ 2659.316 2507.181 2571.215 2982.434

MCS p-values

RGARCH 0.0006 0.0022 0.0000 0.0026

HRGARCH 0.0060 0.0322 0.0012 0.0578

TV-HRGARCH 0.3128 0.1182 0.0886 0.2200

RGARCH∗ 0.0830 0.0322 0.0008 0.0468

HRGARCH∗ 0.1086 0.1182 0.1858 0.5568

TV-HRGARCH∗ 1.0000 1.0000 0.8324 1.0000

HRGARCH∗
MRQ 0.0856 0.0730 0.0386 0.2692

TV-HRGARCH∗
MRQ 0.8762 0.1182 1.0000 0.2200

The first criterion we use for assessing predictive accuracy is, as in Hansen et al. (2012), the
predictive log-likelihood, given for time t +1 by:

L̂ (r,x)t+1 =−1

2

[

log(2π)+ log(ĥt+1)+
r2

t+1

ĥt+1

]

− 1

2

[

log(2π)+ log(σ̂2
u )+

u2
t+1

σ̂2
u

]

. (25)

Subsequently, the aggregated predictive log-likelihood is computed by summing the density
estimates for each day in the forecast period. Table 6 shows the values of the predictive log-
likelihood corresponding to all models employed. The models including the bias correction
variable Ct in the measurement equation maximise the predictive log-likelihood in all cases.
In particular, for ALV, BMW and RWE, the specification that allows for heteroskedasticity
and time-varying persistence, TV-HRGARCH∗, returns the highest values of the predictive
log-likelihood, whereas for MEO, the TV-HRGARCH∗

MRQ, replacing RQt by medRQt in the

specification of σ2
u,t , prevails.

The bottom panel of Table 6 shows the MCS p-values associated to the predictive log-
likelihood (multiplied by -1). Interestingly, the only model always coming into the MCS at
the 75% confidence level is the TV-HRGARCH∗, while the standard Realized GARCH never
enters the set of superior models. For the asset ALV, all the time-varying specifications enter
the MCS at the considered confidence level, while for BMW, the TV-HRGARCH∗ uniquely
enters the set. On the other hand, for MEO, both the TV-HRGARCH∗ and TV-HRGARCH∗

MRQ

are included into the MCS. Finally, the HRGARCH∗ and the HRGARCH∗
MRQ belong to the set

of superior models only in the analysis of the RWE stock. As expected, we obtain analogous
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Table 7: Average values of QLIKE loss using 5-min RV as volatility proxy (top) and MCS

p-values (bottom). For each stock in bold minimum loss and in box models ∈ 75% MCS.

QLIKE

ALV BMW MEO RWE

RGARCH -6.9723 -6.6765 -6.9460 -7.2618

HRGARCH -6.9721 -6.6755 -6.9464 -7.2606

TV-HRGARCH -6.9755 -6.6788 -6.9529 -7.2652

RGARCH∗ -6.9728 -6.6775 -6.9480 -7.2625

HRGARCH∗ -6.9728 -6.6763 -6.9482 -7.2612

TV-HRGARCH∗ -6.9746 -6.6788 -6.9525 -7.2647

HRGARCH∗
MRQ -6.9728 -6.6766 -6.9482 -7.2614

TV-HRGARCH∗
MRQ -6.9754 -6.6776 -6.9525 -7.2620

MCS p-values

RGARCH 0.0766 0.1616 0.0286 0.0294

HRGARCH 0.0772 0.0778 0.0714 0.0230

TV-HRGARCH 1.0000 1.0000 1.0000 1.0000

RGARCH∗ 0.0772 0.4294 0.1336 0.0310

HRGARCH∗ 0.0772 0.1534 0.2692 0.0280

TV-HRGARCH∗ 0.4234 0.7902 0.8038 0.0758

HRGARCH∗
MRQ 0.0772 0.2548 0.2174 0.0280

TV-HRGARCH∗
MRQ 0.9418 0.4294 0.8196 0.0294

results when the 5-min RK is used (Table 9 in the Empirical Appendix).

As a further criterion for assessing and comparing the forecasting accuracy of the
fitted models, the QLIKE loss function is employed. This choice is motivated by two
considerations. First, the QLIKE is robust to noisy volatility proxies (Patton, 2011). Second,
compared to other robust alternatives, this loss function has been found to be more powerful
in rejecting poorly performing predictors (Liu et al., 2015). The QLIKE loss has been
computed according to the formula

QLIKE =
1

T

T

∑
t=1

log(ĥt)+
xt

ĥt

, (26)

where the 5-minute RV and RK are chosen as alternative volatility proxies. In this section,
we only report results obtained for the 5-minute RV . Again, very similar results are obtained
when using the 5-min RK (Table 10 in the Empirical Appendix).

Observing the average values of the QLIKE loss function (top panel of Table 7), we find
that the lowest value is always obtained by using the TV-HRGARCH model. The MCS p-
values, in the bottom panel of Table 7, show that the TV-HRGARCH is always included
in the MCS and, for RWE, it is the only specification appearing in the MCS. Within the
class of models which include a jump correction component in the measurement equation,
the RGARCH∗ is included into the MCS for BMW, whereas the HRGARCH∗ falls into the
MCS only for MEO. The TV-HRGARCH∗ is always included in the set of superior models,
except for RWE. This result also applies to the TV-HRGARCH∗

MRQ, while the simplified
heteroskedastic specification HRGARCH∗

MRQ enters the MCS just for BMW. On the other
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hand, the standard RGARCH never comes into the set of superior models, nor does the
HRGARCH.

8 Conclusion

We propose a generalisation of the class of Realized GARCH models that accounts for
heteroskedasticity in measurement error and which explicitly reduces the magnitude of
the attenuation bias through the temporal variation of the parameters driving the volatility
persistence. Furthermore, in order to deal with the presence of jumps in stock prices, we
further extend the proposed modelling approach introducing a bias correction variable that
allows to control the impact of jumps on the predicted volatility in a fully data driven fashion.

The empirical analysis points out that our modelling approach outperforms the standard
Realized GARCH both in fitting and forecasting volatility. In particular we find evidence in
favour of the use of models accounting for heteroskedasticity, time-varying attenuation bias
as well as the presence of jumps. More in detail, focusing on the out-of-sample predictive
performance, we find that, when the predictive log-likelihood is used as a measure of
accuracy, the TV-HRGARCH∗ model, incorporating all the mentioned features, is the only
model always entering the 75% MCS, while the TV-HRGARCH model, not incorporating the
jump correction term, only enters the MCS for the stock ALV. Moving to consider the QLIKE
as a measure of predictive accuracy, the performance of the TV-HRGARCH∗ model is still
remarkably good since this model enters the MCS in three cases out of four. However, it
is slightly outperformed by the TV-HRGARCH model entering the MCS for all the stocks
considered. Furthermore, the use of different realized volatility, RV and RK, and quarticity
measures, RQ and medRQ, substantially confirms the robustness of our findings.

22



Empirical Appendix

23



Table 8: In-Sample Estimation Results using 5-minutes Realized Kernel

ω γ γ0 γ1 β ξ ϕ τ1 τ2 η σ2
u δ0 δ1 ℓ(r) L (r,x) BIC

ALV

RGARCH 0.012 0.399 - - 0.602 -0.409 0.953 -0.067 0.109 - 0.186 - - 7608.548 5992.439 -4.271
(0.105) 0.032 0.031 (0.229) 0.028 0.008 0.007 0.008

HRGARCH 0.014 0.379 - - 0.622 -0.489 0.947 -0.068 0.112 - - -0.375 0.165 7608.163 6019.905 -4.288
(0.090) 0.030 0.029 0.196 0.024 0.007 0.007 (0.299) 0.036

TV-HRGARCH 1.930 - 0.485 1.004 0.568 -0.476 0.949 -0.068 0.112 - - -0.378 0.167 7610.464 6048.670 -4.306
0.309 0.050 0.203 0.032 0.206 0.025 0.007 0.006 (0.234) 0.028

RGARCH∗ 0.003 0.406 - - 0.592 -0.385 0.961 -0.067 0.108 0.429 0.181 - - 7609.049 6034.555 -4.299
(0.091) 0.031 0.031 0.188 0.023 0.008 0.006 0.044 0.008

HRGARCH∗ 0.013 0.392 - - 0.607 -0.480 0.953 -0.068 0.110 0.417 - -0.480 0.155 7608.862 6059.555 -4.314
(0.094) 0.030 0.030 0.202 0.025 0.007 0.006 0.043 (0.299) 0.036

TV-HRGARCH∗ 1.118 - 0.440 0.648 0.579 -0.474 0.953 -0.068 0.111 0.327 - -0.516 0.152 7609.911 6072.574 -4.320
0.279 0.044 0.174 0.032 0.173 0.021 0.007 0.006 0.048 0.284 0.034

HRGARCH∗
MRQ 0.013 0.393 - - 0.605 -0.475 0.954 -0.068 0.111 0.432 - -0.526 0.146 7608.885 6057.656 -4.312

(0.086) 0.030 0.030 0.180 0.022 0.007 0.006 0.043 (0.319) 0.037

TV-HRGARCH∗
MRQ 1.573 - 0.451 0.891 0.578 -0.477 0.954 -0.068 0.110 0.493 - -0.483 0.153 7612.481 6076.309 -4.323

0.461 0.057 0.226 0.032 0.198 0.024 0.007 0.006 0.043 (0.286) 0.033

BMW

RGARCH 0.042 0.300 - - 0.707 -0.513 0.929 -0.028 0.082 - 0.172 - - 7470.179 5962.526 -4.250
(0.115) 0.027 0.025 (0.341) 0.042 0.008 0.006 0.007

HRGARCH 0.035 0.277 - - 0.729 -0.585 0.926 -0.032 0.086 - - 0.312 0.268 7470.559 6011.940 -4.283
(0.086) 0.024 0.023 0.265 0.033 0.008 0.006 (0.325) 0.041

TV-HRGARCH 1.508 - 0.397 0.570 0.698 -0.571 0.928 -0.032 0.086 - - 0.155 0.250 7469.159 6035.850 -4.297
0.300 0.038 0.127 0.024 (0.361) 0.044 0.008 0.005 (0.237) 0.030

RGARCH∗ 0.046 0.307 - - 0.701 -0.523 0.931 -0.029 0.081 0.308 0.170 - - 7471.498 5983.776 -4.262
(0.092) 0.027 0.025 0.260 0.032 0.008 0.006 0.056 0.007

HRGARCH∗ 0.039 0.283 - - 0.723 -0.589 0.928 -0.032 0.085 0.256 - 0.179 0.252 7471.632 6026.523 -4.290
(0.109) 0.025 0.023 (0.341) 0.042 0.008 0.006 0.051 (0.325) 0.041

TV-HRGARCH∗ 1.211 - 0.373 0.465 0.702 -0.585 0.928 -0.032 0.085 0.182 - 0.107 0.245 7470.231 6043.709 -4.300
0.321 0.040 0.123 0.024 (0.330) 0.041 0.008 0.006 0.053 (0.267) 0.034

HRGARCH∗
MRQ 0.040 0.285 - - 0.721 -0.570 0.930 -0.031 0.084 0.276 - -0.128 0.207 7471.682 6013.711 -4.281

(0.111) 0.026 0.023 (0.345) 0.043 0.008 0.006 0.052 (0.341) 0.042

TV-HRGARCH∗
MRQ 1.069 - 0.346 0.475 0.708 -0.517 0.937 -0.031 0.084 0.341 - -0.139 0.207 7469.674 6024.690 -4.286

0.308 0.038 0.129 0.024 0.257 0.032 0.008 0.005 0.053 (0.325) 0.040
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Table 8 continued

ω γ γ0 γ1 β ξ ϕ τ1 τ2 η σ2
u δ0 δ1 ℓ(r) L (r,x) BIC

MEO

RGARCH -0.077 0.250 - - 0.742 -0.097 0.985 -0.018 0.082 - 0.192 - - 7463.020 5804.847 -4.137
(0.097) 0.025 0.025 (0.363) 0.043 0.009 0.007 0.007

HRGARCH -0.074 0.239 - - 0.753 -0.171 0.981 -0.024 0.091 - - -0.032 0.209 7463.082 5837.138 -4.157
(0.101) 0.024 0.024 (0.403) 0.048 0.008 0.006 (0.290) 0.036

TV-HRGARCH 1.262 - 0.324 0.609 0.719 -0.181 0.979 -0.024 0.090 - - -0.215 0.187 7467.454 5860.848 -4.171
0.291 0.040 0.159 0.027 (0.335) 0.040 0.008 0.006 (0.249) 0.031

RGARCH∗ -0.069 0.256 - - 0.735 -0.130 0.987 -0.016 0.081 0.412 0.187 - - 7463.913 5845.451 -4.163
(0.091) 0.024 0.024 (0.328) 0.039 (0.009) 0.007 0.053 0.007

HRGARCH∗ -0.064 0.245 - - 0.746 -0.199 0.983 -0.021 0.089 0.392 - -0.165 0.195 7463.935 5873.167 -4.180
(0.094) 0.023 0.023 (0.358) 0.042 0.008 0.006 0.051 (0.293) 0.036

TV-HRGARCH∗ 0.755 - 0.293 0.389 0.729 -0.200 0.982 -0.022 0.090 0.323 - -0.269 0.183 7466.313 5885.625 -4.186
0.278 0.036 0.128 0.025 (0.447) 0.053 0.008 0.006 0.053 (0.283) 0.035

HRGARCH∗
MRQ -0.064 0.247 - - 0.744 -0.204 0.983 -0.020 0.088 0.412 - -0.256 0.178 7463.961 5868.658 -4.177

(0.117) 0.025 0.023 (0.452) 0.054 0.008 0.007 0.051 (0.307) 0.037

TV-HRGARCH∗
MRQ 1.229 - 0.312 0.637 0.721 -0.220 0.981 -0.020 0.088 0.477 - -0.320 0.172 7469.650 5887.212 -4.187

0.288 0.040 0.183 0.025 (0.348) 0.041 0.008 0.007 0.049 (0.283) 0.034

RWE

RGARCH -0.389 0.315 - - 0.645 0.680 1.062 -0.040 0.081 - 0.164 - - 7991.294 6554.930 -4.674
0.138 0.033 0.029 (0.460) 0.053 0.008 0.006 0.007

HRGARCH -0.358 0.292 - - 0.671 0.575 1.056 -0.040 0.083 - - 0.306 0.263 7989.920 6599.658 -4.704
0.155 0.030 0.024 (0.560) 0.064 0.007 0.005 (0.400) 0.048

TV-HRGARCH 0.809 - 0.380 0.527 0.639 0.600 1.058 -0.040 0.082 - - -0.085 0.216 7992.073 6613.561 -4.711
0.355 0.042 (0.205) 0.028 0.482 0.055 0.007 0.005 (0.345) 0.041

RGARCH∗ -0.398 0.317 - - 0.641 0.705 1.069 -0.040 0.080 0.316 0.161 - - 7991.651 6578.197 -4.688
0.125 0.032 0.029 (0.410) 0.047 0.008 0.006 0.057 0.007

HRGARCH∗ -0.367 0.294 - - 0.667 0.605 1.062 -0.040 0.081 0.276 - 0.178 0.248 7990.251 6617.473 -4.714
0.128 0.028 0.025 (0.449) 0.051 0.007 0.005 0.053 (0.381) 0.045

TV-HRGARCH∗ 0.412 - 0.352 0.350 0.647 0.615 1.062 -0.040 0.081 0.219 - -0.081 0.217 7991.414 6624.759 -4.716
(0.317) 0.037 0.178 0.027 (0.416) 0.047 0.007 0.005 0.054 (0.386) 0.046

HRGARCH∗
MRQ -0.369 0.295 - - 0.666 0.613 1.063 -0.040 0.081 0.301 - 0.122 0.236 7990.312 6612.176 -4.710

0.115 (0.027) 0.025 (0.401) 0.046 0.007 0.005 0.053 (0.402) 0.047

TV-HRGARCH∗
MRQ 0.269 - 0.337 0.287 0.655 0.641 1.066 -0.041 0.080 0.337 - -0.107 0.209 7990.403 6616.025 -4.710

(0.360) 0.037 (0.190) 0.025 (0.533) 0.061 0.007 0.005 0.056 (0.432) 0.051

In-sample parameter estimates for the full sample period 02 January 2002 - 27 December 2012. ℓ(r): partial log-likelihood. L (r,x): log-likelihood. BIC: Bayesian Information

Criterion. Standard errors are reported in small font under the parameters value: in parenthesis parameter not significant at 5%.
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Table 9: Predictive log-likelihood using 5-min RK as volatility proxy (top): in bold the
preferred model according to predictive log-likelihood. MCS p-values of predictive log-

likelihood (bottom): in box models ∈ 75% MCS. The p-values refer to the negative predictive
log-likelihoods.

ALV BMW MEO RWE

RGARCH 2614.147 2476.051 2492.735 2933.013

HRGARCH 2631.776 2497.190 2536.516 2968.781

TV-HRGARCH 2650.184 2511.197 2552.354 2975.101

RGARCH∗ 2631.724 2487.072 2521.690 2955.767

HRGARCH∗ 2649.767 2505.092 2557.727 2984.190

TV-HRGARCH∗ 2657.061 2514.476 2565.812 2986.220

HRGARCH∗
MRQ 2649.392 2501.026 2552.834 2980.199

TV-HRGARCH∗
MRQ 2657.407 2505.357 2568.678 2979.078

MCS p-values

RGARCH 0.0010 0.0032 0.0002 0.0012

HRGARCH 0.0052 0.0292 0.0004 0.0308

TV-HRGARCH 0.2184 0.1406 0.0442 0.1372

RGARCH∗ 0.1016 0.0292 0.0032 0.0308

HRGARCH∗ 0.1102 0.1406 0.1712 0.6244

TV-HRGARCH∗ 0.9554 1.0000 0.6822 1.0000

HRGARCH∗
MRQ 0.1016 0.0810 0.0276 0.2848

TV-HRGARCH∗
MRQ 1.0000 0.1406 1.0000 0.2298
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Table 10: Average values of QLIKE loss using 5-min RK as volatility proxy (top) and MCS

p-values (bottom). For each stock in bold minimum loss and in box models ∈ 75% MCS.

QLIKE

ALV BMW MEO RWE

RGARCH -6.9809 -6.6857 -6.9577 -7.2790

HRGARCH -6.9807 -6.6847 -6.9582 -7.2778

TV-HRGARCH -6.9839 -6.6880 -6.9645 -7.2816

RGARCH∗ -6.9814 -6.6866 -6.9596 -7.2797

HRGARCH∗ -6.9813 -6.6855 -6.9598 -7.2784

TV-HRGARCH∗ -6.9829 -6.6878 -6.9635 -7.2808

HRGARCH∗
MRQ -6.9814 -6.6858 -6.9599 -7.2786

TV-HRGARCH∗
MRQ -6.9841 -6.6870 -6.9644 -7.2790

MCS p-values

RGARCH 0.0776 0.1458 0.0262 0.0866

HRGARCH 0.0776 0.0702 0.0596 0.0282

TV-HRGARCH 0.8484 1.0000 1.0000 1.0000

RGARCH∗ 0.0776 0.3940 0.0870 0.0952

HRGARCH∗ 0.0776 0.1314 0.1118 0.0386

TV-HRGARCH∗ 0.3062 0.5222 0.4572 0.1192

HRGARCH∗
MRQ 0.0776 0.2162 0.1564 0.0444

TV-HRGARCH∗
MRQ 1.0000 0.4242 0.9192 0.0586
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