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Abstract

A regime-switching Lévy framework, where all parameter values depend on the value
of a continuous time Markov chain as per Chevallier and Goutte (2017), is employed to
study US Corporate Option-Adjusted Spreads (OASs). For modelling purposes we assume
a Normal Inverse Gaussian distribution, allowing heavier tails and skewness. After the
Expectation-Maximization algorithm is applied to this general class of regime switching
models, we compare the obtained results with time series models without jumps, including
one with regime switching and one without. We find that a regime-switching Lévy model
clearly defines two regimes for A-, AA-, and AAA-rated OASs. We find further evidence of
regime-switching effects, with data showing relatively pronounced jump intensity around the
time of major crisis periods, thereby confirming the presence and importance of volatility
regimes. Results indicate that ignoring the complex and dynamic dependence structure in
favour of certain model assumptions may lead to a significant underestimation of risk.
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1 Introduction

This paper deploys a regime switching Lévy model to examine regime changes in Option-
Adjusted Spreads (OASs), which are the calculated spreads between a computed OAS index
of all bonds in a given rating category and a spot Treasury curve. An OAS index is constructed
using each constituent bond’s OAS, weighted by market capitalization. OASs represent a mea-
sure of credit risk in option-embedded bonds such1.

These are of interest for many reasons. One such reason is that corporate bond yields signal the
cost of financing for private firms. Higher spreads are indicative that the cost of capital is higher
and, therefore, that the profitability of investment opportunities is lower. And since investment
in physical capital is a key driver of economic growth, understanding the structure of the cost
of financing for private firms helps to identify the barriers to productive investment.

To the best of our knowledge, this study is the first time that Markov-switching Lévy models
have been employed to analyze the structure of option-adjusted spreads. For modelling purposes
we assume a Normal Inverse Gaussian distribution, allowing heavier tails and skewness. This is
followed by a comparison with other time-series models. The maximum likelihood estimates are
determined by the EM algorithm. In order to measure the quality of the regime classification,
we deploy two measures:

1. The regime classification measure (RCM) introduced by Ang and Bekaert (2002) in [2].

2. The smoothed probability indicator.

The intuition behind regime-switching models is that the parameters of an autoregression rely
upon a stochastic and unobservable regime variable which represents the probability of being in
a particular state. So, in other words, the evolution of regimes can be inferred – we have to form
an inference since it cannot be observed directly – from the data once a law has been specified
for the states.

The regular flow of economic activity may occasionally suffer shocks substantive enough to result
in different observed dynamics. Sampled time series data may typically show not only periods
of low and high volatility but also periods of slower and faster mean growth. In such cases
GARCH-type models often do not perform well empirically and may even be inappropriate.
But following the seminal work of Hamilton [33, 34], we have a more useful framework: that of
stochastic regime switching. When converted into a continuous-time, this model implies that
the underlying asset price can switch between two states, exhibiting continuous changes in each
state. Such shifts are governed by a Markov (point) process.

In a seminal contribution, [25] has demonstrated the practicality of a segmented trends model, i.e.
that a time series may be segmented into a sequence of stochastic time trends. Regime switching
models have since been used widely in the literature across various domains of application,
including but not limited to analysis of energy prices [35, 48], exchange rates [11], stock returns
[34, 23], systemic risk [13], asset allocation [28, 62], international equity markets [1, 50], business
cycles [31, 49], economic growth [38], term structure [24], and monetary policy [58, 59, 12].
Surveys are provided by [32] and [3].

The use of jump-diffusion models in financial applications can be traced to [47], and later [10].
These early models relied on the two pivotal ideas. First, that the Poisson jump-driven part
of the model explains large market shifts in response to unexpected information. Second, that
the diffusive (i.e. the Wiener process-driven) part of the model explains normal asset price
variations. Such models were able to specify a finite number of jumps in a finite time interval.

1Eg callable and putable bonds, etc
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Building on this literature, some of the more recent models have suggested models with infinitely
many jumps in finite time intervals.

These models include the variance gamma model of Madan and Seneta [45], and the CGMY
model of Carr, Geman, Madan and Yor [16], amongst others. [16] study the variance gamma
(VG) and normal inverse Gaussian (NIG) as two examples of time-changed Lévy processes. The
VG and NIG are obtained by replacing the time of a Brownian motion with the inverse Gaussian
and gamma process, respectively. More concretely, the VG and NIG processes are subordinators
belonging to the class of Lévy processes. The distinct advantage of the latter set of models was
their ability to capture both large and infrequent jumps, as well as small and frequent ones.

Although the literature on switching regime Lévy processes remains sparse, we are witnessing a
rise in application of Lévy models to study different asset classes and markets. Some of the better
known examples include [20] who show empirical evidence that commodity prices demonstrate
jumps. More recently, empirical work by [15] underpins the importance of jumps across a range of
asset classes. The presence of jump-diffusion processes (including Lévy processes) is empirically
supported by [37], who studied the S&P 500 index. A survey is provided by [29].

2 Data

The data of interest consists of the Bank of America Merrill Lynch investment-grade (”U.S. Cor-
porate Master”) and high-yield (”U.S. High Yield Master”) corporate bond indices. The BAML
dataset relies on the industry standard for valuations, aggregating data from TRACE as well
as other sources. For an more detailed description of this data set see Schaefer and Strebulaev
[57]. Figure 1 graphically shows the data series, sourced from Federal Reserve Economic Data
(FRED). The date range is 03/01/2000-24/12/2018, n=5014 obs. The individual series are as
follows:

1 ICE BofAML US Corporate A Option-Adjusted Spread

2 ICE BofAML US Corporate AA Option-Adjusted Spread

3 ICE BofAML US Corporate AAA Option-Adjusted Spread

4 ICE BofAML US High Yield B Option-Adjusted Spread

5 ICE BofAML US High Yield BB Option-Adjusted Spread

6 ICE BofAML US Corporate BBB Option-Adjusted Spread

7 ICE BofAML US High Yield CCC or Below Option-Adjusted Spread

8 ICE BofAML US Corporate 1-3 Year Option-Adjusted Spread

9 ICE BofAML US Corporate 3-5 Year Option-Adjusted Spread

10 ICE BofAML US Corporate 7-10 Year Option-Adjusted Spread

Figure 2 shows time series plots for CCC-, BBB-, and AAA-rated credit in our sample. Common
’stylized facts’ of financial time series are clearly apparent. For example, volatility clustering
can be observed across all the returns data , particularly at the start of 2000s and during the
North Atlantic financial crisis from Q2 2007 to Q2 2009. This is consistent with expectations
since it is known that around the middle of 2007 is when dislocation in the subprime mortgage
markets first became apparent. The Federal Reserve’s first policy response to the crisis, namely
provision of liquidity, was in August (Board of the Governors of the Federal Reserve System,
2007, [14]).
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Figure 1: ICE BofAML Option-Adjusted Spreads

Source: FRED. Shaded areas indicate U.S. recessions (NBER).

Figure 2: Closing price and log returns: CCC-, BBB-, and AAA-rated credit.

We conduct the Augmented Dickey-Fuller on our closing price data. This tests the null hypoth-
esis that our data follows a unit root process. We fail to reject the null hypothesis of a unit
root against the autoregressive alternative for all ten series in our sample. Number of lags were
selected using the BIC selection criterion.

When testing for normality we use the Lilliefors goodness-of fit test, which is a version of the
Kolmogorov-Smirnov test corrected for the potential presence of parameter uncertainty. P-
values for the null hypothesis of normality for the returns of our series return p < 0.001% in
all ten cases. We do not make use of omnibus tests (a la Jarque-Bera) as they are suspected of
being underpowered. Demerits of of ’omnibus’ tests for normality of the JB type, are discussed
in [19, 46, 61] and [63].

Trying to model financial time series is fraught with problems, since the observations can be
influenced by events that are largely unpredictable. Such events – which may include natural
disasters, statements from central banks, policy announcements from governments – have the
potential to profoundly affect the market. As a result, the assumption of stationarity may not
hold for financial data. The implication of this is that classic time series analysis techniques may
be partially or completely inadequate to model financial data. In some cases, solutions to this
problem can be found by deploying Markov-switching models, since these models let us, under
certain mild assumptions, address the non-stationarity of time series data.

The idea behind such models is that the distribution of the observations is allowed to change
over time. By way of exposition, we can write a general Markov Regime Switching (MRS) model
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in the following way:














yt = f(St, θ, ψt−1)

St = g
(

S̃t−1, ψt−1

)

St ∈ Λ

(1)

where θ is the vector of the parameters of the model, St is the state of the model at time t,
ψt := {yk : k = 1, . . . , t} is the set of all observations up to t, S̃t := {S1, ..., St} is the set of all
observed states up to t, Λ = {1, ...,M} is the set of all possible states, and g is the function that
regulates transitions between states. Function f indicates how observations at time t depend on
St, θ, and ψt−1 and finally, t ∈ {0, 1, ..., T}, where T ∈ N, T < +∞, is the terminal time.

Equations 1 show how the Markov-switching approach can be fruitful for time series applications,
since realizations of 1 let us approach specific problems that may be difficult to model in a singe
state regime. Although the literature on Markov-switching models is broad, it appears that it
can be separated into two general groups. The first consists of models that have complicated
distributions for the data or a large number of states, but basic transition laws, such as a
first order Markov chain. For examples of studies in this vein see [21, 30, 17]. The second
group consists of models with simple assumptions and very few states, often two, but with more
complicated transition laws. For examples of such studies see, e.g. [44, 22, 51].

3 Markov-switching model augmented by jumps

We now turn our attention to estimation of a Markov-switching model augmented by jumps,
under the form of a Lévy process, with a view to applying this methodology to study OAS
returns. In order to motivate this section’s modelling approach, we first set up the general
structure of Lévy processes, then we outline their properties with reference to path variation and
the Lévy-Khintchine theorem. Links to infinitely divisible distributions are also provided. The
discussion also highlights the properties of Markov chain, such as irreducibility, aperiodicity, and
ergodicity. The section concludes with a discussion on a framework for estimating a jump-robust
model tempered by a Markov chain, which can be used to study the relations of dependence
within OAS returns and related time series. Estimation in such a framework can be performed
using the EM-algorithm.

3.1 Lévy processes

Lévy processes can be thought of as a combination of two distinct processes, namely diffusions
and jumps. The attractive properties of such a combination can demonstrated by sketching the
connections between two. A well-known pure diffusion process used in finance is the oft-used
Wiener process, a continuous-time Markovian stochastic process with a.s. continuous sample
paths. A well-known pure jump process is the Poisson process, which is a non-decreasing process
that, unlike Wiener, does not have continuous paths. Whilst the Poisson process has paths of
bounded variation over finite time horizons, the paths of a Wiener process exhibit unbounded
variation over finite time horizons.

When combined, these become interesting and, crucially, tractable tools for modelling financial
time series due to their ability to match the empirically observed behaviour of financial markets
more accurately than when armed with simple Wiener process-based models. These tools are
useful, for example, in modelling jumps, spikes, and other such discontinuous variations in the
price signal that are frequently observed in asset prices processes. Such jump dynamics may be
due to short-term liquidity challenges, microstructure frictions, or news shocks. Despite their
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apparent differences, these two processes have much in common. Both processes are initiated
from the origin, both have right-continuous paths with left limits2, and both have independent
and stationary increments. Hence, these common features can be generalized to define a common
framework of one-dimensional stochastic (Lévy) processes.

3.2 A regime-switching Lévy model

This subsection motivates the introduction of the regime-switching Lévy approach to modelling
of our time series. This part of the discussion follows the theoretical methodology recently
proposed by [18], namely by combining a Lévy jump-diffusion model with a Markov-switching
framework. However, we deploy it to study the structure of OAS returns. This is motivated by
the apparent presence of discontinuities in OAS data series, which is a prompt to incorporate
stochastic jumps into the modelling process. The regime-switching Lévy model offers the pos-
sibility of identification of such stochastic jumps, together with disentangling different market
regimes and capturing the regime-switching dynamics. We begin by introducing a number of
key definitions and notations.

Definition 3.1 (Stochastic Process). A stochastic process X on a probability space (Ω,F ,P) is
a collection of random variables (Xt)0≤t<∞.

If Xt ∈ Ft, the process X is adapted to the filtration F , or equivalently, Ft-measurable.

Definition 3.2 (Brownian Motion). Standard Brownian motion W = (Wt)0≤t<∞ has the fol-
lowing three properties:
(i) W0 = 0
(ii) W has independent increments: Wt −Ws is independent of Fs, 0 ≤ s < t <∞
(iii) Wt −Ws is a Gaussian random variable: Wt −Ws ∼ N(0, t− s) ∀ 0 ≤ s < t <∞
Property (ii) implies the Markov property i.e. conditional probability distribution of future
states of the process depend only on the present state. Property (iii) indicates that knowing the
distribution of Wt for t ≤ τ provides no predictive information about the state of the process
when t > τ . We can also define Poisson Process, another stochastic process as follows.

Definition 3.3 (Poisson Process). A Poisson process N = (Nt)0≤t<∞ satisfies the following
three properties:
(i) N0 = 0
(ii) N has independent increments: Nt −Ns is independent of Fs, 0 ≤ s < t <∞
(iii) N has stationary increments: P (Nt −Ns ≤ x) = P (Nt−s ≤ x), 0 ≤ s < t <∞
SDEs formulated with only the Poisson process or Brownian motion may not be very useful
in investing or risk management. Arguably one needs more realistic models to describe the
complex dynamics of an evolving system. However, their common properties may be combined,
thus establishing a more general process.

Definition 3.4 (Lévy Process). Let L be a stochastic process. Then Lt is a Lévy process if the
following conditions are satisfied:
(i) L0 = 0
(ii) L has independent increments: Lt − Ls is independent of Fs, 0 ≤ s < t <∞
(iii) L has stationary increments: P(Lt − Ls ≤ x) = P(Lt−s ≤ x), 0 ≤ s < t <∞
(iii) Lt is continuous in probability: limt→s Lt = Ls

2 We adopt the convention that all Lévy processes have sample paths that are cadlag or RCLL i.e. right-
continuous with left limits at every t.
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Condition (iii) follows from (i) and (ii). For proof see [42].

Definition 3.5. A real valued random variable Θ has an infinitely divisible distribution if for
each n = 1, 2, . . ., there exists a i.i.d. sequence of random variables Θ1, . . . ,Θn such that

Θ
d
=Θ1,n + . . .+Θn,n

This says that the law µ of a real valued random variable is infinitely divisible if for each n =
1, 2, . . . there exists another law µn of a real valued random variable such that µ = µ∗nn , the n-fold
convolution of µn.

The full extent to which we may characterize infinitely divisible distributions is carried out via
their characteristic function (or Fourier transform of their law) and the Lévy-Khintchine formula.

Theorem 3.6 (Lévy-Khintchine formula). Suppose that µ ∈ R, σ ≥ 0, and Π is a measure
concentrated on R/{0} such that

∫

R
min(1, x2)Π(dx) < ∞. A probability law µ of a real-valued

random variable L has characteristic exponent Ψ(u) := −1
t
logE[eiuLt ] given by,

Φ(u; t) =

∫

R

eiuxµ(dx) = e−tΨ(u) for u ∈ R, (2)

if (and only if) there exists a triple (γ, σ,Π), where γ ∈ R, σ ≥ 0 and Π is a measure supported
on R \ {0} satisfying

∫

R
(1 ∧ x2)Π(dx) <∞, such that

Ψ(λ) = iγu+
σ2u2

2
+

∫

R

(

1− e(iux) + iux1|x|<1

)

Π(dx) (3)

for all u ∈ R.

From Theorem 3.6 we can say that there exists a probability space where L = L(1)+L(2)+L(3);
L(1) is standard Brownian motion with drift, L(2) is a compound Poisson process, and L(3) is a
square integrable martingale with countable number of jumps of magnitude less than 1 (a.s.).
This is the the Lévy-Itô decomposition, which can be stated as follows

Lt = ηt+ σWt +

t
∫

0

∫

|x|≥1

xµL(ds, dx) +

t
∫

0

∫

|x|<1

x(ηL −ΠL)(ds, dx). (4)

Definition 3.7 (Markov-Switching). Let (Zt)t∈[0,T ] be a continuous time Markov chain on finite

space S := {1, . . . ,K}. Let FZ
t := {σ(Zs); 0 ≤ s ≤ t} be the natural filtration generated by the

continuous time Markov chain Z. The generator matrix of Z, denoted by ΠZ , is given by

ΠZ
ij











≥ 0, if i 6= j

−
∑

j 6=i

ΠZ
ij , otherwise (5)

We can now define the Regime-switching Lévy model as follows.

Definition 3.8 (Regime-switching Lévy model). For all t ∈ [0, T ], let Zt be a continuous time
Markov chain on finite space S := {1, . . . ,K} defined as per Definition 3.7. A regime-switching
model is a stochastic process (Xt) which is solution of the stochastic differential equation given
by

dXt = k(Zt)(θ(Zt)−Xt)dt+ σ(Zt)dYt (6)
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where k(Zt), θ(Zt), and σ(Zt) are functions of the Markov chain Z. They are scalars which take
values in k(Zt), θ(Zt), and σ(Zt): k(Zt) := {k(1), . . . , k(K)} ∈ R

K∗

, θ(S) := {θ(1), . . . , θ(K)},
σ(S) := {σ(1), . . . , σ(K)} ∈ R

K∗

. where Y is a Wiener or a Lévy process. Here, k denotes the
mean reverting rate, θ denotes the long run mean, and σ denotes the volatility of X.

The above model exhibits two sources of stochasticity: the Markov chain Z, and the stochastic
process Y which appears in the dynamics of X. In other words, there is stochasticity due to
the Markov chain Z, FZ , and stochasticity due to the market information which is the initial
continuous filtration F generated by the stochastic process Y.

3.3 NIG-type distribution

Following [18], let us assume that the Lévy process L follows the Normal Inverse Gaussian
(NIG) distribution, defined as a variance-mean mixture of a normal distribution with the inverse
Gaussian as the mixing distribution (also see Barndorff-Nielsen et al [5, 7, 8, 9]).

The NIG type distribution is a relatively novel process introduced by Barndorff-Neilsen [7] as
a model for log returns of stock prices. It is a sub-class of the more general class of hyperbolic
Lévy processes. After its introduction it was demonstrated that the NIG distribution provides
an excellent fit to log returns of stock market data [6]. Other studies have also shown this
distribution’s superior empirical fit to other asset classes [54, 39, 26, 27]. Using IBEX35 data,
[60] find that the Normal Inverse Gaussian distribution provides an overall fit for the data better
than any of the other subclasses of Generalized Hyperbolic distributions and much better than
the Lévy-stable laws. More recently, Rachev et al [55] have deployed the NIG distribution,
together with other statistical machinery, to study and (in their words) resolve such well-known
’puzzles’ as (i) Predictability of asset returns (ii) The Equity Premium, and (iii) The Volatility
Puzzle.

This type of types of heavy-tailed process is expected to draws increasing interest, particularly
since the NIG distribution fulfils the fat-tails condition, is analytically tractable, yet is closed
under convolution [36].

The density function of a NIG(α, β, δ, µ) is given by

fNIG(x;α, β, δ, µ) =
α

π
eδ
√

α2−β2+β(x−µ)K1(αδ
√

1 + (x− µ)2/δ2)
√

1 + (x− µ)2/δ2
, (7)

where δ > 0, α ≥ 0. The parameters in the Normal Inverse Gaussian distribution can be
interpreted as follows: α is the tail heaviness of steepness, β is the skewness, δ is the scale, µ
is the location. The NIG distribution is the only member of the family of general hyperbolic
distributions to be closed under convolution. Kv is the Hankel function with index v. This can
be represented by

Kv(z) =
1

2

∫ ∞

0
yv−1e

(

− 1
2
z
(

y+ 1
y

)

)

dy (8)

For a given real v, the function Kv satisfies the differential equation given by

v2y′′ + xy′ − (x2 + v2)y = 0. (9)

The log cumulative function of a Normal Inverse Gaussian variable is given by

φNIG(z) = µz + δ (
√

α2 − β2 −
√

α2 − (β + z)2) for all |β + z| < α.
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The first two moments are E[X] = µ+ δβ
γ
, and V ar[X] = δα2

γ3 , where γ =
√

α2 − β2. The Lévy

measure of a NIG(α, β, δ, µ) law is

FNIG(dx) = eβx
δα

π|x|K1(α|x|)dx.

An expectation-maximization algorithm for the normal-inverse Gaussian distribution was pro-
posed by Karlis [40] and more recently generalised to include Lévy processes by Chevallier and
Goutte [18]. Again, the following exposition follows [18], in content, in model construction, and
in notation.

4 Estimation procedure

We now turn our attention to the estimation procedure of the Lévy regime-switching model in
question. The EM algorithm used to estimate the regime-switching Lévy model, namely the
SDE given in Equation (6), is provided by [18]. The algorithm fits a regime-switching Lévy
model where the stochastic process Y is a Lévy process that follows a Normal Inverse Gaussian
distribution. The set of parameters that require estimation is

Θ̂ := (k̂i, θ̂i, σ̂i, α̂i, β̂i, δ̂i, µ̂i, Π̂) i ∈ S.

There are four parameters of the density of the Lévy process L, three parameters of the dynamics
of X, and the transition matrix of the Markov chain Z. After model is discretized, the global
set of parameters are estimated in a two-step procedure.

4.1 Discretization procedure

Let us consider Wiener process W for stochastic process Y . Let Γ be the increasing sequence of
time from which the data values are taken:

Γ = {tj ; 0 = t0 ≤ t1 ≤ . . . tM−1 ≤ tM = T}, with ∆t = tj − tj−1 = 1.

In this specification, M + 1 denotes to the size of historical data. The discretized version of the
SDE given in 6 is

Xt+1 = k(Zt)θ(Zt) + (1− k(Zt))Xt + σ(Zt)ǫt+1. (10)

Since Y is a Wiener process, ǫt+1 ∼ N(0, 1). Let FX
tk

be the vector of historical values of the
process X until time tk ∈ Γ. Then FX

tk
is a vector of k+1 values of the discretized model. Thus

FX
tk

= (Xt0 , Xt1 , . . . , Xtk).

5 Estimation procedure

Next, we proceed with estimating our model in two stages.

• Stage 1: Estimation of the regime-switching model 6 in the Wiener case. Here we estimate
the parameters of the discretized model 10. We use the EM-algorithm. But in order to
deploy the EM-algorithm, the parameter space estimate Θ̂ is first divided into Θ̂1 :=
(k̂i, θ̂i, σ̂i, Π̂i) for i ∈ S.
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• Stage 2: Estimation of the parameters of the Lévy process fitted to each regime. Using
the regime classification obtained in Step 1, we estimate the next subset of parameters
Θ̂2 := (α̂i, β̂i, δ̂i, µ̂i) for i ∈ S. This relates to the Normal Inverse Gaussian distribution
parameters of the Lévy jump process fitted for each regime.

Further details of the 2-stage estimation, iincluding the EM algorythm are given in the Appendix.
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6 Empirical findings

6.1 Regime Classification Measure of Ang and Bekaert (2002)

A great model is one that is able to sharply classifies the regimes, whilst smoothed probabilities
should be either ≈ zero or ≈ one. To address this, Regime Classification Measures (RCMs) have
been proposed by Ang and Bekaert [2] as a way to determine if the number of regimes K is
appropriate. The RCM statistic spans from 0 (perfect regime classification) to 100 (failure to
detect any regime classification). The RCM was extended for multiple states by Baele [4].

RCM(K) = 100×
(

1− K

K − 1

1

T

N
∑

k=1

N
∑

Ztk

(

P (Ztk = i|FX
tM

; Θ̂
(n)
1 )− 1

K

)2)

, (11)

where P (Ztk = i|FX
tM

; Θ̂
(n)
1 ) corresponds to the smoothed probability and Θ̂

(n)
1 is the vector of

estimated parameters. RCM ∈ [0, 100] and lower values are preferred to higher ones.

In this sense, a ’perfect’ model will be associated with a RCM of almost 0, a good model will
have a RCM of close to ≈ 0, while a model that cannot distinguish between regimes at all will
have a RCM close to 100. A good model is one that implies that the smoothed probability is
less than 0.1 or greater than 0.9. This means that the data at time t ∈ [0, T ] is in one of the
regimes at the 10% error level.

6.2 Smoothed probability indicator

The quality of classification may also be observed when the smoothed probability is less than p
or greater than 1−p with p ∈ [0, 1]. Thus the data at time k ∈ 1, . . . , N has a probability higher
than (100 − 2p)% in one of the regimes for the 2p% error. This percentage is the smoothed
probability indicator with p% error, denoted in Table 1 by P p%.

6.3 Capturing the quality of a model’s regime qualification performance

In Table 1 we observe that the RCM statistic for A-rated indices is less than 10, indicating a
good MRS model fit. We take this as evidence that the our model is able to model the data
reasonably well with two regimes. This model fit is also comparable, albeit with weaker results,
with B- or C-rated bond data. We can also observe that the smoothed probability indicator
is equal to 0.96 for AAA OASs, to 0.92 for AA bonds, and 0.91 for A bonds. We take this as
evidence that in this case both regimes are clearly defined. These regimes can be thought of as
different means in the growth rate. On the other hand, the indicator for B- and C- rated OASs
is not as near to the upper bound of 1. Performance for probability indicators for Corporate
7-10 Year, 3-5 Year, and 1-3 Year sits somewhere in between.

As a comparison, we run the model on various stock market indices data and found results to be
significantly worse. Using data available from Oxford-Man Institute of Quantitative Finance3,
we ran our model on 31 stock indices. Same time horizon was used where possible4. For example,
running this model on Nikkei data yielded RCM of 33.27 and probability indicator p=0.66. Out
of 31 stock index series, only the FTSE and the Amsterdam Exchange index performed well
with RCM < 10 and p > 0.9. This seems to be in contrast to some select claims made in the

3Data is available via https://realized.oxford-man.ox.ac.uk/data/assets
4Not all time series have the same starting point, for example data for the OMX Copenhagen 20 commences

in late 2005. However, all data series extend until the end of 2018, as per other time series in study
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Table 1: Regime Classification Measure, Ang and Bekaert (2002) and smoothed probability
indicator.

US Corporate OASs RCM p10

AAA 4.2696 0.9569
AA 7.2448 0.9222
A 8.2493 0.9107
BBB 14.3738 0.8468
BB 15.9911 0.8347
B 14.0505 0.8494
CCC and below 13.6773 0.8552

7-10 Year 13.9954 0.8536
3-5 Year 10.3878 0.8923
1-3 Year 8.8628 0.9019

literature. After going back to the literature and conducting light replications of some studies
that highlighted the relative performance of similar frameworks (MRS-Lévy, Variance Gamma,
NIG), it appears that such models are sensitive to the selection of the span of the selected time
series.

That notwithstanding, given the set of models considered in our analysis, and using a reasonably
long time span (n=5014 obs), we can conclude that a Lévy regime-switching model clearly defines
two regimes for the A-, AA-, and AAA-rated US Corporate OASs in our sample.

If we look at Figures 3, 4, 5, and 6 then we can observe that we can see that our regime
switching model captures the effect of the North Atlantic Financial Crisis of 2007-2008. In
particular, Figures 3 shows that the AAA option-adjusted spread switches to a high regime
of variance during the period 2008-20105. Thus, during this period of financial instability our
model is in a regime of high variance which maps to higher levels of volatility in the US corporate
bond market. This result is in line with expectations, since we expect that volatility should be
higher in times of crisis than in other economic periods. This reaffirms our point that the use
of two different Markov chains enables us to highlight different levels of mean for a same level
of variance or different levels of variance for a same level of mean. Other indicators of risk, such
as the VIX, increased sharply but briefly at the same time, see Figure 7.

7 Comparison against benchmark models

We now compare the performance of our model against benchmark models, including one with
a single regime specification.

1. Regime-switching Lévy model. This is our headline model specified by Equation 5. The
process Y = L is a Lévy process such that L1 ∼ NIG(α, β, µ).

dXt = k(Zt)(θ(Zt)−Xt)dt+ σ(Zt)dYt (12)

2. Regime switching Gaussian. This is the same as Equation 5 but the process Y = W is a
Brownian motion.

dXt = k(Zt)(θ(Zt)−Xt)dt+ σ(Zt)dYtdWt (13)

5The other two episodes in higher variance correspond to the time of the 2001 recession in US and the Russian
default of 98. However, it should be noted that for the purposes of our model estimation our time series starts in
03/01/2000.
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3. Vasicek. This model is specified as per Equation 5 but here the process Y =W is a Brow-
nian motion without regime switches. The corresponding stochastic differential equation
does not depend on the Markov chain Z.

dXt = k(Zt)(θ(Zt)−Xt)dt+ σdWt (14)

We now examine the goodness-of-fit of these competing models by calculating log-likelihood
values with the EM-algorithm. We also report the information critera (AIC and BIC) for each
model. The lowest model selection criteria, and therefore the best model, is highlighted in
italics. The results in Table 2 show that a regime switching Gaussian model without jumps
(i.e. a regime-switching Gaussian diffusion model where only the drift component is regime-
dependent) is preferred.

Table 2: Benchmark model selection

OASs RS Lévy RS Gaussian Vasicek

BIC AIC BIC AIC BIC AIC
AAA 73.84 21.68 -31028.78 -31080.94 -517.28 -536.84
AA 71.14 18.98 -30867.58 -30919.74 -22114.85 -22134.41
A 69.30 17.14 -30391.76 -30443.92 -22004.36 -22023.92
BBB 69.45 17.29 -27650.98 -27703.15 -21706.83 -21726.39
BB 72.82 20.66 -14197.10 -14249.26 -10368.04 -10387.61
B 73.42 21.26 -11145.15 -11197.31 -7112.83 -7132.39
CCC 74.83 22.67 -7425.13 -31080.94 -517.28 -536.84

7-10 Year 69.48 17.32 -28151.61 -28203.77 -22772.30 -22791.87
3-5 Year 69.38 17.22 -28853.66 -28905.82 -22416.79 -22436.35
1-3 Year 71.31 19.15 -27742.38 -27794.54 -18938.98 -18958.54

As is customary, we will now briefly discuss possible directions for future work. Looking forward,
our results suggest that there is still much to be achieved by virtue of departures from the
modeling assumptions used in a traditional time series models a la ARCH-GARCH. One obvious
direction is to extend the model presented herein to a more generalized framework whilst making
use of recent research on MRS models. For example, until recently deriving a likelihood ratio test
statistic for testing the number of regimes in MRS models remained an open statistical problem.
However, Kasahara and Shimotsu [41]6 have recently presented an asymptotic distribution of the
likelihood ratio test statistic for testing the number of regimes in MRS models. This framework
has the potential to be usefully employed to augment the model employed in this paper and
extend it to a more general setting.

8 Conclusion

To conclude, a regime-switching Lévy framework, where all parameter values depend on the
value of a continuous time Markov chain as per Chevallier and Goutte (2017), was employed to
study Option-Adjusted Spreads (OASs). For modelling purposes we assumed a Normal Inverse
Gaussian distribution, allowing heavier tails and skewness.

We motivated this paper’s modelling approach by setting up the general structure of Lévy pro-
cesses before outlining their properties with reference to path variation and the Lévy-Khintchine
theorem. Estimation was done using the EM-algorithm.

6As yet unpublished working paper, arXiv:1801.06862
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We found that a regime-switching Lévy model clearly defines two regimes for A-, AA-, and
AAA-rated OASs. We found further evidence of regime-switching effects, with data showing
relatively pronounced jump intensity around the time of major crisis periods, thereby confirming
the presence and importance of volatility regimes.

The discussion highlighted the properties of Markov chain, such as irreducibility, aperiodicity,
and ergodicity. We discussion the potential merits and demerits of estimating a jump-robust
model tempered by a Markov chain. When comparing the regime-switching Lévy model to other
benchmark time series models, we concluded that a regime-switching Gaussian diffusion model
where only the drift component is regime-dependent is preferred.

Results indicate that ignoring the complex and dynamic dependence structure in favour of
certain model assumptions may lead to a significant underestimation of risk.

9 Appendix

9.1 Stage 1: The regime-switching model

We aim to estimate the set of parameters Θ = Θ̂1 := (k̂i, θ̂i, σ̂i, Π̂i) for i ∈ S.

1. Start with initial vector Θ̂
(0)
1 :=

(

k̂
(0)
i , θ̂

(0)
i , σ̂

(0)
i , Π̂

(0)
i

)

for i ∈ S. Let N ∈ N be the

maximum number of iterations. Fix a positive constant ǫ as a convergence constant for
the estimated log-likelihood function.

2. Assume that we are at the n+ 1 ≤ N steps. Then calculation in the previous iteration of

the algorithm gives the following vector set Θ̂
(n)
1 :=

(

k̂
(n)
i , θ̂

(n)
i , σ̂

(n)
i , Π̂

(n)
i

)

9.2 EM-algorithm

9.2.1 Expectation step (E step)

We aim to estimate both filtered probability and smoothed probability. Optimality is
achieved when a model is able to identify regimes sharply, such that smoothed probabilities
approach either zero or one. Filtered probability is given by the probability such that the
Markov chain Z is in regime i ∈ S at time t with respect to FX

T :

For all i ∈ S and k = {1, 2, . . . ,M}, estimate the following

P
(

Ztk = i|FX
tk
; Θ̂

(n)
1

)

=
P
(

Ztk , Xtk |FX
tk−1

; Θ̂
(n)
1

)

f
(

Xtk |FX
tk−1

; Θ̂
(n)
1

)

=
P
(

Ztk = i|FX
tk−1

; Θ̂
(n)
1

)

f
(

Xtk |Ztk = i;Ftk−1
; Θ̂

(n)
1

)

∑

j∈S P
(

Ztk = j|FX
tk−1

; Θ̂
(n)
1

)

f
(

Xtk |Ztk = j;Ftk−1
; Θ̂

(n)
1

)

(15)
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such that

P
(

Ztk = i|FX
tk−1

; Θ̂
(n)
1

)

=
∑

j∈S

P
(

Ztk = i, Ztk−1
= j|FX

tk−1
; Θ̂

(n)
1

)

=
∑

j∈S

P
(

Ztk = i, Ztk−1
= j|Θ̂(n)

1

)

P
(

Ztk−1
= j|FX

tk−1
; Θ̂

(n)
1

)

=
∑

j∈S

Π
(n)
ij P

(

Ztk−1
= j|FX

tk−1
; Θ̂

(n)
1

)

,

(16)

where f
(

Xtk |Ztk = i;Ftk−1
; Θ̂

(n)
1

)

is the density of the process X at time tk, conditional

that the process is in regime i ∈ S. Using model 10 we can observe that, given FX
tk−1

, the

process Xtk has a conditional Gaussian distribution ∼ N
(

k
(n)
i θ

(n)
i +(1−k(n)i )Xtk−1

, σ
2(n)
i

)

.

The density of this distribution is given by

f
(

Xtk |Ztk = i;Ftk−1
; Θ̂

(n)
1

)

=
1

√

2πσ
(n)
i

exp
[Xtk −

(

1− k
(n)
i )Xtk−1

− θ
(n)
i k

(n)
i

)2

2
(

σ
(n)
i

)2

]

(17)

On the other hand, to estimate smoothed probability we need to examine when Markov
chain Z is in regime i ∈ S at time t with respect to all the historical data FX

T . For all
i ∈ S and k = {M − 1,M − 2, . . . , 1} we obtain

P
(

Ztk = i|FX
tM

; Θ̂
(n)
1

)

=
∑

j∈S

(P
(

Ztk = i|FX
tk
; Θ̂

(n)
1

)

P
(

Ztk+1
= j|FtM ; Θ̂

(n)
1 |Π(n)

ij

)

P
(

Ztk+1
= j|FX

tk
; Θ̂

(n)
1

)

)

(18)

9.2.2 Maximization step (M step)

We are able to obtain explicit formula of the maximum likelihood estimator of the initial

subset of parameters Θ̂1. The maximum likelihood estimates Θ̂
(n+1)
1 for all parameters,

for all i ∈ S, can be obtained by

θ
(n+1)
i =

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)(

Xtk − (1− k
(n+1)
i )Xtk−1

]

kn+1
i

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)]

k
(n+1)
i =

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)

Xtk−1
B1

]

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)

Xtk−1
B2

]

σ
(n+1)
i =

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)(

Xtk − k
(n+1)
i θ

(n+1)
i (1− k

(n+1)
i )Xtk−1

)2]

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)]

(19)

where

B1 = Xtk −Xtk−1
=

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)(

Xtk −Xtk−1

)

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)]

B2 =

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)

Xtk−1

]

∑M
k=2

[

P
(

Ztk = i|FtM ; Θ̂
(n)
1

)]

Xtk−1
.

We then obtain the transition probabilities:

Π
(n+1)
ij =

∑M
k=2

[

P
(

Ztk = j|FtM ; Θ̂
(n)
1

)Πn
ijP

(

Ztk−1
=i|Ftk−1

;Θ̂
(n)
1

)

P
(

Ztk
=j|Ftk−1

;Θ̂
(n)
1

)

]

∑M
k=2

[

P
(

Ztk−1
= i|Ftk−1

; Θ̂
(n)
1

)]

(20)
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3. Let Θ̂
(n+1)
1 := (k

(n+1)
i , θ

(n+1)
i , σ

(n+1)
i ,Π

(n+1)
i ) be the new parameters of the algorithm.

These are iterated in step 2 until convergence of the EM algorithm is achieved. The
procedure can be stopped if either:

a) the procedure has been performed N times; or

b) the difference between the log-likelihood at step n+ 1 ≤ N and the log-likelihood at
step n, satisfies the equation logL(n+ 1)− logL(n) < ǫ.

Proof of consistency of the (quasi) maximum likelihood estimators is provided in [43]; see also
[56].

9.3 Stage 2: Lévy distribution fitted to each regime

We have estimated the regime-switching model 6 using the EM algorithm. Now, we estimate
the set of parameters Θ̂2 by fitting a NIG distribution for each regime.

X(Regime 1)− L1(α
1, β1, δ1, µ1) (21)

X(Regime 2)− L2(α
2, β2, δ2, µ2) (22)

where L1 and L2 relate to relates to a separate set of Normal Inverse Gaussian distribution
parameters of the Lévy jump process. Estimation of the distribution parameters is done by
maximum likelihood, where Φ1 = (α1, β1, δ1, µ1) and Φ1 = (α2, β2, δ2, µ2). Directly following
from [18], initialization of the algorithm is performed by the method of moments.
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Appendix

Figure 3: Regime discontinuities in OASs (top to bottom): AAA, AA, A.
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Figure 4: Regime discontinuities in OASs (top to bottom): BBB, BB, B

Figure 5: Regime discontinuities in OASs: CCC.
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Figure 6: Regime discontinuities in OASs (top to bottom): US Corporate 7-10 Year, 3-5 Year,
and 1-3 Year.

Figure 7: CBOE Volatility Index: VIX.
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