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Abstract 
 

By increasing the dimensions N or T, or both, in data panel analysis, bias can be reduced 

asymptotically to zero. This research deals with an econometric methodology to separate 

and measure bias through synthetic estimators without altering the data panel dimensions. 

This is done by recursively decomposing bias in systematic and random components. The 

methodology provides consistent synthetic estimators.  
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1. Introduction 
 

Panel data involves two dimensions: the first dimension is N representing the number of 

individuals; and the second dimension is T standing for the number of time periods. In 

the literature there abundant papers related to panel data dynamic estimators and their 

asymptotic properties; see, for instance: Hsiao and Zhang (2015), Hsiao, et al. (2002), 

Hsiao and Tahmiscioglu (2008), Abadie and Imbens (2011), and MacKinnon and Smith 

(1998). Most of these studies measure the sensitivity of panel data estimators when either 

N or T, or both, are large by using Monte Carlo simulations or bootstrap experiments. 

These experiments increase the size N or T, or both, to obtain the asymptotic bias 

distribution and state a procedure to reduce bias. In this asymptotic bias approach 

literature, it can be found different panel data dynamic asymptotic estimators properties. 

The differences rely on different initial assumptions; functional forms; sample size; 

endogeneity treatments, and econometric techniques (MLE, maximum likelihood, or 

GMM, general method of moments). In this regard, Hsiao (2003) considers that if     is 

fixed and    measures the individual specific effects, then the maximum likelihood 

estimator can be viewed as a covariance estimator (    ). This author finds     

asymptotically normally distributed with mean 0 if N is fixed and T is large. On the other 

hand, Hahn and Kuersteiner (2002) show that     is asymptotically biased of order     , if N and T tend to infinite, and     goes to a finite constant different to zero. 
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Arellano and Bond (1991) find a GMM panel consistent estimator, and asymptotically 

unbiased if T is fixed and N goes to infinite. Alvarez and Arellano (2003) report a GMM 

panel estimator
1
 that is asymptotically biased of order    ,       , where    is an 

optimal constant such that               
 

 The asymptotic bias approach properties are studied in the literature because 

consistent estimators have an important role. Consider first that consistent estimators are 

obtained when asymptotic bias is reduced. The central limit theorem postulates that as the 

sample size increases the sample estimators converges toward the population parameters. 

The asymptotic bias approach assumed that the central limit theorem holds, and then bias 

goes to zero as N or T, or both, go to infinite and that estimators become consistent. 

Thus, consistent estimators are important since they can be used to carry out statistic 

inference or hypothesis testing, which depends on t-tests power, and confidence interval 

size.  

 

 This paper proposes a methodology to obtain consistent synthetic estimators, 

without the need to increase panel data dimensions. This method treats bias as a type of 

serial correlation problem.. This solution separates consistent estimators and their biases 

in a lineal fashion. 

 

 Finally, this paper is organized as follows: section 2 presents the methodology 

and the proposed novel method; section 3 discusses the findings; and section 4 concludes. 

 

2. Proposed methodology 
 

Suppose that a dynamic panel data model has the following form: 

 

(1)                                                                 ,          
 

which is supposed to be stationary. Also suppose that: 

 

Assumption 1:     is a random variable with distribution N(0,    ).  

 

Assumption 2:         and its bias and moving average terms can be decomposed on 

systematic and random parts. The systematic part is represented by its mean. The random 

part is represented as a serial correlation problem.  

 

A proposed analytical solution is next implemented to separate efficient synthetic 

estimators from their bias. In equation (1), the computation of the parameters introduces a 

serial correlation problem. This is because the specific individual-effects are presented in 

both estimators    and  . The estimator   considers time and individual effects since 

                                                        
1
 Several applications of GMM estimation in Dynamic Panel Data can be found in Aali-Bujari et al. 

(2017a), Aali-Bujari et al. (2017b), Aali-Bujari et al. (2016), Salazar-Núñez y Venegas-Martínez (2018a) 

and (2018b).  
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       has the two panel data dimensions (  and    ). This leads to a measurement error 

given the double accounting (on    and  ) a specific individual-effects. If this 

measurement error were closed to zero, then bias would not exist. Thus, bias is a result of 

an estimation error (double accounting for individual effects). The omitted variable 

formula is then used to represent the expected value for the estimator   and its bias, as 

follows:
2
 

 

(2)                                                                     
 

where          expresses the expected value of   conditional to   . In this case,   is a 

consistent estimator, and 
                         represents bias.

3
 Assumption 2, in equation (2), 

states a systematic part,  , and a random part, 
                        . 

 

 Equation (2) is nonlinear in its bias component. For tractability purposes bias will 

be treated through Beverigde-Nelson decomposition. This decomposition linearizes bias 

into two parts, mean and error parts. Assume now that bias is equal to    , and that it has 

the following linear representation: 

 

(3)                                                   
 

where                             ,    is the mean, and     stands for the error term. Assumption 

2 applied to equation (3) states that the systematic part is   , and the random part is    . 
Next, consider the following functional moving average form for    . 
 

(4)                                                . 
 

Expanding the lag polynomial      leads to 

 

(5)                                                           

 

where      represents a moving average of order i, and       represents a moving 

average of order T. Plugging equation (5) into equation (4) gives 

 

(6)                                                        

 

Thus, equation (2) can be rewritten as 

 

                                                        
2
 For an endogeneity treatments using synthetic data based on the omitted variable formula see, for 

instance, Carbajal (2014). 
3
 For Makowski et al. (2006) the omission bias is illustrated with the following model              ;                        , and                                 . 
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(7)                                                               

 

where                    is a consistent estimator. Here, bias is                                 . As the sample size increases, and if the assumptions of the 

Central Limit Theorem hold, then it is expected that bias converges to zero: 

 

(8)                                                        

 

If equation (8) holds, then equation (7) reduces to           , where   is a consistent 

estimator. This is the result that the asymptotic approach looks for, when N or T, or both, 

are large. 

 

Theorem 1. An efficient synthetic estimator in presence of specific individual-effects 

correlation is obtained by estimating its bias component. 

 

Proof: 
 

Plugging (7) into equation (1) provides: 

 

(9)                                                                  
 

Distributing the        term gives: 

 

(10)                                                                                                                    
 

Collecting the individual effects estimators in one term,                 yields
4
 

 

(11)                                                                      
 

Equation (11) represents the first iteration of the proposed methodology to separate and 

quantify bias components. For the time being, consider the term                 . Its 

synthetic estimator could be decomposed in systematic and random components.  

 

(12)                                                                          
 

Assumption 2 applied to equation (12) stating that the systematic part is     , and the 

random part is 
                              . Next, the analogs of equations (3)-(10) are presented 

for      estimator. For the sake of simplicity, and for comparison purposes, let      be 

represented as follows                                   . Hence, 

                                                        
4
 Here,    is a mean individual effects estimator and although        contains both data panel dimensions,    

takes into account only specific individual-effects.  
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(13)                      
 

(14)                       
 

(15)                                                

 

(16)                                                   

 

(17)                                                               

 

where                        and      is a consistent estimator. By symmetry, 

equation (17) can be generalized for the estimators            : 
 

(18)                                                               

          
(19)                                        
 

Plugging equations (17), (18) and (19) into equation (11) yields: 

 

(20)                   

                                                                              

                                                                              

                
                                          . 
 

Collecting again the individual effects terms in only one term, i.e.,                                  leads to 

 

(20)                 

                                                                     

                                                                    

                  

                                    
 

Now collecting similar terms yields: 

 

(21)                                      
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Consider that the estimated variables for                  are vectors of ones in each 

case. In consequence, they are the means at each lag value. If panel data is stacked by 

individuals, then moving average means also estimate specific individual effects. For the 

sake of simplicity, the moving average terms could be collected together with the specific 

individual-effects means. Thus, these terms can be compiled together with    in only one 

term representing all individual effects in equation (21), i.e.,                        . Thus, equation (21) can be rewritten as: 

 

(22)                                                                                               
 

The above equation represents the second iteration of the proposed methodology to 

separate and quantify bias components. 

 

Theorem 2. Efficient estimators can be computed at any panel data dimensions size.  

 

Proof: 
 

Theorem 1 provides a recursive method to decompose bias components to be estimated, 

which recursively converges to their consistent estimators. Then, the following equality 

follows:  

                                                                                            
 

where the left hand side is equation (2) bias, and the right hand side is the systematic 

component,        and                                                       is the 

random component. Thus, after estimating equation (22), the following subtraction can be 

applied to equation (2)
5
 

                                                                                                       
 

Therefore, 

                                                        
5 The addition of the mean specific individual-effects bias systematic components decomposition also applies. 
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where   is a synthetic consistent estimator. As it can be seen, panel dimensions remain 

without change. This means that either N or T or both are not large, as the asymptotic 

bias properties are not needed in the consistent estimator computation.  

 

3. Discussion of findings 
 

Lliterature addressing a recursive bias approach is scarce. This is because most papers 

focus on the asymptotic bias approach to quantify asymptotic estimators sensitivities 

when panel data dimensions increase (N, T or both) in order to reduce asymptotically 

bias to zero, and increase statistic inference performance. On the one hand, the recursive 

bias approach is not made explicit theoretically in the literature, i.e., Hsiao and Zhang 

(2015) consider bias as the result of using instruments to purge correlations between 

estimators and equation errors; this implies that bias has no other meaning. On the other 

hand, recursive bias approach literature is also neglected. In most cases, the recursive bias 

properties are not implemented in the first place; v.g.: Arellando and Bond (1991), 

Alvarez and Arellano (2003), Anderson and Hsiao (1981), and Hsiao et al. (2002).  

 

4. Conclusions 
 

This paper has proposed a methodology to separate efficient estimators from their bias 

under certain assumptions. The propose modeling addresses bias as an independent 

random process. That is to say, it is seen as a serial correlation problem, which is also a 

non-linear problem that could be disentangled in a succession of linear steps. The aim of 

this is to separate, and measure bias components. Therefore, consistent estimators would 

be assured. The systematic part represented by the mean also represents a consistent 

estimator. Moreover, equations (11) and (22) represent the first and second iteration of 

the proposed methodology to separate and quantify bias components, and after T 

iterations converges to consistent estimators of the bias components. 

 

 Finally, it is important to point out that the recursive bias approach does not need 

to increase N or T or both, in order to obtain an efficient synthetic estimator of   . Monte 

Carlo and bootstrap experiments find asymptotic convergence with a consistent estimator 

whose value is provided before the simulation experiments begin. In the recursive bias 

approach a consistent estimator does not have to be predetermined.    
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