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Abstract

Agents are farsighted when they consider the ultimate results to which their

own actions may lead to. We re-examine the classical questions of implemen-

tation theory under complete information in a setting with transfers where

farsighted coalitions are regarded as fundamental behavioral units and the

equilibrium outcomes of their interactions are predicted via the stability no-

tion of the largest consistent set. The designer’s exercise consists of designing

a rights structure, which formalizes the idea of power distribution in society.

His or her challenge lies in designing a rights structure in which the equilibrium

behavior of agents always coincides with the recommendation given by a social

choice function. We show that (Maskin) monotonicity fully identifies the class

of social choice functions that are implementable by a rights structure. We

also discuss how this result changes when social choice correspondences are

considered.

Keywords: Farsightedness, implementation, transfers, rights structures, coal-

tions, largest consistent set, monotonicity.

JEL: C71, D71, D82.

∗Turku School of Economics, University of Turku. E-mail: vipeko@utu.fi.
†Adam Smith Business School, University of Glasgow. E-mail: michele.lombardi@glasgow.ac.uk.

1



1 Introduction

The challenge of implementation lies in designing a mechanism (i.e., game form) in

which the equilibrium behavior of agents always coincides with the recommendation

given by a (single-valued) social choice function (SCF). If such a mechanism exists,

the SCF is implementable.

As such, the key question is how to design an implementing mechanism so that

its outcomes are predicted through the application of game theoretic concepts. Most

early studies of implementation focused on noncooperative solution concepts such

as the Nash equilibrium and its refinements. As demonstrated in the seminal paper

by Koray and Yildiz (2018), an alternative to the noncooperative approach is to

allow groups of agents to coordinate their behaviors in a mutually beneficial way.

To move away from noncooperative modeling, the details of coalition formation are

not modeled. Then, coalitions—not individuals—become the basic decision-making

units. Here, the role of the solution concept is to explain why, when, and which

coalition forms and what it can achieve.

More importantly, the chosen coalitional solution concept is independent of the

physical structure under which coalition formation takes place (e.g., Chwe, 1994).

This structure, often defined by an effectivity relationship, specifies which coalitions

can form given a status quo outcome, and what they can achieve when they form

(i.e., what new status quo outcomes they can induce). From the implementation

viewpoint, the effectivity relationship is the design variable of the designer, playing

the role of the mechanism.

Koray and Yildiz (2018) formalize this idea and study its implications. In their

framework, the implementation of an SCF is achieved by designing a generalization

of the effectivity relationship, introduced by Sertel (2001), called a rights structure.1

A rights structure Γ consists of a state space S, an outcome function h that associates

every state with an outcome, and a code of rights γ. A code of rights specifies, for

each pair of states (s, t), a collection of coalitions γ(s, t) effective at moving from s to

t. The rights structure is more flexible than the effectivity function, as it allows the

1McQuillin and Sugden (2011) have more recently proposed a similar notion named game in

transition function form as a generalization of effectivity functions.
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strategic options of coalitions to depend on how the status quo outcome is reached

(i.e., on the current state).

As a coalitional solution, Koray and Yildiz (2018) adopt a version of the core.2 A

state t directly dominates a state s if a coalition K exists that is effective at moving

from s to t and each member of K has under t a payoff larger than the one he

receives under s. A state s is a core state under a given rights structure and agents’

preferences if no state that directly dominates it exists.

This classical solution is based on a myopic notion of dominance, which creates

problems that cannot be ignored. Ray and Vohra (2014) illustrate this point clearly

by means of the following example, using two agents and three states. Suppose that

only agent 1 is effective at moving from s to t, that is, s →{1} t, and only agent 2

is effective at moving from t to s′, that is, t →{2} s′. Figure 1 depicts this example,

where the payoffs to the agents in each of the states are in parentheses.

s t s’{1} {2}
✉ ✉ ✉✲ ✲

(1,1) (0,0) (10,10)

Figure 1.

The core consists of the states s and s′. Although agent 1 has the power to move

from s to t, he has no incentive to do so: t does not directly dominate s. However,

the stability of s is based on myopic reasoning. Indeed, if agent 1 was farsighted, he

should move to t because agent 2 (who is rational) will in turn move to s′. Thus, a

farsighted agent moves not necessarily because he has a direct objection, but because

his moves can trigger further changes, eventually leading to a better outcome. Clearly,

the classic notion of core does not incorporate any farsightedness.

Harsanyi (1974), in his critique of the vN-M stable set (von Neumann and Mor-

genstern, 1947), suggests replacing the notion of direct dominance with “indirect

2Korpela et al (2018) study implementation of the core points by a rights structure Γ = (S, h, γ)

where S is the set of outcomes and h is the identity map.
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dominance”. In defining his largest consistent set (LCS), Chwe (1994) formalizes a

version of Harsanyi’s indirect dominance. A state t indirectly dominates s if t can

replace s via a sequence of “moves” such that, at each move, the effective moving

coalition prefers the outcome associated with t (the final state) to the outcome it

would obtain if it decided not to move (for a formal definition, see Definition 3).

As shown in Figure 1, s′ indirectly dominates s. This is so because agent 1 can

move from s to t and his payoff at s′ is larger than his payoff at t, and agent 2 can

move from t to s′ and his payoff at s′ is larger than his payoff at t. Thus, indirect

dominance captures the fact that farsighted agents consider the final states to which

their moves may lead to.

Based on this notion of indirect dominance, Chwe (1994) suggests a new con-

cept of stability, namely, the LCS, which has the advantages of “ruling out with

confidence” and being non-empty under weak conditions.3 However, as Chwe (1994)

points out, it may be too inclusive. To check whether a state s is stable, suppose

that a coalition K deviates to a state t. Further deviations from t may occur, which

end up at s′, where s′ indirectly dominates t. Alternatively, no further deviations

from t may occur, and so t = s′ is the final state. In either case, the final state s′

should itself be stable. If a member of the deviating coalition does not prefer s′ to

the original state s, then the deviation is deterred. A state s is stable if all deviations

are deterred. Since whether a state is stable depends on whether other stable states

exist, a set of stable states is called a consistent set. Although many consistent sets

may exist, there uniquely exists the LCS, that is, a consistent set that includes all

others. If a state s is not contained in the LCS, the interpretation is that s cannot

be stable: there is no consistent story behind s.

In this paper, we adopt the LCS as a coalitional solution. The implementation

problem consists of designing a rights structure Γ with the property that, for each

profile of agents’ preferences, the outcome associated with the LCS always coincides

3There is a growing literature that studies farsighted stability in coalitional games, which includes

Aumann and Myerson (1988), Xue (1998), Diamantoudi and Xue (2003), Herings et al (2004),

Jordan (2006), Ray (2007), Mauleon et al (2011), Vartiainen (2011), Kimya (2015), Ray and Vohra

(2015), Bloch and van den Nouweland (2017), Dutta and Vohra (2017), Dutta and Vartiainen

(2018), and Vohra and Ray (2019).
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with the recommendation of the given SCF. If such a rights structure exists, the SCF

is LCS-implementable by a rights structure.

We investigate the LCS-implementation of SCFs in environments with transfers.

Agents’ preferences are continuous and money-monotonic (Morimoto and Serizawa,

2015). For this class of implementation problems, an SCF is LCS-implementable by

a rights structure if and only if it is (Maskin) monotonic—monotonicity is the central

condition for implementation in Nash equilibria (Maskin, 1999). Further, any SCF

that is LCS-implementable via a rights structure is also LCS-implementable via an

individual-based rights structure. This means that to LCS-implement a monotonic

SCF it is sufficient to allocate power only to coalitions of size one.

The characterization result above leaves unspecified how the initial state is deter-

mined. However, there are economic situations in which the initial state is naturally

determined. For instance, the initial state is no production in a Cournot oligopoly

market. We thus analyze implementation problems in which the initial state is pre-

determined and show that every monotonic SCF is LCS-implementable by a rights

structure satisfying the following convergence property : every stable state directly

dominates the initial state. Therefore, we establish a direct convergence from the

initial unstable state to stable states, which is particularly important in our design

framework. This result relies on the domain assumption that each agent considers

the outcome associated with the initial state to be worse than any outcome in the

range of the SCF. As an application of this result, we consider oligopoly markets

with farsighted firms in which the initial state is characterized by no production.

We show that the Cournot oligopoly equilibrium output is LCS-implementable by a

rights structure satisfying the property above.

The remainder of the paper is divided into four sections. Section 2 sets out the

theoretical framework and outlines the basic model. Section 3 provides a characteri-

zation of the class of SCFs that are LCS-implementable by rights structures. Section

4 characterizes a class of monotonic SCFs that are LCS-implementable by a rights

structure satisfying the convergence property. Section 5 concludes the paper.
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2 Setup

The environment consists of a collection of n agents (we write N for the set of

agents), a set of possible types Θ, and a (nonempty) set of outcomes Z. We consider

an environment with transfers. Specifically, we assume that the set of outcomes is

Z ≡ D×R
n. D is the set of potential social decisions, with d ∈ D as typical element.

R
n is the set of transfers to the agents, with t = (t1, ..., tn) ∈ R

n as a typical transfer

profile.

To each type in Θ, we associate for each agent i a utility function ui : Z×Θ → R.

Given a type θ and an outcome x, let the upper contour set and lower contour set

of ui (·, θ) at x be defined by Ui (x, θ) ≡ {x′ ∈ Z|ui (x
′, θ) ≥ ui (x, θ)} and Li (x, θ) ≡

{x′ ∈ Z|ui (x, θ) ≥ ui (x
′, θ)}, respectively. For each agent i ∈ N , agent i’s utility

function ui : Z ×Θ → R is assumed to satisfy the following properties.

Definition 1 Agent i’s utility function ui : Z×Θ → R ismoney-monotonic provided

that for each θ ∈ Θ, each d ∈ D, each t−i ∈ R
n−1 and each ti, t

′
i ∈ R, if ti < t′i, then

ui (d, (t−i, t
′
i) , θ) > ui (d, (t−i, ti) , θ).

Definition 2 Agent i’s utility function ui : Z ×Θ → R is continuous provided that

for each θ ∈ Θ and each x ∈ Z, the sets Li (x, θ) and Ui (x, θ) are closed.

We focus on complete information environments in which the true type is common

knowledge among agents but unknown to the designer. The power set ofN is denoted

by N , and N0 ≡ N − {∅} is the set of all nonempty subsets of N . Each group of

agents K (in N0) is a coalition.

The goal of the designer is to implement an SCF f : Θ → Z defined by f (θ) ∈ Z

for every θ ∈ Θ. We refer to f (θ) as the f -optimal outcome at θ.

To implement his goal, the designer devises a rights structure Γ, which is a triplet

(S, h, γ), where:

• S is the state space;

• h : S → Z the outcome function; and

• γ a code of rights, which is a (possibly empty) correspondence γ : S×S ։ N .
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In other words, a code of rights γ specifies, for each pair of states (s, t), a family

of coalitions γ (s, t) entitled to approve a change from state s to t. A rights structure

Γ is said to be an individual-based rights structure if, for each pair of distinct states

(s, t), γ (s, t) contains only coalitions of size one if it is non-empty.

To capture farsightedness, Chwe (1994) formalizes the following notion of “in-

direct dominance” relation—a notion informally introduced by Harsanyi (1974) in

his criticism of the vN-M stable set (von Neumann and Morgenstern, 1947), which

is based on “direct dominance.” For all θ ∈ Θ and K ∈ N0, let x uθK y denote

ui (x, θ) > ui (y, θ) for all i ∈ K.

Definition 3 A state s is indirectly dominated by s′ at (Γ, θ), or s′ ≫(Γ,θ) s, if there

exist s0, s1, ..., sJ in S (where s0 = s and sJ = s′) and K0, K1, ..., KJ−1 in N0 such

that Kj−1 ∈ γ (sj−1, sj) and h (s
′) uθKj−1

h (sj−1) for j = 1, ..., J . A state s is directly

dominated by s′ at (Γ, θ) if J = 1.

Based on this indirect dominance, the LCS of Chwe (1994) can be defined as

follows.4

Definition 4 (Chwe, 1994) For any Γ and any θ ∈ Θ, a set T ⊆ S is a consistent

set at (Γ, θ) if s ∈ T if and only if for all t ∈ S and all K ∈ N0 such that K ∈ γ (s, t),

there exists s′ ∈ T , where s′ = t or s′ ≫(Γ,θ) t, such that not h (s′) uθK h (s). The

LCS at (Γ, θ), denoted by LCS (Γ, θ), is the unique maximal consistent set at (Γ, θ)

with respect to set inclusion. We refer to s ∈ LCS (Γ, θ) as a stable state (at (Γ, θ)).

Our notions of implementation can be stated as follows.

Definition 5 A rights structure Γ implements f in the LCS, or simply LCS-implements

f , if and only if f (θ) = h ◦ LCS (Γ, θ) for all θ ∈ Θ. If such a Γ exists, then f is

LCS-implementable by a rights structure.

4Given a game (Γ, θ) where Γ is such that S is the set of outcomes and h is the identity map,

Chew shows that if S is countable and contains no infinite sequence s1, s2, ... such that j > i implies

that sj ≫(Γ,θ) si, then LCS (Γ, θ) is nonempty. This result has been extended by Xue (1997) by

removing the countability requirement.
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Definition 6 The SCF f is LCS-implementable by an individual-based rights struc-

ture if there exists an individual-based rights structure Γ such that it LCS-implements

f .

3 A characterization result

A well-known condition in mechanism design is (Maskin) monotonicity (Maskin,

1999). This condition states that if the f -optimal outcome at type θ does not strictly

fall in the preference for anyone when the type is changed to θ′, then f (θ) must

remain the f -optimal outcome at θ′.

Definition 7 The SCF f is monotonic provided that for all θ, θ′ ∈ Θ, if

Li(f (θ) , θ) ⊆ Li(f (θ) , θ
′) for all i ∈ N ,

then f (θ) = f (θ′).

In our environment, monotonicity is equivalent to quasimonotonicity, which ap-

pears in Cabrales and Serrano (2011). As the type changes from θ to θ′, quasimono-

tonicity requires that the f -optimal outcomes coincide whenever, for each agent,

f (θ) does not move down in the agent’s strict ranking. To introduce this condition,

we need the following additional notation. For each agent i ∈ N , each type θ ∈ Θ,

and each outcome x ∈ Z, agent i’s strict lower contour set of ui (·, θ) at x is defined

by SLi (x, θ) = {y ∈ Z|ui (x, θ) > ui (y, θ)}.

Definition 8 The SCF f is quasimonotonic provided that for all θ, θ′ ∈ Θ, if

SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′) for all i ∈ N ,

then f (θ) = f (θ′).

Lemma 1 f is monotonic if and only if f is quasimonotonic.

Proof. Suppose that f is quasimonotonic. Fix any θ, θ′ ∈ Θ. Suppose that

Li(f (θ) , θ) ⊆ Li(f (θ) , θ
′) for all i ∈ N . Take any x = (d, t) ∈ SLi(f (θ) , θ) ⊆
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Li(f (θ) , θ) for some i ∈ N . We show that x ∈ SLi(f (θ) , θ
′). Assume, on the con-

trary, that x /∈ SLi(f (θ) , θ
′), so that ui (x, θ

′) ≥ ui (f (θ) , θ
′). Since SLi(f (θ) , θ) ⊆

Li(f (θ) , θ
′), it follows that ui (x, θ

′) = ui (f (θ) , θ
′). Because ui (x, θ) < ui (f (θ) , θ)

and because ui is continuous and money-monotonic, there exists a transfer profile

ǫ ∈ R
n
++ such that

ui ((d, t+ ǫ) , θ′) > ui (x, θ
′) = ui (f (θ) , θ

′) and

ui (f (θ) , θ) > ui ((d, t+ ǫ) , θ) ,

which contradicts our initial supposition that Li(f (θ) , θ) ⊆ Li(f (θ) , θ
′). Since

the choice of the outcome x as well as that of agent i was arbitrary, we conclude

that SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′) for all i ∈ N . Quasimonotonicity implies that

f (θ) = f (θ′). Thus, f is monotonic.

Suppose that f is monotonic. Fix any θ, θ′ ∈ Θ. Suppose that SLi(f (θ) , θ) ⊆

SLi(f (θ) , θ
′) for all i ∈ N . Take any x = (d, t) ∈ Li(f (θ) , θ) for some i ∈ N .

We show that x ∈ Li(f (θ) , θ
′). Assume, on the contrary, that x /∈ Li (f (θ) , θ

′),

so that ui (x, θ
′) > ui (f (θ) , θ

′). An immediate contradiction is obtained when x ∈

SLi(f (θ) , θ). Thus, let us consider the case in which ui (x, θ) = ui (f (θ) , θ). Since

ui (x, θ
′) > ui (f (θ) , θ

′) and since ui is continuous and money-monotonic, there exists

a transfer profile ǫ ∈ R
n
++ such that

ui ((d, t− ǫ) , θ′) > ui (f (θ) , θ
′) and

ui (f (θ) , θ) = ui (x, θ) > ui ((d, t− ǫ) , θ) ,

which contradicts our initial supposition that SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′). Since

the choice of the outcome x, as well as that of agent i, was arbitrary, we conclude that

Li(f (θ) , θ) ⊆ Li(f (θ) , θ
′) for all i ∈ N . Monotonicity implies that f (θ) = f (θ′).

Thus, f is quasimonotonic.

The following lemma shows that quasimonotonicity is necessary and sufficient

for LCS-implementation by a rights structure. The rights structure Γ we construct

works as follows. We define it as the union of disconnected rights structures Γθ =
(

Sθ, hθ, γθ
)

, for θ ∈ Θ. They are disconnected in the sense that for any two θ and
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θ′, no coalition is effective at moving from one state of Γθ to a state of Γθ′ . Figure 2

depicts Γ for the case in which Θ = {θ, θ′} and i, j ∈ N .
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{i}
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θ′

((d′, t′), θ′, j, 0)

((d′, t′), θ′, j, 1)

((d′, t′), θ′, j, k − 1)

((d′, t′), θ′, j, k)

{j}

{j}

{j}

{j}

{j}

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Γθ Γθ′

Figure 2. Construction of the rights structure Γ where Θ = {θ, θ′},
i, j ∈ N , (d, t) ∈ SLi(f(θ), θ), (d

′, t′) ∈ SLj(f(θ
′), θ′), h(θ̄) = f(θ̄)

for both θ̄ ∈ Θ, and h ((d, t), θ, i, k)) =
(

d,
(

t−i, ti +
k

k+1
t̂i
))

, where t̂i
is a small transfer that satisfies the strict inequality in (2).

The state space Sθ is Sθ = θ ∪ T θ, where T θ is defined by

T θ = {((d, t) , θ, i, k) | (d, t) ∈ SLi (f (θ) , θ) for i ∈ N and k ∈ Z+} , (1)
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where Z+ denotes the set of non-negative integers. The outcome corresponding to θ

is f (θ). To define the outcome corresponding to the state ((d, t) , θ, i, k), we fix an

arbitrarily small transfer t̂i such that5

ui (f (θ) , θ) > ui
(

(d, t) +
(

0−i, t̂i
)

, θ
)

> ui ((d, t) , θ) . (2)

This transfer exists because ui is continuous. The outcome corresponding to ((d, t) , θ, i, k)

is hθ ((d, t) , θ, i, k) =
(

d, t+
(

0−i,
k

k+1
t̂i
))

, so that agent i’s outcome is
(

d, ti +
k

k+1
t̂i
)

.

This definition is important because it rules out the state ((d, t) , θ, i, k) as a stable

state, irrespective of the true type. To see this, we first need to define the code of

rights γθ. Since (d, t) ∈ SLi (f (θ) , θ), we allow only agent i to be effective at mov-

ing from θ to ((d, t) , θ, i, 0), from ((d, t) , θ, i, 0) back to θ, and from ((d, t) , θ, i, k) to

((d, t) , θ, i, k + 1). In all other cases, no coalition is effective (see Figure 2). To see

that no state of the form ((d, t) , θ, i, k) can be a stable state, it suffices to observe

that the money-monotonicity of agent i’s utility function assures that

ui

(

d, ti +
k + 1

k + 2
t̂i, θ

′

)

> ui

(

d, ti +
k

k + 1
t̂i, θ

′

)

for every non-negative integer k ≥ 0 and every type θ′ ∈ Θ, so that agent i always has

the power as well as the incentive to move from ((d, t) , θ, i, k) to ((d, t) , θ, i, k + 1).

An important consequence of this construction is that if SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′)

for each agent i ∈ N , then the LCS of the game
(

Γθ, θ′
)

is equal to {θ}. In all other

cases, namely, when there is a preference reversal, it is empty.

To see that LCS
(

Γθ, θ′
)

= {θ}, note that no state of the form ((d, t) , θ, i, k) can

be a stable state, as we have already noted. Thus, LCS
(

Γθ, θ′
)

= {θ} if we show that

the set {θ} is a consistent set of
(

Γθ, θ′
)

when SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′) for each

i ∈ N . By construction, agent i is effective at moving from θ to ((d, t) , θ, i, 0) and

from ((d, t) , θ, i, 0) back to θ. Suppose that θ is the status quo and agent i moves the

state to ((d, t) , θ, i, 0). Agent i has the incentive, as well as the power, to go back to

θ since the inequality in (2) holds and since SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′). Because

this reasoning holds for any state of the form ((d, t) , θ, i, 0), one can see that θ is a

consistent set of
(

Γθ, θ′
)

.

5(0−i, ti) denotes a transfer profile which assigns ti to agent i and zero to everyone else.
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Let us discuss why LCS
(

Γθ, θ′
)

is empty when there is a preference reversal.

Suppose that agent i has a preference reversal around f (θ) when θ moves to θ′; that

is,

ui (f (θ) , θ) > ui ((d, t) , θ) and ui (f (θ) , θ
′) ≤ ui ((d, t) , θ

′) . (3)

As we have already noted, no state of the form ((d, t) , θ, i, k) can be a stable outcome

of
(

Γθ, θ′
)

. If LCS
(

Γθ, θ′
)

were non-empty, it should hold that LCS
(

Γθ, θ′
)

= {θ}.

However, {θ} is not a consistent set. To see this, suppose that agent i moves from θ

to ((d, t) , θ, i, 0). This agent also has the power to move the state back to θ. However,

he has no incentive to do so since the weak inequality in (3) holds. Thus, when there

is a preference reversal, the LCS of
(

Γθ, θ′
)

is empty.

The rest of the proof is based on this consequence. Suppose that θ′ is the true

type. We want to argue that f (θ′) = h (LCS (Γ, θ′)). As we have already noted in

the preceding paragraphs, one can easily see that θ′ is a consistent set of the game
(

Γθ′ , θ′
)

, and so θ′ ∈ LCS (Γ, θ′). For the converse, suppose that θ ∈ LCS (Γ, θ′).

By construction, one can see that LCS (Γ, θ′) is the union of LCSs of games of the

type
(

Γθ̄, θ′
)

, one for each θ̄ ∈ Θ. Therefore, it follows that θ ∈ LCS
(

Γθ, θ′
)

and

that preferences change when we move from θ to θ′ in such a way that it is true

for no agent that f (θ) has fallen with respect to any other outcome in his personal

ranking; that is, the strict lower contour sets at f (θ) are nested. Quasimonotonicity

implies that f (θ) = f (θ′).

We now turn to the formal argument.

Lemma 2 The following statements are equivalent:

(i) F is LCS-implementable by a rights structure;

(ii) F is quasimonotonic;

(iii) F is LCS-implementable by an individual-based rights structure.

Proof.

(i) =⇒ (ii) Suppose that Γ LCS-implements f . Fix any θ, θ′ ∈ Θ. Suppose that

SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′) for all i ∈ N . We show that f (θ) = f (θ′).

12



By the LCS-implementability of f , we have that h ◦ LCS (Γ, θ) = f (θ), and so,

there exists s ∈ LCS (Γ, θ) such that h (s) = f (θ). Let us first show that the set

LCS (Γ, θ) is a consistent set at (Γ, θ′).

Fix any t ∈ S and any s ∈ LCS (Γ, θ) such that h (s) = f (θ). Nothing has to

be proved if γ (s, t) = ∅. Then, suppose that K ∈ γ (s, t) for some K ∈ N0. Since

h ◦ LCS (Γ, θ) = f (θ) and K ∈ γ (s, t), and since LCS (Γ, θ) is a consistent set at

(Γ, θ), it follows that there exists s′ ∈ LCS (Γ, θ) such that either s′ = t or s′ ≫(Γ,θ) t,

and not h (s′) uθK h (s). Note that h (s′) = h (s) = f (θ).

Suppose that s′ = t. Then, there exists s′ ∈ LCS (Γ, θ) such that not h (s′) uθ
′

K

h (s).

Suppose that s′ 6= t, and so s′ ≫(Γ,θ) t. Since SLi(h (s
′) , θ) ⊆ SLi(h (s

′) , θ′) for

all i ∈ N , it follows that s′ ≫(Γ,θ′) t. Thus, we have established that there exists

s′ ∈ LCS (Γ, θ), where s′ ≫(Γ,θ′) t, such that not h (s′) uθ
′

K h (s).

Since t ∈ S, K ∈ N0 and s ∈ LCS (Γ, θ) have been chosen arbitrarily, we have

proved that LCS (Γ, θ) is a consistent set at (Γ, θ′).

Since LCS (Γ, θ′) is the LCS at (Γ, θ′) with respect to set inclusion and LCS (Γ, θ)

is a consistent set at (Γ, θ′), it follows that LCS (Γ, θ) ⊆ LCS (Γ, θ′), and so f (θ) =

f (θ′), by the LCS-implementability of f . Thus, f is quasimonotonic

(ii) =⇒ (iii) Suppose that f is quasimonotonic. For any θ ∈ Θ, let Γθ =
(

Sθ, hθ, γθ
)

be defined as follows. Define the set T θ as in (1). Then, define the set Sθ by

Sθ = θ ∪ T θ.

Fix any i ∈ N . Suppose that y = (d, t) ∈ SLi (f (θ) , θ). Fix any arbitrarily small

positive transfer t̂i such that the inequality in (2) is satisfied. Define the outcome

function hθ : Sθ → Z by

hθ (θ) = f (θ) and hθ ((d, t) , θ, i, k) =

(

d, t+

(

0−i,
k

k + 1
t̂i

))

.

Let us define γθ : Sθ × Sθ
։ N as follows.

(1) For all (y, θ, i, 0) ∈ Sθ, γθ (θ, (y, θ, i, 0)) = γθ (θ, (y, θ, i, 0)) = {i}.

(2) For all (y, θ, i, k) , (y, θ, i, k + 1) ∈ T θ, {i} = γ ((y, θ, i, k) , (y, θ, i, k + 1)).

13



(3) Otherwise, it is empty.

Let us define the individual-based rights structure Γ = (S, h, γ) as follows. Define

the state space S by

S = ∪θ∈ΘS
θ.

Define the outcome function h : S → Z by h (s) = hθ (s) for all s ∈ Sθ and all θ ∈ Θ.

Define the code of rights γ : S × S ։ N as follows. For all s, s′ ∈ S,

(A) If s, s′ ∈ Sθ for some θ ∈ Θ, then γ (s, s′) = γθ (s, s′).

(B) Otherwise, γ (s, s′) is empty.

Let us show that Γ LCS-implements f . We prove this statement shortly, but first

we need the following key result.

Claim 1 Let θ, θ′ ∈ Θ be given. Then, (i) if SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′) for all

i ∈ N , then LCS
(

Γθ, θ′
)

= {θ}; (ii) otherwise, LCS
(

Γθ, θ′
)

is empty.

Proof. Take any θ, θ′ ∈ Θ. Let us first show part (i) of the statement. To this

end, suppose that SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′) for all i ∈ N . We show that

LCS
(

Γθ, θ′
)

= {θ}.

Take any (y, θ, i, 0) ∈ T θ and suppose that θ is the status quo. Then, from

part (1) of the definition of γθ, {i} = γθ (θ, (y, θ, i, 0)). Since y ∈ SLi(f (θ) , θ),

from the definition of T θ, and since SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′), it follows that

y ∈ SLi(f (θ) , θ
′). Since, from part (1) of the definition of γθ, {i} = γθ ((y, θ, i, 0) , θ),

agent i has the power and incentive to go back to the status quo θ.

Since the choice of the state (y, θ, i, 0) ∈ T θ is arbitrary and agents can only

induce states of the form (y, θ, i, 0) when θ is the status quo, it follows that {θ} is a

consistent set of
(

Γθ, θ′
)

.

To see that LCS
(

Γθ, θ′
)

= {θ}, let us take any state of the form (y, θ, i, k) and

suppose that (y, θ, i, k) ∈ LCS
(

Γθ, θ′
)

. By construction, agent i has the power to

move to (y, θ, i, k + 1), from part (2) of the definition of γθ. Since, by construction,

agent i has the power as well as the incentive to move the state from (y, θ, k + k′) to

(y, θ, k + k′ + 1) for every k′ ∈ Z+, it follows that (y, θ, i, k) is not a stable outcome.
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Since the choice of the state (y, θ, i, k) is arbitrary, we find that no state of the form

(y, θ, i, k) ∈ T θ is stable, and so LCS
(

Γθ, θ′
)

= {θ}. This completes the proof of

part (i) of the statement.

Let us now show part (ii). Suppose that there exist an agent i and outcome

y ∈ SLi(f (θ) , θ) such that y /∈ SLi(f (θ) , θ
′). Since y ∈ SLi(f (θ) , θ), it follows that

(y, θ, i, 0) ∈ T θ. We show that LCS
(

Γθ, θ′
)

is empty. Assume, on the contrary, that

LCS
(

Γθ, θ′
)

is non-empty. Since no state in T θ can be stable, from the construction

of Γθ and the assumption that agents’ preferences are money-monotonic, it follows

that LCS
(

Γθ, θ′
)

= {θ}. As in the preceding paragraphs, from part (1) of the

definition of γθ, we find that {i} = γθ (θ, (y, θ, i, 0)) = γθ ((y, θ, i, 0) , θ). Since y /∈

SLi(f (θ) , θ
′), it follows that ui (y, θ

′) ≥ ui (f (θ) , θ
′), and so agent i has no incentive

to return to θ, which is a contradiction.

Suppose that θ′ is the true type. Let us show that θ′ ∈ LCS (Γ, θ′). To this

end, it suffices to show that {θ′} is a consistent set of (Γ, θ′). Suppose that θ′ is

the status quo. Then, from the definition of γ, the only possible way to move away

from θ′ is to move to states of the form (y, θ′, i, 0). Since {i} = γ (θ′, (y, θ′, i, 0)) =

γθ
′

(θ′, (y, θ′, i, 0)) and since y ∈ SLi(f (θ
′) , θ′), from the construction of T θ′ , it follows

that agent i has the power as well as the incentive to go back to state θ′. Since the

choice of (y, θ′, i, 0) was arbitrary, it follows that {θ′} is a consistent set of (Γ, θ′).

To complete the proof, let us show that h ◦ LCS (Γ, θ′) = f (θ′). To this end,

note that

LCS (Γ, θ′) = ∪θ∈ΘLCS
(

Γθ, θ′
)

⊆ Θ,

from the construction of Γ. Thus, take any θ ∈ LCS (Γ, θ′). From the construction of

Γ, it follows that θ ∈ LCS
(

Γθ, θ′
)

. Since part (ii) of Claim 1 cannot hold, it follows

that SLi(f (θ) , θ) ⊆ SLi(f (θ) , θ
′) for all i ∈ N . Quasimonotonicity implies that

f (θ) = f (θ′). Since the choice of θ′ was arbitrary, we find that h◦LCS (Γ, θ′) = f (θ′)

for all θ′ ∈ Θ. Thus, the individual-based rights structure Γ LCS-implements f .

(iii) =⇒ (i)

Clearly, f is LCS-implementable by a rights structure if it is also LCS-implementable

by an individual-based rights structure.
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Remark 1 Quasimonotonicity remains a necessary condition for LCS-implementation

even if we consider environments without transfers. Indeed, the same arguments of

the proof of Lemma 2 show that quasimonotonicity is a necessary condition for the

implementation of SCFs in any environment.

Remark 2 We could also impose the property of balancedness (i.e., transfers sum

to zero). The devised rights structure is balanced on the equilibrium path. Indeed,

arbitrarily small transfers are used off the equilibrium path.

When Lemma 2 is combined with Lemma 1, it shows that monotonicity is nec-

essary and sufficient for LCS-implementation by a rights structure of SCFs in en-

vironments with transfers in which agents have continuous and money-monotonic

preferences.

Theorem 1 The following statements are equivalent:

(i) F is LCS-implementable by a rights structure;

(ii) F is monotonic;

(iii) F is LCS-implementable by an individual-based rights structure.

Proof. This follows from Lemma 1 and Lemma 2.

Rather than providing direct applications of the theorem above, we provide them

indirectly by means of the following corollary.

Corollary 1 f is implementable in (pure) Nash equilibrium strategies if and only

if f is LCS-implementable by an individual-based rights structure.

Proof. This follows from Theorem 1 and Maskin’s sufficiency result (Maskin, 1999;

Theorem 3). Recall that according to Maskin’s sufficiency result, monotonicity is nec-

essary and sufficient for implementation in Nash equilibrium strategies when agents’

preferences are money-monotonic—no veto power is always satisfied in our frame-

work.
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4 Convergence to stable states

In the analysis above, an important detail that has been left unspecified is how the

initial state is determined. There are, however, environments in which the initial state

can be identified naturally. For instance, the initial state is the no trade allocation

in a house allocation problem, no production in a Cournot oligopoly market or when

agents can together produce one unit of output but no agent by himself can produce

any output, and so on. Let us denote the outcome corresponding to this initial state

by σ ∈ Z.

When this initial state is not a stable state, the implementing rights structure

devised in the constructive proof of Lemma 2 does not assure that a stable outcome

is reached via a sequence of states such that the passage from each state of the

sequence to the next one is justified in terms of rights as well as incentives.

In this section, we modify the rights structure devised above in a way that every

stable outcome is reached from the initial unstable state. We achieve this result

under the following assumption:

(A1) The outcome σ ∈ Z corresponding to the initial situation is such that ui (f (θ) , θ) >

ui (σ, θ) for all i ∈ N and all θ ∈ Θ.

(A1) is a requirement that the outcome σ is such that each agent considers it to

be worse than any outcome in the range of f . For example, in a house allocation

problem, this would be satisfied by requiring that there are high gains from trade.

Let us consider the implementing rights structure Γ = (S, h, γ) devised in the

proof of Lemma 2. A variant Γ̄ of this Γ that LCS-implements f such that the initial

state is directly dominated by stable outcomes can be defined as follows:

• The set of states is S̄ = S ∪ {σ}.

• The outcome function h̄ : S̄ → Z is defined by h̄ (s) = h (s) for all s ∈ S and

h̄ (σ) = σ.

• The code of rights γ̄ : S̄ × S̄ ։ N is defined by (a) γ̄ (s, t) = γ (s, t) for all

s, t ∈ S; (b) γ̄ (σ, θ) = γ̄ (θ, σ) = N for all θ ∈ Θ; (c) γ̄ (σ, s) = γ̄ (s, σ) = ∅ for

all s ∈ S −Θ.
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In other words, Γ is modified by adding a new state σ to the set S, which repre-

sents the initial state, and by allowing only the (grand) coalition N to approve the

change from the initial state σ to a state {θ}, and from {θ} back to σ (see Figure 3).

σ θ′θ

s1

s2

s′
N

N N {i}

{i}
{i}

{j}

{h}

{j}

{h}

. . .

...

. . .

Figure 3. A schematic picture of right structure Γ̄
where s1, s2 ∈ T θ and s′ ∈ T θ′ .

The next result shows that Γ̄ LCS-implements f when f is monotonic and it

satisfies the property that the initial state σ is directly connected to every stable

state.

Theorem 2 Let assumption A1 hold. If f is monotonic, then Γ̄ LCS-implements f .

For each θ ∈ Θ, the initial state σ is directly dominated by each s ∈ LCS
(

Γ̄, θ
)

.

Proof. Let the premises hold. Suppose that θ is the true type. Let us show that

Γ̄ LCS-implements f . To this end, let us first show that θ ∈ LCS
(

Γ̄, θ
)

. From the

definition of γ̄, there are only two possible ways to move away from θ.

First, suppose that {i} = γ̄ (θ, (y, θ, i, 0)) = γ̄θ ((y, θ, i, 0) , θ). Since y ∈ SLi(f (θ) , θ),

from the construction of T θ, we can go back to the state θ.

Second, let us consider N ∈ γ̄θ (θ, σ). Since N ∈ γ̄θ (σ, θ), from the definition of

γ̄, and since ui (f (θ) , θ) > ui (σ, θ) for all i ∈ N , from requirement (A1), it follows

that we are back to the state θ.
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Since the choice of (y, θ, i, 0) was arbitrary, it follows that {θ} is a consistent set

of (Γ, θ).

Let us show that h̄ ◦ LCS
(

Γ̄, θ
)

⊆ f (θ). We already know that θ ∈ LCS
(

Γ̄, θ
)

.

Moreover, following the same reasoning used in the proof of Lemma 2, we can see

that no state t ∈ ∪θ̄∈ΘT
θ̄ can be a stable state at

(

Γ̄, θ
)

. Then, it follows that

LCS
(

Γ̄, θ
)

⊆ Θ ∪ {σ}.

Let us show that σ /∈ LCS
(

Γ̄, θ
)

. Assume, on the contrary, that σ ∈ LCS
(

Γ̄, θ
)

.

Since N ∈ γ̄θ (σ, θ), by construction, it follows from the definition of the LCS that

s ∈ LCS
(

Γ̄, θ
)

exists, where s = θ or s ≫(Γ̄,θ) θ, such that not h̄ (s) uθN h̄ (σ).

This means that σ 6= s, and so s ∈ Θ. An immediate contradiction of requirement

(A1) is obtained if s = θ. Then, it must be the case that s ≫(Γ̄,θ) θ. By definition

of γ̄ and the fact that s ≫(Γ̄,θ) θ, it holds that N ∈ γ̄ (θ, σ) and h̄ (s) uθN f (θ).

Since f (θ) uθN h̄ (σ), by requirement (A1), and since h̄ (s) uθN f (θ), it follows by

transitivity that h̄ (s) uθN h̄ (σ), which is a contradiction. Thus, σ /∈ LCS
(

Γ̄, θ
)

, and

so LCS
(

Γ̄, θ
)

⊆ Θ.

Finally, let us show that f (θ′) = f (θ) for all θ′ ∈ LCS
(

Γ̄, θ
)

. Assume, on the

contrary, that f (θ′) 6= f (θ) for some θ′ ∈ LCS
(

Γ̄, θ
)

. Since f is monotonic, it is

quasimonotonic, following Lemma 1. Since f (θ′) 6= f (θ), it follows that there exist

i ∈ N and y ∈ SLi(f (θ
′) , θ′) such that ui (y, θ) ≥ ui (f (θ

′) , θ). Then, (y, θ′, i, 0) ∈

T θ′ , from the definition of T θ′ given in (1). Note that {i} = γ̄ (θ′, (y, θ′, i, 0)), from

the definition of γ̄. Since θ′ ∈ LCS
(

Γ̄, θ
)

, there exists s ∈ LCS
(

Γ̄, θ
)

, where

s = (y, θ′, i, 0) or s≫(Γ̄,θ) (y, θ′, i, 0), such that not h (s) uθi f (θ
′).

From the definition of s ≫(Γ̄,θ) (y, θ′, i, 0), it follows that there exist s0, s1, ..., sJ

in S (where s0 = (y, θ′, 0) and sJ = s) and K0, K1, ..., KJ−1 in N0 such that Kj−1 ∈

γ̄ (sj−1, sj) and h (s) u
θ
Kj−1

h (sj−1) for j = 1, ..., J . From the construction of γ̄, it

follows that for some j = 1, ..., J , it holds that Kj−1 = N , sj−1 = θ′ and sj = σ.

Therefore, we have established that h (s) uθN f (θ′), which contradicts not h (s) uθi
f (θ′). We conclude that f (θ′) = f (θ) for all θ′ ∈ LCS

(

Γ̄, θ
)

. Finally, we observe

that σ is directly dominated by each θ′ ∈ LCS
(

Γ̄, θ
)

, from requirement (A1) and

the definition of γ̄.
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4.1 Cournot oligopoly

In this subsection, we apply the theorem above to Cournot oligopoly markets in which

it is natural to assume that the initial state σ is characterized by no production.

A single (homogeneous) product is produced by n ≥ 2 firms. A Cournot oligopoly

problem is described by a type θ satisfying the following properties. The cost for

firm i of producing qi units of the good in type θ is Ci (qi, θ). Firm i’s cost func-

tion is defined for all qi ≥ 0. The firms’ total output is Q = (q1 + ...+ qn) and

the inverse demand function for the good is P (Q, θ) at θ. Each firm’s preferences

at θ are represented by its profits, that is, πi (Q−i, qi, θ) = qiP (Q, θ) − Ci (qi, θ),

where Q−i == (q1 + ...+ qi−1 + qi+1 + ...+ qn). Each firm i picks its output qi to

solve maxqi πi (Q−i, qi, θ). Following Gaudet and Salant (1991), we assume that the

Cournot oligopoly problem θ satisfies the following assumptions as well.

Assumption 1 There exists a ξ ∈ (0,∞) such that P (Q, θ) > 0 for Q ∈ [0, ξ) and

P (Q, θ) = 0 for all Q ∈ [ξ,∞).

Assumption 2 P (Q, θ) is twice-continuously differentiable, and decreasing when it

is strictly positive.

Assumption 3 For any firm i ∈ N , Ci (qi, θ) is twice-continuously differentiable

and, for any qi > 0, C ′
i (qi, θ) > 0.6

Assumption 4 For all Q ∈ [0, ξ) and all i ∈ N , there exists α < 0 (possibly

dependent on Q and i) such that P ′ (Q, θ)− C ′′
i (qi, θ) ≤ α < 0 for every qi ≥ 0.

Assumption 5 For all Q ∈ [0, ξ), all i ∈ N and all qi ∈ [0, Q], P ′ (Q, θ) +

qiP
′′ (Q, θ) ≤ 0.

We refer to Θ as a class of Cournot oligopoly problems, with θ as a typical problem.

Given Assumptions 1–5, Gaudet and Salant (1991) show that these assumptions are

sufficient for the existence of a unique Cournot equilibrium for each Cournot oligopoly

problem θ ∈ Θ. The Cournot solution to the Cournot oligopoly problem θ ∈ Θ,

6C ′
i (qi, θ) denotes

dCi(qi,θ)
dqi

.
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denoted by fC (θ), specifies the Cournot equilibrium quantities. The following result

shows that this solution is LCS-implementable when the designer does not know the

true type.

Theorem 3 Let Assumption A1 hold. Consider the rights structure Γ̄, where

h̄ (σ) = (0, ..., 0). The Cournot solution fC , defined over Θ, is LCS-implementable

by Γ̄. Moreover, for each θ ∈ Θ, the initial state σ is directly dominated by each

s ∈ LCS
(

Γ̄, θ
)

.

Proof. In light of Theorem 1, it suffices to show that the Cournot solution fC is

monotonic. This follows directly from the fact that fC is implementable in Nash

equilibrium strategies for each type θ ∈ Θ. To complete the proof, we observe

that, by construction, for each type θ ∈ Θ, it holds that fC (θ) > (0, ..., 0), so that

assumption A1 is satisfied.

5 Concluding remarks

So far, we have focussed on SCFs. Let us now discuss the extension of our result

to social choice correspondences (SCCs). An SCC is a mapping F which associates

each type θ ∈ Θ with a nonempty subset of Z, denoted by F (θ). The outcomes in

F (θ) are the F -optimal outcomes for the type θ. When our attention shifts to SCCs,

the analysis would change substantially if we sought to derive necessary or sufficient

conditions for implementation for LCS-implementation by a rights structure of the

SCCs.

Monotonicity is not necessary for LCS-implementation by a rights struc-

ture of the SCCs. To illustrate this point, let us consider the following example.

There are two agents; the set of pure social decisions is D = {v, w, x, y, z}; and

Θ = {θ, θ′}. To each type, we associate each agent i with a quasilinear utility

function ui : Z ×Θ → R, that is, his utility function takes the form

ui ((d, t) , ψ) = vi (d, ψ) + ti for each ψ ∈ Θ,

where
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v1 (·, θ) v2 (·, θ) v2 (·, θ
′)

v 2 1 3

w 0 3 2

x 1 -2 0

y 3 2 1

z 4 4 4

and v1 (·, θ) = v1 (·, θ
′). Define F on Θ by F (θ) = {(v, 0) , (w, 0) , (x, 0) , (z, 0)} and

F (θ′) = {(v, 0) , (z, 0)}. With an abuse of notation, we denote (d, 0) ∈ Z ≡ D × R
n

by d. F is not monotonic because x ∈ F (θ), Li (x, θ) ⊆ Li (x, θ
′) for all i ∈ N but

x /∈ F (θ′).7 However, F is LCS-implementable by a rights structure.

To see this, let us consider the following rights structure Γ = (S, h, γ), where

the state space is S = {a, b, c, d, e} and where the outcome function h and the code

of rights are depicted in Figure 4, where s →K t means that only K is effective at

moving from s to t; the outcome corresponding to each state is in parentheses,

c d

e

b

a
✉ ✉

✉

✉

✉✲ ✟✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❍❥ ✟✟✟✟✟✟✟✟✯
(x) (y)

(z)

(w)

(v)

{1}

{2}

{2}

{2}

Figure 4.

We can check by using Figure 4 that LCS (Γ, θ) = S−{d} and LCS (Γ, θ′) = {a, e}.

7The set inclusion for agent 2 also holds since for all d ∈ D, it holds that

v2 (d, θ)− v2 (x, θ) ≥ v2 (d, θ
′)− v2 (x, θ

′) .
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Set-quasimonotonicity. We have already noted that monotonicity is equivalent

to quasimonotonicity in environments with transfers in which agents’ utility functions

are continuous and money-monotonic. Moreover, we have also noted in Remark 1

that quasimonotonicity is a necessary condition for LCS-implementation of SCFs

in any environment. However, quasimonotonicity is not a necessary condition for

LCS-implementation when the designer’s goal is represented by an SCC. Indeed, the

preceding example also illustrates this point when the set of outcomes coincides with

the set of pure social decisions, that is, Z = D = {v, w, x, y, z}, and agent i’s utility

for outcome d at type profile ψ coincides with vi (d, ψ), that is, ui (d, ψ) = vi (d, ψ)

for each agent i ∈ N , each outcome d ∈ Z and each type profile ψ ∈ Θ.

We conclude this section by presenting a monotonicity notion, which can be

shown to be a necessary condition for the LCS-implementation of SCCs—its proof

is similar to that of Lemma 2.

Definition 9 A SCC F is set-quasimonotonic provided that for all θ, θ′ ∈ Θ, if

SLi(x, θ) ⊆ SLi(x, θ
′) and Li (x, θ) ∩ F (θ) ⊆ Li (x, θ

′)

for all x ∈ F (θ) and all i ∈ N , then F (θ) ⊆ F (θ′).

Clearly, set-quasimonotonicity coincides with quasimonotonicity when F is a

single-valued SCC. In words, the condition requires that if for each agent i, his

strict lower contour set at each optimal outcome at θ does not shrink when the type

changes from θ to θ′, as well as his set Li (x, θ)
⋂

F (θ) at each optimal outcome

x ∈ F (θ) does not shrink, then the set F (θ′) of optimal outcomes at θ′ is a superset

of the set F (θ) of optimal outcomes at θ.
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