
Munich Personal RePEc Archive

Duration Models: Specification,

Identification, and Multiple Durations

Van den Berg, Gerard J.

VU University Amsterdam

2000

Online at https://mpra.ub.uni-muenchen.de/9446/

MPRA Paper No. 9446, posted 05 Jul 2008 05:10 UTC



Duration Models: Spe
i�
ation,

Identi�
ation, and Multiple Durations

Gerard J. van den Berg �

Mar
h 6, 2000

�Department of E
onomi
s, Free University Amsterdam, De Boelelaan 1105,

1081 HV Amsterdam, The Netherlands, CEPR, and Tinbergen Institute.

E-mail: gberg�e
on.vu.nl.

Forth
oming in: James J. He
kman and Edward Leamer, editors, Handbook of E
onometri
s,

Volume V (North-Holland, Amsterdam), to appear in 2000.

Thanks to Tony Lan
aster, Geert Ridder, Jean-Mar
 Robin, Jim He
kman, Zvi E
kstein, and

Jaap Abbring, for their very useful suggestions. Also thanks to 
olleagues at the Free University

Amsterdam for stimulating dis
ussions.

1



Abstra
t

Sin
e the early 1980s, the e
onometri
 analysis of duration variables has be
ome wide-

spread. This 
hapter provides an overview of duration analysis, with an emphasis on

the spe
i�
ation and identi�
ation of duration models, and with spe
ial attention to

models for multiple durations. Most of the 
hapter deals with so-
alled redu
ed-form

duration models, notably the popular Mixed Proportional Hazard (MPH) model and its

multivariate extensions. The MPH model is often used to des
ribe the relation between

the empiri
al exit rate and \ba
kground variables" in a 
on
ise way. However, sin
e the

appli
ations usually interpret the results in terms of some e
onomi
-theoreti
al model,

we examine to what extent the deep stru
tural parameters of some important theoret-

i
al models 
an be related to redu
ed-form parameters. We subsequently examine the

spe
i�
ation and identi�
ation of the MPH model in great detail, we provide intuition

on what drives identi�
ation, and we infer to what extent biases may o

ur be
ause of

misspe
i�
ations. This examination is 
arried out separately for the 
ase of single-spell

data and the 
ase of multi-spell data. We also 
ompare di�erent fun
tional forms for

the unobserved heterogeneity distribution.

Next, we examine models for multiple durations. In the applied e
onometri
 liter-

ature on the estimation of multiple-duration models, the range of di�erent models is

a
tually not very large. Typi
ally, the models allow for dependen
e between the dur-

ation variables by way of their unobserved determinants, with ea
h single duration

following its own MPH model. In addition to this, the model may allow for an interest-

ing \
ausal" e�e
t of one duration on the other, as motivated by an underlying e
onomi


theory. For all these models we examine the 
onditions for identi�
ation. Some of these

are intimately linked to parti
ular estimation strategies. The multiple-duration model

where the marginal duration distributions ea
h satisfy an MPH spe
i�
ation, and the

durations 
an only be dependent by way of their unobserved determinants, is 
alled the

Multivariate Mixed Proportional Hazard (MMPH) model. For this model, we address

the issue of the dimensionality of the heterogeneity distribution and we 
ompare the


exibility of di�erent parametri
 heterogeneity distributions.

On a number of o

asions, we in
orporate re
ent insights from the biostatisti
al

literature on duration analysis, and we 
ontrast points of view in this literature to

those in the e
onometri
 literature. Finally, throughout the 
hapter, we dis
uss the

importan
e of the possible 
olle
tion of additional data.
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1 Introdu
tion

Duration analysis is a 
ore subje
t of e
onometri
s. Sin
e the early 1980s, the em-

piri
al analysis of duration variables has be
ome widespread. There are a number

of distin
t reasons for this development. First of all, many types of behavior over

time tend in
reasingly to be regarded as movements at random intervals from

one state to another. Examples in
lude movements by individuals between the

labor market states of employment, unemployment and nonparti
ipation, and

movements between di�erent types of marital status. This development re
e
ts

the fa
t that dynami
 aspe
ts of e
onomi
 behavior have be
ome more important

in e
onomi
 theories, and that in these theories the arrival of new information

(and thus the 
hange in behavior in response to this) o

urs at random intervals.

Se
ondly, longitudinal data 
overing more than just one spell per respondent are

widely available in labor e
onomi
s, as well as in demography and medi
al s
i-

en
e. Appli
ations of duration analysis in
lude, in labor e
onomi
s, the duration

of unemployment and the duration of jobs (see e.g. the survey by Devine and

Kiefer, 1991), strike durations (e.g., Kennan, 1985), and the duration of training

programs (Bonnal, Foug�ere, and S�erandon, 1997). In business e
onomi
s, dura-

tion models have been used to study the duration until a major investment (e.g.,

Anti Nilsen and S
hiantarelli, 1998). In population e
onomi
s, duration analysis

has been applied to study marriage durations (Lillard, 1993), the duration until

the birth of a 
hild (He
kman and Walker, 1990), and the duration until death.

In e
onometri
 analyses dealing with sele
tive observation, duration models have

been used to study the duration of panel survey parti
ipation (e.g., Van den

Berg and Lindeboom, 1998). In marketing, duration models have been used to

study household pur
hase timing (e.g., Vil
assim and Jain, 1991), in 
onsumer

e
onomi
s to study the duration until pur
hase of a durable or storable produ
t

(Antonides, 1988, and Boizot, Robin and Visser, 1997), and in migration e
onom-

i
s to study the duration until return migration (e.g., Lindstrom, 1996). Re
ently,

duration models have been applied in areas in e
onomi
s where the unit under


onsideration is not an individual or �rm. For example duration models have been

used in ma
ro e
onomi
s to study the duration of business 
y
les (e.g., Diebold

and Rudebus
h, 1990), in �nan
e to study the duration between sto
k-market

share transa
tions (Engle and Russell, 1998), in politi
al e
onomi
s to study the
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duration of wars (see Horvath, 1968), and in industrial organization to study the

duration of a patent (Pakes and S
hankerman, 1984).

This 
hapter presents an overview of duration analysis. A substantial part

of the 
hapter deals with so-
alled redu
ed-form duration models, notably the

famous Mixed Proportional Hazard (MPH) model. This model expresses the exit

rate to a destination state as a rather simple fun
tion of observed and unobserved

explanatory variables and the elapsed duration in the 
urrent state. This model

and its spe
ial 
ases, most notably the Proportional Hazard (PH) model, have

been used in hundreds of empiri
al studies (see e.g. Devine and Kiefer, 1991,

for referen
es in mi
ro labor e
onomi
s). Parametri
 versions of the model are

in
luded in statisti
al pa
kages like STATA, SAS, S-PLUS and SPSS (see Pelz and

Klein, 1996, for a 
omparison of some pa
kages). We examine the spe
i�
ation

and identi�
ation of the MPH model in detail, and we infer to what extent biases

may o

ur be
ause of misspe
i�
ations.

The MPH model is often used to des
ribe the relation between the empiri
al

exit rate and \ba
kground variables" in a 
on
ise way, and to provide estimates of

the e�e
t of an explanatory variable on the duration variable. However, sin
e the

appli
ations usually interpret the results in terms of some e
onomi
-theoreti
al

model, it is important to examine to what extent the deep stru
tural parameters

of this theoreti
al model 
an be related to the redu
ed-form parameters. As we

shall see, e
onomi
 theory in general does not lead to a \proportional" spe
i�
-

ation as in the MPH duration model, and this 
ompli
ates the interpretation of

the redu
ed-form estimates.

Re
ently, the empiri
al analysis of multiple durations has be
ome widespread.

In many 
ases it is simply a ne
essity to address the issue of whether di�er-

ent durations (given the observed explanatory variables) are not independently

distributed. For example, if the duration data are 
ensored then it matters for

empiri
al inferen
e how the time until 
ensoring is related to the duration of in-

terest. More generally, if a spell under observation 
an terminate in a number of

di�erent ways (\
ompeting risks") then it matters whether the latent durations

to the di�erent destinations are related. As we shall see, e
onomi
 theory often

predi
ts that su
h durations are related. In fa
t, the issue of whether di�erent

durations are related is often an important question in its own right. Be
ause

of this, 
urrent e
onometri
 resear
h often involves the simultaneous analysis of
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multiple observed spells of the same type of duration for a given individual, or

multiple observed spells of di�erent types of durations for a given individual. For

example, it may involve simultaneous and 
onse
utive durations in labor market

states and marital states. It may also involve the analysis of treatment e�e
ts

on a duration variable, if the duration until treatment (or the duration of the

treatment) is sto
hasti
. In this 
hapter we therefore pay spe
ial attention to the

analysis of multiple durations. We examine di�erent types of relations between

duration variables, as motivated by e
onomi
 theory. We then examine the way

in whi
h they 
an be in
orporated in multivariate extensions1 of the MPH model,

and we dis
uss identi�
ation of the determinants of these multivariate models as

well as identi�
ation of deep stru
tural parameters. For the 
ase where the de-

penden
e runs by way of related unobserved explanatory variables (in whi
h 
ase

we 
all the model a multivariate MPH (MMPH) model), we 
ompare di�erent

parametri
 heterogeneity distributions. One of the main 
on
lusions of the se
-

tions on multiple-duration models is that, in mi
roe
onometri
 resear
h involving

self-sele
tion, duration data are mu
h more informative than binary data. This

is important be
ause e
onomi
 theory generally predi
ts the absen
e of ex
lusion

restri
tions based on 
hara
teristi
s of the individual under 
onsideration, so that

these 
an not be used for identi�
ation.

So far, we have been vague on the meaning of notions like \state", \duration",

\exit rate", and \explanatory variable". In Se
tion 2 we provide some formal

de�nitions. We stress that the e
onomi
 meaning of these notions is entirely


ontext-dependent: what distinguishes states or transitions in one study may

not be relevant in another study. Throughout the 
hapter we will be 
on
erned

with the e
onomi
 insights that 
an be obtained from duration analysis. For

that reason we outline in Se
tion 3 some motivating underlying e
onomi
 models

for durations. In parti
ular, we examine sear
h models of individual labor market

behavior. After these preparatory se
tions we examine the MPH model in Se
tions

4 and 5. Se
tion 6 deals with the identi�
ation of the MPH model in 
ase the

data provide durations of multiple spells in a given state for a given individual.

Su
h data are 
alled multi-spell data. Again, the meaning of these notions is

rather vague at this stage. Basi
ally, the idea is that the data provide multiple

1In this 
hapter, \multivariate" refers to multiple durations and not to multiple explanatory

variables.
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independent drawings from the individual-spe
i�
 duration distribution. Se
tions

7{9 deal with multiple-duration models in general. These 
onstitute a very broad


lass of models, and they in
lude, as a spe
ial 
ase, the model of Se
tion 6 with

durations of multiple spells in a given state for a given individual. Se
tion 10


on
ludes and provides re
ommendations on empiri
al approa
hes.

Throughout the 
hapter, time is taken to be 
ontinuous.2 When spe
ifying a

duration distribution, the point of departure will invariably be the exit rate or

hazard rate (this is motivated in Se
tion 2). This implies that we do not fo
us

on so-
alled A

elerated Failure Time models (see e.g. Kalb
eis
h and Prenti
e,

1980), whi
h enjoy some popularity outside e
onomi
s. At times, though, we


ompare the latter models to models that are based on a spe
i�
ation of the

hazard rate.

In this 
hapter we do not fo
us on estimation methods or spe
i�
ation tests.

Applied studies generally use well-established estimation methods like Maximum

Likelihood, Cox Partial Likelihood, Conditional Likelihood, or nonparametri


methods. The book by Lan
aster (1990), whi
h is the most 
omprehensive volume

on e
onometri
 duration analysis so far, provides an ex
ellent survey on estima-

tion methods and spe
i�
ation tests for MPH models in e
onometri
s. Andersen

et al. (1993) survey the literature on the modern statisti
al foundations. Kiefer

(1988) and Yamagu
hi (1991) lu
idly explain the basi
s of the empiri
al analysis

of duration models. Finally, the survey by Neumann (1997) dis
usses spe
i�
a-

tion tests as well, and also pays attention to the estimation of stru
tural (sear
h)

models.

2 Basi
 
on
epts and notation

Consider the spells experien
ed by 
ertain subje
ts in a 
ertain state. The dur-

ation of the spell is sto
hasti
 and is denoted by T , and realizations of T are

denoted by t.3 The 
umulative distribution fun
tion of T is denoted by F , so

2See Meyer, 1995, for a survey of dis
rete-time redu
ed-form duration models. These models

in
lude 
ontinuous-time models where time is aggregated into intervals of unit length, as well

as models where time is genuinely dis
rete.
3Throughout most of the 
hapter, we use t to denote the random variable as well as its

realization. This abusive notation has be
ome 
ommon in duration analysis be
ause it allows

for 
on
ise formulations that are generally unambiguous.
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F (t) = Pr(T � t), with F (0) = 0. The survivor fun
tion of T is de�ned as one

minus the distribution fun
tion and is denoted by F , so

F (t) = 1� F (t)

As noted in the introdu
tion, we restri
t attention to 
ontinuous random vari-

ables T , and we denote a probability density fun
tion of T by f . In fa
t, F; F , and

f will be used as generi
 symbols for 
umulative distribution fun
tions, survivor

fun
tions, and probability density fun
tions, respe
tively, and their arguments

make 
lear whi
h random variable is 
onsidered.

In a dis
rete-time setting, the hazard fun
tion of T at t is de�ned as the

probability that the spell is 
ompleted at t given that it has not been 
ompleted

before t, as a fun
tion of t. With T 
ontinuous, we de�ne the hazard fun
tion as

�(t) = lim
dt#0

Pr(T 2 [t; t + dt)jT � t)

dt

So, somewhat loosely, the hazard fun
tion is the rate at whi
h the spell is 
om-

pleted at t given that it has not been 
ompleted before, as a fun
tion of t. The

value of the hazard fun
tion (for a parti
ular t, or for arbitrary t) is 
alled the

\hazard rate" or simply \the hazard". It is also 
alled the \exit rate" to stress

the fa
t that 
ompletion of the spell is equivalent to exit out of the state of in-

terest. Again, we use � as a generi
 symbol for a hazard, and its argument makes


lear whi
h random variable is 
onsidered. The hazard fun
tion �(t) is said to

be duration dependent if its value 
hanges over t. Positive (negative) duration

dependen
e means that �(t) in
reases (de
reases).

The hazard fun
tion provides a full 
hara
terization of the distribution of T ,

just like the distribution fun
tion, the survivor fun
tion, and the density fun
tion.

All of these 
an be expressed in terms of one another. For F; F , and f this is well

known. Con
erning �, the following relations (whi
h are easy to derive) express

� in terms of the other fun
tions, and vi
e versa,

�(t) =
f(t)

1� F (t)

F (t) = exp

�
�
Z t

0
�(u)du

�
t � 0 (1)
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The hazard fun
tion is the fo
al point of e
onometri
 duration models. That

is, properties of the distribution of T are generally dis
ussed in terms of proper-

ties of �. There are two major reasons for this. First, and most importantly, this

approa
h is di
tated by e
onomi
 theory. In general, theories that aim at explain-

ing durations fo
us on the rate at whi
h the subje
t leaves the state at duration

t given that he has not done so yet. In parti
ular, they explain the hazard at t in

terms of external 
onditions at t as well as the underlying e
onomi
 behavior of

the subje
ts that are still in the state at t. Theoreti
al predi
tions about a dura-

tion distribution thus run by way of the hazard of that distribution. It is obvious

that if the 
ompletion of a spell is at least partly a�e
ted by external 
onditions

that 
hange over time (e.g. due to external sho
ks), and if one attempts to de-

s
ribe behavior of the subje
t over time in a 
hanging environment, then it is

easier to think about the rate of leaving at t given that one has not done so than

to fo
us on the un
onditional rate of leaving at t. In the next se
tion we provide

some examples of su
h theories.

It is often stated that a major advantage of using the hazard fun
tion as a

basi
 building blo
k of the model is that it fa
ilitates the in
lusion of time-varying


ovariates. This is, of 
ourse, part of the argument of the previous paragraph; it

reformulates the issue from the point of view of a builder of redu
ed-form models.

The se
ond major advantage of using the hazard fun
tion as the basi
 building

blo
k of the model is entirely pra
ti
al. Real-life duration data are often subje
t

to 
ensoring of high durations. In that 
ase it does not make sense to model the

duration distribution for those high durations.

Whereas the hazard fun
tion is the fo
al point of model building in duration

analysis, the mean of the endogenous variable is the fo
al point in regression

analysis. On some o

asions in the 
hapter we 
ompare duration models to re-

gression models. For future referen
e it is useful to present the equation below.

This equation follows dire
tly from the fundamental result that the integrated

hazard fun
tion
R t

0 �(u)du has an exponential distribution4 with parameter 1.

log
Z t

0

�(u)du = " (3)

4Family of exponential distributions:

f(t) = #e�#t for all t � 0; with # > 0 (2)
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Here, " has an Extreme Value { Type I (EV1) distribution. This distribution does

not have any unknown parameters; its density equals

Extreme Value { Type 1 distribution:

f(") = e" � e� exp("); for all �1 < " <1:

Equation (3) therefore again shows that on
e the hazard fun
tion is 
ompletely

spe
i�ed, then so is the duration distribution. Note that the transformation of

t on the left-hand side of (3) 
an be interpreted as a parti
ular 
hange in the

time measurement s
ale. The equation states that after this transformation, the

only variation left in the duration 
on
erns the purely random variation that

is unrelated to the determinants of �(t). Note that if one spe
i�es a model for

�(t) then a natural model spe
i�
ation test follows from a 
omparison of the

empiri
al distribution of the estimated left-hand side of (3) to the distribution of

" (see Lan
aster, 1990).

3 Some stru
tural models of durations

In this se
tion we brie
y dis
uss some e
onomi
-theoreti
al models that predi
t

distributions of duration variables. These theoreti
al models have been stru
tur-

ally estimated using data on su
h duration variables, and they have been used

to interpret estimates of redu
ed-form duration models. The 
ommon feature of

the models is that they are sear
h models, whi
h des
ribe the duration until

an event as the out
ome of a de
ision on the optimal moment of stopping the

sear
h for something desirable.5 For expositional reasons we phrase the models

in terms of sear
h for jobs by individual agents on the labor market (although

they are appli
able to many other types of sear
h). Job sear
h models have been

very popular as explanatory theoreti
al frameworks for redu
ed-form e
onometri


duration analyses (see Devine and Kiefer, 1991).

5There are many other theoreti
al models that give rise to duration distributions. Examples

are learning models (see e.g. Jovanovi
, 1984) and dynami
 dis
rete 
hoi
e models (see e.g.

Rust, 1994, for a survey). The latter 
an be 
onsidered as generalizations of basi
 sear
h mod-

els although they are ne
essarily in dis
rete time; as su
h they give rise to dis
rete duration

distributions. These models may also be used to explain multiple durations for a given subje
t

(see e.g. Van der Klaauw, 1996).
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3.1 Standard sear
h model

3.1.1 Stationarity

In this subse
tion we 
onsider the prototype job sear
h model for the behavior

of unemployed workers. Here, the duration variable of interest is the unemploy-

ment duration. Sin
e this model has been dis
ussed extensively many times (e.g.

Mortensen, 1986), the present exposition is brief.

The model aims to des
ribe the behavior of unemployed individuals in a dy-

nami
 and un
ertain environment. Job o�ers arrive at random intervals following

a Poisson pro
ess with arrival rate �. A job o�er is a random drawing (without

re
all) from a wage o�er distribution with distribution fun
tion F (w).6 It is as-

sumed that all jobs are full-time jobs. Every time an o�er arrives, the de
ision

has to be made whether to a

ept the o�er or reje
t it and sear
h further. On
e a

job is a

epted it will be held forever at the same wage, so job-to-job transitions

are ex
luded. It is assumed that individuals know � and F but that they do not

know in advan
e when job o�ers arrive and what wages are asso
iated with them.

During the spell of unemployment a bene�t b is re
eived. Unemployed individu-

als aim at maximization of their own expe
ted present value of in
ome over an

in�nite horizon. The subje
tive rate of dis
ount is denoted by �.

The variables �; w; b and � are measured per unit time period. It is assumed

that the model is stationary. This means that �; F; b and � are assumed to be


onstant, and, in parti
ular, independent of unemployment duration and 
alen-

dar time and independent of all events during unemployment. To ensure that

attention is restri
ted to e
onomi
ally meaningful 
ases, and to guarantee the

existen
e of the optimal strategy, we assume that 0 < �;EF (w); b; � < 1. For

ease of exposition we take F to be 
ontinuous.

Let R denote the expe
ted present value of sear
h when following the optimal

strategy. Be
ause of the stationarity assumption and the in�nite-horizon assump-

tion, the unemployed individual's per
eption of the future is independent of time

or unemployment duration, so the optimal strategy is 
onstant during the spell

of unemployment and R does not depend on the elapsed unemployment duration

t. It is well known (see e.g. Mortensen, 1986) that there is a unique solution to

6Note that F here denotes a distribution of wage o�ers rather than a duration distribution.
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the Bellman equation for R, satisfying

�R = b + �Ewmaxf0; w
�
� Rg (4)

In this equation, the expe
tation is taken over the wage o�er distribution F .

Equation (4) has a familiar stru
ture (see e.g. Pissarides, 1990). The return of

the asset R in a small interval around t equals the sum of the instantaneous

utility 
ow in this interval, and the expe
ted ex
ess value of �nding a job in this

interval. When an o�er of w arrives at t then there are two options: (i) to reje
t

it (ex
ess value zero), and (ii) to a

ept it (ex
ess value w=��R). It is 
lear that

the optimal poli
y is to 
hoose option (ii) i� w > �R. Therefore, the optimal

strategy of the worker 
an be 
hara
terized by a reservation wage �: a job o�er

is a

eptable i� its wage ex
eeds �, with � = �R. Using equation (4), � 
an be

expressed in terms of the model determinants,

� = b+
�

�

Z
1

�

F (w)dw

Note that this equation has a unique solution for �.

The hazard (or exit rate out of unemployment, or transition rate from unem-

ployment into employment) � equals the produ
t of the job o�er arrival rate and

the 
onditional probability of a

epting a job o�er,

� = �F (�)

As a result of the stationarity assumption, � does not depend on the elapsed

duration of unemployment. Consequently, the duration of unemployment t has

an exponential distribution (see (2)) with parameter �.

Versions of this model have been stru
turally estimated with individual data

on unemployment durations and wages. \Stru
tural" here means that the theor-

eti
al framework is assumed to des
ribe the empiri
al distribution of durations

and wages. This enables estimation of the determinants �; F; : : : of individual

behavior. See Yoon (1981), Flinn and He
kman (1982a), Narendranathan and

Ni
kell (1985) and Van den Berg (1990b) for examples of this, and Wolpin (1995)

for a survey.
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3.1.2 Nonstationarity without anti
ipation

The stationarity assumption made in the previous subse
tion is often unreal-

isti
. The values of the stru
tural determinants may 
hange be
ause of duration

dependen
e of the amount of unemployment bene�ts, a stigma e�e
t of being

long-term unemployed, poli
y 
hanges, or business 
y
le e�e
ts. Sooner or later

these features of the labor market and personal 
hara
teristi
s of job sear
hers

are re
ognized and used in determining the optimal strategy. So, generally, the

optimal strategy is not 
onstant in 
ase of nonstationarity.

To pro
eed, assume that the individual's sear
h environment is subje
t to

unanti
ipated 
hanges in the values of the stru
tural determinants. Thus, the

values of these determinants may 
hange over the duration, but the individual

always thinks that they will remain 
onstant at their 
urrent values. This might

be a reasonable assumption in 
ase of a 
hange in � that is due to a random

ma
roe
onomi
 sho
k, or in 
ase of a 
hange in b that is due to a sudden 
hange

in the bene�ts system.

By exploiting the analogy to the stationary model, we obtain the following

equations for the reservation wage fun
tion �(t), giving the reservation wage at

time t, and the hazard fun
tion �(t),

�(t) = b(t) +
�(t)

�(t)

Z
1

�(t)

F (wjt)dw

�(t) = �(t)F (�(t)jt)

where F (wjt) denotes the wage o�er distribution at time t (so it should not be

interpreted as a distribution 
onditional on the realization of a random dura-

tion variable). In general, �(t) varies with t. The distribution fun
tion for the

duration of unemployment subsequently follows from equation (1). See Naren-

dranathan (1993) for a stru
tural empiri
al analysis of a nonstationary model

without anti
ipation.

3.1.3 Nonstationarity with anti
ipation

In many 
ases it is not realisti
 to assume that individuals do not anti
ipate


hanges in the values of �; F; and b. In this subse
tion we 
onsider nonstation-

arity with anti
ipation, along the lines of Van den Berg (1990a).7 The stru
tural

7Some spe
ial 
ases of this model have been examined earlier; see e.g. Mortensen (1986).
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determinants �; F; and b are allowed to vary over the duration t in a determin-

isti
 way (so dependen
e on past o�er arrival times or wage levels asso
iated with

reje
ted o�ers is ruled out). This entails that the pro
ess with whi
h job o�ers

arrive is a non-homogeneous Poisson pro
ess. We assume that job sear
hers have

perfe
t foresight in the sense that they 
orre
tly anti
ipate 
hanges in the values

of �; F; and b. In other words, we expe
t people to know how these are related to

t. As usual, individuals do not know in advan
e when job o�ers arrive, or whi
h

w are asso
iated with them. Finally, we assume that �; F; and b are 
onstant for

all suÆ
iently high t. The latter implies that the optimal strategy is also 
onstant

for suÆ
iently high t.

LetR(t) denote the expe
ted present value of sear
h if unemployment duration

equals t, when following the optimal strategy. Under regularity 
onditions, there

is a unique 
ontinuous solution to the Bellman equation for R(t), satisfying

�R(t) =
dR(t)

dt
+ b(t) + �(t):Ewjtmaxf0; w

�
� R(t)g

at points at whi
h R(t) is di�erentiable in t, where the expe
tation is taken over

the wage o�er distribution F (wjt) at t. Noti
e the similarity with equation (4)

above. The return of the asset R(t) in a small interval around t equals the sum

of the appre
iation of the asset in this interval, the instantaneous utility 
ow in

this interval, and the expe
ted ex
ess value of �nding a job in this interval. The

optimal strategy 
an be 
hara
terized by a reservation wage fun
tion �(t) that

gives the reservation wage at time t. Using the fa
t that �(t) = �R(t), it follows

that

d�(t)

dt
= ��(t)� �b(t)� �(t)

Z
1

�(t)
(w � �(t))dF (wjt)

This di�erential equation has a unique solution for �(t), given the boundary


ondition that follows from the assumption that the model is stationary for all

suÆ
iently high t.

The hazard fun
tion �(t) now equals

�(t) = �(t)F (�(t)jt)

In general, �(t) varies with t. The distribution fun
tion for the duration of un-

employment subsequently follows from equation (1).
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For examples of stru
tural empiri
al analyses of nonstationary models with

anti
ipation, see Wolpin (1987), Van den Berg (1990a), Engberg (1991), and

Gar
ia-Perez (1998).

3.2 Repeated-sear
h model

Models of repeated sear
h allow the e
onomi
 agent to sear
h further for better

mat
hes after a mat
h has been formed. The best-known model of repeated sear
h

is the so-
alled on-the-job sear
h model whi
h aims to des
ribe the behavior of

employed individuals who sear
h for a better job (see Mortensen, 1986, for an

overview). In the basi
 on-the-job sear
h model, a job is 
hara
terized by its wage

w whi
h is taken to be 
onstant within a job. For a working individual, the sear
h

environment is spe
i�ed in exa
tly the same way as we did in Subse
tion 3.1.1 for

an unemployed individual. In parti
ular, we assume the model to be stationary.

The optimal strategy is 
onstant during a job spell, and the the expe
ted present

value of sear
h R(w) when following the optimal strategy in a job with wage w

satis�es

�R(w) = w + �Ew� maxf0; R(w�)�R(w)g

where the expe
tation is taken with respe
t to the distribution F of wage o�ers

w�. Clearly, the optimal strategy is su
h that one a

epts a job if and only if the

o�ered wage w� ex
eeds the 
urrent wage w, so it suÆ
es to 
ompare instant-

aneous in
ome 
ows (i.e., the optimal strategy is \myopi
"), and the reservation

wage simply equals the 
urrent wage.

For a given 
urrent wage w, the hazard of the job duration distribution (or

exit rate out of the present job) equals

� = �F (w)

As a result, the duration of a job with a wage w has an exponential distribution

with this parameter �. Note that models of repeated sear
h are informative on

the joint distribution of 
onse
utive job durations.

If, during employment, exogenous separations o

ur at a rate Æ, then this does

not a�e
t the optimal strategy. The exit rate out of the present job then equals
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�F (w)+Æ. See Flinn (1996) for an example of stru
tural estimation of this model

with job duration data.8

Burgess (1989) introdu
es a rather manageable type of nonstationarity in this

model. The individual's sear
h environment (i.e., � and F ) is subje
t to sho
ks

that are not job-spe
i�
 but rather su
h that they a
t similarly on all employed

workers. The sho
ks may be anti
ipated or unanti
ipated. It is intuitively obvious

that this nonstationarity does not 
hange the optimal strategy: it remains optimal

to a

ept another job if and only if its wage ex
eeds the 
urrent wage. We thus

obtain for the job-to-job transition rate,

�(t) = �(t)F (wjt)

Throughout the remainder of the 
hapter, it is important to keep in mind

that empiri
al duration analysis is ultimately interested in stru
tural parameters

that represent determinants of individual behavior. This is also true for empir-

i
al analysis in whi
h redu
ed-form models are estimated that are not expli
itly

spe
i�ed as a theoreti
al model. In the sequel we return to this issue.

4 The Mixed Proportional Hazard model

4.1 De�nition

For sake of 
onvenien
e, we use the term \individual" to denote the subje
t that

experien
es 
ertain spells in a given state. We 
onsider the population of indi-

viduals that 
onsists of the in
ow into this given state. This 
an be the in
ow at

a given point of time, or the in
ow at any time. We assume that, for a given indi-

vidual in this population, the subsequent duration T is an absolutely 
ontinuous

and positive random (duration) variable. The distribution of T (or, equivalently,

the hazard fun
tion) may vary a
ross individuals. We assume that all individual

variation in the hazard fun
tion 
an be 
hara
terized by a �nite-dimensional ve
-

tor of observed explanatory variables (or \
ovariates", or \regressors") x and an

8The empiri
al analysis of so-
alled equilibrium sear
h models, whi
h endogenize the wage

o�er distribution F , often involves the joint estimation of the distributions of unemployment

durations and job durations. See e.g. Van den Berg and Ridder (1998), Bontemps, Robin and

Van den Berg (2000), and Bowlus, Kiefer and Neumann (2001).
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unobserved heterogeneity term v. The latter term 
an be interpreted as a fun
-

tion of unobserved explanatory variables.9 In this subse
tion we assume that x is

time-invariant, and 
onsequently we de�ne the Mixed Proportional Hazard model

as a model with time-invariant explanatory variables. In the next subse
tion we

introdu
e time-varying explanatory variables.

For an individual with explanatory variables x and unobserved heterogeneity

v, the hazard fun
tion of the random variable T evaluated at the duration t is

denoted by �(tjx; v). This notation highlights the fa
t that we 
ondition on x and

v. The standard MPH model is now de�ned by

De�nition 1 : Standard MPH model. There are fun
tions  and �0 su
h

that for every t and every x and v there holds that

�(tjx; v) =  (t) � �0(x) � v (5)

This model was developed by Lan
aster (1979), whi
h in
ludes an empiri
al

appli
ation to unemployment duration data, and by Vaupel, Manton and Stall-

ard (1979).10 The fun
tion  (t) is 
alled the \baseline hazard" sin
e it gives the

shape of the hazard fun
tion for any given individual. Only the level of the haz-

ard fun
tion is allowed to di�er a
ross individuals. The term �0(x) is 
alled the

\systemati
 part" of the hazard. In applied work, it is 
ommon to spe
ify

�0(x) = exp(x0�); (6)

so that �(tjx; v) is multipli
ative in all separate elements of x.

For 
onvenien
e, we make a number of regularity assumptions on the determ-

inants of the model.

Assumption 1 The ve
tor x is k-dimensional with 1 � k < 1. The fun
tion

�0(x) : X � RI k is positive for every x 2 X .

Assumption 2 The fun
tion  (t) is positive and 
ontinuous on [0;1), ex
ept

that limt#0  (t) may be in�nite. For every t � 0 there holds that
R t

0  (�)d� <1,

while limt!1

R t

0  (�)d� =1.

9Lan
aster (1990) shows that v to some extent may also represent measurement errors in T

and x.
10Ni
kell (1979) 
ontains the �rst estimation of a dis
rete-time MPH-type model.
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Assumption 3 The distribution G of v in the in
ow satis�es Pr(0 < v <1) =

1.

Assumption 4 The individual value of v is time-invariant.

It should be stressed that, for virtually all of the results in the 
hapter, these


onditions are stronger than needed. This is parti
ularly true for Assumption 2.

It is often suÆ
ient that  (t) is integrable, and sometimes it is suÆ
ient thatR t

0  (�)d� < 1 only on some interval. For expositional reasons, we do not deal

with this. On the other hand, for identi�
ation, additional assumptions are needed

(see Se
tion 5). We do not list those here be
ause it is interesting to 
ontrast

alternative assumptions in the light of identi�ability issues.

It is useful to examine the spe
ial 
ase in whi
h there is no unobserved het-

erogeneity (v � 1). In that 
ase the model is 
alled a Proportional Hazard (PH)

model (this model was developed by Cox, 1972, and predates the MPH model).

The PH model spe
i�
ation is regarded to be simple and yet suÆ
iently ri
h

to 
apture many data properties. The popularity of the PH model in redu
ed-

form duration analysis is 
omparable to the popularity of the linear regression

model in redu
ed-form regression analysis. Note that the general regression-type

expression for the integrated hazard fun
tion (see (3)) redu
es to

log
Z t

0

 (u)du = �x0� + " (7)

for the PH model, where we substituted (6) and " has an EV1 distribution. It

should again be stressed that " represents the purely random variation in the

duration out
ome { it does not 
apture unobserved individual 
hara
teristi
s.

In 
omparison to a linear regression model (say log t = x0� + ", with " having

an unknown distribution with mean zero), the left-hand side of (7) has a more

general spe
i�
ation, sin
e it involves an unknown transformation of the duration

variable, whereas the right-hand side has a more restri
tive spe
i�
ation, sin
e

the distribution of the error term is 
ompletely spe
i�ed. Thus, the PH model

and the regression model are not nested, and they derive their 
exibility from

di�erent sour
es.

The � parameters in the linear regression model are estimated 
onsistently by

OLS under a wide range of distributions of ". Similarly, the � parameters in the

PH model are estimated 
onsistently by Partial Likelihood under a wide range of
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spe
i�
ations of the baseline hazard  (t). More pre
isely, the � parameters are

estimated 
onsistently by maximization of a partial likelihood fun
tion that does

not depend on the baseline hazard fun
tion, whi
h 
an be estimated nonpara-

metri
ally in a se
ond stage (see Lan
aster, 1990, for details). This is arguably

one of the great advantages of the PH model, but it does not 
arry over to the

MPH model in general.

For the MPH model, equation (3) redu
es to

log
Z t

0

 (u)du = �x0� � log v + " (8)

where again we substituted (6), and where again " has an EV1 distribution.

The equation states that the log integrated baseline hazard fun
tion given x has

the same distribution as the distribution of a random variable that is the sum

of an EV1 random variable and another random variable (namely �x0� � log v

given x). Sin
e we have not made an assumption on the distribution of v, it

is 
lear that spe
i�
ation (8) is mu
h more general than (7). Now we have a


exible spe
i�
ation for both the transformation of t and the distribution of the

error term. However, the latter distribution 
annot be just any distribution. For

example, it 
annot be a normal distribution, be
ause the sum of an EV1 random

variable and another random variable 
annot have a normal distribution (see

Ridder, 1990). It turns out that the MPH model is a
tually identi�ed under an

assumption on the tail of the distribution of v (see Se
tion 5).

We end this subse
tion by mentioning some other redu
ed-form duration mod-

els. Consider the following model,

log z(t) = �x0� + � (9)

with z(t) positive and in
reasing in t. This redu
es to the MPH model if the \error

term" � is distributed as the sum of an EV1 random variable and another random

variable. If no assumption is made on the distribution of � then (9) is 
alled a

\transformation model" (see Horowitz, 1996). If it is subsequently imposed that

z(t) = t then we obtain the A

elerated Failure Time (AFT) model,

log t = �x0� + �

For future referen
e it is useful to note that in the AFT model the survivor

fun
tion 
an be written as

F (tjx) = exp(�	(t � ex0�)) (10)
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where 	 is the integrated hazard fun
tion of the random variable exp(�). Clearly,

the individual 
hara
teristi
s a
t on the duration distribution by transforming

the time s
ale from t to t exp(x0�). This may be an a

urate des
ription of the

a
tual variation in the lifetime distributions of 
omplex self-evolving organisms

or me
hanisms. Be
ause of the one-to-one relation between a distribution and its

hazard fun
tion, the AFT spe
i�
ation 
an be translated into a spe
i�
ation of

the hazard fun
tion of tjx. Obviously, the latter need not be an MPH spe
i�
ation.

Note that in the transformation model and the AFT model, the hazard does not

serve as the fo
al point of model spe
i�
ation. This has strongly limited the use of

these models in so
ial s
ien
e duration analyses. We return to this in Subse
tion

5.6.

4.2 Time-varying explanatory variables

In pra
ti
e, explanatory variables are often time-varying, and there are often

good reasons to assume that the hazard fun
tion is a�e
ted by the 
urrent value

of the explanatory variable (instead of e.g. its value at the beginning of the spell).

In this subse
tion we dis
uss the in
orporation of su
h explanatory variables in

the PH model and (at the end of the subse
tion) the MPH model. Given that

the 
hapter avoids measure theory, the exposition in this subse
tion is restri
ted

to be rather informal, and we refer the reader to the referen
es below for more

rigorous analyses.

At �rst sight it may seem that time-varying explanatory variables 
an be

in
orporated in the PH model by repla
ing x by x(t),

lim
dt#0

Pr(T 2 [t; t+ dt)jT � t; fx(u)gt0)
dt

=  (t) � �0(x(t)) (11)

where fx(u)gt0 denotes the time path of x up to t, and where, possibly, �0(x(t)) =

exp(x(t)0�). However, there are some 
aveats here. First, the values of the ex-

planatory variables at t may in some sense be endogenous. The subje
t under

study may have inside information at t on the future realization of the random

variable T , and this information may a�e
t the values of his observed explanatory

variables at t and his hazard rate at t. It may then be erroneously 
on
luded that

the observed explanatory variables have a 
ausal e�e
t on the duration. Consider

an unemployed individual who knows that he will start to work in a job at a given
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future date and may for that reason de
ide not to enrol in a training program at

t. If this is ignored in the empiri
al analysis then the e�e
t of the number x(t)

of 
ompleted training programs at t on the exit rate out of unemployment at t

may be under-estimated. A se
ond 
aveat 
on
erns the fa
t that x(t) 
ould 
ause

the duration distribution to be dis
ontinuous at 
ertain durations. This would


ompli
ate the statisti
al and empiri
al analysis.

To pro
eed, assume that the time-varying explanatory variables 
onstitute a

sto
hasti
 pro
ess X = fX(t) : t � 0g. Without loss of generality we take X(t)

to represent all explanatory variables for the hazard rate at t. Note that we may

trivially in
lude time-invariant or fully deterministi
 explanatory variables in X,

and re
all that for the time being we assume that all heterogeneity is observed.

Kalb
eis
h and Prenti
e (1980) develop a 
lassi�
ation of duration models with

time-varying 
ovariates, in order to des
ribe 
lasses for whi
h standard e
onomet-

ri
 pro
edures 
an be applied. This 
lassi�
ation is rather vague and not exhaust-

ive (He
kman and Taber, 1994). Fortunately, the re
ent mathemati
al-statisti
al

literature on 
ounting pro
esses and martingales has allowed a breakthrough on

these issues. The 
ounting pro
ess approa
h assumes that the durations, the val-

ues of the time-varying explanatory variables, and the observational plan, are all

out
omes of sto
hasti
 pro
esses (as su
h, it allows for quite general 
ensoring

s
hemes; see Fleming and Harrington, 1991, Andersen and Borgan, 1985, and

Andersen et al., 1993, for ex
ellent surveys, and Ridder and Tunal�, 1999, for

an exposition whi
h also avoids measure theory and in
ludes an e
onometri
 ap-

pli
ation). The approa
h fo
uses on a PH model framework in whi
h X has the

property that:

� X is a predi
table pro
ess.

Here, predi
tability basi
ally means that the values of all explanatory variables

for the hazard at t must be known (and observable to the resear
her) just before

t. In other words, the values of the variables whi
h 
apture all individual vari-

ation in the hazard rate at t must be known and observable at t�. In yet other

words, the values of the explanatory variables at t are in
uen
ed only by events

that have o

urred up to time t, and these events are observable. The informa-

tion on the values at time t does not help in predi
ting a transition at t. Note

that predi
tability does not mean that the whole future realization of X 
an be
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predi
ted at some point in time. Below we give some examples. As Ridder and

Tunal� (1999) point out, the 
on
ept of predi
tability is basi
ally the same as

the 
on
ept of weak exogeneity in time series analysis (and is thus weaker than

the 
on
ept of strong exogeneity). In addition to predi
tability, we need a te
h-

ni
al assumption whi
h basi
ally ensures that the realized out
omes of X(t) and

�0(X(t)) are bounded. Fleming and Harrington (1991) 
ontains a more pre
ise

exposition with expli
it use of measure theory. The 
ounting pro
ess approa
h

has been very su

essful in the derivation of (asymptoti
) properties of estimators

and test statisti
s for general settings, in
luding generalizations of the 
ommonly

used estimators and test statisti
s in duration analysis (see the referen
es above).

Now 
onsider the sto
hasti
 pro
ess Pr(T � tjfX(u)gt
0), whi
h is a pro
ess

given the evolution of X up to t, as a fun
tion of t. Assume that this pro
ess is

absolutely 
ontinuous. SuÆ
ient for this (in addition to the predi
tability of X)

is, basi
ally, that T does not have a stri
tly positive probability of o

urren
e at

t, given X up to t. Given absolute 
ontinuity, the 
ounting pro
ess model 
an

be expressed as a model of hazard fun
tions. Conversely, a PH model of hazard

fun
tions, with X having the above properties, and with absolute 
ontinuity of

the above pro
ess, 
an be thought of as being generated by a PH 
ounting pro
ess

model (Fleming and Harrington, 1991, Arjas, 1989). It should be noted that these

results have been derived for models with

�0(X(t)) = exp(X(t)0�)

and 
ertain other spe
i�
ations of �0 (see Andersen and Borgan, 1985).

The results imply that if we start o� with a PH-type model of a hazard

fun
tion, and X has the properties above, then we 
an perform valid e
onometri


inferen
e using standard methods, on the basis of spe
i�
ation (11) for the hazard

rate. This is, in a nutshell, why predi
tability of the time-varying explanatory

variable is an extremely useful property. Given predi
tability, we may apply the

standard tools of duration analysis.11

It is useful to examine the predi
tability for some spe
ial 
ases for X. First,

if X is time-invariant then it is obvious that it is predi
table. Now suppose its

path is fully known in advan
e. For example, the unemployment bene�ts level

11Note that in 
ase of sto
hasti
 explanatory variables it does not make sense to talk about

\the" probability distribution of T .
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as a fun
tion of the elapsed unemployment duration may be determined at the

date of in
ow into unemployment, by the institutional setting. Clearly, X is then

predi
table as well. If X is sto
hasti
 then somewhat loosely one may state that

if the 
urrent value of X only depends on past and outside random variation then

X is predi
table (Andersen and Borgan, 1985). Now 
onsider the 
ase in whi
h

the individual has inside information on future realizations of X. For example,

an unemployed individual may expe
t a baby or may expe
t parti
ipation in a

training program at a future date. This information may be used as input in

the individual's de
ision problem and as a result may a�e
t the 
urrent hazard

rate. If this information is not known to the analyst then X is not predi
table.

The same is true if the individual anti
ipates the realization of T and if this

a�e
ts the 
urrent hazard. Note that it is intuitively plausible that, in these


ases, standard inferen
e may lead to in
onsistent estimates. These 
ases in
lude

so-
alled instantaneous feedba
k e�e
ts: predi
tability is not satis�ed if X jumps

in an unexpe
ted way at t. This does not mean that jumps in regressor values are

not allowed at all if one demands predi
tability. Suppose that one wants to model

that an individual's hazard rate in
reases by a 
ertain amount immediately after

the realization of another duration variable � whi
h is independently distributed

from the duration of interest and from other time-varying 
ovariates. This 
an

be 
aptured by a time-varying regressor I(t > �), whi
h is predi
table.

Now 
onsider the 
ase where a time-invariant explanatory variable is unob-

served (i.e., 
onsider MPH models). If we 
ondition on the unobserved hetero-

geneity value v and do as if v is observed then the above analysis remains valid.

If v is treated as unobserved then v is not predi
table. As we shall see in Se
tion

5, ignoring the unobserved heterogeneity in empiri
al inferen
e generally leads to

in
onsistent inferen
e. In this 
ase, the standard solution is to jointly model the

hazard fun
tion and the distribution of v, and to integrate v out of the likelihood.

We end this subse
tion by making a few 
omments. First, time-varying ex-

planatory variables may play a very di�erent role in other redu
ed-form duration

models, su
h as the AFT model. This re
e
ts the fa
t that su
h models do not
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take the hazard fun
tion as the point of departure for the model spe
i�
ation.12

Se
ondly, as noted above, the 
ounting pro
ess approa
h allows for quite general


ensoring s
hemes; in fa
t, what is needed is that the observational plan is a

predi
table pro
ess. Thirdly, in the remainder of the 
hapter, the fo
us is mostly

on models without time-varying explanatory variables. The motivation for this

is basi
ally the same as the one (impli
itly) adopted in most of the methodolo-

gi
al literature on duration models, namely that the analysis of these models is

relatively manageable and that the results 
reate a good starting point for future

analysis of more general models. Below, whenever we en
ounter time-varying

explanatory variables, we ta
itly assume that the 
onditions that ensure valid

inferen
e with standard methods are satis�ed.

4.3 Theoreti
al justi�
ation

As mentioned above, the MPH model and its spe
ial 
ases are often regarded to

be useful redu
ed-form models for duration analysis. The resulting estimates are

generally interpreted with the help of some e
onomi
 theory. However, the MPH

model spe
i�
ation is not derived from e
onomi
 theory, and it remains to be seen

whether the MPH spe
i�
ation is a
tually able to 
apture important theoreti
al

relations, and, 
onversely, whether the MPH spe
i�
ation 
an be generated by

theory.

The main assumption underlying the MPH model is that the three determ-

inants of the hazard a
t multipli
atively on the hazard. This implies that if the

elapsed duration has a positive e�e
t on the hazard, then this e�e
t is stronger

for individuals with 
hara
teristi
s that also have a positive e�e
t on the hazard.

Of 
ourse, the distin
tion between two of the three determinants (the observed

and unobserved explanatory variables) is only relevant from an empiri
al point of

view. If the resear
her 
ould observe all determinants without measurement er-

ror, then the unobserved heterogeneity term 
an be omitted. Within a theoreti
al

12For example, 
onsider the formulation (10) of the AFT model. Typi
ally, time-varying

explanatory variables are in
luded in this model by way of

F (tjfX(u)gt
0
) = exp(�	(

Z t

0

exp(X(u)0�)du))

In that 
ase, the hazard rate at t depends on the whole history fX(u)gt
0
of X .
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framework it is irrelevant whether a 
ertain ba
kground variable 
an be observed

by the resear
her or not. This means that from a theoreti
al point of view, the

most important assumption of the MPH model is that the elapsed duration and

the explanatory variables a
t multipli
atively on the hazard.

In e
onomi
s, this assumption is often hard to justify. We illustrate this by

examining the e
onomi
 theories dis
ussed in Se
tion 3.13 First 
onsider the job

sear
h model of Subse
tion 3.1.2. We allow all stru
tural determinants to di�er

a
ross individuals, and this is 
aptured by time-invariant explanatory variables

x. We assume that the analyst observes x (and the duration t) but does not

dire
tly observe how the stru
tural determinants, the optimal strategy, or the

a

eptan
e probability 
hange with t. If su
h 
hanges would be dire
tly observed

then obviously it would make sense to in
lude them as time-varying explanatory

variables. We return to time-varying explanatory variables towards the end of the

subse
tion.

From Subse
tion 3.1.2 we obtain the following system of equations, in obvious

notation,

�(t; x) = b(t; x) +
�(t; x)

�(t; x)

Z
1

�(t;x)
F (wjt; x)dw

�(t; x) = �(t; x)F (�(t; x)jt; x)

Intuitively, the main reason for why it is diÆ
ult to obtain a multipli
ative

stru
ture for �(t; x) is that in general F (�(t; x)jt; x) is not multipli
ative in �,

whi
h in turn depends on \everything in the model" in a non-multipli
ative fash-

ion. Below are a few spe
ial 
ases where the resulting �(t; x) is proportional in t

and x. Note that these assume that 
hanges in the stru
tural determinants are

unanti
ipated.

Example 1. Let F be a Pareto distribution,

Family of Pareto distributions:

F (w) = (w0=w)
� for all w > w0; with w0; � > 0 (12)

13The problem is more general, though.
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where we a
tually assume � > 1 to ensure that the optimal strategy exists, and

where the parameters w0 and � of F may depend on t and x. Let in addition

b � 0. Then

�(t; x) = �(t; x)(�(t; x) � 1)

Let the dis
ount rate � vary with x but not with t, and let the shape parameter �

vary with t but not with x (for example, long-term unemployed workers re
eive on

average lower wage o�ers). Then the hazard is proportional in t and x. Of 
ourse,

the same result applies if � only varies with t and � only with x. Also, if � is a

�xed 
onstant and � is proportional in t and x, then the hazard is proportional

as well. Note that the assumption b � 0 is very strong.14

Example 2. Let � =1, so that workers do not 
are about the future. Then � � b,

and

�(t; x) = �(t; x)F (b(t; x)jt; x)

If �(t; x) varies with t (e.g. be
ause the long-term unemployed are stigmatized)

but not with x, and F and b vary with x but not with t, then the hazard is

proportional in t and x. Alternatively, if F and b do not depend on either t or x

and � is proportional in t and x, then the hazard is proportional as well.

Example 3. Let the stru
tural determinants be su
h that � is always smaller than

the lowest wage in the market (e.g., bene�ts are so low that the reservation wage

is below the mandatory minimum wage). Then F (�) = 1 always, and

�(t; x) = �(t; x)

so, if � is proportional in t and x, then the hazard is proportional as well.

Example 4. This 
ase is based on Yoon (1985), whi
h is one of the very few studies

to date on the theoreti
al justi�
ation of the PH model. He examines a model

14In general, if one is prepared to adopt a linearized spe
i�
ation for the reservation wage

�(t; x) as a fun
tion of its determinants, and if F has a Pareto distribution or an exponen-

tial distribution, then it is less diÆ
ult to obtain a multipli
ative spe
i�
ation for �(t; x). See

Lan
aster (1985a).
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where jobs have a �xed and 
ommon tenure T �, after whi
h the individual dies.15

The variable b is assumed to equal bene�ts minus sear
h 
osts, and the model

requires that the net value of b is negative. There is no dis
ounting of the future

(so the limiting 
ase � # 0 is 
onsidered). It is straightforward to show that �(t)

then follows from

�b(t; x) = �(t; x)T �
Z
1

�(t;x)
F (wjt; x)dw

Let F be a Pareto distribution (see (12)) with a �xed parameter � > 1 and a

parameter w0(t; x). It follows that

�(t; x) = [�(t; x)℄
�1

��1 [w0(t; x)℄
��

��1

"
�b(t; x)(� � 1)

T �

# �

��1

Obviously, there are many ways to obtain a PH spe
i�
ation from this.

Now 
onsider anti
ipated 
hanges in the stru
tural determinants, i.e., 
onsider

the nonstationary job sear
h model of Subse
tion 3.1.3. In parti
ular, for ease of

exposition, 
onsider a spe
ial 
ase where the only 
hange 
on
erns a drop in b at

a duration � (from b1 to b2). There still holds that �(t; x) = �(t; x)F (�(t; x)jt; x).
However, now the reservation wage �(t) for t < � depends on b1 and b2 as well as

on ��t. The smaller the remaining time interval ��t until the drop in b, the more

important the future bene�ts level b2 is for the 
urrent present value. As shown by

Van den Berg (1990a, 1995), there are two reasons for this. First, the dis
ounting

of the future means that the far future 
arries less weight than the near future.

Se
ond, there is a probability that the individual leaves unemployment before � ,

and this probability is lower if � is in the near future. This probability depends

on the hazard fun
tion itself, in between t and � . As a result of all this, as the

duration t < � pro
eeds, the e�e
t on the hazard of b1 diminishes, and the e�e
t

of b2 in
reases (with a magnitude that depends on all stru
tural determinants).

After � , the hazard does not depend on b1 anymore. It seems to be impossible to

justify a PH spe
i�
ation with su
h a theoreti
al model, ex
ept for the following

limiting 
ase.

15Job separations leading to unemployment rather than death or permanent retirement are

hard to re
on
ile with unanti
ipated duration dependen
e of the stru
tural determinants, be-


ause of the repetitive nature of unemployment.
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Example 5. Let � ! 1 in the nonstationary job sear
h model, so workers do

not 
are about the future. In that 
ase, even though an individual does have

information on future 
hanges, this does not a�e
t his optimal strategy, and the

exit rate out of unemployment is the same as in Example 2.

Finally, 
onsider the nonstationary on-the-job sear
h model of Subse
tion 3.2,

and, in parti
ular, the job-to-job transition rate (whi
h will be our hazard rate).

Note that there is no \feedba
k" from the stru
tural determinants to the value

of the reservation wage w. There holds that �(t; x) = �(t; x)F (wjt; x), where x

may in
lude w, and the following result emerges.

Example 6. Let F be time-invariant in the nonstationary on-the-job sear
h model.

Then

�(t; x) = �(t; x)F (wjx)

whi
h supports a PH spe
i�
ation if �(t; x) is multipli
ative in t and x. If F has a

Pareto distribution (see (12)), then its parameter w0 is allowed to depend on t.16;17

The main 
on
lusions of this subse
tion are as follows. First, the proportion-

ality restri
tion of the (M)PH model 
an in general not be justi�ed on e
onomi
-

theoreti
al grounds. Se
ond, if the optimal strategy is myopi
 (e.g. be
ause of

repeated sear
h, or be
ause the dis
ount rate is in�nite), then this restri
tion

often follows from e
onomi
 theory.

Despite the �rst 
on
lusion, the (M)PH model has be
ome very popular in

redu
ed-form duration analysis, in parti
ular in labor e
onomi
s. The popularity

of a redu
ed-form model that does not nest many stru
tural models distinguishes

duration analysis from the redu
ed-form analysis of wage data with the linear

16The proportionality results in Examples 4 and 6 
an also be generated with other families

of wage o�er distributions than the Pareto family. Notably, F 
an be exponentially distributed,

so F (w) = exp(��(w � w0)) on w > w0, with � > 0.
17Here, as in previous examples, if the job o�er arrival rate depends on an optimally 
hosen

sear
h intensity, then the s
ope for multipli
ative spe
i�
ations is further redu
ed. This is

be
ause this sear
h intensity is a se
ond \
hannel" through whi
h all stru
tural determinants

a�e
t the hazard in a non-multipli
ative fashion (see e.g. Mortensen, 1986, for a theoreti
al

analysis of su
h models).
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regression model, sin
e the linear spe
i�
ation has been justi�ed extensively by

human 
apital theory and traditional labor supply theory. Part of the attra
t-

iveness of the (M)PH model stems from the fa
t that it is diÆ
ult to think of

a more parsimonious spe
i�
ation of the hazard that in
ludes all single major

determinants of it. (Also, re
all that the Partial Likelihood estimation method

allows for estimation of the systemati
 hazard of the PH model without the need

to parameterize or estimate the baseline hazard.) In pra
ti
e, the empiri
al ap-

pli
ation at hand does not always di
tate a natural theoreti
al framework, and

sometimes the s
ope of the appli
ation does not warrant a full-blown theoreti
al

or stru
tural analysis. In su
h 
ases, the (M)PH model is a useful framework

whose properties have been thoroughly studied in the literature.

Last but not least, the MPH framework 
an be extended to a 
ertain extent

to in
orporate some features of the theory at hand. Notably, 
hanges over t in

the value of a variable x 
an be in
orporated by the in
lusion of time-varying


ovariates. For example, in the study of unemployment insuran
e bene�ts on exit

out of unemployment, the e�e
t of the remaining bene�t entitlement 
an be in-


luded as a time-varying 
ovariate (see e.g. Solon, 1985). Also, if the data provide

dire
t observations on how a stru
tural determinant, the reservation wage, or the

a

eptan
e probability 
hange over time, then these 
an be in
luded as time-

varying 
ovariates. As an example, 
onsider the models of Subse
tion 3.1, and

suppose that �(t; x) is fully observed and F is a time-invariant Pareto distribu-

tion whi
h does not vary with x. Then �(t; x) = �(t; x)w�
0 [�(t; x)℄

��, so if �(t; x)

is multipli
ative in t and x then this supports a PH spe
i�
ation with a time-

varying 
ovariate. As another example, 
onsider the on-the-job model. One may

observe business 
y
le indi
ators and use these as representations of �(t; x). Fi-

nally, 
hanges in the e�e
t over t of a variable x 
an be in
orporated by the

in
lusion of intera
tions between t and x in the hazard.18

These extensions lead to less transparent models, and some of the distin
t

advantages of the MPH model are lost this way (see Se
tion 5). Moreover, it

should be stressed that the insertion of some time-varying 
ovariates or time-

varying parameters into an MPH model more often than not does not lead to

a spe
i�
ation that 
an be generated by a theoreti
al model. This is intuitively

18One may use a nonparametri
 estimation method for an unrestri
ted spe
i�
ation of the

hazard rate �(t; x), allowing for full intera
tions. See e.g. Dabrowska (1987).
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lear from the nonstationary model in whi
h unemployment bene�ts de
rease

with the duration of unemployment.

As noted in Subse
tion 4.1, in applied work it is often assumed that ea
h ex-

planatory variable a
ts multipli
atively on the hazard rate (i.e., �0(x) = exp(x0�)).

From the dis
ussion above it is 
lear that e
onomi
 theory often predi
ts that the

di�erent stru
tural determinants do not a
t multipli
atively on the hazard. Thus,

if ea
h determinant is represented by di�erent elements of x, then these elements

intera
t with ea
h other in the hazard. This 
an be in
orporated to a 
ertain ex-

tent in the MPH model, as in
lusion of intera
tion terms for the di�erent elements

of x does not violate the (M)PH spe
i�
ation.19

We end this se
tion by noting that the e
onomi
 justi�
ation of other popular

redu
ed-form duration model spe
i�
ations is at least as diÆ
ult as the justi-

�
ation of the (M)PH spe
i�
ation. This holds in parti
ular for the A

elerated

Failure Time model, in whi
h the mean of log t is spe
i�ed as a linear fun
tion

of x, so log t = �x0� + �, and also for the additive hazard model, in whi
h �(tjx)
is spe
i�ed as �(tjx) =  (t) + �0(x). These two types of redu
ed-form duration

models enjoy popularity in biostatisti
s, where the relation between theory and

appli
ation is less 
ompelling than in e
onometri
s. Dis
rete-time redu
ed-form

duration model spe
i�
ations are also diÆ
ult to justify; they often do not fol-

low from the underlying e
onomi
 models (like dis
rete-time sear
h models or

dynami
 dis
rete-
hoi
e models).

5 Identi�
ation of the MPHmodel with single-

spell data

5.1 Some impli
ations of the MPH model spe
i�
ation

In this se
tion we examine identi�
ation of the MPH model with unobserved

heterogeneity,20 if the data provide i.i.d. drawings from the 
onditional distri-

19As an example, job sear
h theory predi
ts that the elasti
ity of the exit rate out of unem-

ployment with respe
t to unemployment bene�ts depends on the level of the bene�ts. This 
an

be 
aptured to some extent in a redu
ed-form analysis by in
luding (log b)2 as an additional

regressor (see Van den Berg, 1990
, for details).
20Identi�
ation of the determinants of the PH model is trivial if it is known that the data

are generated by a PH model.
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bution of tjx. In reality, the observations on t may be right-
ensored (i.e., for

some observations it is only known that t ex
eeds a 
ertain value) or interval-


ensored (e.g. if durations are grouped into intervals), or the sampling design

may be non-random. He
kman and Singer (1984a), Ridder (1984), and Lan
aster

(1990) 
ontain extensive examinations of the implied duration distributions in

other sampling designs. Situations in whi
h the data provide multiple durations

for the same individual are dis
ussed in subsequent se
tions.

Throughout the se
tion we make the following model assumption,

Assumption 5 : Independen
e of observed and unobserved explanatory

variables. In the in
ow, v is independent of x.

Note that this assumption is stronger than the usual assumption in linear

regression models that x and " are un
orrelated or that they satisfy E("jx) = 0.

It is useful to examine the distribution F (tjx) of tjx and derive the well-

known result that the duration dependen
e of the hazard fun
tion �(tjx) of this
distribution is more negative than the duration dependen
e of the hazard fun
tion

�(tjx; v) (Lan
aster, 1979, was the �rst point out these results; see also the survey
in Lan
aster, 1990, and He
kman and Singer, 1984a, who 
onsider a generalization

of the MPH framework).

By de�nition, we have

F (tjx) =
1Z
0

F (tjx; v) dG(v) (13)

where G is the 
umulative distribution fun
tion of v in the in
ow into the state

of interest, and where F (tjx; v) has the asso
iated hazard fun
tion �(tjx; v). Con-
sequently, �(tjx), whi
h by de�nition equals f(tjx)=F (tjx), 
an be written as

�(tjx) =

1R
0

�(tjx; v) F (tjx; v) dG(v)

F (tjx) (14)

By Bayes' Theorem, we have for every t that

dG(vjT > t; x) =
F (tjx; v) dG(v)

F (tjx) (15)

(Note that here we use T to denote a random variable.) In general, therefore,

the distribution of vjT > t; x depends on x for all t > 0, even though it does
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not for t = 0. The 
omposition of the sample of survivors (as 
aptured by the

distribution of v) 
hanges as time pro
eeds, in a way that that depends on t and

x. This is an important aspe
t of the dynami
 self-sele
tion that o

urs if one

examines subsamples of individuals with higher and higher durations.

By substituting (15) into (14) we obtain �(tjx) = EvjT>t;x(�(tjx; v)). Therefore,

�(tjx) =  (t) � �0(x) � E(vjT > t; x) (16)

Let us denote the integrated baseline hazard at t as z(t),

z(t) =

tZ
0

 (�) d�

Of 
ourse, � logF (tjx; v) equals v ��0(x) �z(t). By substituting this into equations

(13) and (15) it follows that we 
an write

E(vjT > t; x) =

1R
0

v � e�v��0(x)�z(t) dG(v)

1R
0

e�v��0(x)�z(t) dG(v)
(17)

It is useful to rewrite �(tjx) in some di�erent ways. First, note that the denom-

inator on the right-hand side of (17) (whi
h equals F (tjx)) is nothing but the

Lapla
e transform L of the distribution of v, evaluated at �0(x) � z(t),

L(s) =
1Z
0

e�s�v dG(v) (18)

Consequently, the numerator in (17) is nothing but minus the derivative of L
evaluated at �0(x) �z(t). This means that we 
an rewrite equation (16) as follows,

�(tjx) =  (t) � �0(x) �
�L0(�0(x) � z(t))
L(�0(x) � z(t))

(19)

So all derivatives of this with respe
t to x and/or t depend on G only by way of

(derivatives of) the Lapla
e transform of G, evaluated at �0(x)z(t). Equivalently,

all derivatives of �(tjx) with respe
t to x and/or t depend onG by way of moments

of vjT > t; x. Spe
i�
ally,

d log �(tjx)
dt

=
 0(t)

 (t)
� Var(vjT > t; x)

E(vjT > t; x)
�  (t)�0(x)

33



Clearly, be
ause of the presen
e of unobserved heterogeneity (i.e., Var(v) > 0,

whi
h under regularity 
onditions implies that Var(vjT > t; x) > 0), the dura-

tion dependen
e in the observed (or \aggregate") hazard fun
tion �(tjx) is more

negative than otherwise. This is be
ause in 
ase of unobserved heterogeneity, the

individuals with the highest values of v (and thus the highest hazards) on average

leave the state qui
kest, so that the individuals who are still in this state at high

durations tend to have lower values of v and thus lower hazards. This phenomenon

has been 
alled \weeding out" or \sorting". It o

urs in duration models with

unobserved heterogeneity in general, and so is not restri
ted to the MPH model.

The model thus allows for two 
ompeting explanations for observed negative dur-

ation dependen
e. If one ignores the presen
e of unobserved heterogeneity (i.e. if

one adopts a PH model whereas the data are generated by an MPH model with

Var(v) > 0), then the estimated duration dependen
e will be too negative. This

result has spurred the literature on the identi�
ation of duration models with

unobserved heterogeneity.

Unobserved heterogeneity has a similar e�e
t on the derivative of log �(tjx)
with respe
t to x,

d log �(tjx)
dx

=
�0
0(x)

�0(x)
� Var(vjT > t; x)

E(vjT > t; x)
� z(t)�0

0(x) (20)

Note that in the 
ase �0(x) = exp(x0�), the �rst term on the right-hand side

redu
es to �, and �0
0(x) in the se
ond term redu
es to �0(x)�. Be
ause of the

presen
e of unobserved heterogeneity, the semi-elasti
ity of the observed hazard

fun
tion �(tjx) with respe
t to x is 
loser to zero than otherwise. This 
an be

understood as follows. Within the group of individuals with a high value of �0(x),

the weeding out indu
ed by unobserved heterogeneity goes mu
h faster than

within the group of individuals with a low value of �0(x). This is a 
onsequen
e

of the multipli
ative spe
i�
ation of �(tjx; v): a high �0(x) and a high v reinfor
e

ea
h other in produ
ing a very high hazard. As a result, at a given duration

t > 0, the sample of survivors with high �0(x) has on average lower values of v

than the sample of survivors with low �0(x). This 
auses the observed average

di�eren
e between the hazards of the survivors of these groups to be smaller than

the true average di�eren
e between the two groups. It is important to stress that

this does not automati
ally imply that, if one ignores the presen
e of unobserved

heterogeneity while estimating the model with Maximum Likelihood, that then
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the e�e
t of x on the individual hazard is under-estimated. This is basi
ally

be
ause � has one more element than x, and the ML estimates of � are jointly

determined. We return to this in Subse
tion 5.6.

Note that if E(v) < 1 and  (0) < 1 then for t = 0 the right-hand side of

(16) redu
es to  (0)�0(x)E(v), and the fun
tion �0(x) is then identi�ed from data

on �(0jx). This makes sense, as at t = 0 there is not yet any self-sele
tion due to

weeding out. Before we pro
eed with the identi�
ation of the full model (i.e., of

the fun
tions  ; �0 and G), it is useful to introdu
e the fun
tion h(s), de�ned as

�L0(s)=L(s) (see equation (18)). Equation (19) 
an now be rewritten as

�(tjx) =  (t) � �0(x) � h(z(t)�0(x)) (21)

This equation will be useful in Subse
tion 5.3 and further.

5.2 Identi�
ation results

There is a substantial literature on the identi�
ation of the MPH model.21 It is im-

portant to stress that no parametri
 fun
tional form assumptions are made on the

underlying fun
tions �0;  and G, so the literature is 
on
erned with nonparamet-

ri
 identi�
ation. In general it is assumed that the data provide the distribution

fun
tion F (tjx) for all t and x.
It is useful to de�ne identi�ability as a property of the mapping from the de-

terminants  ; �0 and G, given their domain, to the data (as summarized in F (tjx)
for all t and x). Consider a given set of assumptions on the three determinants

(like the restri
tion that their fun
tion values must be nonnegative; below we

examine various sets of assumptions). These 
hara
terize the domain of the map-

ping. The MPH spe
i�
ation then de�nes the unique mapping from the domain

to the data. The model is identi�ed if the mapping has an inverse, i.e. if for given

data22 there is a unique set of fun
tions  ; �0 and G in the domain that is able

to generate these data.23

21He
kman (1991) provides an overview in whi
h the MPH model is embedded in a more

general 
lass of models. He
kman and Taber (1994) list identi�
ation proofs for MPH models,

non-MPH models, and more tightly spe
i�ed MPH models without 
ovariates.
22Of 
ourse, these data must be in the image of the mapping.
23In fa
t, for te
hni
al reasons, the identi�
ation literature typi
ally fo
uses on the model

determinant z instead of its derivative  .
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Now let us 
onsider the assumptions that are made on the determinants. These

in
lude the regularity Assumptions 1{4, and Assumption 5 on the independen
e

of x and v. In addition, we list the following assumptions whi
h will play a role

in the remainder of the 
hapter,

Assumption 6 : Variation in observed explanatory variables. The set X
of possible values of x 
ontains at least two values, and �0(x) is not 
onstant on

X .

Assumption 6b : Variation in observed explanatory variables. There is

an element xa of the ve
tor x with the property that the set X a of its possible values


ontains a non-empty open interval. For given values of the other elements of x,

the value of xa varies over this interval. Moreover, �0(x) as a fun
tion of xa is

di�erentiable and not 
onstant on this interval.

Assumption 7 : Normalizations. For some a priori 
hosen t0 and x0, there

holds that
R t0
0  (�)d� = 1 and �0(x0) = 1.

Assumption 8 : Tail of the unobserved heterogeneity distribution. E(v) <

1.

Assumption 8b : Tail of the unobserved heterogeneity distribution. The

random variable v is 
ontinuous, and the probability density fun
tion g(v) of v

has the property that

lim
v!1

g(v)

v�1��S(v)
= 1 (22)

where � 2 (0; 1) is spe
i�ed in advan
e, and where S(v) is a slowly varying

fun
tion,24 i.e. S has the property that, for every v > 0,

lim
u!1

S(uv)=S(u) = 1:

For Assumption 6, a single dummy variable x suÆ
es, provided that it has an

e�e
t on the hazard fun
tion. In that 
ase �0(x) takes on only two values on X .

24See Feller (1971) for an exposition on su
h fun
tions.
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Note that we de�ne �0 to be identi�ed if its value is known for ea
h x 2 X . In

pra
ti
e, one may start o� with a parametri
 spe
i�
ation of �0(x) and require

that all parameters 
an be re
overed from the set of all pairs (x; �0(x)) with x 2 X .

In the 
ase where �0(x) is (log-)linear in x
0�, this implies that the elements of x

should not be perfe
tly 
ollinear.

Assumption 7 
on
erns an inno
uous normalization of two of the three terms

in the hazard �(tjx; v). Assumptions 8 and 8b require more dis
ussion. Basi
ally,

under Assumption 8, the right-hand tail of G is not allowed to be too fat be
ause

otherwise E(v) =1. Now 
onsider Assumption 8b. It is important to stress that

the a priori 
hoi
e of � determines the assumed 
lass of heterogeneity distributions.

Basi
ally, the smaller �, the fatter the tails. However, for any � 2 (0; 1), all

heterogeneity distributions have E(v) = 1 (see Ridder, 1990). This means that

the right-hand tail of G is always fatter than under Assumption 8.

Elbers and Ridder (1982) were the �rst to prove the nonparametri
 identi�
a-

tion of the MPH model, under Assumptions 1{8. Their identi�
ation proof is not


onstru
tive, i.e., the proof does not express the underlying fun
tions �0;  and

G dire
tly in terms of observable quantities. Constru
tive identi�
ation proofs

are attra
tive be
ause they suggest a nonparametri
 estimation method. Melino

and Sueyoshi (1990) provide a 
onstru
tive proof for the 
ase where Assumption

6 is tightened (to Assumption 6b, with the ex
eption that �0(x) does not have to

be di�erentiable). However, this proof is diÆ
ult to use as an inspiration for an

attra
tive estimation strategy be
ause it relies heavily on the observed duration

density at t = 0, and x needs to be a 
ontinuous variable. Re
ently, Kortram et

al. (1995) provide a 
onstru
tive proof for the original 
ase with only two pos-

sible values for �0(x). Lenstra and Van Rooij (1998) exploit this to 
onstru
t a


onsistent nonparametri
 model estimator. They do not provide the asymptoti


distribution of their estimator. Under somewhat stronger model assumptions than

above, Horowitz (1999) 
onstru
ts a nonparametri
 estimation method that does

not follow an identi�
ation proof; rather, it exploits the similarity between the
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MPH model and the transformation model (see Subse
tion 4.1).25;26 He does

provide the asymptoti
 distribution of his model estimator.

He
kman and Singer (1984b) also prove nonparametri
 identi�
ation of the

MPH model. Their result turns out to be parti
ularly interesting for the insights

it generates into fundamental properties of the MPH model. Contrary to Elbers

and Ridder (1982), they make Assumption 6b instead of the weaker Assumption

6, on the variation in x. More importantly, they make Assumption 8b instead

Assumption 8 on the 
lass of heterogeneity distributions. Assumption 8b rules out

that v is degenerate. This means that the PH model as an underlying model is not

in
luded in the set of MPH models 
onsidered by He
kman and Singer (1984b).

This is a disadvantage if the PH model is regarded to be an interesting spe
ial


ase. This result should not be taken to mean that the MPH models 
onsidered by

He
kman and Singer (1984b) are not able to generate a PH spe
i�
ation for the

observed hazard �(tjx). Consider the set of MPH models generated by a parti
ular


hoi
e of � in (22), and assume that v has a Positive Stable distribution. This

family of distributions is most easily 
hara
terized by its Lapla
e transform.

Family of Positive Stable distributions:

L(s) = exp(�s�); with � 2 (0; 1):

Note that lims#0 L0(s) = �1, so E(v) = 1.27 Using results in Ridder (1990)

and Feller (1971) it 
an be shown that in fa
t we have to take � exa
tly equal

25In fa
t, Horowitz (1999) assumes that �0(x) = exp(x0�), and he a

ordingly 
alls the

estimator a semiparametri
 estimator. It should be stressed that this estimator and other non-

parametri
 and semiparametri
 estimators for the MPH model rely heavily on the shape of the

empiri
al survivor fun
tion for t # 0. For a number of reasons, it is notoriously diÆ
ult to assess

this shape. For example, extremely short durations are often under-reported in real-life data.
26Horowitz (1999) also provides a useful list of existing semiparametri
 estimation methods

where parametri
 fun
tional forms are assumed for either  or G.
27The 
orresponding densities are bell-shaped (see Hougaard, 1986). Hougaard (1986)

provides a justi�
ation of this family as a family of distributions for v in MPH-type models.

Suppose that the individual duration 
an end for a number of di�erent reasons f1; : : : ; ng, with


ause-spe
i�
 individual hazards that share the same baseline hazard and the same systemati


hazard but not the same individual heterogeneity value vj . The individual hazard, whi
h is the

sum of the 
ause-spe
i�
 individual hazards, then equals
P
 (t)�0(x)vj , and this is an MPH

spe
i�
ation with v =
P
vj . Now suppose that the vj are i.i.d. positive random variables, and

suppose that n ! 1. If the s
aled mean of the vj has a nondegenerate limiting distribution
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to � in order to obtain a G that satis�es (22). So, let v have a Positive Stable

distribution with parameter �. Then, by equation (19),

�(tjx) = � (t)[z(t)℄��1[�0(x)℄
� (23)

whi
h is a PH spe
i�
ation, despite the fa
t that, a

ording to the underlying

model, there is unobserved heterogeneity. For example, if the underlying MPH

model has a 
onstant baseline hazard  (t) = 1 then the observed hazard has the

(popular) Weibull PH spe
i�
ation with baseline hazard �t��1, with 0 < � = � <

1, whi
h displays negative duration dependen
e.28 Suppose that �0(x) = exp(x0�).

If the true model has a Positive Stable distribution of unobserved heterogeneity

and if the resear
her assumes instead that there is no unobserved heterogeneity

and that tjx has a PH spe
i�
ation (an assumption that is 
on�rmed by the data!)

then the parameter of interest � is estimated by ��, so it is under-estimated in

absolute value.

These results have very important impli
ations. First, the MPH model is non-

parametri
ally unidenti�ed if the assumption that E(v) < 1 is dropped (or, al-

ternatively, if Assumption 8b is dropped). Moreover, the adoption of a model

that is observationally equivalent to (but di�erent from) the true model leads to

biased inferen
e on the parameters of interest (see also Robins and Greenland,

1989). This is bad news, as it is often diÆ
ult to make any justi�ed assumption

on the tail of the unobserved heterogeneity distribution. On the other hand, in

the 
ase where v represents an important e
onomi
 variable, e
onomi
 theory

often provides a justi�
ation of E(v) < 1. In Subse
tion 5.5 we dis
uss some

examples of this.

then it must be a Positive Stable distribution (Feller, 1971). In fa
t, for a wide range of distribu-

tions of the underlying random variable, the limiting distribution 
onverges to a Positive Stable

distribution. So, if v is an average of many di�erent i.i.d. unobserved heterogeneity terms, then,

in many 
ases, the distribution of v is approximated by a Positive Stable distribution. Note

however that the underlying assumption that the di�erent 
ause-spe
i�
 hazards have the same

baseline hazard and systemati
 hazard, while perhaps often reasonable in medi
al s
ien
e, is

often untenably strong in e
onomi
s. Moreover, if v has a Positive Stable distribution and the

parameter � is not �xed, then the MPH model is not identi�ed (see below).
28If the underlying hazard has Weibull duration dependen
e  (t) = (1=�)t1=��1 and G is a

Positive Stable distribution with parameter � then the observed hazard does not 
hange with

t, so tjx has an exponential distribution.
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Ridder (1990) addresses the fundamental identi�
ation problem in detail. He

argues that for any MPH model with E(v) < 1 there are observationally equi-

valent models with E(v) =1. In parti
ular, for any MPH model with E(v) <1
there is basi
ally one observationally equivalent MPH model satisfying (22), for

any � 2 (0; 1). So, Assumption 8 as well as Assumptions 8b for given � 
an all be

interpreted as di�erent untestable normalizations that impose identi�ability on a


lass of models that are unidenti�ed.

Let us return to the 
ase where v is degenerate (i.e., the PH model). Van

den Berg (1992) proves that the full set of MPH models that is observationally

equivalent to the PH model 
onsists of models in whi
h v is degenerate or has a

Positive Stable distribution. In the latter 
ase, as is 
lear from (23), the duration

dependen
e of the baseline hazard and the absolute size of the e�e
t of x are more

positive than in the resulting PH model. For the general 
ase, Ridder (1990) shows

that some aspe
ts of the MPH model are still identi�ed if no assumptions on the

tail of G are made. For example, the sign of the e�e
t of x is identi�ed.

As we shall see below, one solution to the fundamental identi�
ation problem

is to rely on e
onomi
 theory when 
hoosing a fun
tional form for G. Another

solution is to use information on multiple spells for the same individuals.

5.3 Intera
tion between duration and explanatory vari-

ables in the observed hazard

In this subse
tion we examine properties of the observed hazard �(tjx) if the un-
derlying model has an MPH spe
i�
ation. These provide additional insights into

the identi�
ation of the model. Throughout most of this subse
tion we assume

that E(v) <1, i.e. we adopt the MPH framework of Elbers and Ridder (1982).

At times we generalize results by examining the wider 
lass of models where

E(v) � 1.

If there is no unobserved heterogeneity (so v is a 
onstant), then the observed

hazard �(tjx) is multipli
ative in t and x. Now suppose there is unobserved het-

erogeneity. If the observed hazard �(tjx) would be multipli
ative in t and x then

the model would be observationally equivalent to a model without unobserved

heterogeneity. Be
ause of the nonparametri
 identi�ability of the model, we know

that the latter 
annot be true. Therefore, the observed hazard 
annot be multi-
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pli
ative in t and x. As a result, we obtain the fundamental insight that identi�
-

ation of G in MPH models 
omes from nonproportionality of the observed hazard

�(tjx) (see Hougaard, 1991, Van den Berg, 1992, and Keiding, 1998). In terms of

equation (21): if there is unobserved heterogeneity then the fun
tion h(z(t)�0(x))

is not multipli
ative in t and x, and the intera
tion between t and x identi�es

G. Yet another way to formulate this is by stating that if there is unobserved

heterogeneity then log �(tjx) is not additive in t and x, so for some t and x

�2 log �(tjx)
�t�x

� �2 log h(z(t)�0(x))

�t�x
6= 0 (24)

provided that x varies 
ontinuously and the appropriate di�erentiability 
ondi-

tions are satis�ed.

Now re
all from the previous subse
tion that if the assumption that E(v) <1
is dropped then a proportional spe
i�
ation for �(tjx) 
an also be generated by

MPH models with unobserved heterogeneity. Su
h models are 
hara
terized by

the property that v has a Positive Stable distribution. All other distributions for v

with E(v) =1 generate �(tjx) that is not multipli
ative in t and x. Consequently,

if Positive Stable distributions are ruled out for v then the result on the relation

between unobserved heterogeneity and nonproportionality of the observed hazard


an be extended to in
lude in�nite-mean distributions for v.

In fa
t, unobserved heterogeneity 
an not generate just any type of intera
tion

between t and x in �(tjx). Van den Berg (1992) shows that it is not possible that

there are whole intervals of t and x on whi
h there is no intera
tion.29 (Whether

the intera
tion is \large" is an empiri
al matter; as we shall see below, it is not

diÆ
ult to 
onstru
t examples in whi
h there is virtually no intera
tion for a wide

range of values of t.) Also, the following simple and appealing spe
i�
ation for

�(tjx) that allows for intera
tion 
annot be generated with an MPH model,

�(tjx) =  (t)�0(x)e
��z(t)�0(x)

be
ause the fun
tion h(s) = exp(��s) 
annot be generated by the model.30 In

the next subse
tion we also derive restri
tions on the sign of the intera
tion for

29This follows be
ause any distribution G that gives a fun
tion h su
h that h(z(t)�0(x)) is

multipli
ative in t and x on an interval must be a Positive Stable distribution.
30This 
an be seen as follows. If the model is an MPH model then h(s) 
an be written as

�L0(s)=L(s), with L(s) being the Lapla
e transform of G. However, the fun
tion L(s) that

follows from the 
andidate h(s) = exp(��s) is not 
ompletely monotone and hen
e 
annot be

a Lapla
e transform (see Feller, 1971).
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di�erent t. All of this eviden
e implies that the 
lass of models for �(tjx) that is
generated by MPH models is smaller than the general 
lass of intera
tion models

for �(tjx). In other words, the MPH model is overidenti�ed. The fa
t that the

fun
tion h must be su
h that it 
an be generated by a Lapla
e transform, the fa
t

that z(t) and �0(x) a�e
t the value of h only by way of their produ
t, and the

fa
t that t enters the intera
tion term by way of the integral of the multipli
ative

term  (t), all impose restri
tions on �(tjx) as a fun
tion of t and x.

At this stage it is instru
tive to examine the results in M
Call (1996) on the

identi�
ation of an extension of the MPH model with E(v) < 1 and �0(x) =

exp(x0�). Spe
i�
ally, he allows the parameter � to vary with t. This is an em-

piri
ally relevant extension (re
all the dis
ussion at the end of Se
tion 4). Note

however that the extension 
reates a se
ond type of intera
tion between t and

x in the observed hazard, so the question arises whether the data enable a dis-

tin
tion between them. M
Call (1996) shows that the model is not identi�ed if x


an assume only two di�erent possible values. However, if there is an explanat-

ory variable that attains all possible values between �1 and 1 then the model

(i.e.,  ;G and �(t)) is identi�ed, so then the two types of intera
tion 
an be

distinguished empiri
ally.

The in
lusion of time-varying 
ovariates (whi
h is another empiri
ally relevant

extension of the MPH model) 
reates yet another type of intera
tion between t

and x in the observed hazard. It is 
lear that in some 
ases a model with time-

varying 
ovariates is not identi�ed (for example, if �0(x(t)) is multipli
ative in

t). However, Honor�e (1991) illustrates that in some 
ases time-varying 
ovariates


an also be helpful for identi�
ation. Suppose that x is time-invariant for part

of the population; some of them have the value x1 while others have x2, with

�0(x2) 6= �0(x1). Suppose in addition that for the other part of the population the

value of x 
hanges dis
retely from x1 to x2 at duration t� > 0, and assume that

x satis�es the 
onditions for time-varying 
ovariates laid out in Subse
tion 4.2.

Then the model is identi�ed without any assumption on the tail of G (so E(v)

may be �nite or in�nite). See He
kman and Taber (1994) for a generalization of

this result.

The results in M
Call (1996), Honor�e (1991) and He
kman and Taber (1994)

illustrate the fa
t that the intera
tion generated by the presen
e of unobserved

heterogeneity is rather spe
i�
. It is plausible that as more and more sour
es of
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intera
tion are in
luded into the model, it be
omes more and more diÆ
ult to

a
hieve identi�
ation. In the limit, the assumption that the underlying hazard

is multipli
ative in t; x; and v is essential for identi�
ation. If this assumption

is dropped then obviously any nonproportional spe
i�
ation 
an be generated

without the need to allow for unobserved heterogeneity, and the model would

be unidenti�ed (see also He
kman, 1991). In parti
ular, the spe
i�
ation (19)


an also be generated as an individual hazard, whi
h equals the observed hazard

be
ause of the absen
e of unobserved heterogeneity.

5.4 The sign of the intera
tion

In this subse
tion we examine the sign of the intera
tion between t and x in

�(tjx). This sign is a potentially interesting model 
hara
teristi
, as its empiri
al


ounterpart may be readily observed from the data. Moreover, e
onomi
 theory

sometimes makes predi
tions of the sign of the intera
tion. For example, the

ranking model of unemployment by Blan
hard and Diamond (1994) predi
ts that

the aggregate exit rate out of unemployment as a fun
tion of t de
reases more in a

\bad" steady state (i.e. a steady state where the exit rates are low anyway) than

in a good steady state. If the steady state is represented by a dummy variable x

then this means that the intera
tion between t and x is predi
ted to be always

positive.

The dis
ussion is fa
ilitated by using �0(x) and x inter
hangeably. Obviously,

this entails no loss of generality in the examination of the sign of the intera
tion,

provided that it is kept in mind that x has a positive e�e
t on �(tjx; v). For

onvenien
e we take x to vary 
ontinuously, so that the sign of the intera
tion


an be expressed as the sign of the 
ross-derivative of log h(z(t)x) with respe
t

to t and x (see equation (24); re
all that �(tjx) =  (t) � �0(x) � h(z(t)�0(x)) ).
The derivative of log h(z(t)x) with respe
t to x equals h0(z(t)x)z(t)=h(z(t)x).

The sign of the 
ross-derivative of logh(z(t)x) with respe
t to t and x then equals

the sign of the derivative of sh0(s)=h(s) evaluated at s = z(t)x. The fun
tion h(s)

is determined by the Lapla
e transform L(s) of G. Therefore, the sign of the in-

tera
tion at a 
ertain t and x is 
ompletely determined by G.31 Given that z(t)x

31It follows from the results in Subse
tion 5.1 that sh0(s)=h(s) at s = z(t)x 
an be expressed

in terms of the moments of vjT > t; x (spe
i�
ally, it depends on the �rst three moments).
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takes on all values in [0;1), knowledge of the sign of sh0(s)=h(s) for all s is ne-


essary in order to infer whether this sign is unambiguous for all t and x. To put

this more bluntly, the full spe
i�
ation of the unobserved heterogeneity distri-

bution determines the sign of the intera
tion between duration and explanatory

variables in the observed hazard.

The �rst notable result 
on
erns the sign of the intera
tion for small t. In

general, the intera
tion is stri
tly negative on an interval [0; ").32 This negative

intera
tion means that if x is large then the observed duration dependen
e for

small t is more negative than if x is small. This 
an be understood as follows.

In the sub-population of individuals with a high value of x, the individuals who

also have a high v will have a disproportionally high hazard. As a result, those

individuals leave the state very qui
kly, and this has a strong negative duration-

dependen
e e�e
t on the observed hazard for the individuals with high x. Among

the individuals with low x, this weeding out phenomenon o

urs at a mu
h lower

speed, so their observed hazard de
reases less strongly. It is important to stress

that this intuitive explanation does not work for t > 0, be
ause the distribution

of v among survivors at t > 0 depends on x itself.

Lan
aster (1979) shows that if G has a Gamma distribution,

Family of Gamma distributions:

g(v) = 
r=�(r) � vr�1 exp(�
v) for all v > 0; with 
; r > 0;

then the intera
tion is negative for all t and x, so the negative intera
tion sign for

small t 
an be extended to all t. Unfortunately, this result 
annot be generalized

to in
lude all possible G. To see this, 
onsider dis
rete distributions for G with

a �nite number of mass points (or points of support), ea
h of them positive and

�nite,

Family of dis
rete distributions with a �nite number of

mass points, ea
h of them positive and �nite:

Pr(v = vi) = pi for all i = 1; 2; : : : ; n;

with 0 < v1 < v2 < : : : < vn <1; 0 < p1; p2; : : : ; pn < 1;
Pn

i=1 pi = 1; n <1
32For example, if Var(v) < 1 and limt#0  (t) 2 (0;1℄ then �2 log �(tjx)=�t�x < 0 at t = 0.

If E(v3) <1 and limt#0  (t) 2 [0;1℄ then �2 log �(tjx)=�t�x < 0 on an interval next to t = 0.
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(this is a popular spe
i�
ation in empiri
al work; see Subse
tion 5.5 below). We

shall show that it is intuitively plausible that in this 
ase, as t ! 1, the de-

rivative � log �(tjx)=�x goes to its value at t = 0 (so that this derivative varies

with t in a non-monotone way, i.e. the 
ross-derivative does not have the same

sign everywhere). When t in
reases, the group of survivors be
omes in
reasingly

more homogeneous, sin
e the individuals with v > v1 leave unemployment on

average earlier than the individuals with v = v1. In the limit, the group of sur-

vivors is homogeneous (all remaining individuals have v = v1) so the value of

� log �(tjx)=�x equals the value in a model without unobserved heterogeneity,

whi
h is �0
0(x)=�0(x) (see equation (20)). This in turn equals the value that is

taken by � log �(tjx)=�x in general at t = 0 (see equation (20)), be
ause at t = 0

the sele
tion due to heterogeneity has not yet taken pla
e.33

Example 7. Let v have a dis
rete distribution with two points of support with

Pr(v = 1=5) = Pr(v = 3=5) = 1=2. Then the 
ross-derivative of log �(tjx) with
respe
t to t and x equals zero if z(t)�0(x) is about 4:6 and it is positive if and

only if z(t)�0(x) ex
eeds that number.

In this example, there is a positive value of z(t)�0(x) for whi
h the observed

hazard is multipli
ative in t and x (i.e. the 
ross-derivative is zero) despite the

presen
e of unobserved heterogeneity. However, the 
orresponding values of t and

x have measure zero in the set of all possible values of t and x. Note that the above

results implies that, if G is dis
rete with a �nite number of points of support,

the observed hazard �(tjx) 
an be approximated by a PH spe
i�
ation if t is

suÆ
iently large.

In
identally, it is not diÆ
ult to 
onstru
t examples where the weeding out

of individuals with high v o

urs very qui
kly after t = 0. If v has two points of

support where one of them is extremely large, then the individuals with large v

leave the state almost immediately. As a result, the magnitude of the intera
tion

between x and t is virtually zero for almost all t > 0.

The family of dis
rete distributions is not the only family that generates a non-

33These results imply that, when 
omparing an individual with a relatively small x to one

with a relatively large x, the proportionate di�eren
e between the observed hazards diminishes

as time starts to run from t = 0 onward, but it ultimately returns to the level at t = 0.
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monotone sign of the intera
tion. Other examples in
lude uniform distributions

with support [
1; 
2℄ with 0 < 
1 < 
2 < 1 as well as many other distributions

with a positive lower bound of the support (see Abbring and Van den Berg, 1998,

for details). In general, it seems diÆ
ult to derive 
onditions on G su
h that the

intera
tion is always negative.34 In the next subse
tion we return to this issue,

when we examine the limiting distribution of vjT > t; x as t ! 1, for a wide


lass of distributions G.

Re
all that in general for small t the intera
tion is negative. It turns out that,

even if the intera
tion may be positive for larger t, the 
umulative intera
tion

remains negative. With this we mean that (under suitable regularity 
onditions),

Z t

0

�2 log �(� jx)
���x

d� < 0

for all t and x. This 
an be seen by noting that this integral equals � log �(� jx)=�x
at � = t minus the same expression at � = 0, and, by equation (20), this is

negative.

We end this subse
tion by noting a remarkable result on the e�e
t of x on

the observed hazard �(tjx) in MPH models.35 One may be tempted to think that

this e�e
t is always positive if x has a positive e�e
t on the underlying hazard

�(tjx; v). However, this is not a general property of the model. Intuitively, if a

fra
tion of individuals has a very high value of v then, in the sub-population of

individuals with high x, the high-v individuals leave the state extremely qui
kly.

The drop in the mean value of v among the survivors with high x is then so

large that their hazard may on average fall below the value of those with lower x

values. In su
h a 
ase, the negative e�e
t of the drop in v on �(tjx) is not o�set
by the positive e�e
t of the large x. In terms of equation (20), the se
ond term

on the right-hand side dominates the �rst one.

Example 8. Consider again the dis
rete distribution for v with Pr(v = 1=5) =

Pr(v = 3=5) = 1=2 (see Example 7). Then ��(tjx)=�x is always positive. However,

34Negative intera
tion is equivalent to the statement that �L0(ey)=L(ey) is log-
on
ave on

y 2 (�1;1), but this does not seem to 
orrespond to a well-known 
lass of distributions for

G.
35Even though this result is not 
on
erned with the sign of the intera
tion, its interpretation

�ts in with the latter subje
t.
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if the highest mass point is at 5=2 instead of 3=5 the this derivative is negative

for values of t and x su
h that z(t)�0(x) is in an interval around 1.

In sum, the observed hazard of a high-x individual 
an be smaller than that

of a low-x individual. This means that it is not possible to dedu
e the sign of

the e�e
t of x on the underlying individual hazard from the observed relation

between x and the observed hazard at a 
ertain duration t. It should however

be stressed that this remarkable e�e
t 
an only o

ur for some lo
al duration

intervals. Spe
i�
ally, the observed survivor fun
tion F (tjx) and the observed

mean duration E(tjx) are always de
reasing in x (i� �0(x) in
reases in x). This


an be seen from the relations

F (tjx) = Ev(F (tjx; v)) = L(z(t)�0(x))

E(tjx) = EvE(tjx; v) =
Z
1

0
L(z(t)�0(x))dt

where Ev denotes the expe
tation with respe
t to G (note that L de
reases in its

argument; see equation (18)).

5.5 Spe
i�
ation of the unobserved heterogeneity distri-

bution

Studies in whi
h parameterized MPH models are estimated have wrestled with

the 
hoi
e of a fun
tional form for G (see e.g. He
kman and Singer, 1984a). This


hoi
e is thought to be harder to justify than the 
hoi
e for a fun
tional form for

the baseline hazard  , as e
onomi
 theory often suggests a shape for the latter.

In this subse
tion we examine parametri
 families of distributions that 
an be

given supporting arguments as a 
hoi
e for G. We start with families that 
an

be supported by limit arguments. Next we show that e
onomi
 theory sometimes

a
tually does make informative predi
tions on important aspe
ts of the shape of

G. This typi
ally 
on
erns 
ases where a key sour
e of individual heterogeneity

is observed by labor market parti
ipants but not by the resear
her.

5.5.1 Dis
rete distributions

Suppose that the baseline hazard and the systemati
 hazard have parametri


fun
tional forms with a �nite number of parameters, but that the only assumption
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on G is that it has a �nite mean (or satis�es (22)). For this 
ase, He
kman and

Singer (1984
) show that the Maximum Likelihood estimator of G is a dis
rete

distribution, provided that some regularity 
onditions are met.36 For a given

sample, the parameters of this dis
rete distribution (the number of points of

support, their lo
ation, and their asso
iated probabilities) are 
hosen su
h as to

maximize the likelihood fun
tion. The result by He
kman and Singer (1984
)

illustrates the 
exibility of dis
rete distributions as heterogeneity distributions.

Intuitively, if the number of points of support in
reases, then any true underlying

distribution G 
an be approximated well. In pra
ti
e, it is often diÆ
ult to �nd

more than a few di�erent mass points. Usually, if more than two or three points of

support are taken then the estimates of some of them 
oin
ide. Standard pra
ti
e

in 
ase of dis
rete G is to estimate the model with a number of mass points that

is either predetermined or equal to the maximum number that 
ould be dete
ted,

and to report standard errors 
onditional on this 
hoi
e. It is important to stress

that su
h approa
hes are not \nonparametri
" in the true sense of the word, and

that the standard errors do not re
e
t un
ertainty with respe
t to the a
tual

number of mass points.

The fa
t that it is often diÆ
ult to �nd more than a few mass points may

re
e
t a la
k of informativeness on G in the data. Re
all that the data do not

provide observations on drawings from G, but that G enters the likelihood fun
-

tion as a mixing distribution. The information on G 
omes from the observed

intera
tion between t and x in the data, and it may be that a mixing distribution

with a few mass points is often able to 
apture most of this. The simulations in

He
kman and Singer (1984
) strongly 
on�rm this. They �nd that the parameters

of  and �0 as well as the shape of the distribution of tjx are well estimated if G

is assumed to be dis
rete with an unknown number of mass points, even if the

true G is 
ontinuous. The estimated number of mass points is typi
ally small.

For G dis
rete with a �nite number of points of support, ea
h of them positive

and �nite, we restate the following model properties. First, E(v) <1. Se
ondly,

the intera
tion between t and x in �(tjx) is not monotone; it is negative for small

t and positive for very large t. Thirdly, the e�e
t of x on �(tjx) is not always

monotone even if the e�e
t on �(tjx; v) is.
36See Trussell and Ri
hards (1985), Lan
aster (1990) and Baker and Melino (2000) for addi-

tional insights into this estimator and for alternative 
omputational strategies.
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5.5.2 Gamma distributions

In appli
ations, the family of Gamma distributions has perhaps been the most

popular 
hoi
e for G. This stems from the resulting analyti
 tra
tability: all

relevant properties of the distribution of tjx 
an be expressed in 
losed-form

solutions. In their re
ent working paper, Abbring and Van den Berg (1998) are

the �rst to provide a less ad-ho
 justi�
ation for the 
hoi
e of the family of Gamma

distributions for G. Suppose that zero is the lower bound of the support of the

true (unknown) G, with v being a 
ontinuous random variable (we do not make

assumptions on the upper bound of the support ofG). Then, under mild regularity


onditions, the unobserved heterogeneity distribution among the survivors at

duration t 
onverges to a Gamma distribution if t ! 1. In fa
t, we have to

s
ale the distribution of v among survivors be
ause the uns
aled distribution


onverges to zero (note that the Gamma family is invariant to s
aling). This

result implies that, in many 
ases, the heterogeneity distribution among survivors

at high durations 
an be approximated well by a Gamma distribution, and this

provides a motivation to adopt the Gamma family for G(v) itself.

For G(v) equal to a Gamma distribution, we restate the following model

properties. First, E(v) < 1. Se
ondly, the intera
tion between t and x in �(tjx)
is monotone and negative for all t. Thirdly, the e�e
t of x on �(tjx) is always

monotone if the e�e
t on �(tjx; v) is monotone.

The limit result in Abbring and Van den Berg (1998) does not hold if the true

G(v) is a dis
rete distribution with a �nite number of points of support.37

5.5.3 Suggestions from e
onomi
 theory

Now let us turn to (aspe
ts of) shapes of G(v) that 
an be justi�ed by e
onomi


theory. First, as a general remark, it should be noted that e
onomi
 theory often

predi
ts that the exit rate out of a state is bounded from above. Consider the

sear
h theories of Se
tion 3. In general, the exit rate out of unemployment 
an

be written as �F (�). The se
ond term in this expression is a probability whi
h

37Re
all that in su
h a 
ase the sign of the intera
tion is positive for large t, whereas in the


ase of a Gamma distribution it is negative for large t. The latter suggests that, if in pra
ti
e

a 
hoi
e must be made between a dis
rete G or a Gamma G, it is useful to examine the sign

of the intera
tion between t and x in the data on �(tjx) for large t (see Hougaard, 1991, for an

example).
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ne
essary lies between zero and one. If the �rst term is in�nite then there are

no fri
tions in the �rst pla
e, and the models redu
e to standard labor market

models with zero unemployment durations. A

ording to this line of reasoning,

�(tjx; v) should be bounded from above, whi
h implies that the support of G is

bounded from above (whi
h in turn implies that E(v) <1).38

Suggestions from equilibrium sear
h models

Suppose worker behavior is des
ribed by the sear
h models of Se
tion 3. In the

literature, these models have been extended to in
lude employer behavior. For

surveys of the theoreti
al and empiri
al analysis of su
h \equilibrium sear
h mod-

els", see Ridder and Van den Berg (1997), Mortensen and Pissarides (1999), and

Van den Berg (1999). To �x thoughts, 
onsider the equilibrium sear
h model

of Bontemps, Robin and Van den Berg (1999) where unemployed and employed

workers sear
h, and di�erent workers have di�erent values of leisure b. If the job

o�er arrival rates are the same in employment and unemployment, then the re-

servation wage of an unemployed worker with value of leisure b is simply equal

to b. Now suppose that b has a 
ontinuous distribution H(b) in the population.

An employer sets his wage w su
h as to maximize his steady-state pro�ts. We

assume that the number of �rms is �xed, or, alternatively, that an entry fee has

to be paid. It is not optimal for any �rm to o�er a wage equal to the lower bound

b of the distribution H(b), be
ause then its steady-state labor for
e and pro�t

rate are zero. The lowest wage w in the market is stri
tly larger than b. As a

result, there is a positive fra
tion of individuals who a

ept any wage o�er (i.e.,

who have b < w).

In this model, the individual exit rate out of unemployment equals �F (b).

Now suppose that the resear
her wants to estimate a redu
ed-form model of un-

employment durations. The individual value of leisure b is unobserved, so it is

reasonable to take the unobserved heterogeneity term v to represent the a

ept-

an
e probability F (b) (provided that there is no additional sour
e of unobserved

heterogeneity). As a result, the distribution G(v) has support in [0; 1℄. But there

38One may argue that � is a�e
ted by an optimally 
hosen sear
h intensity, and that the

distribution of stru
tural determinants in the population is su
h that the resulting distribution

of � does not have an upper bound. However, in sear
h and mat
hing models, � is at least

partially determined by the meeting te
hnology of the labor market; this te
hnology is a market


hara
teristi
 that 
annot be fully dominated by individual behavior.
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is a positive fra
tion of workers with F (b) = 1, so G has a mass point at the

upper bound of its support (i.e., at v = 1). If the highest wage in the market w is

smaller than the highest level of b then G also has a mass point at zero. In that


ase G is a defe
tive distribution; a positive fra
tion of individuals is unemployed

forever. In pra
ti
e it may not be diÆ
ult to sort out the latter individuals from

the data (i.e. to observe whether b > w), be
ause it does not make sense for

these individuals to sear
h for a job, so they may 
lassify themselves as being

nonparti
ipants.

It is not diÆ
ult to see that this result extends to more general equilibrium

sear
h models. Often, employer behavior is su
h that a positive fra
tion of unem-

ployed workers a

epts any wage o�er and 
onsequently has the maximum hazard

level for the transition into employment.

Suggestions from on-the-job sear
h models

Consider the stationary on-the-job sear
h model of Subse
tion 3.2. Published

statisti
s on nationwide job mobility 
ontain information on the marginal job

duration distribution, i.e. on the distribution of job durations un
onditional on

the wage in the job. The wage then represents unobserved heterogeneity in the

job duration data.

The distribution of t given the wage w on the job is exponential with density

f(tjw) = (Æ + �1F (w))e�(Æ+�1F (w))t (25)

Consider the job durations t of a 
ohort of workers who have just left unemploy-

ment for a job (this 
onstitutes the in
ow into employment at a given point of

time). If all unemployed workers a

ept any wage that is o�ered to them then, in

this 
ohort, the wage w is distributed a

ording to F (w). To obtain the marginal

job duration distribution for this 
ohort, we have to integrate (25) with respe
t

to dF (w). This gives

f(t) =
1

�1

Z Æ+�1

Æ

ze�ztdz

whi
h is a \mixture of exponentials" i.e., a mixture of distributions with 
onstant

hazards, with a uniform mixture distribution for the hazards with support on the
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interval (Æ; Æ + �1).
39 This is not surprising. The 
onditional hazard of tjw is


onstant over the job duration. It is then mixed with respe
t to a determinant

(w) of the 
onditional hazard. Workers are merely 
on
erned with the ordering

of the 
urrent wage and the wage o�er, and not with the shape of the underlying

wage o�er distribution itself. Their lo
ation on the job ladder therefore determines

their hazard. Note that, as a result, the marginal job duration distribution does

not depend on F .

In terms of an MPH model, �(tjx) 
an be thought of as being generated by

�(tjx; v) = v, where v has a uniform distribution on (Æ; Æ + �1).
40 This result for

a 
ohort of newly employed workers 
an be generalized to other (more relevant)

sampling s
hemes. Ridder and Van den Berg (1998) apply this approa
h to study

job mobility with aggregate data.

The argument above also applies to other settings where only the rank of the

individual's heterogeneity value a�e
ts the individual's hazard rate, and where

these values and their ranks are unobservable. Mos
arini (1998) examines a job

sear
h model for the unemployed where individuals are ranked by employers on

the value of some time-invariant 
hara
teristi
. The rate at whi
h an individual

obtains a job depends on the fra
tion of the unemployed that has worse 
har-

a
teristi
s. For a spe
i�
 mat
hing te
hnology, this results in an unemployment

duration distribution that is again a mixture of exponential distributions with a

uniform mixture distribution.

5.6 E�e
ts of misspe
i�
ation of fun
tional forms

Generally, in appli
ations,  and/or G(v) are assumed to have a parametri
 fun
-

tional form (see Lan
aster, 1990, for a 
atalogue of popular fun
tional forms). We

�nish this se
tion on properties of the MPH model by summarizing some results

on the e�e
ts of misspe
i�
ation of these fun
tional forms on the probability lim-

its of the Maximum Likelihood (ML) estimates. Throughout the subse
tion (and

39This 
an be further simpli�ed to

f(t) =
e�Æt

�1t2

�
1 + Æt� (1 + (Æ + �1)t)e

��1t
�
:

40Note that, if Æ or �1 depend on t or x, then this is not an MPH model anymore.
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in line with this literature) we assume that

�0(x) = exp(�0 + x0�1)

and that all moments of v exist. The model is normalized by taking E(v) = 1. The

only type of 
ensoring that is 
onsidered 
on
erns independent right-
ensoring at

a �xed duration.

A natural starting point 
on
erns the misspe
i�
ation due to omission of un-

observed heterogeneity from the model, if it is present in the data-generating

pro
ess. Re
all that in Subse
tion 5.1 we argued that the estimated duration

dependen
e will be too negative, and the e�e
t of x may be in
onsistently estim-

ated as well. Gail, Wieand and Piantadosi (1984) provide the following result. If

the baseline hazard  (t) is known a priori, if one erroneously ignores unobserved

heterogeneity in the model spe
i�
ation, and if there is no 
ensoring, then �1 is


onsistently estimated with ML. In fa
t, it is not diÆ
ult to show that

plimb�0 = �0 � E(
1

v
) < �0; plimb�1 = �1

where plim b�i denotes the probability limit of the ML estimator of �i (i.e., the

value to whi
h the estimate 
onverges in probability as the sample size in
reases).

Note that E(1=v) > 1=E(v) = 1 if and only if Var(v) > 0, i.e. if there is unobserved

heterogeneity.41;42

Unfortunately, these wel
ome results do not generalize in any way to more

realisti
 settings. Ridder (1987) shows that 
ensoring in the data makes b�1 in
on-
sistent (unless the spe
i�ed G equals the true G or �1 = 0). The asymptoti
 bias is

towards zero if the spe
i�ed model assumes absen
e of unobserved heterogeneity.

41See also Lan
aster (1983). Ridder (1987) generalizes this result by proving the following:

if the baseline hazard is known in advan
e, the assumed G is fully spe
i�ed without unknown

parameters, the assumed G is not equal to the true G, and there is no 
ensoring, then �1 is


onsistently estimated.
42This is not in 
on
i
t with the result in Subse
tion 5.1 that d log �(tjx)=dx = �1(1 � a)

for some a > 0. Somewhat loosely one may say that b�0 ensures that the average level of the

spe
i�ed log �(tjx) agrees to the average level in the data, and that the e�e
t of x in the data

is best 
aptured by b�1 = �1. Note that in this spe
i�
 model, E(log z(t)jx; v) is additive in v

and x. In parti
ular, E(log z(t)jx; v) = ��0 � x0�1 � log v + 
, with 
 � �0:58 being the mean

of an EV1 random variable, and with the fun
tion z(:) 
ompletely known. So by analogy to the

regression model, dispersion in v does not a�e
t the estimate of �1.
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Lan
aster (1985b) shows that if the baseline hazard is known to have a Weibull

spe
i�
ation with an unknown parameter, one ignores unobserved heterogeneity,

and there is no 
ensoring, then the estimates of both the Weibull parameter and

�1 are asymptoti
ally biased towards zero. In fa
t, they are all biased in the same

proportion. Basi
ally, in this 
ase, ML gets the regression fun
tion for log t right,

but we are after the original parameters of the individual hazard fun
tion in-

stead of the elasti
ities of the mean log duration. Ridder (1987) also shows that

misspe
i�
ation of the shape of the baseline hazard results in in
onsisten
y of b�1.
The results above are all analyti
ally derived. For more general model settings,

the e�e
ts of misspe
i�
ation have been analyzed by way of extensive Monte

Carlo simulations. Ridder (1987) allows for 
ensoring in the Lan
aster (1985b)

model, and he allows for misspe
i�ed G in the assumed model. It turns out that


ensoring exa
erbates the asymptoti
 bias in b�1 due to misspe
i�
ation of G,

and the results be
ome sensitive to the assumed spe
i�
ation of G. Moreover,

it turns out that the estimates display a large small-sample bias even if the

model spe
i�
ation is 
orre
t. This bias disappears very slowly when the sample

size in
reases. Su
h small-sample biases are absent for the PH model without

unobserved heterogeneity; see Andersen, Bentzon and Klein (1996).

Ridder (1987) also examines the performan
e of ML estimation of an assumed

model with a Weibull baseline hazard and a Gamma distribution for v, if both are

misspe
i�ed. The simulations reinfor
e the negative results above. Ridder (1987)


onje
tures that if the baseline hazard is 
exibly spe
i�ed with a suÆ
ient num-

ber of unknown parameters, and if 
ensoring is virtually absent, then it does not

matter whi
h family of distributions is assumed for G in order to obtain a reli-

able estimate of �1. However, the simulation results in Baker and Melino (2000)

go against this.43 Most of the biases due to the above problems 
an be substan-

tial, depending on the situation at hand. For the Partial Likelihood estimation

method, similar results have been derived (see e.g. Bretagnolle and Huber-Carol,

1988).

By now there are also many studies of real-life single-spell data in whi
h it is

reported that the estimates of (the parameters of) �1;  and G are sensitive to

43It should be noted, though, that Baker and Melino (2000) do not examine an MPH model

but a dis
rete-time model where the individual per-period exit probability is a logisti
 fun
tion

of  (t)�0(x)v. Whether these models behave similarly is an issue for further resear
h.
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hanges in the assumed family of distributions for G or the assumed set of x or

the assumed fun
tional form of  , even though sometimes the over-all �t of the

model does not 
hange with this in any substantial way (see e.g. He
kman and

Singer, 1984a, Trussell and Ri
hards, 1985, Hougaard, Myglegaard and Bor
h-

Johnsen, 1994). Keiding, Andersen and Klein (1997) provide a survey of studies

with biostatisti
al data.

The re
ent literature on semiparametri
 and nonparametri
 estimation of the

MPH model provides some interesting additional insights on this. First of all,

Hahn (1994) examines models with Weibull duration dependen
e, and he as-

sumes that v is a 
ontinuous random variable with a �nite mean. He shows that

with single-spell data, the information matrix is singular, and that there is no
p
n�
onsistent estimator for �i and the Weibull parameter.44 Thus, in a 
ertain

sense, there is less information on the model parameters than what is typi
ally

available in e
onometri
 analyses. Se
ondly, He
kman and Taber (1994) and Kor-

tram et al. (1995) show that the mapping from the data-generating pro
ess to the

data is not 
ontinuous, so that two distin
t MPH models 
an generate very sim-

ilar data.45 Thirdly, the nonparametri
 (or semiparametri
) estimator developed

by Horowitz (1999) has 
onvergen
e rates that are smaller than
p
n. In parti
u-

lar, under 
ertain assumptions (in
luding absolute 
ontinuity of an element of x,

di�erentiability of  (t) and the density of v, and E(v2) < 1), the 
onvergen
e

rates of �i and  
an be at most almost equal to n�2=5, whi
h is obviously slower

than n�1=2. For the heterogeneity distribution and density G and g, the rate of


onvergen
e is (logn)�2, whi
h is very slow.

Together, these results lead to the following 
on
lusion. In the absen
e of

strong prior information on the determinants of the MPH model, single-spell

data do not enable a robust assessment of the relative importan
e of these de-

terminants as explanations of random variation in the observed durations (even

44See Klaassen and Lenstra (1998) for a generalization of this result.
45As an example, 
onsider the simplest MPH model, with �0(x) = exp(x) where x is a single

dummy variable, and with absen
e of duration dependen
e and unobserved heterogeneity. The

distribution of tjx is virtually the same as the distribution generated by an MPH model with

�0(x) = exp(2x), duration dependen
e proportional to 2t, and v distributed as a Positive Stable

distribution with parameter 1=2 with the upper tail repla
ed by a �nite mass point (see Kortram

et al., 1995, for details; note the similarity to the example in the dis
ussion in Subse
tion 5.2;

also note that here E(v) <1).
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if the unobserved heterogeneity mean is known to be �nite). Minor 
hanges in

the assumed parametri
 spe
i�
ation, leading to a similar over-all �t, may pro-

du
e very di�erent parameter estimates. This implies that estimation results from

single-spell data are sensitive to misspe
i�
ation of the fun
tional forms asso
i-

ated with these determinants. Therefore, interpretations based on su
h results

are often unstable and should be performed with extreme 
aution.

In biostatisti
s, this state of a�airs has led to a renewed interest in A

elerated

Failure Time models for the analysis of single-spell duration data (see Hougaard,

Myglegaard and Bor
h-Johnsen, 1994, and Keiding, Andersen and Klein, 1997,

for a survey). Note that su
h models allow for robust inferen
e on the e�e
t of x

on the mean of log t.46 In a way, the 
hoi
e for the AFT model means that all hope

is given up on the attempt to (i) disentangle genuine duration dependen
e from

the e�e
t of unobserved heterogeneity, and (ii) quantify the e�e
t of 
ovariates

on the individual hazard as opposed to the observed hazard, with single-spell

data. From an e
onomi
-theoreti
 point of view, however, the AFT approa
h is

unsatisfa
tory, be
ause, as we have seen in Se
tions 2 and 4, the parameters of

the individual hazard are the parameters of interest. It may therefore be better

to exploit predi
tions from the underlying e
onomi
 theory when spe
ifying the

duration model, and/or look for data with multiple spells.47

If one is only interested in the sign or signi�
an
e of a 
ovariate e�e
t on the

individual durations then the AFT approa
h may be useful. Re
all from Subse
-

tion 5.4 that in MPH models the sign of the e�e
t of x on the mean duration is

always the same as the sign of the e�e
t on the individual hazard, regardless of the

spe
i�
ation of  or G. Regression of log t on x therefore provides robust eviden
e

on this sign (see Solomon, 1984, 1986, for proofs; Li, Klein and Moes
hberger,

1993, provide supporting Monte Carlo eviden
e on the performan
e of test stat-

isti
s for the signi�
an
e of the e�e
t of x). Su
h an approa
h may be useful if

one is interested in whether parti
ipation in a treatment program (to be repres-

46Indeed, Horowitz (1996) shows that the � parameters in the transformation model (9) 
an

be 
onsistently estimated with an estimator with 
onvergen
e rate equal to n�1=2. Re
all that

the AFT model is a spe
ial 
ase of the transformation model.
47Another approa
h would be to estimate the model nonparametri
ally using methods de-

s
ribed in Subse
tion 5.2. It is still too early to assess whether this approa
h is fruitful. Yet

another approa
h is to use population data (if available). See Van den Berg and Van Ours

(1996) for an example of this based on a dis
rete-time model.
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ented by x) has any e�e
t. However, in e
onomi
s, data on treatment e�e
ts are

usually non-experimental and treatment assignment is sele
tive, so then x is not

exogenous (see Subse
tion 9.2).

6 The MPH model with multi-spell data

6.1 Multi-spell data

This se
tion deals with identi�
ation of the MPH model if the data provide

durations of multiple spells in a given state by a given individual, i.e. if the data

are multi-spell data. Here, an individual has a given value of v, and his spell

durations are independent drawings from the univariate duration distribution

F (tjx; v), where, of 
ourse, v is unobserved, so that the durations given just x are

not independent. We mostly fo
us on an \ideal" 
ase in whi
h the data 
onsist

of a random sample of individuals and provide two un
ensored durations for

ea
h individual in the sample. A
tually, the use of the term \individual" is not

very appropriate here, as the setup in
ludes 
ases in whi
h physi
ally di�erent

individuals are assumed to share the same value of v and we observe one or more

durations for ea
h of these individuals. It is 
onvenient to refer to su
h a group of

individuals as a stratum. It depends on the 
ontext whether one may assume that

v;  ; and �0 are identi
al a
ross durations for the same individual or stratum. In

subsequent se
tions we examine more general models, in whi
h  and �0 may

vary a
ross spells, the values of v in di�erent spells may be sto
hasti
ally related,

and other dependen
ies between the durations are allowed. It is useful to think of

the present se
tion as being 
on
erned with a model for a single type of duration,

where we have multiple spells of this type of duration for ea
h \individual",

whereas the subsequent se
tions are 
on
erned with models for di�erent types of

durations with single or multiple spells of ea
h type for ea
h \individual".

The empiri
al analysis of MPH models with multi-spell duration data is wide-

spread. For example, Newman and M
Cullogh (1984) use su
h data to estimate

redu
ed-form models for birth intervals, while Ham and Rea (1987) and Coleman

(1990) use su
h data to estimate redu
ed-form unemployment duration models.48

Lillard (1993) and Lillard and Panis (1996) estimate marriage duration models

48Ham and Rea (1987) use a dis
rete-time model.
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with multi-spell data. In these appli
ations, the multiple spells with a given value

of v are asso
iated with a single physi
al individual. There are also many ap-

pli
ations in whi
h multiple spells with a given v are asso
iated with di�erent

physi
al individuals (see e.g. Kalb
eis
h and Prenti
e, 1980). The heterogeneity

term is then assumed to be identi
al a
ross individuals within some group or

stratum. Typi
ally, di�erent individuals within a stratum are allowed to have

di�erent values of x. As we shall see below, this may a
tually be very useful

for inferen
e.49 Re
ent appli
ations in
lude Guo and Rodr��guez (1992), Wang,

Klein and Moes
hberger (1995), Sastry (1997), Ridder and Tunal� (1999), and

Lindeboom and Kerkhofs (2000). Arroyo and Zhang (1997) survey appli
ations

in the analysis of fertility. In studies on lifetime durations of identi
al twins, the

unobserved heterogeneity terms are often assumed to 
apture unobserved geneti


determinants, so then v is identi
al within twin pairs (see e.g. Hougaard, Harvald

and Holm, 1992a).

To pro
eed, note that the individual hazard fun
tion �(tjx; v) is the same

for both durations asso
iated with the \individual". The value of x may di�er

between the 
orresponding spells. If ne
essary we denote the values by x1 and x2,

respe
tively. Conditional on x and v, the two durations t1 and t2 are independent.

Conditional on x, the variables t1 and t2 are independent if there is no unobserved

heterogeneity, i.e. if v is not dispersed.

If �0(x) = exp(x0�) then

log
Z t1

0

 (u)du = �x01� � log v + "1

(26)

log
Z t2

0

 (u)du = �x02� � log v + "2

where "1 and "2 are i.i.d. EV1 distributed. Equations (26) suggest a similarity to

standard panel data models with �xed e�e
ts. We return to this below.

The joint density f(t1; t2jx) of t1 and t2 given x 
an be expressed as

f(t1; t2jx) =
Z
1

0

Z
1

0

f(t1jx1; v)f(t2jx2; v) dG(v) (27)

49Indeed, with strati�ed partial likelihood inferen
e, estimation of the systemati
 hazard �0

is driven by the variation in x (see Subse
tion 6.2).
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in whi
h G denotes the joint distribution of v a
ross \individuals" in the popu-

lation. The density f(tijxi; v) 
an of 
ourse be expressed in terms of the determ-

inants of � (see Se
tion 2). The joint survivor fun
tion of t1 and t2 given x 
an

then be expressed as

F (t1; t2jx) =
Z
1

0

e�[z(t1)�0(x1)+z(t2)�0(x2)℄vdG(v)

In many appli
ations, the individual likelihood 
ontribution is based on the

density (27). In terms of panel data analysis, this means that the values of

v are treated as \random e�e
ts" when estimating the model with Maximum

Likelihood.50 An alternative empiri
al approa
h treats v as individual-spe
i�


parameters or \in
idental" parameters. The likelihood fun
tion is then written

for given unknown values of these (and the other) parameters.51

6.2 Identi�
ation results

One may distinguish between two approa
hes in the literature on identi�
ation

of the MPH model with multi-spell data. The �rst approa
h below is 
on
erned

with the full identi�
ation of the model and relies on results that were dis
ussed

in Se
tion 5. The se
ond approa
h is 
on
erned with the identi�
ation of the sys-

temati
 hazard �0 and follows from properties of a parti
ular estimation method.

We start with the �rst approa
h. Honor�e (1993) shows that the MPH model

with multi-spell data is identi�ed under mu
h weaker assumptions than in Se
tion

5. In fa
t, we do not need to assume that there are observed explanatory variables

x at all. In other words, the analysis is 
onditional on a given value of x, and we

may allow for full intera
tion of the a
tual value of x with the model determinants:

 may depend on x in an unspe
i�ed way, and v and x may be dependent in the

population. Note that here x does not vary a
ross spells for a given individual.

We may write

�(tjx; v) =  (tjx) � v; vjx � G(vjx)

This in
ludes of 
ourse as a spe
ial 
ase that  (tjx) 
an be written as  (t)�0(x).

50Here, as in the model with single spells, standard maximization of the likelihood may be


omputationally unfeasible for parti
ular parametri
 spe
i�
ations for G and  . In su
h 
ases,

use of the EM algorithm may be preferable (see Lan
aster, 1990, for details).
51See Lan
aster (2000a) for a general overview of in
idental parameters in e
onometri
s.
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This model is identi�ed given regularity assumptions 
orresponding to As-

sumptions 2{4, and given a normalization of the integrated baseline hazard (ana-

logi
al to Assumption 7). Thus, if two observations are available for ea
h v, then

the identi�
ation of the model does not require an untestable assumption on the

tail of the unobserved heterogeneity distribution G anymore, and, perhaps even

more importantly, v and x are allowed to be dependent. The identi�
ation of this

distribution does not 
ome anymore from the intera
tion between the duration

and the observable explanatory variables in the observed hazard. The identi�
a-

tion does however need proportionality of the duration e�e
t and the unobserved

heterogeneity term in the individual hazard. It should be noted that this model

is nevertheless overidenti�ed; see Subse
tion 8.2.2.

Example 9. Let  = 1 (so there is no duration dependen
e) and x1 = x2(= x),

and suppose that v has a Positive Stable distribution (see Subse
tion 5.2). Su
h

distributions have in�nite means. As we have seen, the resulting MPH model

for single spells is observationally equivalent to a PH model without unobserved

heterogeneity and a Weibull baseline hazard. However, it is easy to see that the

joint survivor fun
tion of t1 and t2 equals

F (t1; t2jx) = exp (�[�0(x)℄�(t1 + t2)
�)

(with 0 < � < 1), whereas if there is no unobserved heterogeneity and the baseline

hazard has a Weibull spe
i�
ation ( (t) = �t��1) then

F (t1; t2jx) = exp (�[�0(x)℄�(t�1 + t�2 ))

so the two models are observationally distin
t, even if �0 = 1.

Now let us turn to the se
ond approa
h to identi�
ation, whi
h fo
uses on the

e�e
t of observed explanatory variables on the individual hazard fun
tion. The

systemati
 hazard �0 is identi�ed under very weak 
onditions if the data 
ontain

multiple spells with the same value of v. This has been known for some time, for

the reason that a nonparametri
 estimation method exists for �0 in this setup (see

Kalb
eis
h and Prenti
e, 1980, and Chamberlain, 1985). In fa
t, this estimation

method is appli
able to a model setup that is more general than the MPH model.

To pro
eed, it is useful to distinguish between observed explanatory variables x�
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whi
h do not vary within strata, and observed explanatory variables x whi
h do

vary within strata. We assume for expositional reasons that the hazard fun
tion is

multipli
ative in a part depending on x� and a part depending on x. In parti
ular,

�(tjx�; x; v) =  (tjx�; v) � �0(x); vjx�; x � G(vjx�; x) (28)

This spe
i�
ation allows for full intera
tion of the values of v and x� with the

elapsed duration t in the hazard fun
tion. This implies that we allow the baseline

hazard to di�er a
ross strata (i.e., a
ross groups of spells with the same v).

Moreover, v; x� and x may be dependent. The basi
 idea of the estimation method

is that a Cox partial likelihood 
an be 
onstru
ted within strata. For a given

stratum, the partial likelihood depends only on �0, and not on G or  or the

values of v or x�. These likelihoods 
an be 
ombined to 
onstru
t an over-all

partial likelihood whi
h 
an be used to estimate �0 (see the above referen
es for

details).

Clearly, the e�e
ts of the explanatory variables x� 
annot be estimated from

this. In other words, to be able to estimate the e�e
t of an observed explanatory

variable with this approa
h, it is essential that the values of the variable some-

times di�er a
ross spells within a stratum. In 
ase of two spells per stratum, this

amounts to x1 6= x2. To see this, note that within su
h a stratum,

Pr(t1 > t2jx1; x2; v) =
�0(x2)

�0(x1) + �0(x2)

whi
h is only informative on �0 if x1 6= x2.

The within-stratum baseline hazard  as a fun
tion of t 
an subsequently

be estimated nonparametri
ally. Yamagu
hi (1986) surveys these methods. Kal-

b
eis
h and Prenti
e (1980) and Ridder and Tunal� (1999) 
ontain useful expos-

itions on the in
lusion of time-varying 
ovariates.

What does this \strati�ed partial likelihood" estimation approa
h imply for

the identi�
ation of �0 in the MPH model with multi-spell data? This fun
tion

is identi�ed up to a multipli
ative 
onstant if �0;  ; and G in equation (28) sat-

isfy regularity assumptions 
orresponding to Assumptions 1{4, and if x varies

between spells within strata. Again, we do not need independen
e of observed

and unobserved explanatory variables, and we do not need an assumption on the

tail of the distribution of the unobservables. Note that the identi�
ation result is
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valid under a spe
i�
ation of the hazard fun
tion that is mu
h more general than

the MPH spe
i�
ation.

The approa
h of the previous paragraphs is parti
ularly appealing if the in-

dividual v are regarded as in
idental parameters. With full ML, su
h parameters


an in general not be estimated 
onsistently if asymptoti
ally the number of strata

goes to in�nity with a �xed number of spells per stratum (Lan
aster, 2000a). In

the above approa
h, however, these parameters 
an
el out of the partial likeli-

hood. Somewhat loosely one may say that if multiple durations are available for

ea
h v, then duration analysis be
omes similar to standard dynami
 panel data

analysis, where one 
an get rid of the so-
alled \�xed e�e
ts" before estimating

the other parameters. This raises the question to what extent �rst-di�eren
ing of

the durations within strata 
an also be applied to get rid of v. It seems that this

is only feasible if the baseline hazard has a parti
ular fun
tional-form spe
i�
a-

tion, notably the Weibull spe
i�
ation. Assume that the duration dependen
e is

des
ribed by �t��1 for all spells and strata. In addition, assume that v is the same

for all spells in a stratum, and assume for 
onvenien
e that �0(xi) = exp(x0i�).

For two spells t1; t2 within a stratum, with observed explanatory variables x1 and

x2, respe
tively, the di�eren
e of equations (26) gives

log t1 � log t2 = �
�

�
(x1 � x2) +

"1 � "2
�

Note that "1 � "2 has a fully spe
i�ed distribution (as the di�eren
e of two

i.i.d. EV1 random variables). Thus, with Weibull duration dependen
e, �rst-

di�eren
ing results in an equation from whi
h the Weibull parameter and the

systemati
 hazard 
an be reliably estimated without the need to make any as-

sumption on the unobserved heterogeneity distribution. Indeed, v and x are al-

lowed to be dependent.

The identi�
ation results dis
ussed in this subse
tion have been of enormous

importan
e for applied duration analysis. If two observations are available for ea
h

v then the identi�
ation of the model does not require an untestable assumption

on the tail of the unobserved heterogeneity distribution G anymore, and v and

x need not be independent anymore. We only need some fairly inno
uous regu-

larity assumptions and normalizations (of 
ourse, in addition to proportionality

assumptions on the hazard fun
tion). The re
ent applied literature 
ontains a

number of studies showing that the estimates of the parameters of interest are
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robust with respe
t to the fun
tional-form spe
i�
ation of G, in 
ase of multiple

observed durations for ea
h v (see Nielsen et al., 1992, Guo and Rodr��guez, 1992,

G�on�ul and Srinivasan, 1993, and Bonnal, Foug�ere and S�erandon, 1997). These

results are in sharp 
ontrast to those found for the single-spell model (Se
tion 5).

It should also be noted that Hahn (1994) �nds that his result on singularity of

the information matrix in the 
ase of single-spell data (see Subse
tion 5.6) does

not 
arry over to the 
ase of multi-spell data. Moreover, the strati�ed partial

likelihood estimators are
p
n�
onsistent.

We �nish this se
tion by mentioning an important 
aveat with multi-spell

data. This 
on
erns the fa
t that the analysis of multi-spell data is parti
ularly

sensitive to 
ensoring. With single-spell data, many types of 
ensoring are in-

no
uous in the sense that their e�e
t 
an be 
aptured by standard adjustments

to the likelihood fun
tion (see Andersen et al., 1993, re
all also the dis
ussion

in Subse
tion 4.2). With multi-spell data, one has to be more 
areful. Consider

the 
ase where two durations t1 and t2 follow ea
h other in time, and where the

data are subje
t to right-
ensoring at a �xed duration after the 
ommon starting

point of the t1 durations. Then the moment at whi
h t2 is right-
ensored is not

independent from t2 itself. To see this, 
onsider individuals for whi
h v is large.

For these individuals, t1 will on average be short. As a result, t2 will on average

start at a relatively early moment. This in turn implies that t2 will often be right-


ensored at a relatively high duration. In sum, t2 and the variable determining the

moment at whi
h it is 
ensored are both a�e
ted by the unobserved 
hara
ter-

isti
 v. This violates the standard 
ensoring assumptions of duration analysis (see

Visser, 1996, for general results, and Keiding, 1998). As a result, standard partial

likelihood estimation methods (like the one above) 
annot be applied. Moreover,

one 
annot estimate (
hara
teristi
s of) the distribution of t2 in isolation from

t1 (see Ridder and Tunal�, 1999, for an informative exposition). With 
ensoring

in general, �rst-di�eren
ing (like above) is not possible. Finally, the value of t1

may even a�e
t the probability that the beginning of the se
ond spell is observed

at all, in whi
h 
ase a subsample of individuals for whi
h both t1 and t2 are ob-

served is sele
tive (this is even true if there is no unobserved heterogeneity).52 Of

52In a re
ent working paper, Woutersen (2000) develops 
onsistent GMM-type estimators

that deal with a number of these problems, while treating unobserved heterogeneity as a �xed

e�e
t.
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ourse, with 
ensoring, one may still use standard ML estimation methods with

random e�e
ts. However, if the realization of t2 is often unobserved then the use

of multi-spell data does not provide mu
h gain over the use of single-spell data.

In sum, the less 
ensoring in the data, the larger the advantages of multi-spell

data.

7 An informal 
lassi�
ation of redu
ed-form

multiple-duration models

In general one may think of many di�erent ways to model a relation between

duration variables. In the applied e
onometri
 literature on the estimation of

multiple-duration models, the range of di�erent models is a
tually not so large.

In this se
tion we provide a rather informal model 
lassi�
ation that 
overs most

of the models used in pra
ti
e.53 The next se
tions examine the models in more

detail. It should be stressed that we are not 
on
erned with abstra
t point pro-


esses where the durations between events 
an be related for many reasons (see

e.g. Snyder and Miller, 1991, for a survey). Also, we are not 
on
erned with the

multiple-duration models in engineering where the lifetime of a system depends

on the lifetimes of its 
omponents. The latter models are often not very useful to

des
ribe e
onomi
 behavior (although they are an important input in e
onomi


analyses of ma
hine maintenan
e; see e.g. Ryu, 1993). As we shall see, some of

the models that we 
onsider are more natural when dealing with su

essive spells

in a given state or with su

essive spells in di�erent states,54 whereas others

are more natural in the 
ase of 
ompeting risks, and yet others are useful in all

these 
ases. In fa
t, the re
ent empiri
al literature often uses models that simul-

taneously allow for two di�erent types of dependen
e of the duration variables.

53See Hougaard (1987) for an older 
lassi�
ation, based on statisti
al model properties.
54Again, what 
onstitutes a state depends on the appli
ation at hand (i.e. depends on the

relevant underlying theoreti
al framework). It is possible that what in one appli
ation are re-

garded as multiple durations in the same state, are regarded in another appli
ation as durations

in di�erent states. In pra
ti
e, for a given individual and a given de�nition of states, the spe
i�
-

ations for the marginal distributions of di�erent spells in a given state are similar, whereas the

spe
i�
ations for the marginal distributions of spells in di�erent states do not 
ontain 
ommon

parameters or fun
tions.
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The MPH model with multi-spell data (Se
tion 6) 
an also be interpreted as a

multiple-duration model, as it spe
i�es the joint distribution of the durations in

the spells that an individual experien
es. We shall see that this spe
i�
ation is in

fa
t a spe
ial 
ase of a popular type of multiple-duration model. For expositional

reasons we shall restri
t ourselves to two duration variables throughout the re-

mainder of this 
hapter.

\Lagged" durations

The �rst popular type of dependen
e 
on
erns an e�e
t of a realized past duration

on the 
urrent hazard. This type of dependen
e was introdu
ed by He
kman

and Borjas (1980). Suppose that two durations t1 and t2 ea
h follow their own

PH model, with �1(t1jx1) =  1(t1)�0;1(x1) and �2(t2jt1; x2) =  2(t2)�0;2(x2)�(t1),

where t2 starts at or after the moment at whi
h t1 is realized. Basi
ally, this

dependen
e is modeled by in
luding t1 as an additional 
ovariate in the hazard

for t2. Usually, the underlying e
onomi
 theory provides a 
ausal interpretation

for this type of dependen
e.55 Be
ause of the analogy to a regression model with

lagged endogenous variables among the explanatory variables, this dependen
e

is sometimes 
alled \lagged-duration dependen
e". Obviously, di�erent types of

restri
tions 
an be imposed on the model determinants �0;1; �0;2;  1; and  2. For

example, if t1 and t2 denote durations in the same state then it may be imposed

that  1 �  2, x2 = x1, and/or �0;2(x2) = �0;1(x1).

Instead of in
luding the value of t1 in the individual hazard for t2, one may

also use an indi
ator of whether the individual has been in the state asso
iated

with t1 during the year before the start of t2, or indeed any other realization of

past behavior. In applied labor e
onomi
s, these types of dependen
e have been

in
orporated in redu
ed-form models for the e�e
ts of labor market programs

on subsequent unemployment durations and employment durations. It should be

stressed however that these studies also allow for other dependen
ies; see below

for examples.

Re
ently, in �nan
ial e
onometri
s, lagged-duration dependen
e models have

55Here and elsewhere, the relation between the duration variables 
an be formulated by using

the 
on
ept of Granger-non
ausality. However, for the basi
 models examined in this 
hapter,

there is no gain from doing this (see Abbring, 1998). See Florens and Foug�ere (1996) for a

formal analysis of 
ausality in more general 
ontinuous-time pro
esses.
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been used for the analysis of durations between su

essive market events su
h as

a buy or sell of a se
urity on a sto
k market (see e.g. Engle and Russell, 1998,

and Bauwens and Giot, 1998). In these models, the hazard fun
tion of the ith

duration depends on the realizations of previous durations by way of an autore-

gressive s
heme. The baseline hazard is assumed to have a Weibull spe
i�
ation

with a single 
ommon parameter for all durations.

Sho
ks

The se
ond popular type of dependen
e 
on
erns situations where two durations

o

ur simultaneously, and where the realization of one duration variable has an

immediate e�e
t on the hazard of the other duration variable. This type of de-

penden
e has been introdu
ed by Freund (1961). To fo
us the mind, suppose that

the realization of t1 a�e
ts the level of the hazard of t2 afterwards. This 
an be


aptured by the in
lusion of an indi
ator of whether t1 is realized, as a time-

varying regressor in the hazard spe
i�
ation of t2. For example, the hazard of t2


an be spe
i�ed as  2(t2) exp(x
0
2�2+ ÆI(t1 < t2)), where I(.) denotes the indi
ator

fun
tion, whi
h is 1 if its argument is true and 0 otherwise. From Subse
tion 4.2

we know that su
h a spe
i�
ation requires 
onditions on the exogeneity of t1.

Basi
ally, t1 needs to be weakly exogenous, and anti
ipation by the individual

of the future realization of t1 is ruled out. Note that the individual is allowed to

know the (determinants of the) probability distribution of t1.

The underlying e
onomi
 theory often provides a 
ausal interpretation for

the above type of dependen
e. Obviously, t1 and t2 denote durations in di�erent

states, so it does not make sense to impose restri
tions a
ross the two hazards.

In pra
ti
e, it may be too restri
tive to assume that the realization of t1 merely

a�e
ts the level of the hazard of t2. More generally, the realization may be allowed

to a�e
t the whole shape of the hazard of t2 after the realization of t1.
56 In applied

e
onometri
s, su
h types of dependen
e have been in
orporated in redu
ed-form

models for the e�e
t of 
ertain treatments57 on worker labor-market behavior;

56In an empiri
al analysis of panel survey attrition, Van den Berg, Lindeboom and Ridder

(1994) examine a slightly di�erent model in whi
h there is a positive probability that t2 is

realized immediately after realization of t1. Here, t1 and t2 are the duration until the individual

respondent makes a transition to another labor market state, and the duration until attrition

from the panel, respe
tively.
57In biostatisti
s, �0 is often 
alled the treatment e�e
t if x 
aptures whether the subje
t has
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we return to this below. In addition, the model des
ribed above 
an be seen as

a spe
ial 
ase of models in whi
h an individual experien
es di�erent sto
hasti


pro
esses whi
h a�e
t ea
h other by way of shifts in the hazard for one pro
ess if

the other pro
ess generates an event. The latter type of models have been used to

study the intera
tion between marital status, number of 
hildren, health status,

and labor market status. For example, if an unemployed woman marries then

her transition rate to employment may drop. It should again be stressed that

these studies often also allow for other types of dependen
e between the duration

variables; see below.

Related unobserved determinants

The third type of dependen
e between duration variables 
on
erns dependen
e by

way of their unobserved determinants. Spe
i�
ally, 
onsider two durations t1 and

t2 whi
h ea
h follow their own MPH model, so �i(tijxi; vi) =  i(ti)�0;i(xi)vi, with

i = 1; 2. Then the dependen
e between t1 and t2 given x is modeled by allowing v1

and v2 to be related. In Subse
tion 8.1 below we provide a more pre
ise de�nition.

This multivariate extension to the MPH model is 
alled the Multivariate Mixed

Proportional Hazard (MMPH) model. This has in fa
t been the most popular

multiple-duration model by far.58 Note that the relation between the durations

is spurious to the extent that it results from the fa
t that we do not observe vi.

The MMPH model applies to 
ases where the two durations o

ur simultan-

eously (possibly with the same starting point) as well as to 
ases where they o

ur

su

essively. Again, di�erent types of restri
tions 
an be imposed on the model

determinants �0;1; �0;2;  1;  2, and the joint distribution G(v1; v2), depending on

the extent to whi
h t1 and t2 represent durations in the same state. Clearly, the

MPH model of Se
tion 6 with a single state and multi-spell data is the spe
ial


ase with �0;1 = �0;2;  1 =  2, and v1 = v2.

The MMPH model is regarded as a 
onvenient and 
exible model for depend-

ent durations. Of 
ourse, there are often good reasons to suspe
t the presen
e

of important related unobserved determinants, and by now there is an abund-

ant applied literature in whi
h MMPH models are estimated. In the e
onometri


re
eived a treatment at the beginning of the spell. Here, we avoid that terminology, and we

reserve the term \treatment" for treatments o

urring during a spell.
58Flinn and He
kman (1982b) provide an early analysis of this model.
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ontributions to this literature, the variety of types of states and durations that

are 
onsidered is vast. Flinn and He
kman (1982b, 1983), Coleman (1990), and

Rosholm (1997) estimate MMPH models for the durations of unemployment, em-

ployment, et
. in order to study transition rates between di�erent labor market

states. Generally, the unobserved determinants of the durations spent in di�erent

states are allowed to be related, and the unobserved determinants of di�erent

durations spent by an individual in the same state are assumed to be identi
al.

In their studies of attrition in longitudinal panel survey data, Van den Berg,

Lindeboom and Ridder (1994), Carling and Ja
obson (1995) and Van den Berg

and Lindeboom (1998) estimate MMPH models for the joint durations of labor-

market spells (like a spell of unemployment or a job spell) and the duration of

panel survey parti
ipation. Lillard and Panis (1998) in
lude attrition in a similar

way in their model for the joint durations of marriage, non-marriage, and life.

Note that this approa
h to attrition is in line with the popular modeling setup

for sample sele
tion introdu
ed by He
kman (1979).

As we saw in Se
tion 6, MPH models are sometimes estimated under the

assumption that the unobserved heterogeneity term is identi
al a
ross di�erent

physi
al individuals within some group or stratum. Sastry (1997) extends this

setup by allowing ea
h individual to belong to two groups with di�erent aggreg-

ation levels (families and towns). There is unobserved heterogeneity a
ross ea
h

type of group. This e�e
tively amounts to an MMPH spe
i�
ation for the dur-

ations of members of di�erent families living in the same town. Similarly, the

approa
h in studies on lifetime durations where the unobserved heterogeneity

terms are assumed to be identi
al a
ross siblings 
an be generalized to allow v1

and v2 for siblings to be a sum of a 
ommon determinant and an independent

person-spe
i�
 
omponent (see e.g. Petersen, 1996, Yashin and Ia
hine, 1997, and

Zahl, 1997, for appli
ations).59 Su
h a spe
i�
ation for G has gained less popular-

ity in e
onometri
s, for the obvious reason that in e
onometri
 appli
ations the

asso
iation of unobserved heterogeneity to geneti
 fa
tors is less 
ompelling.

59The appli
ations of this paragraph illustrate a disadvantage of the \multi-state / multi-

spell" terminology: sometimes two spells are in the same state but one does not want to impose

that the unobserved heterogeneity terms are identi
al, so that the multi-spell setup of Se
tion

6 does not apply.
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Combinations of dependen
ies

The presen
e of related unobserved determinants is parti
ularly important if one

is interested in one of the other two types of dependen
e that we des
ribed above.

The estimate of the 
ausal e�e
t will be biased if one ignores the spurious depend-

en
e that results from the related unobserved determinants. To deal with this,

the empiri
al model should take a

ount of this spurious dependen
e. The model

should allow both for a 
ausal e�e
t and for related unobserved heterogeneity.

As examples of a 
ombination of lagged duration dependen
e and related

unobserved heterogeneity, see He
kman, Hotz and Walker (1985), who allow

\lagged" durations between the births of previous 
hildren to a�e
t the hazard

of the duration of the 
urrent birth interval, and who allow for 
orrelated unob-

served heterogeneity as well (see Omori, 1997, and Lan
aster, 2000b, for other

examples). Lillard (1993), Lillard and Panis (1996), Abbring, Van den Berg and

Van Ours (1997), Eberwein, Ham and LaLonde (1997), and Van den Berg, Van

der Klaauw and Van Ours (1998) analyze models where the realization of one

duration variable has an immediate e�e
t on the hazard of the other duration

variable, allowing for related unobserved heterogeneity in order to deal with se-

le
tivity. Let us examine them in somewhat more detail. Abbring, Van den Berg

and Van Ours (1997) and Van den Berg, Van der Klaauw and Van Ours (1998)

study the e�e
t on the exit rate out of unemployment of a punishment for insuÆ-


ient sear
h e�ort. The duration until punishment is modeled by way of an MPH

model, and the exit rate out of unemployment permanently shifts to another

level at the moment the punishment is applied. Lillard (1993) estimates a model

for the joint durations of marriage and time until 
on
eption of a 
hild, and his

model allows the rate at whi
h the marriage dissolves to shift to another level at

moments of 
hild birth. Lillard and Panis (1996) estimate a model on the joint

durations of marriage, non-marriage, and life, and their model allows the death

rate to shift to another level at moments of marriage formation and dissolution.

Eberwein, Ham and LaLonde (1997) estimate a (dis
rete-time) model for the ef-

fe
t of parti
ipation in training programs on individual labor market transitions,

and they allow the exit rate out of unemployment to shift to another level at the

moment of in
ow into the program. See Van den Berg, Holm and Van Ours (1999)

for a similar analysis in 
ontinuous time. In all these appli
ations, the duration

variable t1 needs to satisfy the exogeneity 
onditions of Subse
tion 4.2 for given
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values of the unobserved heterogeneity terms. This rules out anti
ipations of the

realizations of t1, but the individual is allowed to know the (determinants of the)

probability distribution of t1.

In the applied literature on the e�e
ts of training on unemployment durations,

\training" is often regarded to be a separate labor market state, and the e�e
t

of training on subsequent labor market transitions 
an then be 
aptured by a

model with lagged-duration dependen
e (or a model where the fa
t that one has

had any training is allowed to a�e
t subsequent transitions). In order to deal

with sele
tivity of those who enrol in training, it is important to allow for related

unobserved heterogeneity terms a�e
ting the in
ow into training as well as the

other transition rates. Gritz (1993) and Bonnal, Foug�ere and S�erandon (1997)


ontain sophisti
ated examples of su
h analyses. Ham and LaLonde (1996) use

experimental data to estimate models for the e�e
ts of training on individual

labor market transition rates.

In the absen
e of unobserved heterogeneity, the spe
i�
ation, identi�
ation,

and ML estimation of models with lagged-duration dependen
e is relatively straight-

forward. The same holds for models with 
hanges in the hazard of one duration

in response to realization of the other duration (given appropriate assumptions

on the dire
tion of the 
ausality; see Florens and Foug�ere, 1996). However, mod-

els with related unobserved heterogeneity terms are less transparent. In the next

se
tion we therefore examine MMPH models in detail. Subsequently, in Se
tion

9, we brie
y examine the models where related unobserved heterogeneity is 
om-

bined with a \
ausal" e�e
t of one duration on the other (that is, we examine a


ombination of lagged duration dependen
e and unobserved heterogeneity, and a


ombination of a shift in the hazard and unobserved heterogeneity).

Some theoreti
al 
onsiderations

We �nish this se
tion by stressing that, like in Se
tion 4, it is often not 
lear

to what extent the redu
ed-form spe
i�
ations of the dependen
e between two

durations 
an be justi�ed by e
onomi
-theoreti
al models. This is parti
ularly

true for models where the hazard of one duration immediately 
hanges in response

to the realization of the other duration. In many 
ases, individuals may anti
ipate

the realization of the other duration, and the moment at whi
h the anti
ipation

starts is often unobserved. In appli
ations this has to be examined 
arefully.
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In the analysis of MMPH models, as a rule, the assumed parametri
 family

of the joint unobserved heterogeneity distribution G(v1; v2) treats v1 and v2 in

a symmetri
 way: given the unknown parameters of G, the role of v1 and v2 in

G(v1; v2) 
an be inter
hanged without 
hangingG. In parti
ular, ifG is 
ontinuous

then the supports of v1 and v2 are assumed to be the same, and ifG is dis
rete then

the numbers of points of support are assumed to be the same for v1 and v2. It is

sometimes diÆ
ult to justify su
h symmetri
 distributions with e
onomi
 theory.

If, a

ording to the theory, individuals improve their situation when ending one

spell and starting another, then the 
hara
teristi
s asso
iated with the se
ond

spell should be \superior" in some sense to those of the �rst spell. If v1 represents

the 
hara
teristi
s of the �rst spell and v2 of the se
ond, then this suggests that the

support of v2 should depend on the realization of v1. Consider for example the on-

the-job sear
h model dis
ussed in Subse
tion 5.5.3. If one observes two 
onse
utive

job spells and if the wages are unobserved, then the unobserved heterogeneity

term of the se
ond spell ex
eeds the term of the �rst spell. Unfortunately, su
h

bivariate heterogeneity distributions have not yet been studied (see Koning et al.,

2000, for an appli
ation in a stru
tural analysis of an on-the-job sear
h model).

Finally, we address whether the hazards of di�erent durations of the same

individual depend on the same set of explanatory variables or not. E
onomi


theory often predi
ts that both hazards depend on the individual's behavior, and

that the forward-looking individual's optimal strategy depends on all stru
tural

determinants. For example, in a job sear
h model with two possible employment

destination states, the de
ision on whether to a

ept a job o�er depends on the

arrival rates and wage o�er distributions of both types of employment, regardless

of the employment type of the a
tual o�er (see Thomas, 1998). In su
h 
ases, if the

observed explanatory variables are 
hara
teristi
s of the individual himself, then

it does not make sense to ex
lude elements of x from one hazard that are in
luded

in the other hazard. In other words, in su
h 
ases, x1 = x2 (note in
identally that

this provides an argument against the assumption that unobserved heterogeneity

is independent a
ross spells for a given individual; see also Lillard, 1993). In the

event that the resear
her observes a determinant of one of the hazards whereas

this determinant is assumed to be unobserved by the individual, then it makes

sense to in
lude this determinant only in the 
orresponding hazard. Finally, if one

hazard is me
hani
al and independent of the individual's behavior then obviously
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it does not need to depend on the determinants of the other hazard (see Van den

Berg, 1990b, and Ryu, 1993, for examples).

8 The Multivariate Mixed Proportional Haz-

ard model

8.1 De�nition

In this subse
tion we de�ne the MMPH model. Next, Subse
tion 8.2 deals with

identi�
ation of this model under di�erent situations with respe
t to the timing of

the two underlying spells. We assume that the situation is either su
h that both

durations always start at exa
tly the same point of time, or that one duration ne-


essarily follows the other. In Subse
tion 8.3 we dis
uss parametri
 spe
i�
ations

for the joint distribution of unobserved heterogeneity and the degree of 
exibility

of the 
orresponding models.

For the sake of 
onvenien
e, we again use the term \individual" to denote the

subje
t that experien
es 
ertain spells. In the �rst situation with respe
t to the

timing of the spells (starting at the same time) we 
onsider the population of

individuals in the in
ow into the states 
orresponding to the duration variables,

whereas in the se
ond situation (su

essive durations) we 
onsider the population

of individuals in the in
ow in the state 
orresponding to the �rst duration. Flinn

and He
kman (1982b), Chesher and Lan
aster (1983), and Ham and LaLonde

(1996) 
onsider less \ideal" sampling designs.

We assume that all individual di�eren
es in the hazard fun
tion of t1 
an be


hara
terized by observed explanatory variables x and unobserved 
hara
teristi
s

v1. Similarly, all individual di�eren
es in the hazard fun
tion of t2 
an be 
har-

a
terized by observed explanatory variables x and unobserved 
hara
teristi
s v2.

(Of 
ourse, one may impose ex
lusion restri
tions on the set of elements of x that

is allowed to a�e
t the systemati
 hazard �0;i(x) asso
iated with exit i.) For an

individual with explanatory variables x; v1; v2, the hazard fun
tions of t1 and t2


onditional on x; v1; v2 are denoted by �1(t1jx; v1) and �2(t2jx; v2). The MMPH

model is now de�ned by

De�nition 2 : MMPH model. There are fun
tions  1;  2; �0;1; �0;2 su
h that

for every t1; t2; x; v1; v2 there holds that
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�1(t1jx; v1) =  1(t1) � �0;1(x) � v1
(29)

�2(t2jx; v2) =  2(t2) � �0;2(x) � v2

For 
onvenien
e, we take  1;  2; �0;1; �0;2; v1; v2; and the distribution G of v1; v2 in

the population to satisfy the regularity assumptions that 
orrespond to Assump-

tions 1{4 for  ; �0; v; G in the MPH model.

Conditional on x; v1; v2, the durations t1 and t2 are independent. Conditional

on x, the variables t1 and t2 are only dependent if v1 and v2 are dependent. So,

in the 
ase of independen
e of v1 and v2, the model redu
es to two unrelated

ordinary MPH models for t1 and t2.

In terms of a regression spe
i�
ation with �0;i(x) = exp(x0�i), this model 
an

be rewritten as

log
Z t1

0

 1(u)du = �x0�1 � log v1 + "1

(30)

log
Z t2

0

 2(u)du = �x0�2 � log v2 + "2

where "1 and "2 are i.i.d. EV1 distributed, but where v1 and v2 may be related.

Now 
onsider the joint distribution of t1 and t2 given x. The joint density

f(t1; t2jx) 
an be expressed as

f(t1; t2jx) =
Z
1

0

Z
1

0

f1(t1jx; v1)f2(t2jx; v2) dG(v1; v2)

in whi
h we already impli
itly assume that v1; v2 are independent of x, and in

whi
h the probability density fun
tion of tijx; vi is for 
onvenien
e denoted by

fi(tijx; vi). The latter density 
an of 
ourse be expressed in terms of the de-

terminants of �i (see Se
tion 2). Let zi(ti) denote the integrated baseline hazard

asso
iated with ti. The joint survivor fun
tion of t1 and t2 
an then be expressed

as

F (t1; t2jx) =
Z
1

0

e�z1(t1)�0;1(x)v1�z2(t2)�0;2(x)v2dG(v1; v2)
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In many appli
ations, the individual likelihood 
ontribution is based on the dens-

ity above (that is, if the unobserved heterogeneity terms are not treated as in-


idental parameters). In terms of panel data analysis, this means that v1; v2 are

treated as \random e�e
ts" when estimating the model with Maximum Likeli-

hood.

8.2 Identi�
ation results

In this subse
tion we 
onsider identi�
ation results for the MMPH model. It is

important to stress that no parametri
 fun
tional form assumptions are made on

the underlying fun
tions �0;i;  i and G, so, as in Subse
tion 5.2, we are 
on
erned

with nonparametri
 identi�
ation.

8.2.1 Competing risks

Re
all from Subse
tion 8.1 that we 
onsider two di�erent situations with respe
t

to the timing of the two spells. In the �rst situation, both spells start at the

same point of time for a given individual, and the individual is observed until the

�rst duration is 
ompleted. This is 
alled a 
ompeting-risks model, as one may

envisage the individual having two options to leave the 
urrent state, and the

realization of one option is ne
essary and suÆ
ient for leaving the state. In the

se
ond situation with respe
t to the timing of the spells, the two spells 
annot

overlap. Moreover, in the se
ond situation both durations 
an be followed until


ompletion, so there is more information available than in the �rst situation (see

Subse
tion 8.2.2 below).

In the 
ompeting-risks setting, the data provide information on minft1; t2g
and on argmini ti (i.e. on whi
h duration is the one that ends �rst). So, as-

sume that the data provide the distribution of this \identi�ed minimum". It is

well known that this does not suÆ
e to identify the most general 
ompeting-

risks model (with an arbitrary joint distribution for t1; t2, without 
ovariates).

In parti
ular, for every model with dependent t1; t2 there is an observationally

equivalent model with independent t1; t2 (see e.g. Lan
aster, 1990).

Now let us assume that t1 and t2 are generated by an MMPH model with

regularity assumptions 
orresponding to Assumptions 1{4. As in Subse
tion 5.2,

some additional assumptions are needed for identi�
ation. These in
lude the equi-
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valents of Assumption 5 (so x is independent of v1; v2), Assumption 7 (normal-

izations), and Assumption 8 (E(vi) < 1). In addition, we need to strengthen

Assumption 6 on the dispersion of x,

Assumption 9 : Variation in observed explanatory variables in the 
ompeting-

risks setting. The fun
tions �0;1(x); �0;2(x) attain all values in a set (0; �0;1) �
(0; �0;2) with 0 < �0;1; �0;2, when x varies over the set X of possible values of x.

If �0;i(x) = exp(x0�i) then suÆ
ient for this is that x has two 
ontinuous 
ovariates

whi
h a�e
t both hazards �i but with di�erent 
oeÆ
ients for di�erent i, and

whi
h are not perfe
tly 
ollinear. Moreover, in the population, these 
ovariates

must attain all values ranging to minus in�nity.

He
kman and Honor�e (1989) prove the nonparametri
 identi�
ation of the

model under these assumptions. In fa
t, they strengthen Assumption 9 by taking

�0;i =1, be
ause they examine a 
lass of models that is somewhat more general

than the 
lass of MMPH models (see Abbring and Van den Berg, 2000b). In

any 
ase, note that Assumption 9 is stronger than Assumption 6 on the range of

values that �0 attains in the MPH model. This is not surprising. However, it is

important to note that the identi�
ation does not require ex
lusion restri
tions

on the hazard spe
i�
ation of either duration. Moreover, identi�
ation does not

require parametri
 fun
tional form restri
tions on the distribution of unobserved

heterogeneity. In the 
ase of binary data on the \identi�ed minimum" (i.e., it is

observed whi
h duration ends �rst but not when) su
h restri
tions are ne
essary

to a
hieve identi�
ation. This illustrates the fa
t that the timing of events in

duration data provides a valuable sour
e of information 
on
erning the underlying

model.

It is interesting to obtain some insight into the identi�
ation of whether the

durations are dependent or not, sin
e this distinguishes the above identi�
ation

result from the earlier literature in whi
h 
ompeting risks models without 
ovari-

ates were examined. In the sequel of this subse
tion we use T1; T2 to denote the

random duration variables, and t1; t2 to denote realizations of these. We de�ne

��

1(t1jx; T2 > t1)

to be the hazard of the duration T1 at the value t1, 
onditional on x and 
ondi-

tional on the duration T2 ex
eeding t1. More generally, the hazard ��
1(t1jx; T2 > t2)
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orresponds to the 
onditional distribution of T1jx; T2 > t2. We evaluate this

hazard for given t1 and t2, and in fa
t we take t2 = t1. Obviously, the hazard

��2(t2jx; T1 > t2) 
an be de�ned analogi
ally. It is important that the \
ondi-

tional" hazards ��1(t1jx; T2 > t1) and ��2(t2jx; T1 > t2) are observable quantities,

as they 
an be expressed in terms of the distribution of the data. (Note that the

\marginal" hazards �i(tijx) are unobserved due to the 
ompeting risks setting.)

If v1 and v2 are independent, then

��1(t1jx; T2 > t1) = �1(t1jx) and ��2(t2jx; T1 > t2) = �2(t2jx)

The assumption in He
kman and Honor�e (1989) on the values that 
an be at-

tained by �0;i(x) implies that �0;1(x) and �0;2(x) are not perfe
tly related, and

that there is some independent variation in both. As a result, if v1 and v2 are

independent then �0;2(x) does not a�e
t ��1(t1jx; T2 > t1), and �0;1(x) does not

a�e
t ��2(t2jx; T1 > t2).

Now let us examine what happens if v1 and v2 are dependent. It is straight-

forward to show that

��1(t1jx; T2 > t1) =
Ev

h
�1(t1jx; v1) exp

�
� R t1

0 �1(ujx; v1)du�
R t1
0 �2(ujx; v2)du

�i
Ev

h
exp

�
� R t1

0 �1(ujx; v1)du�
R t1
0 �2(ujx; v2)du

�i

with �i as in (29), and with Ev denoting the expe
tation with respe
t to the

bivariate distribution G(v1; v2). If we di�erentiate this with respe
t to �0;2(x)

then the resulting expression has the same sign as

�Cov(v1; v2jx; T1 > t1; T2 > t1)

(provided that t1 > 0). If v1 and v2 are dependent then in general there are many

values of t1 su
h that the above expression is nonzero.

In sum, the derivative of ��1(t1jx; T2 > t1) with respe
t to �0;2(x) and its mirror

image for t2 are informative on the dependen
e or independen
e of the unobserved

heterogeneity terms. This is intuitively very plausible. If the systemati
 hazard of

t2 does not dire
tly a�e
t the individual hazard of t1 but does a�e
t the observed

hazard of t1 then this indi
ates that there is a spurious relation between the

durations by way of their unobserved determinants. It should again be stressed

that this is not based on an ex
lusion restri
tion in the usual sense of the word. All

explanatory variables are allowed to a�e
t (the means of) both duration variables
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{ they are just not allowed to a�e
t the whole duration distributions in the same

way.60

The above results are based on the availability of \single-spell" data. In

the present 
ontext, this means that for ea
h individual in the sample there

is one observation of the \identi�ed minimum" (whi
h 
onsists of minft1; t2g and

argmini ti). Now suppose that the individual-spe
i�
 value of the v1; v2 pair is in-

variant over time. In a re
ent working paper, Abbring and Van den Berg (2000b)

show that some of the assumptions made by He
kman and Honor�e (1989) 
an be

weakened substantially if the data provide multiple observations on the identi�ed

minimum for ea
h individual.

8.2.2 Su

essive durations

If the two spells are su

essive, and both durations 
an be followed until 
omple-

tion, then the data provide the joint distribution F (t1; t2jx). In fa
t, it is merely

for expositional reasons that we take the spells to be su

essive: if they o

ur

(partly) simultaneously and are both observed until 
ompletion then the results

of this subse
tion are valid as well, provided that the durations satisfy the model

as de�ned in Subse
tion 8.1.

The most general model spe
i�
ation does not impose restri
tions a
ross the

marginal duration distributions, so it allows for  1 6=  2; �0;1 6= �0;2; and v1 6= v2.

For both marginal hazard fun
tions in this model we make regularity assumptions


orresponding to Assumptions 1{4. In addition, we adopt the equivalents of the

Assumptions 5{8 that were made to identify the MPH model. Honor�e (1993)

shows that under these assumptions the MMPH model is identi�ed. (Assumptions

6 and 8 may be jointly repla
ed by Assumptions 6b and 8b.)

This result is not surprising, be
ause the data on tijx identify the determin-

ants of the MPH model for ti (whi
h are  i; �0;i, and the marginal distribution of

vi), provided that the assumptions for identi�
ation of this MPH model are satis-

�ed. The relation between v1 and v2 is subsequently identi�ed from the observed

relation between t1 and t2 given x.

Sometimes it makes sense to impose a priori restri
tions a
ross the mar-

60Of 
ourse, the �0;i(x) are not dire
tly observed. He
kman and Honor�e (1989) identify these

by examining data at zero durations. Whether this 
an be used to 
onstru
t a useful test

statisti
 on independen
e remains to be seen.
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ginal duration distributions. The most restri
tive spe
i�
ation imposes that  1 =

 2; �0;1 = �0;2; and v1 = v2. We already know from Se
tion 6 that this model

is identi�ed under weak assumptions. Now let us 
onsider an intermediate 
ase

in whi
h we impose that v1 = v2 but allow the baseline hazards  1 and  2 to

be di�erent. In addition, we do not assume that there are observed explanatory

variables x. In other words, the analysis is 
onditional on a given value of x, and

we allow for full intera
tion of the a
tual value of x with the model determinants:

 i may depend on x in an unspe
i�ed way, and v and x may be dependent in the

population (from this point of view we do not 
onsider an \intermediate" 
ase,

as this generalizes the MMPH spe
i�
ation). Thus,

�i(tjx; v) =  i(tjx) � v; vjx � G(vjx)

This in
ludes of 
ourse as a spe
ial 
ase that  i(tjx) 
an be written as  i(t)�0;i(x).

We make regularity assumptions 
orresponding to Assumptions 2{4. Honor�e

(1993) shows that this model is identi�ed, provided that a normalization is im-

posed on the integrated baseline hazard (analogi
al to Assumption 7). Note that

we do not need to make assumptions 
orresponding to the previously made As-

sumptions 5, 6, and 8. Perhaps the most important issue here is that identi�
ation

does not require independen
e of v and x. In many appli
ations, su
h independ-

en
e is diÆ
ult to justify. Like in Se
tion 6, if unobserved heterogeneity values

are identi
al a
ross di�erent durations then the model is similar to a standard

dynami
 panel data model.

8.3 Spe
i�
ation of the bivariate unobserved heterogen-

eity distribution

8.3.1 Dimensionality

The types of justi�
ations used for parametri
 fun
tional forms of G in MPH

models are often unavailable for MMPH models. This is parti
ularly true for the


hoi
e of a spe
i�
ation for the dependen
e of v1 and v2. In this subse
tion we

fo
us on the 
hoi
e of the dimensionality of the distribution of G (or more a

ur-

ately, the dimension of the support of G). In Subse
tion 8.3.2 we then examine

the types of dependen
e that 
an be generated by di�erent parametri
 fun
tional

forms for a G with a given dimensionality.
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The so-
alled \one-fa
tor loading spe
i�
ation" has been a popular spe
i�
-

ation for a bivariate distribution of unobserved heterogeneity terms in MMPH

models (see Flinn and He
kman, 1982b, 1983, for early appli
ations, and He
k-

man, Hotz and Walker, 1985, He
kman and Walker, 1987, 1990, and Bonnal,

Foug�ere and S�erandon, 1997, for subsequent appli
ations). This spe
i�
ation re-

du
es the dimensionality of the distribution G from 2 to 1. In parti
ular, it as-

sumes that there is a univariate random variable z su
h that

vi = exp(�i + 
iz) i = 1; 2 (31)

(Note that this z does not refer to the integrated baseline hazard here.) This

spe
i�
ation 
an be straightforwardly generalized to a higher number of di�erent

durations as well as a higher dimension of the random variable z. If z is two-

dimensional then we obtain a \two-fa
tor loading spe
i�
ation", et
.

The two (related) advantages of the \fa
tor loading spe
i�
ations" are (1)

they restri
t the number of unknown parameters, leading to a sparse spe
i�
a-

tion, and (2) they limit the 
omputational burden of the estimation of the model.

The number of parameters related to G equals the number of parameters of

the distribution of z, plus the number of �i and 
i parameters, minus normaliza-

tions. This typi
ally in
reases linearly with the number of di�erent durations n. If

v1; : : : ; vn has a genuine multivariate distribution then the number of parameters

related to G typi
ally in
reases quadrati
ally with n. To illustrate the 
ompu-

tational advantage, 
onsider the 
ase where log v1; : : : ; log vn has a multivariate

normal distribution. The evaluation of the joint density fun
tion of t1; : : : ; tn then

requires the evaluation of an n�dimensional integral. However, if the vi are re-

lated by a one-fa
tor loading spe
i�
ation then the integral is one-dimensional.

See for example Bonnal, Foug�ere and S�erandon (1997), where n = 8. Note that


omputational burden is less of a problem in the 
ase of dis
rete vi and n smaller

than, say, 4.

Hougaard (1987) stresses that it is too restri
tive to assume that v1 � v2

if the 
orresponding spells do not 
on
ern the same state. If (i) v1 � v2, and

(ii) both durations are always observed, and (iii) ea
h duration is des
ribed by

an identi�ed MPH model, then the full unobserved heterogeneity distribution

is 
ompletely identi�ed from data on only one of the durations. We now show

that somewhat similar problems may arise in the 
ase of a one-fa
tor loading

spe
i�
ation for G.
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Indeed, the main disadvantage of the one-fa
tor loading spe
i�
ation 
on-


erns the relation it imposes on the marginal duration distributions on the one

hand, and the dependen
e of the durations on the other. If Var(v1) > 0 and

Var(v2) > 0 then it automati
ally follows that Cov(v1; v2) 6= 0. So if the data

provide eviden
e for unobserved heterogeneity in the marginal distributions of t1

and t2, then the model implies that these durations must be dependent. Simil-

arly, if the durations are independent, then the model implies that there is no

unobserved heterogeneity for at least one of the durations. If the dependen
e

between the durations 
hanges, then ne
essarily the marginal duration distribu-

tions 
hange as well. Lindeboom and Van den Berg (1994) show in detail that

these may amount to serious restri
tions on the spe
i�
ation of the full model.

To illustrate this issue, suppose that the distribution of z belongs to a para-

metri
 family of distributions with two parameters: a lo
ation parameter � and

a s
ale parameter � (for example, z has a normal distribution with parameters �

and �). Then

z = �+ �ez;
where ez has a 
ompletely spe
i�ed distribution. By substituting this into (31),

it is 
lear that we 
an only identify �1 + 
1�, �2 + 
2�, 
1�, and 
2�. This

implies that in e�e
t we only have two parameters at our disposal to 
apture

the 3 se
ond moments of log v1; log v2 (whi
h are Var(log v1), Var(log v2), and

Cov(log v1; log v2)).

8.3.2 The dependen
e between the durations

In this subse
tion we examine the dependen
e of the two duration variables in the

MMPHmodel. For this purpose we use some summary measures of the asso
iation

between two random variables. For a given asso
iation measure we fo
us on two

issues: �rst, whi
h range of values of this asso
iation measure 
an be attained by

the MMPH model in general, and se
ondly, to what extent is this range further

narrowed if G is assumed to belong to spe
i�
 families of distributions. The �rst

issue is of importan
e for a 
omparison of the MMPH model to other models for

the dependen
e between duration variables. The se
ond issue is of importan
e for

a 
omparison of the 
exibility of di�erent families of heterogeneity distributions,
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and to obtain insight into the range of bivariate models that 
an be generated by

a spe
i�
 G. The results in this subse
tion are from Van den Berg (1997).

The regression-type spe
i�
ation of the MMPH model (see equation (30))

suggests that Corr(log z1(t1); log z2(t2)jx) may be an interesting summary meas-

ure of the asso
iation between t1 and t2. Unfortunately it turns out that for our

purposes it is not, be
ause it 
an attain every value in (�1; 1) for given baseline

hazards, by 
hoosing an appropriate G. Moreover, it 
an attain every value in

(�1; 1) within the popular parametri
 families of distributions for G. Consider

instead Corr(t1; t2jx), and assume for the moment that the baseline hazards are


onstant. The 
orrelation of the duration variables is informative on the strength

of the linear relationship between these variables. It is a 
ommonly used measure

that is readily understood. Here, it equals

Corr(t1; t2jx) =
Cov( 1

v1
; 1

v2
)

Q2
i=1

�
Var( 1

vi
) + E( 1

v2
i

)

�1=2 (32)

Note that it does not depend on x and that its sign equals the sign of Corr(1=v1; 1=v2).

Van den Berg (1997) shows that

�1

3
< Corr(t1; t2jx) <

1

2

regardless of the values of �0;1(x) and �0;2(x), and regardless of the shape of

G(v1; v2) (but provided that the right-hand side of (32) exists). The inequalities

are sharp in the sense that they 
an be approa
hed arbitrarily 
losely by 
hoosing

appropriate G.

The result above (and most of the results below) 
an be easily generalized to

models with Weibull baseline hazards. In that 
ase, the upper and lower bound

depend on the parameters of the baseline hazard, but they are always stri
tly

between �1 and 1, and the lower bound is always 
loser to zero than the upper

bound.61

In the empiri
al literature, the most frequently used families of distributions

for v1; v2 are (1) the family of bivariate dis
rete distributions with two points of

61Similar results 
an be derived for bivariate a

elerated failure time models and bivariate

duration models in dis
rete time, notably the dis
retized (i.e. rounded-o�) bivariate MPHmodel

and the rather popular bivariate dis
rete-time duration model in whi
h the exit probabilities

have logisti
 spe
i�
ations.
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support for v1 and for v2, and (2) the family of bivariate normal distributions

for log v1; log v2. These families in
lude as spe
ial 
ases the one-dimensional dis-

tributions with perfe
t 
orrelations (these 
an be represented by the one-fa
tor

loading spe
i�
ation (31)). Coleman (1990), Van den Berg, Lindeboom and Rid-

der (1994), Carling and Ja
obson (1995), and Van den Berg and Lindeboom

(1998) adopt multivariate dis
rete distributions for G,62, whereas Butler, Ander-

son and Burkhauser (1986), Lillard (1993), Xue and Brookmeyer (1996), Lillard

and Panis (1996, 1998), and Ng and Cook (1997) adopt multivariate normal

distributions.63 It turns out that in the dis
rete 
ase, every value in (�1=3; 1=2)

an be attained. By impli
ation, this is also true in the 
ase of more than two

points of support for ea
h vi. In the normal 
ase, Corr(t1; t2jx) 
an only attain

values in [�3 + 2
p
2; 1=2), where the lower bound equals about �0:17.

The lower bound �1=3 is attained for a dis
rete distribution for v1; v2 su
h

that Pr(v1 = 
1; v2 = 1) = Pr(v1 = 1; v2 = 
2) = 1=2, with 0 < 
1; 
2 < 1.64

In that 
ase, the bivariate distribution of t1; t2jx is su
h that, with probability

1=2, t1jx is zero and t2jx has an exponential distribution, and with probability

1=2 this holds with t1 and t2 inter
hanged. We 
on
lude that in an MMPH model

these (and similar) duration distributions 
annot be generated if log v1; log v2

has a normal distribution, whi
h may be a disadvantage of the latter if one is

interested in a 
exible spe
i�
ation.65

62Engberg, Gotts
halk and Wolf (1990) estimate a bivariate dis
rete-time duration model in

whi
h the individual per-period exit probabilities are logisti
 fun
tions of  i(ti)�0;i(x)vi, and in

whi
h G has a bivariate dis
rete distribution. Meghir and Whitehouse (1997) estimate a similar

dis
rete-time model, with a genuine bivariate dis
rete distribution, but with probit spe
i�
ations

for the exit probabilities. He
kman, Hotz and Walker (1985), He
kman and Walker (1987, 1990)

and Gritz (1993) adopt dis
rete distributions for z in a one-fa
tor loading spe
i�
ation. Card

and Sullivan (1988), Mroz and Weir (1990), Ham and LaLonde (1996) and Eberwein, Ham and

LaLonde (1997) estimate dis
rete-time bivariate duration models with logisti
 probabilities and

a one-fa
tor loading spe
i�
ation for z with a dis
rete distribution.
63Flinn and He
kman (1982b, 1983) and Bonnal, Foug�ere and S�erandon (1997) adopt normal

distributions for z in a one-fa
tor loading spe
i�
ation. In a sensitivity analysis, the latter study

also adopts a dis
rete distribution for z.
64This should not be interpreted as an advantage of dis
rete random variables for v1; v2

vis-�a-vis 
ontinuous random variables, for one 
an 
onstru
t families of bimodal 
ontinuous

distributions for G su
h that �1=3 
an be approa
hed arbitrarily 
losely.
65Butler, Anderson and Burkhauser (1989) assume v1; v2 to have a bivariate dis
rete distri-

bution with points of support that are �xed in advan
e. This means that the only parameters
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For the general model as well as within the parametri
 families dis
ussed

above, the distributions that give the largest and smallest possible value of

Corr(t1; t2jx) are su
h that log v1 and log v2 are perfe
tly 
orrelated. This means

that the range of values for Corr(t1; t2jx) is the same as in the 
ase of a one-fa
tor

loading model (see equation (31)) with an appropriate distribution of z. In other

words, a redu
tion of the 
lass of G to one-fa
tor loading spe
i�
ations does not

further restri
t the range of values that Corr(t1; t2jx) 
an attain.66 From this point

of view, one-dimensional random variation in the unobserved heterogeneity terms

is suÆ
ient for maximum 
exibility in terms of the 
orrelation of the durations.

As an alternative measure of asso
iation, 
onsider Kendall's � (or \Kendall's


oeÆ
ient of 
on
ordan
e"). This is the most popular global ordinal measure

of asso
iation in the literature on multivariate durations (see e.g. Genest and

Ma
Kay, 1986, Oakes, 1989, and Guo and Rodr��guez, 1992). There are several

equivalent ways to formally de�ne it. The de�nition given by Kendall (1962) is

parti
ularly useful for general multivariate duration models,

�(t1; t2jx) = 4E(F (t1; t2jx))� 1

where the expe
tation is taken with respe
t to F (t1; t2jx) itself. Kendall's � only

attains values in [�1; 1℄. It is an ordinal measure, and it is informative on the

strength of any monotone relation. It equals 1 (�1) if and only if t2 is a monotone

in
reasing (de
reasing) fun
tion of t1. Be
ause it is invariant under monotone

transformations of the random variables, the value of �(t1; t2jx) in the MMPH

model does not depend of the baseline hazards or on the values of the systemati


hazards (so the baseline hazards 
an be taken as 
onstants, and the 
onditioning

on x 
an be omitted). As a result, it only depends on the distribution G of

the unobserved heterogeneity terms, whi
h is exa
tly the part of the model that


auses the dependen
e of the durations.

For 
onvenien
e, assume that G(v1; v2) follows a one-fa
tor loading spe
i�
a-

tion, i.e. suppose (31) holds. It turns out that all values between �1 and 1 
an be

attained by �(t1; t2), within any family of 
ontinuous distributions for z. However,

of G to be estimated are the probabilities asso
iated with these points of support. This 
an be

shown to narrow the range of values of Corr(t1; t2jx) as well, in parti
ular if the points for v1

or v2 are 
hosen to be relatively 
lose to one another (see Van den Berg, 1997, for examples).
66Note that if v1 � v2 then this range redu
es to (0; 1=2).
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if z (and therefore vi) is restri
ted to have a dis
rete distribution with n points

of support (n = 2; 3; : : : ;1), then

�1 + 1

n
< �(t1; t2) < 1� 1

n

These inequalities are sharp in the sense that they are approa
hed arbitrarily


losely for appropriate values of the parameters in the one-fa
tor loading spe-


i�
ation (31).

The results for � are 
learly quite di�erent from those for the 
orrelation


oeÆ
ient. This is be
ause � dete
ts linear and nonlinear monotone relations alike,

and it does not depend on the relative magnitudes of the duration variables, but

only on their ordering. The fa
t that the range of values of �(t1; t2) is restri
ted

for dis
rete distributions with �nite n 
an be explained as follows. In this 
ase,

the population 
an be subdivided into a �nite number of groups of individuals,

and within these groups, all individuals are the same in terms of their v1 and v2.

This implies that there is a positive probability that two random drawings of t1

and t2 are from the same group. Now 
onsider all observations for a single group.

Be
ause they all have the same v1 and v2, there is no relation at all between t1

and t2 within the group. This restri
ts the population value of �(t1; t2). It does

not a�e
t the range of values of Corr(t1; t2jx) be
ause the \within-group" la
k

of 
orrelation 
an be made quantitatively unimportant by making the \between-

group" di�eren
es large.

In all 
ases, the bounds for �(t1; t2) are attained by \spreading out" the het-

erogeneity distribution as mu
h as possible. If z is 
ontinuous then the resulting

bivariate distribution of t1; t2jx is su
h that all probability mass is on a single


urve for t1 and t2. We 
on
lude that in an MMPH model su
h a duration distri-

bution 
annot be generated if z has a dis
rete distribution with a �nite number

of points of support. This suggests that it is useful in empiri
al appli
ations to

try to in
rease the number of mass points.

We �nish this subse
tion by noting that in appli
ations it may also be interest-

ing to examine the dependen
e of the residual duration variables if one 
onditions

on survival up to a 
ertain duration. It may also be interesting to examine how

the (non-
ausal) e�e
t of the realization of one duration variable on the hazard

rate of the other 
hanges with the realized value of the �rst duration variable.

Oakes (1989), Anderson et al. (1992), Hougaard, Harvald and Holm (1992b) and
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Yashin and Ia
hine (1999) provide analyses for the general 
ase, and they also

dis
uss how the dependen
e patterns are a�e
ted by the fun
tional form of G.

9 Causal duration e�e
ts and sele
tivity

9.1 Lagged endogenous durations

In this subse
tion we brie
y examine bivariate duration models with lagged-

duration dependen
e as well as mutually related unobserved heterogeneity terms.

Re
all from Se
tion 7 that su
h models have been used to study the impa
t of

the length of an unemployment spell on the length of the next unemployment

spell. Also re
all that the estimate of the e�e
t of the previous duration is biased

if one ignores the spurious dependen
e from related unobserved determinants.

In terms of the hazards, the model spe
i�
ation reads

�1(t1jx; v1) =  1(t1) � �0;1(x) � v1
(33)

�2(t2jt1; x; v2) =  2(t2) � �0;2(x) � �(t1) � v2

and we make the following regularity assumption on the fun
tion �,

Assumption 10 The fun
tion �(t) is positive for every t 2 [0;1).

If v1 and v2 are independent, then, 
onditional on x, the durations t1 and t2

are only dependent if �(t1) is not a 
onstant. In the general 
ase, the joint density

of t1 and t2 given x is straightforwardly expressed as

f(t1; t2jx) =
Z
1

0

Z
1

0

f1(t1jx; v1)f2(t2jt1; x; v2) dG(v1; v2)

in obvious notation. Note that if one allows for more than two 
onse
utive spells

then in pra
ti
e there may be initial-
onditions problems, as one may not observe

the duration of the �rst spell.

If both durations 
an be followed until 
ompletion, then the data provide the

joint distribution F (t1; t2jx). Honor�e (1993) shows that this model is identi�ed

from these data, under some 
onditions. For both marginal hazard fun
tions in
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this model we make regularity assumptions 
orresponding to Assumptions 1{4,

and we adopt regularity Assumption 10. In addition, we adopt the equivalents of

Assumptions 5, 6b, and 7 on vi; �0;i; and  i.
67 We also normalize the fun
tion �,

and we repla
e the equivalent of Assumption 8 by a slightly di�erent assumption,

Assumption 11 : Normalization. For some a priori 
hosen t0, there holds

that �(t0) = 1.

Assumption 12 : Tails of the joint unobserved heterogeneity distribu-

tion. E(v1) <1 and E(v1v2) <1.

SuÆ
ient for Assumption 12 is that E(v2i ) < 1 for i = 1; 2. In sum, we adopt

Assumptions 1{4, the equivalents of Assumptions 5, 6b, and 7, and Assumptions

10{12.

Here, as in the model with su

essive durations and v1 6= v2 (Subse
tion 8.2.2),

identi�
ation requires assumptions on the tails of the distributions of v1 and v2

(notably, �niteness of moments), and it requires that the individual hazards are

proportional in t and x. It is plausible that these assumptions 
an be substantially

weakened if the data provide multiple observations on t1; t2 for ea
h v1; v2 pair

(see Woutersen, 2000, for results).

9.2 Endogenous sho
ks

In this subse
tion we examine bivariate duration models with the property that

the hazard of the duration t2 moves to another level at the moment at whi
h the

other duration t1 is 
ompleted, with mutually related unobserved heterogeneity

terms. Re
all from Se
tion 7 that su
h models have been used to study the e�e
t

of punishments and training on the exit rate out of unemployment and the e�e
t

of marriage dissolution on the death rate. Also re
all that the estimate of the


hange of the hazard is biased if one ignores the spurious dependen
e from related

unobserved determinants. Finally, re
all that we need to rule out anti
ipations of

the realizations of t1, but the individual is allowed to know the (determinants of

the) probability distribution of t1.

67In fa
t, the di�erentiability 
ondition in Assumption 6b 
an be weakened to 
ontinuity

here.
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We adopt a framework where the two durations start at the same point of

time, and where the realization of t1 a�e
ts the shape of the hazard of t2 from

t1 onwards. The data provide observations of t2 and x. If t1 is 
ompleted before

t2 then we also observe t1; if not then we merely observe that t1 ex
eeds t2. The

model and data are thus distin
tly asymmetri
 in the two durations. Somewhat

loosely, one may say that t2 is the \main" duration, or the \endogenous duration

of interest", whereas t1 is an \explanatory" duration, and the 
ausal e�e
t of t1

on t2 is the \treatment e�e
t".

In terms of the hazards, the model spe
i�
ation reads

�1(t1jx; v1) =  1(t1) � �0;1(x) � v1
(34)

�2(t2jt1; x; v2) =  2(t2) � �0;2(x) � eÆI(t1<t2) � v2

where I(.) denotes the indi
ator fun
tion, whi
h is 1 if its argument is true and

0 otherwise. If v1 and v2 are independent, then, 
onditional on x, the durations

t1 and t2 are only dependent if Æ 6= 1. In the general 
ase, the joint density of t1

and t2 given x is straightforwardly derived as in the previous subse
tion.

In a re
ent working paper, Abbring and Van den Berg (2000a) provide identi-

�
ation results for this model. In fa
t, they allow Æ to depend on past observables.

These results are similar to those for Subse
tion 9.1 in that they require inde-

penden
e of x from v1; v2, and they require an assumption on the �rst moments

of v1; v2. If multiple observations are available for ea
h v1; v2 pair then su
h as-

sumptions are not needed.

Contrary to models of binary treatments and binary out
omes, the treatment

e�e
t Æ is identi�ed without the need to rely on ex
lusion restri
tions or paramet-

ri
 fun
tional-form assumptions regarding the distribution of v1; v2. In parti
ular,

the set of explanatory variables a�e
ting �0;1 does not have to be larger than the

set a�e
ting �0;2, and the joint distribution of v1; v2 
an be any member of a

broad nonparametri
 
lass of distributions. These results imply that the timing

of events 
onveys useful information on the treatment e�e
t. This information is

dis
arded in a binary framework. In 
on
lusion, duration analysis is useful for the
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study of treatment e�e
ts in non-experimental settings.68;69

10 Con
lusions and re
ommendations

Sin
e the early 1980s, the e
onometri
 analysis of duration variables has be
ome

widespread. This 
hapter has provided an overview of duration analysis, with

an emphasis on the spe
i�
ation and identi�
ation of duration models, and with

spe
ial attention to models for multiple durations.

We have seen that the hazard fun
tion of the duration distribution is the

fo
al point and basi
 building blo
k of e
onometri
 duration models. Properties

of the duration distribution are generally dis
ussed in terms of properties of

the hazard fun
tion. The individual hazard fun
tion and the way it depends on

its determinants are the \parameters of interest". This approa
h is di
tated by

e
onomi
 theory. Theories that aim at explaining durations fo
us on the rate at

whi
h the subje
t leaves the state at a 
ertain duration given that the subje
t

has not done so yet. In parti
ular, they explain this exit rate in terms of external


onditions at the point of time 
orresponding to that duration and in terms of

the underlying e
onomi
 behavior of the subje
t given that he is still in the state

at that duration.

The Mixed Proportional Hazard model and its spe
ial 
ases are by far the most

popular duration models based on a spe
i�
ation of the hazard fun
tion. We have

seen that the re
ent mathemati
al-statisti
al literature on 
ounting pro
esses has

formulated pre
ise 
onditions under whi
h time-varying explanatory variables


an be in
luded in MPH models in su
h a way that one 
an still perform valid

e
onometri
 inferen
e with standard methods. Spe
i�
ally, these variables have to

be \predi
table" sto
hasti
 pro
esses. Here, \predi
tability" is a rather te
hni
al


on
ept with a meaning similar to that of weak exogeneity.

The MPH model and its spe
ial 
ases are often regarded to be useful redu
ed-

68The model of this subse
tion does not allow the size of the treatment e�e
t to depend on

unobserved heterogeneity. Given the re
ent interest in heterogeneity of treatment e�e
ts (see

e.g. He
kman, LaLonde and Smith, 1999), it is a 
hallenge for future resear
h to in
orporate

this into duration analysis. See Abbring and Van den Berg (2000a) for results on this.
69Robins (1998) analyzes treatment e�e
ts in a di�erent type of duration models where

unobserved determinants of the duration of interest may vary over time and may depend on

the treatment.
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form models for duration analysis. The resulting estimates are then interpreted

with the help of some e
onomi
 theory. Unfortunately, the proportionality as-

sumption of the (M)PH model 
an in general not be justi�ed on e
onomi
-

theoreti
al grounds. However, if the optimal strategy of the individual is myopi


(e.g. be
ause of repeated sear
h, or be
ause the dis
ount rate is in�nite), then

this proportionality 
an often be dedu
ed from e
onomi
 theory.

The MPH model is nonparametri
ally identi�ed from single-spell data, given

an assumption on the tail of the unobserved heterogeneity distribution, like �-

niteness of its mean. However, the model is nonparametri
ally unidenti�ed if su
h

an assumption is dropped. Moreover, the adoption of a model that is observation-

ally equivalent to (but di�erent from) the true model leads to in
orre
t inferen
e

on the parameters of interest. This is bad news, as it is often diÆ
ult to make

any justi�ed assumption on the tail of the unobserved heterogeneity distribution.

In appli
ations where the unobserved heterogeneity term represents an import-

ant e
onomi
 variable, e
onomi
 theory might provide a justi�
ation of the �nite

mean assumption.

Let the �nite mean assumption be satis�ed. The observed hazard fun
tion of

the duration given the observed explanatory variables is nonproportional, mean-

ing that it 
annot be expressed as a produ
t of a term depending only on the

elapsed duration and a term depending only on the observed explanatory vari-

ables. With single-spell data, the unobserved heterogeneity distribution in MPH

models is identi�ed from the intera
tion between the duration and the explanat-

ory variables in the observed hazard, or, in other words, from the observed type

of nonproportionality of the observed hazard. However, unobserved heterogen-

eity 
an not generate just any type of intera
tion. The 
lass of models for the

observed hazard that is generated by MPH models is smaller than the general


lass of intera
tion models for the observed hazard. In other words, the MPH

model is overidenti�ed with single-spell data.

In MPH models, the sign of the intera
tion between the duration and the

explanatory variables in the observed hazard is a�e
ted by the type of unobserved

heterogeneity distribution. However, under weak 
onditions, the sign is always

negative at small durations regardless of the type of heterogeneity distribution.

If unobserved heterogeneity has a Gamma distribution, then the intera
tion is

negative at all durations and all values of the systemati
 part of the hazard
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fun
tion. If unobserved heterogeneity has a dis
rete distribution with two positive

mass points then the intera
tion is negative at small durations and positive at

large durations.

In MPH models, the e�e
t of an explanatory variable on the observed hazard


an be negative at some durations even if the explanatory variable has a positive

e�e
t on the underlying individual (or systemati
) hazard. This means that it

is not possible to dedu
e the sign of the e�e
t of the explanatory variable on

the underlying individual hazard from the observed e�e
t of the variable on the

observed hazard at 
ertain durations. Fortunately, this remarkable e�e
t 
an only

o

ur for some lo
al duration intervals.

By now, there is overwhelming eviden
e that with single-spell data, minor


hanges in the assumed parametri
 spe
i�
ation of the MPH model, while lead-

ing to a similar over-all �t, may produ
e very di�erent parameter estimates. Also,

very di�erent models may generate similar data. Estimation results from single-

spell data are sensitive to misspe
i�
ation of the fun
tional forms asso
iated

with the model determinants, and this sensitivity is stronger than usual in e
o-

nometri
s. In the absen
e of strong prior information on the model determinants,

single-spell data do not enable a robust assessment of the relative importan
e

of these determinants as explanations of random variation in the observed dur-

ations. Therefore, interpretations based on estimation results are often unstable

and should be performed with extreme 
aution.

In biostatisti
s, this state of a�airs has led to a renewed interest in A

eler-

ated Failure Time models as alternative redu
ed-form duration models for the

analysis of single-spell duration data. From an e
onometri
 point of view, the

AFT approa
h is unsatisfa
tory, be
ause it does not fo
us on the parameters of

the individual hazard as the parameters of interest. However, if one is only inter-

ested in the sign or signi�
an
e of a 
ovariate e�e
t on the individual durations

then the AFT approa
h may be useful.

In pra
ti
e, it may be useful to exploit predi
tions from the underlying e
o-

nomi
 theory when spe
ifying the duration model, by imposing these as restri
-

tions on the fun
tional form of the heterogeneity distribution or the baseline

hazard. It may be even more useful to look for data with multiple spells (see be-

low). Now suppose that these options are not available. Con
erning the baseline

hazard, the 
on
eived wisdom is that a pie
ewise 
onstant spe
i�
ation is then the
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most useful. Su
h a spe
i�
ation is 
exible and 
onvenient from a 
omputational

point of view. Con
erning the unobserved heterogeneity distribution, it may be

useful to start o� with an informal examination of the sign of the intera
tion in

the observed hazard. If it is negative at all durations then a Gamma distribution

may give a better �t whereas if it is positive at large durations then a dis
rete

distribution may give a better �t.

By now, the empiri
al analysis of MPH models with multi-spell duration data

is widespread. Basi
ally, if two observations are available for ea
h unobserved

heterogeneity value, then the identi�
ation of the model does not require an

untestable assumption on the tail of the unobserved heterogeneity distribution

anymore, and, perhaps even more importantly, observed and unobserved explan-

atory variables are allowed to be dependent. The identi�
ation of this distribution

does not 
ome anymore from the intera
tion between the duration and the ob-

servable explanatory variables in the observed hazard. Data on multiple spells

for the same individual therefore remove the identi�
ation problems asso
iated

with single-spell data. Moreover, a 
onsensus has emerged that multi-spell data

allow for reliable inferen
e that is robust with respe
t to the spe
i�
ation of

the unobserved heterogeneity distribution. Multi-spell duration data make dura-

tion analysis more similar to dynami
 panel data analysis. It should however be

stressed that the analysis of multi-spell data is parti
ularly sensitive to 
ensoring.

The 
hapter pays spe
ial attention to models for multiple durations. Here,

the marginal duration distributions need not be the same. In general one may

think of many di�erent ways to model a relation between duration variables. In

the applied e
onometri
 literature on the estimation of multiple-duration mod-

els, the range of di�erent models is a
tually not so large. Typi
ally, the models

allow for dependen
e between the duration variables by way of their unobserved

determinants, with ea
h single duration following its own MPH model. In addi-

tion to this, the model may allow for a \
ausal" e�e
t of one duration on the

other, as motivated by an underlying e
onomi
 theory. The �rst popular type of


ausal e�e
t 
on
erns an e�e
t of a realized past duration on the 
urrent hazard.

Basi
ally, this is modeled by in
luding the realized past duration as an additional


ovariate in the hazard for the 
urrent duration. The se
ond popular type of


ausal e�e
t 
on
erns situations where two durations o

ur simultaneously, and

where the realization of one duration variable has an immediate e�e
t on the
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hazard of the other duration variable. This in
ludes models of treatment e�e
ts

in the presen
e of sele
tivity and in the absen
e of ex
lusion restri
tions.

For su
h models, identi�
ation results have been derived whi
h are similar

in 
ontents to those for MPH models with single-spell data. The identi�
ation


onditions 
an be weakened substantially if multiple observations are available

for ea
h value of the heterogeneity pair, or if 
ross-restri
tions are imposed on

the distributions of the two durations in the multiple duration model.

The multiple-duration model where the marginal duration distributions ea
h

satisfy an MPH spe
i�
ation, and the durations 
an only be dependent by way

of their unobserved determinants, is 
alled the Multivariate Mixed Proportional

Hazard (MMPH) model. In the empiri
al analysis with su
h models it is import-

ant to assume a genuine multivariate distribution for the unobserved heterogen-

eity terms. Here, \genuine" means that there is no deterministi
 relation between

any two heterogeneity terms. More restri
tive spe
i�
ations, like the one-fa
tor

loading spe
i�
ation, impose 
ross-restri
tions on the marginal duration distri-

butions and the dependen
e of the durations. In su
h 
ases, if the data provide

eviden
e for unobserved heterogeneity in the marginal duration distributions,

then the model implies that these durations must be dependent. Similarly, in

su
h 
ases, if the durations are independent, then the model implies that there

is no unobserved heterogeneity for at least one of the durations.

Fa
tor loading spe
i�
ations have been popular be
ause they restri
t the num-

ber of unknown parameters, leading to a sparse spe
i�
ation, and they limit the


omputational burden of the estimation of the model. However, the latter 
an

also be a
hieved by adopting a (multidimensional) dis
rete distribution for the

unobserved heterogeneity terms. In fa
t, dis
rete heterogeneity distributions are

parti
ularly 
exible, in the sense that they are able to generate a relatively wide

range of values for the asso
iation measures of the 
orresponding durations. In

empiri
al appli
ations with MMPH models, it is therefore useful for 
omputa-

tional reasons and for reasons of 
exibility to assume a multidimensional dis
rete

distribution for the unobserved heterogeneity terms. One may then try to in-


rease the number of mass points. If the number of duration types is relatively

large then one may redu
e the number of parameters of the multidimensional

dis
rete distribution somewhat by imposing, say, a two-fa
tor loading stru
ture.
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