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Abstract

Since the early 1980s, the econometric analysis of duration variables has become wide-
spread. This chapter provides an overview of duration analysis, with an emphasis on
the specification and identification of duration models, and with special attention to
models for multiple durations. Most of the chapter deals with so-called reduced-form
duration models, notably the popular Mixed Proportional Hazard (MPH) model and its
multivariate extensions. The MPH model is often used to describe the relation between
the empirical exit rate and “background variables” in a concise way. However, since the
applications usually interpret the results in terms of some economic-theoretical model,
we examine to what extent the deep structural parameters of some important theoret-
ical models can be related to reduced-form parameters. We subsequently examine the
specification and identification of the MPH model in great detail, we provide intuition
on what drives identification, and we infer to what extent biases may occur because of
misspecifications. This examination is carried out separately for the case of single-spell
data and the case of multi-spell data. We also compare different functional forms for
the unobserved heterogeneity distribution.

Next, we examine models for multiple durations. In the applied econometric liter-
ature on the estimation of multiple-duration models, the range of different models is
actually not very large. Typically, the models allow for dependence between the dur-
ation variables by way of their unobserved determinants, with each single duration
following its own MPH model. In addition to this, the model may allow for an interest-
ing “causal” effect of one duration on the other, as motivated by an underlying economic
theory. For all these models we examine the conditions for identification. Some of these
are intimately linked to particular estimation strategies. The multiple-duration model
where the marginal duration distributions each satisfy an MPH specification, and the
durations can only be dependent by way of their unobserved determinants, is called the
Multivariate Mixed Proportional Hazard (MMPH) model. For this model, we address
the issue of the dimensionality of the heterogeneity distribution and we compare the
flexibility of different parametric heterogeneity distributions.

On a number of occasions, we incorporate recent insights from the biostatistical
literature on duration analysis, and we contrast points of view in this literature to
those in the econometric literature. Finally, throughout the chapter, we discuss the

importance of the possible collection of additional data.
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1 Introduction

Duration analysis is a core subject of econometrics. Since the early 1980s, the em-
pirical analysis of duration variables has become widespread. There are a number
of distinct reasons for this development. First of all, many types of behavior over
time tend increasingly to be regarded as movements at random intervals from
one state to another. Examples include movements by individuals between the
labor market states of employment, unemployment and nonparticipation, and
movements between different types of marital status. This development reflects
the fact that dynamic aspects of economic behavior have become more important
in economic theories, and that in these theories the arrival of new information
(and thus the change in behavior in response to this) occurs at random intervals.
Secondly, longitudinal data covering more than just one spell per respondent are
widely available in labor economics, as well as in demography and medical sci-
ence. Applications of duration analysis include, in labor economics, the duration
of unemployment and the duration of jobs (see e.g. the survey by Devine and
Kiefer, 1991), strike durations (e.g., Kennan, 1985), and the duration of training
programs (Bonnal, Fougere, and Sérandon, 1997). In business economics, dura-
tion models have been used to study the duration until a major investment (e.g.,
Anti Nilsen and Schiantarelli, 1998). In population economics, duration analysis
has been applied to study marriage durations (Lillard, 1993), the duration until
the birth of a child (Heckman and Walker, 1990), and the duration until death.
In econometric analyses dealing with selective observation, duration models have
been used to study the duration of panel survey participation (e.g., Van den
Berg and Lindeboom, 1998). In marketing, duration models have been used to
study household purchase timing (e.g., Vilcassim and Jain, 1991), in consumer
economics to study the duration until purchase of a durable or storable product
(Antonides, 1988, and Boizot, Robin and Visser, 1997), and in migration econom-
ics to study the duration until return migration (e.g., Lindstrom, 1996). Recently,
duration models have been applied in areas in economics where the unit under
consideration is not an individual or firm. For example duration models have been
used in macro economics to study the duration of business cycles (e.g., Diebold
and Rudebusch, 1990), in finance to study the duration between stock-market

share transactions (Engle and Russell, 1998), in political economics to study the



duration of wars (see Horvath, 1968), and in industrial organization to study the
duration of a patent (Pakes and Schankerman, 1984).

This chapter presents an overview of duration analysis. A substantial part
of the chapter deals with so-called reduced-form duration models, notably the
famous Mixed Proportional Hazard (MPH) model. This model expresses the exit
rate to a destination state as a rather simple function of observed and unobserved
explanatory variables and the elapsed duration in the current state. This model
and its special cases, most notably the Proportional Hazard (PH) model, have
been used in hundreds of empirical studies (see e.g. Devine and Kiefer, 1991,
for references in micro labor economics). Parametric versions of the model are
included in statistical packages like STATA, SAS, S-PLUS and SPSS (see Pelz and
Klein, 1996, for a comparison of some packages). We examine the specification
and identification of the MPH model in detail, and we infer to what extent biases
may occur because of misspecifications.

The MPH model is often used to describe the relation between the empirical
exit rate and “background variables” in a concise way, and to provide estimates of
the effect of an explanatory variable on the duration variable. However, since the
applications usually interpret the results in terms of some economic-theoretical
model, it is important to examine to what extent the deep structural parameters
of this theoretical model can be related to the reduced-form parameters. As we
shall see, economic theory in general does not lead to a “proportional” specific-
ation as in the MPH duration model, and this complicates the interpretation of
the reduced-form estimates.

Recently, the empirical analysis of multiple durations has become widespread.
In many cases it is simply a necessity to address the issue of whether differ-
ent durations (given the observed explanatory variables) are not independently
distributed. For example, if the duration data are censored then it matters for
empirical inference how the time until censoring is related to the duration of in-
terest. More generally, if a spell under observation can terminate in a number of
different ways (“competing risks”) then it matters whether the latent durations
to the different destinations are related. As we shall see, economic theory often
predicts that such durations are related. In fact, the issue of whether different
durations are related is often an important question in its own right. Because

of this, current econometric research often involves the simultaneous analysis of



multiple observed spells of the same type of duration for a given individual, or
multiple observed spells of different types of durations for a given individual. For
example, it may involve simultaneous and consecutive durations in labor market
states and marital states. It may also involve the analysis of treatment effects
on a duration variable, if the duration until treatment (or the duration of the
treatment) is stochastic. In this chapter we therefore pay special attention to the
analysis of multiple durations. We examine different types of relations between
duration variables, as motivated by economic theory. We then examine the way
in which they can be incorporated in multivariate extensions! of the MPH model,
and we discuss identification of the determinants of these multivariate models as
well as identification of deep structural parameters. For the case where the de-
pendence runs by way of related unobserved explanatory variables (in which case
we call the model a multivariate MPH (MMPH) model), we compare different
parametric heterogeneity distributions. One of the main conclusions of the sec-
tions on multiple-duration models is that, in microeconometric research involving
self-selection, duration data are much more informative than binary data. This
is important because economic theory generally predicts the absence of exclusion
restrictions based on characteristics of the individual under consideration, so that
these can not be used for identification.

So far, we have been vague on the meaning of notions like “state”, “duration”,
“exit rate”, and “explanatory variable”. In Section 2 we provide some formal
definitions. We stress that the economic meaning of these notions is entirely
context-dependent: what distinguishes states or transitions in one study may
not be relevant in another study. Throughout the chapter we will be concerned
with the economic insights that can be obtained from duration analysis. For
that reason we outline in Section 3 some motivating underlying economic models
for durations. In particular, we examine search models of individual labor market
behavior. After these preparatory sections we examine the MPH model in Sections
4 and 5. Section 6 deals with the identification of the MPH model in case the
data provide durations of multiple spells in a given state for a given individual.
Such data are called multi-spell data. Again, the meaning of these notions is

rather vague at this stage. Basically, the idea is that the data provide multiple

'Tn this chapter, “multivariate” refers to multiple durations and not to multiple explanatory

variables.



independent drawings from the individual-specific duration distribution. Sections
7-9 deal with multiple-duration models in general. These constitute a very broad
class of models, and they include, as a special case, the model of Section 6 with
durations of multiple spells in a given state for a given individual. Section 10
concludes and provides recommendations on empirical approaches.

Throughout the chapter, time is taken to be continuous.? When specifying a
duration distribution, the point of departure will invariably be the exit rate or
hazard rate (this is motivated in Section 2). This implies that we do not focus
on so-called Accelerated Failure Time models (see e.g. Kalbfleisch and Prentice,
1980), which enjoy some popularity outside economics. At times, though, we
compare the latter models to models that are based on a specification of the
hazard rate.

In this chapter we do not focus on estimation methods or specification tests.
Applied studies generally use well-established estimation methods like Maximum
Likelihood, Cox Partial Likelihood, Conditional Likelihood, or nonparametric
methods. The book by Lancaster (1990), which is the most comprehensive volume
on econometric duration analysis so far, provides an excellent survey on estima-
tion methods and specification tests for MPH models in econometrics. Andersen
et al. (1993) survey the literature on the modern statistical foundations. Kiefer
(1988) and Yamaguchi (1991) lucidly explain the basics of the empirical analysis
of duration models. Finally, the survey by Neumann (1997) discusses specifica-
tion tests as well, and also pays attention to the estimation of structural (search)

models.

2 Basic concepts and notation

Consider the spells experienced by certain subjects in a certain state. The dur-
ation of the spell is stochastic and is denoted by T, and realizations of T are

denoted by ¢.> The cumulative distribution function of 7' is denoted by F, so

2See Meyer, 1995, for a survey of discrete-time reduced-form duration models. These models
include continuous-time models where time is aggregated into intervals of unit length, as well

as models where time is genuinely discrete.
3Throughout most of the chapter, we use t to denote the random variable as well as its

realization. This abusive notation has become common in duration analysis because it allows

for concise formulations that are generally unambiguous.



F(t) = Pr(T < t), with F(0) = 0. The survivor function of T is defined as one

minus the distribution function and is denoted by F, so
Ft)=1-F(t)

As noted in the introduction, we restrict attention to continuous random vari-
ables T', and we denote a probability density function of T by f. In fact, F, F', and
f will be used as generic symbols for cumulative distribution functions, survivor
functions, and probability density functions, respectively, and their arguments
make clear which random variable is considered.

In a discrete-time setting, the hazard function of T at t is defined as the
probability that the spell is completed at ¢ given that it has not been completed

before t, as a function of £. With 7" continuous, we define the hazard function as

0(t)  lim Pr(T € [t,t +dt)|T > 1)
dt10 dt

So, somewhat loosely, the hazard function is the rate at which the spell is com-
pleted at t given that it has not been completed before, as a function of ¢. The
value of the hazard function (for a particular ¢, or for arbitrary t) is called the
“hazard rate” or simply “the hazard”. It is also called the “exit rate” to stress
the fact that completion of the spell is equivalent to exit out of the state of in-
terest. Again, we use f as a generic symbol for a hazard, and its argument makes
clear which random variable is considered. The hazard function () is said to
be duration dependent if its value changes over ¢. Positive (negative) duration
dependence means that 6(t) increases (decreases).

The hazard function provides a full characterization of the distribution of T,
just like the distribution function, the survivor function, and the density function.
All of these can be expressed in terms of one another. For F, F, and f this is well
known. Concerning 6, the following relations (which are easy to derive) express

f in terms of the other functions, and vice versa,



The hazard function is the focal point of econometric duration models. That
is, properties of the distribution of T" are generally discussed in terms of proper-
ties of f. There are two major reasons for this. First, and most importantly, this
approach is dictated by economic theory. In general, theories that aim at explain-
ing durations focus on the rate at which the subject leaves the state at duration
t given that he has not done so yet. In particular, they explain the hazard at ¢ in
terms of external conditions at ¢ as well as the underlying economic behavior of
the subjects that are still in the state at t. Theoretical predictions about a dura-
tion distribution thus run by way of the hazard of that distribution. It is obvious
that if the completion of a spell is at least partly affected by external conditions
that change over time (e.g. due to external shocks), and if one attempts to de-
scribe behavior of the subject over time in a changing environment, then it is
easier to think about the rate of leaving at ¢ given that one has not done so than
to focus on the unconditional rate of leaving at £. In the next section we provide
some examples of such theories.

It is often stated that a major advantage of using the hazard function as a
basic building block of the model is that it facilitates the inclusion of time-varying
covariates. This is, of course, part of the argument of the previous paragraph; it
reformulates the issue from the point of view of a builder of reduced-form models.

The second major advantage of using the hazard function as the basic building
block of the model is entirely practical. Real-life duration data are often subject
to censoring of high durations. In that case it does not make sense to model the
duration distribution for those high durations.

Whereas the hazard function is the focal point of model building in duration
analysis, the mean of the endogenous variable is the focal point in regression
analysis. On some occasions in the chapter we compare duration models to re-
gression models. For future reference it is useful to present the equation below.
This equation follows directly from the fundamental result that the integrated

hazard function [} f(u)du has an exponential distribution® with parameter 1.

log /Ot O(u)du = ¢ (3)

4 Family of exponential distributions:

f(t)y=ve %  forallt >0, with ¥ >0 (2)
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Here, € has an Extreme Value — Type I (EV1) distribution. This distribution does

not have any unknown parameters; its density equals

Ezxtreme Value — Type 1 distribution:

f(e) = e - e &Pl for all — oo < e < 0.

Equation (3) therefore again shows that once the hazard function is completely
specified, then so is the duration distribution. Note that the transformation of
t on the left-hand side of (3) can be interpreted as a particular change in the
time measurement scale. The equation states that after this transformation, the
only variation left in the duration concerns the purely random variation that
is unrelated to the determinants of 0(¢). Note that if one specifies a model for
6(t) then a natural model specification test follows from a comparison of the
empirical distribution of the estimated left-hand side of (3) to the distribution of
¢ (see Lancaster, 1990).

3 Some structural models of durations

In this section we briefly discuss some economic-theoretical models that predict
distributions of duration variables. These theoretical models have been structur-
ally estimated using data on such duration variables, and they have been used
to interpret estimates of reduced-form duration models. The common feature of
the models is that they are search models, which describe the duration until
an event as the outcome of a decision on the optimal moment of stopping the
search for something desirable.® For expositional reasons we phrase the models
in terms of search for jobs by individual agents on the labor market (although
they are applicable to many other types of search). Job search models have been
very popular as explanatory theoretical frameworks for reduced-form econometric

duration analyses (see Devine and Kiefer, 1991).

SThere are many other theoretical models that give rise to duration distributions. Examples
are learning models (see e.g. Jovanovic, 1984) and dynamic discrete choice models (see e.g.
Rust, 1994, for a survey). The latter can be considered as generalizations of basic search mod-
els although they are necessarily in discrete time; as such they give rise to discrete duration
distributions. These models may also be used to explain multiple durations for a given subject
(see e.g. Van der Klaauw, 1996).
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3.1 Standard search model
3.1.1 Stationarity

In this subsection we consider the prototype job search model for the behavior
of unemployed workers. Here, the duration variable of interest is the unemploy-
ment duration. Since this model has been discussed extensively many times (e.g.
Mortensen, 1986), the present, exposition is brief.

The model aims to describe the behavior of unemployed individuals in a dy-
namic and uncertain environment. Job offers arrive at random intervals following
a Poisson process with arrival rate A. A job offer is a random drawing (without
recall) from a wage offer distribution with distribution function F'(w).® It is as-
sumed that all jobs are full-time jobs. Every time an offer arrives, the decision
has to be made whether to accept the offer or reject it and search further. Once a
job is accepted it will be held forever at the same wage, so job-to-job transitions
are excluded. It is assumed that individuals know A and F' but that they do not
know in advance when job offers arrive and what wages are associated with them.
During the spell of unemployment a benefit b is received. Unemployed individu-
als aim at maximization of their own expected present value of income over an
infinite horizon. The subjective rate of discount is denoted by p.

The variables A, w, b and p are measured per unit time period. It is assumed
that the model is stationary. This means that A\, F,b and p are assumed to be
constant, and, in particular, independent of unemployment duration and calen-
dar time and independent of all events during unemployment. To ensure that
attention is restricted to economically meaningful cases, and to guarantee the
existence of the optimal strategy, we assume that 0 < A\, E.(w),b,p < oo. For
ease of exposition we take F' to be continuous.

Let R denote the expected present value of search when following the optimal
strategy. Because of the stationarity assumption and the infinite-horizon assump-
tion, the unemployed individual’s perception of the future is independent of time
or unemployment duration, so the optimal strategy is constant during the spell
of unemployment and R does not depend on the elapsed unemployment duration

t. It is well known (see e.g. Mortensen, 1986) that there is a unique solution to

6Note that F' here denotes a distribution of wage offers rather than a duration distribution.
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the Bellman equation for R, satisfying
w
pR = b+ AE, max{0, — — R} (4)
p

In this equation, the expectation is taken over the wage offer distribution F'.
Equation (4) has a familiar structure (see e.g. Pissarides, 1990). The return of
the asset R in a small interval around ¢ equals the sum of the instantaneous
utility flow in this interval, and the expected excess value of finding a job in this
interval. When an offer of w arrives at ¢ then there are two options: (i) to reject
it (excess value zero), and (i) to accept it (excess value w/p— R). It is clear that
the optimal policy is to choose option (ii) iff w > pR. Therefore, the optimal
strategy of the worker can be characterized by a reservation wage ¢: a job offer
is acceptable iff its wage exceeds ¢, with ¢ = pR. Using equation (4), ¢ can be

expressed in terms of the model determinants,
A [
¢:b+—/ F(w)dw
pJo

Note that this equation has a unique solution for ¢.
The hazard (or exit rate out of unemployment, or transition rate from unem-
ployment into employment) 6 equals the product of the job offer arrival rate and

the conditional probability of accepting a job offer,
6 = AF(9)

As a result of the stationarity assumption, # does not depend on the elapsed
duration of unemployment. Consequently, the duration of unemployment ¢ has
an exponential distribution (see (2)) with parameter 6.

Versions of this model have been structurally estimated with individual data
on unemployment durations and wages. “Structural” here means that the theor-
etical framework is assumed to describe the empirical distribution of durations
and wages. This enables estimation of the determinants A, F,... of individual
behavior. See Yoon (1981), Flinn and Heckman (1982a), Narendranathan and
Nickell (1985) and Van den Berg (1990b) for examples of this, and Wolpin (1995)

for a survey.
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3.1.2 Nonstationarity without anticipation

The stationarity assumption made in the previous subsection is often unreal-
istic. The values of the structural determinants may change because of duration
dependence of the amount of unemployment benefits, a stigma effect of being
long-term unemployed, policy changes, or business cycle effects. Sooner or later
these features of the labor market and personal characteristics of job searchers
are recognized and used in determining the optimal strategy. So, generally, the
optimal strategy is not constant in case of nonstationarity.

To proceed, assume that the individual’s search environment is subject to
unanticipated changes in the values of the structural determinants. Thus, the
values of these determinants may change over the duration, but the individual
always thinks that they will remain constant at their current values. This might
be a reasonable assumption in case of a change in A that is due to a random
macroeconomic shock, or in case of a change in b that is due to a sudden change
in the benefits system.

By exploiting the analogy to the stationary model, we obtain the following
equations for the reservation wage function ¢(t), giving the reservation wage at
time ¢, and the hazard function 0(¢),

= w F w|t)dw
60 =b(0) + o [ Flwltyd

0(t) = A F(o(1)[?)

where F'(w|t) denotes the wage offer distribution at time ¢ (so it should not be
interpreted as a distribution conditional on the realization of a random dura-
tion variable). In general, 6(t) varies with ¢. The distribution function for the
duration of unemployment subsequently follows from equation (1). See Naren-
dranathan (1993) for a structural empirical analysis of a nonstationary model

without anticipation.

3.1.3 Nonstationarity with anticipation

In many cases it is not realistic to assume that individuals do not anticipate
changes in the values of A, F, and b. In this subsection we consider nonstation-

arity with anticipation, along the lines of Van den Berg (1990a).” The structural

"Some special cases of this model have been examined earlier; see e.g. Mortensen (1986).
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determinants A, F, and b are allowed to vary over the duration ¢ in a determin-
istic way (so dependence on past offer arrival times or wage levels associated with
rejected offers is ruled out). This entails that the process with which job offers
arrive is a non-homogeneous Poisson process. We assume that job searchers have
perfect foresight in the sense that they correctly anticipate changes in the values
of A, F, and b. In other words, we expect people to know how these are related to
t. As usual, individuals do not know in advance when job offers arrive, or which
w are associated with them. Finally, we assume that A\, ), and b are constant for
all sufficiently high ¢. The latter implies that the optimal strategy is also constant
for sufficiently high ¢.

Let R(t) denote the expected present value of search if unemployment duration
equals ¢, when following the optimal strategy. Under regularity conditions, there
is a unique continuous solution to the Bellman equation for R(t), satisfying

dR(t) w

pR(t) = 0 +b(t) + A(?).E,,; max{0, e R(t)}
at points at which R(t) is differentiable in ¢, where the expectation is taken over
the wage offer distribution F'(w|t) at ¢t. Notice the similarity with equation (4)
above. The return of the asset R(¢) in a small interval around ¢ equals the sum
of the appreciation of the asset in this interval, the instantaneous utility flow in
this interval, and the expected excess value of finding a job in this interval. The
optimal strategy can be characterized by a reservation wage function ¢(t) that
gives the reservation wage at time ¢. Using the fact that ¢(t) = pR(¢), it follows
that

dé(t) >
S5 = po(t) — phlr) — A1) /¢(t> (w = ¢(£))dF (wlt)

This differential equation has a unique solution for ¢(t), given the boundary
condition that follows from the assumption that the model is stationary for all
sufficiently high ¢.

The hazard function 0(¢) now equals

0(t) = A(t)F(6(2)]t)

In general, 6(¢) varies with ¢. The distribution function for the duration of un-

employment subsequently follows from equation (1).
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For examples of structural empirical analyses of nonstationary models with
anticipation, see Wolpin (1987), Van den Berg (1990a), Engberg (1991), and
Garcia-Perez (1998).

3.2 Repeated-search model

Models of repeated search allow the economic agent to search further for better
matches after a match has been formed. The best-known model of repeated search
is the so-called on-the-job search model which aims to describe the behavior of
employed individuals who search for a better job (see Mortensen, 1986, for an
overview). In the basic on-the-job search model, a job is characterized by its wage
w which is taken to be constant within a job. For a working individual, the search
environment is specified in exactly the same way as we did in Subsection 3.1.1 for
an unemployed individual. In particular, we assume the model to be stationary.
The optimal strategy is constant during a job spell, and the the expected present
value of search R(w) when following the optimal strategy in a job with wage w

satisfies
pR(w) = w + AE,. max{0, R(w") — R(w)}

where the expectation is taken with respect to the distribution F' of wage offers
w*. Clearly, the optimal strategy is such that one accepts a job if and only if the
offered wage w* exceeds the current wage w, so it suffices to compare instant-
aneous income flows (i.e., the optimal strategy is “myopic”), and the reservation
wage simply equals the current wage.

For a given current wage w, the hazard of the job duration distribution (or

exit rate out of the present job) equals
0 = \F(w)

As a result, the duration of a job with a wage w has an exponential distribution
with this parameter 6. Note that models of repeated search are informative on
the joint distribution of consecutive job durations.

If, during employment, exogenous separations occur at a rate ¢, then this does

not affect the optimal strategy. The exit rate out of the present job then equals
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AF(w) +46. See Flinn (1996) for an example of structural estimation of this model
with job duration data.®

Burgess (1989) introduces a rather manageable type of nonstationarity in this
model. The individual’s search environment (i.e., A and F') is subject to shocks
that are not job-specific but rather such that they act similarly on all employed
workers. The shocks may be anticipated or unanticipated. It is intuitively obvious
that this nonstationarity does not change the optimal strategy: it remains optimal
to accept another job if and only if its wage exceeds the current wage. We thus

obtain for the job-to-job transition rate,
0(t) = A(t)F(wlt)

Throughout the remainder of the chapter, it is important to keep in mind
that empirical duration analysis is ultimately interested in structural parameters
that represent determinants of individual behavior. This is also true for empir-
ical analysis in which reduced-form models are estimated that are not explicitly

specified as a theoretical model. In the sequel we return to this issue.

4 The Mixed Proportional Hazard model

4.1 Definition

For sake of convenience, we use the term “individual” to denote the subject that
experiences certain spells in a given state. We consider the population of indi-
viduals that consists of the inflow into this given state. This can be the inflow at
a given point of time, or the inflow at any time. We assume that, for a given indi-
vidual in this population, the subsequent duration 7" is an absolutely continuous
and positive random (duration) variable. The distribution of T (or, equivalently,
the hazard function) may vary across individuals. We assume that all individual
variation in the hazard function can be characterized by a finite-dimensional vec-

tor of observed explanatory variables (or “covariates”, or “regressors”) x and an

8The empirical analysis of so-called equilibrium search models, which endogenize the wage
offer distribution F', often involves the joint estimation of the distributions of unemployment
durations and job durations. See e.g. Van den Berg and Ridder (1998), Bontemps, Robin and
Van den Berg (2000), and Bowlus, Kiefer and Neumann (2001).
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unobserved heterogeneity term v. The latter term can be interpreted as a func-
tion of unobserved explanatory variables.? In this subsection we assume that z is
time-invariant, and consequently we define the Mixed Proportional Hazard model
as a model with time-invariant explanatory variables. In the next subsection we
introduce time-varying explanatory variables.

For an individual with explanatory variables z and unobserved heterogeneity
v, the hazard function of the random variable T" evaluated at the duration % is
denoted by 6(t|z, v). This notation highlights the fact that we condition on z and
v. The standard MPH model is now defined by

Definition 1 : Standard MPH model. There are functions v and 6, such
that for every t and every x and v there holds that

0(t|r,v) = ¥(t) - Oy () - v (5)

This model was developed by Lancaster (1979), which includes an empirical
application to unemployment duration data, and by Vaupel, Manton and Stall-
ard (1979).'% The function (¢) is called the “baseline hazard” since it gives the
shape of the hazard function for any given individual. Only the [evel of the haz-
ard function is allowed to differ across individuals. The term 6,(z) is called the

“systematic part” of the hazard. In applied work, it is common to specify

0y(z) = exp(a'B), (6)

so that 0(t|z,v) is multiplicative in all separate elements of z.
For convenience, we make a number of regularity assumptions on the determ-

inants of the model.

Assumption 1 The vector x is k-dimensional with 1 < k < oo. The function

0,(z) : X C R* is positive for every v € X.

Assumption 2 The function ¢ (t) is positive and continuous on [0,00), except
that lim, o ¥ (t) may be infinite. For every t > 0 there holds that [§ ¢ (7)dr < oo,

while lim,_, _ [ (7)dr = oo,

9Lancaster (1990) shows that v to some extent may also represent measurement errors in T
and z.
1ONickell (1979) contains the first estimation of a discrete-time MPH-type model.
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Assumption 3 The distribution G of v in the inflow satisfies Pr(0 < v < o0) =
1.

Assumption 4 The individual value of v is time-invariant.

It should be stressed that, for virtually all of the results in the chapter, these
conditions are stronger than needed. This is particularly true for Assumption 2.
It is often sufficient that 1 (¢) is integrable, and sometimes it is sufficient that
J24p(T)dT < oo only on some interval. For expositional reasons, we do not deal
with this. On the other hand, for identification, additional assumptions are needed
(see Section 5). We do not list those here because it is interesting to contrast
alternative assumptions in the light of identifiability issues.

It is useful to examine the special case in which there is no unobserved het-
erogeneity (v = 1). In that case the model is called a Proportional Hazard (PH)
model (this model was developed by Cox, 1972, and predates the MPH model).
The PH model specification is regarded to be simple and yet sufficiently rich
to capture many data properties. The popularity of the PH model in reduced-
form duration analysis is comparable to the popularity of the linear regression
model in reduced-form regression analysis. Note that the general regression-type

expression for the integrated hazard function (see (3)) reduces to

log /Ot b(u)du = —a'B + ¢ (7)

for the PH model, where we substituted (6) and ¢ has an EV1 distribution. It
should again be stressed that e represents the purely random variation in the
duration outcome — it does not capture unobserved individual characteristics.
In comparison to a linear regression model (say logt = 2’5 + ¢, with ¢ having
an unknown distribution with mean zero), the left-hand side of (7) has a more
general specification, since it involves an unknown transformation of the duration
variable, whereas the right-hand side has a more restrictive specification, since
the distribution of the error term is completely specified. Thus, the PH model
and the regression model are not nested, and they derive their flexibility from
different sources.

The 8 parameters in the linear regression model are estimated consistently by
OLS under a wide range of distributions of £. Similarly, the 5 parameters in the

PH model are estimated consistently by Partial Likelihood under a wide range of
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specifications of the baseline hazard v (t). More precisely, the § parameters are
estimated consistently by maximization of a partial likelihood function that does
not depend on the baseline hazard function, which can be estimated nonpara-
metrically in a second stage (see Lancaster, 1990, for details). This is arguably
one of the great advantages of the PH model, but it does not carry over to the
MPH model in general.

For the MPH model, equation (3) reduces to

log /Otz/)(u)du — B —logv+e (8)

where again we substituted (6), and where again ¢ has an EV1 distribution.
The equation states that the log integrated baseline hazard function given x has
the same distribution as the distribution of a random variable that is the sum
of an EV1 random variable and another random variable (namely —z'f — logv
given z). Since we have not made an assumption on the distribution of v, it
is clear that specification (8) is much more general than (7). Now we have a
flexible specification for both the transformation of ¢ and the distribution of the
error term. However, the latter distribution cannot be just any distribution. For
example, it cannot be a normal distribution, because the sum of an EV1 random
variable and another random variable cannot have a normal distribution (see
Ridder, 1990). It turns out that the MPH model is actually identified under an
assumption on the tail of the distribution of v (see Section 5).

We end this subsection by mentioning some other reduced-form duration mod-

els. Consider the following model,
logz(t) = —a'f +¢ (9)

with z(¢) positive and increasing in ¢. This reduces to the MPH model if the “error
term” e is distributed as the sum of an EV1 random variable and another random
variable. If no assumption is made on the distribution of ¢ then (9) is called a
“transformation model” (see Horowitz, 1996). If it is subsequently imposed that
2(t) =t then we obtain the Accelerated Failure Time (AFT) model,

logt = —a'f + ¢

For future reference it is useful to note that in the AFT model the survivor

function can be written as

F(tlz) = exp(=0(t - e”?)) (10)
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where W is the integrated hazard function of the random variable exp(e). Clearly,
the individual characteristics act on the duration distribution by transforming
the time scale from ¢ to texp(z'). This may be an accurate description of the
actual variation in the lifetime distributions of complex self-evolving organisms
or mechanisms. Because of the one-to-one relation between a distribution and its
hazard function, the AFT specification can be translated into a specification of
the hazard function of ¢|z. Obviously, the latter need not be an MPH specification.
Note that in the transformation model and the AFT model, the hazard does not
serve as the focal point of model specification. This has strongly limited the use of
these models in social science duration analyses. We return to this in Subsection
5.6.

4.2 Time-varying explanatory variables

In practice, explanatory variables are often time-varying, and there are often
good reasons to assume that the hazard function is affected by the current value
of the explanatory variable (instead of e.g. its value at the beginning of the spell).
In this subsection we discuss the incorporation of such explanatory variables in
the PH model and (at the end of the subsection) the MPH model. Given that
the chapter avoids measure theory, the exposition in this subsection is restricted
to be rather informal, and we refer the reader to the references below for more
rigorous analyses.

At first sight it may seem that time-varying explanatory variables can be

incorporated in the PH model by replacing x by x(t),

L PR(T € [t dt)|T 2 1, {z(u)}))
dto dt

= (1) - Oy (x(t)) (11)

where {z(u)}, denotes the time path of 2 up to ¢, and where, possibly, ,(x(t)) =
exp(z(t)'B). However, there are some caveats here. First, the values of the ex-
planatory variables at ¢ may in some sense be endogenous. The subject under
study may have inside information at ¢ on the future realization of the random
variable T', and this information may affect the values of his observed explanatory
variables at ¢t and his hazard rate at ¢. It may then be erroneously concluded that
the observed explanatory variables have a causal effect on the duration. Consider

an unemployed individual who knows that he will start to work in a job at a given
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future date and may for that reason decide not to enrol in a training program at
t. If this is ignored in the empirical analysis then the effect of the number z(¢)
of completed training programs at ¢ on the exit rate out of unemployment at ¢
may be under-estimated. A second caveat concerns the fact that z(¢) could cause
the duration distribution to be discontinuous at certain durations. This would
complicate the statistical and empirical analysis.

To proceed, assume that the time-varying explanatory variables constitute a
stochastic process X = {X(t) : t > 0}. Without loss of generality we take X ()
to represent all explanatory variables for the hazard rate at ¢. Note that we may
trivially include time-invariant or fully deterministic explanatory variables in X,
and recall that for the time being we assume that all heterogeneity is observed.
Kalbfleisch and Prentice (1980) develop a classification of duration models with
time-varying covariates, in order to describe classes for which standard economet-
ric procedures can be applied. This classification is rather vague and not exhaust-
ive (Heckman and Taber, 1994). Fortunately, the recent mathematical-statistical
literature on counting processes and martingales has allowed a breakthrough on
these issues. The counting process approach assumes that the durations, the val-
ues of the time-varying explanatory variables, and the observational plan, are all
outcomes of stochastic processes (as such, it allows for quite general censoring
schemes; see Fleming and Harrington, 1991, Andersen and Borgan, 1985, and
Andersen et al., 1993, for excellent surveys, and Ridder and Tunali, 1999, for
an exposition which also avoids measure theory and includes an econometric ap-
plication). The approach focuses on a PH model framework in which X has the

property that:
e X is a predictable process.

Here, predictability basically means that the values of all explanatory variables
for the hazard at ¢t must be known (and observable to the researcher) just before
t. In other words, the values of the variables which capture all individual vari-
ation in the hazard rate at ¢ must be known and observable at ¢~. In yet other
words, the values of the explanatory variables at ¢ are influenced only by events
that have occurred up to time ¢, and these events are observable. The informa-
tion on the values at time ¢ does not help in predicting a transition at ¢. Note

that predictability does not mean that the whole future realization of X can be
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predicted at some point in time. Below we give some examples. As Ridder and
Tunali (1999) point out, the concept of predictability is basically the same as
the concept of weak exogeneity in time series analysis (and is thus weaker than
the concept of strong exogeneity). In addition to predictability, we need a tech-
nical assumption which basically ensures that the realized outcomes of X (¢) and
0,(X (t)) are bounded. Fleming and Harrington (1991) contains a more precise
exposition with explicit use of measure theory. The counting process approach
has been very successful in the derivation of (asymptotic) properties of estimators
and test statistics for general settings, including generalizations of the commonly
used estimators and test statistics in duration analysis (see the references above).

Now consider the stochastic process Pr(T < t[{X(u)}}), which is a process
given the evolution of X up to ¢, as a function of . Assume that this process is
absolutely continuous. Sufficient for this (in addition to the predictability of X)
is, basically, that T does not have a strictly positive probability of occurrence at
t, given X up to t. Given absolute continuity, the counting process model can
be expressed as a model of hazard functions. Conversely, a PH model of hazard
functions, with X having the above properties, and with absolute continuity of
the above process, can be thought of as being generated by a PH counting process
model (Fleming and Harrington, 1991, Arjas, 1989). It should be noted that these

results have been derived for models with

0 (X (1)) = exp(X(1)'5)

and certain other specifications of ), (see Andersen and Borgan, 1985).

The results imply that if we start off with a PH-type model of a hazard
function, and X has the properties above, then we can perform valid econometric
inference using standard methods, on the basis of specification (11) for the hazard
rate. This is, in a nutshell, why predictability of the time-varying explanatory
variable is an extremely useful property. Given predictability, we may apply the
standard tools of duration analysis.'!

It is useful to examine the predictability for some special cases for X. First,
if X is time-invariant then it is obvious that it is predictable. Now suppose its

path is fully known in advance. For example, the unemployment benefits level

I Note that in case of stochastic explanatory variables it does not make sense to talk about
“the” probability distribution of T'.
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as a function of the elapsed unemployment duration may be determined at the
date of inflow into unemployment, by the institutional setting. Clearly, X is then
predictable as well. If X is stochastic then somewhat loosely one may state that
if the current value of X only depends on past and outside random variation then
X is predictable (Andersen and Borgan, 1985). Now consider the case in which
the individual has inside information on future realizations of X. For example,
an unemployed individual may expect a baby or may expect participation in a
training program at a future date. This information may be used as input in
the individual’s decision problem and as a result may affect the current hazard
rate. If this information is not known to the analyst then X is not predictable.
The same is true if the individual anticipates the realization of 7' and if this
affects the current hazard. Note that it is intuitively plausible that, in these
cases, standard inference may lead to inconsistent estimates. These cases include
so-called instantaneous feedback effects: predictability is not satisfied if X jumps
in an unexpected way at t. This does not mean that jumps in regressor values are
not allowed at all if one demands predictability. Suppose that one wants to model
that an individual’s hazard rate increases by a certain amount immediately after
the realization of another duration variable 7 which is independently distributed
from the duration of interest and from other time-varying covariates. This can
be captured by a time-varying regressor I(¢ > 7), which is predictable.

Now consider the case where a time-invariant explanatory variable is unob-
served (i.e., consider MPH models). If we condition on the unobserved hetero-
geneity value v and do as if v is observed then the above analysis remains valid.
If v is treated as unobserved then v is not predictable. As we shall see in Section
5, ignoring the unobserved heterogeneity in empirical inference generally leads to
inconsistent inference. In this case, the standard solution is to jointly model the
hazard function and the distribution of v, and to integrate v out of the likelihood.

We end this subsection by making a few comments. First, time-varying ex-
planatory variables may play a very different role in other reduced-form duration
models, such as the AFT model. This reflects the fact that such models do not
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take the hazard function as the point of departure for the model specification.!?
Secondly, as noted above, the counting process approach allows for quite general
censoring schemes; in fact, what is needed is that the observational plan is a
predictable process. Thirdly, in the remainder of the chapter, the focus is mostly
on models without time-varying explanatory variables. The motivation for this
is basically the same as the one (implicitly) adopted in most of the methodolo-
gical literature on duration models, namely that the analysis of these models is
relatively manageable and that the results create a good starting point for future
analysis of more general models. Below, whenever we encounter time-varying
explanatory variables, we tacitly assume that the conditions that ensure valid

inference with standard methods are satisfied.

4.3 Theoretical justification

As mentioned above, the MPH model and its special cases are often regarded to
be useful reduced-form models for duration analysis. The resulting estimates are
generally interpreted with the help of some economic theory. However, the MPH
model specification is not derived from economic theory, and it remains to be seen
whether the MPH specification is actually able to capture important theoretical
relations, and, conversely, whether the MPH specification can be generated by
theory.

The main assumption underlying the MPH model is that the three determ-
inants of the hazard act multiplicatively on the hazard. This implies that if the
elapsed duration has a positive effect on the hazard, then this effect is stronger
for individuals with characteristics that also have a positive effect on the hazard.
Of course, the distinction between two of the three determinants (the observed
and unobserved explanatory variables) is only relevant from an empirical point of
view. If the researcher could observe all determinants without measurement er-

ror, then the unobserved heterogeneity term can be omitted. Within a theoretical

12For example, consider the formulation (10) of the AFT model. Typically, time-varying
explanatory variables are included in this model by way of

F(t){X (u)}) = exp(—¥( / exp(X (u)'B)du))

In that case, the hazard rate at ¢ depends on the whole history {X (u)}} of X.
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framework it is irrelevant whether a certain background variable can be observed
by the researcher or not. This means that from a theoretical point of view, the
most important assumption of the MPH model is that the elapsed duration and
the explanatory variables act multiplicatively on the hazard.

In economics, this assumption is often hard to justify. We illustrate this by
examining the economic theories discussed in Section 3.!* First consider the job
search model of Subsection 3.1.2. We allow all structural determinants to differ
across individuals, and this is captured by time-invariant explanatory variables
x. We assume that the analyst observes x (and the duration ¢) but does not
directly observe how the structural determinants, the optimal strategy, or the
acceptance probability change with ¢. If such changes would be directly observed
then obviously it would make sense to include them as time-varying explanatory
variables. We return to time-varying explanatory variables towards the end of the
subsection.

From Subsection 3.1.2 we obtain the following system of equations, in obvious

notation,

ot 7) = b(t, 7) + 20 0) /¢ " F(wlt,z)dw

(t,z)

0(t,x) = \(t,2)F(p(t, 2)|t, z)

Intuitively, the main reason for why it is difficult to obtain a multiplicative
structure for O(t,x) is that in general F(¢(¢,x)|t,z) is not multiplicative in ¢,
which in turn depends on “everything in the model” in a non-multiplicative fash-
ion. Below are a few special cases where the resulting 0(¢, z) is proportional in ¢
and x. Note that these assume that changes in the structural determinants are

unanticipated.

Ezample 1. Let F be a Pareto distribution,

Family of Pareto distributions:

F(w) = (wy/w)” for all w > wy, with wy,v >0 (12)

13The problem is more general, though.
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where we actually assume v > 1 to ensure that the optimal strategy exists, and
where the parameters w, and v of F' may depend on ¢ and z. Let in addition
b= 0. Then

O(t,x) = p(t,x)(v(t,z) — 1)

Let the discount rate p vary with x but not with ¢, and let the shape parameter v
vary with ¢ but not with = (for example, long-term unemployed workers receive on
average lower wage offers). Then the hazard is proportional in ¢ and x. Of course,
the same result applies if p only varies with ¢ and v only with x. Also, if v is a
fixed constant and p is proportional in ¢ and z, then the hazard is proportional

as well. Note that the assumption b = 0 is very strong.'*

Example 2. Let p = 00, so that workers do not care about the future. Then ¢ = b,

and
0(t,x) = \(t,2)F(b(t,x)|t, z)

If \(¢,x) varies with ¢ (e.g. because the long-term unemployed are stigmatized)
but not with x, and F' and b vary with x but not with ¢, then the hazard is
proportional in ¢t and z. Alternatively, if F' and b do not depend on either ¢ or x

and A is proportional in ¢t and x, then the hazard is proportional as well.

Ezxample 3. Let the structural determinants be such that ¢ is always smaller than
the lowest wage in the market (e.g., benefits are so low that the reservation wage

is below the mandatory minimum wage). Then F(¢) = 1 always, and
O(t,z) = A(t, x)

so, if A is proportional in ¢ and z, then the hazard is proportional as well.

Ezample 4. This case is based on Yoon (1985), which is one of the very few studies

to date on the theoretical justification of the PH model. He examines a model

4In general, if one is prepared to adopt a linearized specification for the reservation wage
¢(t,x) as a function of its determinants, and if F' has a Pareto distribution or an exponen-
tial distribution, then it is less difficult to obtain a multiplicative specification for (¢, z). See
Lancaster (1985a).
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where jobs have a fixed and common tenure T, after which the individual dies.'
The variable b is assumed to equal benefits minus search costs, and the model
requires that the net value of b is negative. There is no discounting of the future
(so the limiting case p | 0 is considered). It is straightforward to show that ¢(t)
then follows from
“b(t, ) = )\(t,a:)T*/( Fult, 2)dw
o(t,x
Let F be a Pareto distribution (see (12)) with a fixed parameter v > 1 and a

parameter w,(t, x). It follows that

0t x) = \(t2)]7T [wo(t, 2)]70 [—b(t,:;lgu - 1)] =

Obviously, there are many ways to obtain a PH specification from this.

Now consider anticipated changes in the structural determinants, i.e., consider
the nonstationary job search model of Subsection 3.1.3. In particular, for ease of
exposition, consider a special case where the only change concerns a drop in b at
a duration 7 (from b, to b,). There still holds that (¢, z) = A(t, z)F(¢(t, )|t x).
However, now the reservation wage ¢(t) for ¢ < 7 depends on b, and b, as well as
on 7—t. The smaller the remaining time interval 7—t% until the drop in b, the more
important the future benefits level b, is for the current present value. As shown by
Van den Berg (1990a, 1995), there are two reasons for this. First, the discounting
of the future means that the far future carries less weight than the near future.
Second, there is a probability that the individual leaves unemployment before 7,
and this probability is lower if 7 is in the near future. This probability depends
on the hazard function itself, in between ¢ and 7. As a result of all this, as the
duration ¢ < 7 proceeds, the effect on the hazard of b, diminishes, and the effect
of b, increases (with a magnitude that depends on all structural determinants).
After 7, the hazard does not depend on b, anymore. It seems to be impossible to
justify a PH specification with such a theoretical model, except for the following

limiting case.

15Job separations leading to unemployment rather than death or permanent retirement are
hard to reconcile with unanticipated duration dependence of the structural determinants, be-

cause of the repetitive nature of unemployment.
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Ezxample 5. Let p — oo in the nonstationary job search model, so workers do
not care about the future. In that case, even though an individual does have
information on future changes, this does not affect his optimal strategy, and the

exit rate out of unemployment is the same as in Example 2.

Finally, consider the nonstationary on-the-job search model of Subsection 3.2,
and, in particular, the job-to-job transition rate (which will be our hazard rate).
Note that there is no “feedback” from the structural determinants to the value
of the reservation wage w. There holds that 6(¢,z) = A(t,z)F(wl|t,z), where x

may include w, and the following result emerges.

Example 6. Let F' be time-invariant in the nonstationary on-the-job search model.
Then

0(t,z) = \(t,2)F(w|r)

which supports a PH specification if A(¢, z) is multiplicative in ¢ and z. If F has a

Pareto distribution (see (12)), then its parameter wy is allowed to depend on ¢.6-17

The main conclusions of this subsection are as follows. First, the proportion-
ality restriction of the (M)PH model can in general not be justified on economic-
theoretical grounds. Second, if the optimal strategy is myopic (e.g. because of
repeated search, or because the discount rate is infinite), then this restriction
often follows from economic theory.

Despite the first conclusion, the (M)PH model has become very popular in
reduced-form duration analysis, in particular in labor economics. The popularity
of a reduced-form model that does not nest many structural models distinguishes

duration analysis from the reduced-form analysis of wage data with the linear

16The proportionality results in Examples 4 and 6 can also be generated with other families
of wage offer distributions than the Pareto family. Notably, F' can be exponentially distributed,
so F(w) = exp(—v(w — wp)) on w > wp, with v > 0.

'THere, as in previous examples, if the job offer arrival rate depends on an optimally chosen
search intensity, then the scope for multiplicative specifications is further reduced. This is
because this search intensity is a second “channel” through which all structural determinants
affect the hazard in a non-multiplicative fashion (see e.g. Mortensen, 1986, for a theoretical

analysis of such models).
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regression model, since the linear specification has been justified extensively by
human capital theory and traditional labor supply theory. Part of the attract-
iveness of the (M)PH model stems from the fact that it is difficult to think of
a more parsimonious specification of the hazard that includes all single major
determinants of it. (Also, recall that the Partial Likelihood estimation method
allows for estimation of the systematic hazard of the PH model without the need
to parameterize or estimate the baseline hazard.) In practice, the empirical ap-
plication at hand does not always dictate a natural theoretical framework, and
sometimes the scope of the application does not warrant a full-blown theoretical
or structural analysis. In such cases, the (M)PH model is a useful framework
whose properties have been thoroughly studied in the literature.

Last but not least, the MPH framework can be extended to a certain extent
to incorporate some features of the theory at hand. Notably, changes over ¢ in
the value of a variable x can be incorporated by the inclusion of time-varying
covariates. For example, in the study of unemployment insurance benefits on exit
out of unemployment, the effect of the remaining benefit entitlement can be in-
cluded as a time-varying covariate (see e.g. Solon, 1985). Also, if the data provide
direct observations on how a structural determinant, the reservation wage, or the
acceptance probability change over time, then these can be included as time-
varying covariates. As an example, consider the models of Subsection 3.1, and
suppose that ¢(¢, x) is fully observed and F' is a time-invariant Pareto distribu-
tion which does not vary with . Then 6(t,z) = (¢, x)wi[o(t, z)]7", so if \(¢, x)
is multiplicative in ¢ and x then this supports a PH specification with a time-
varying covariate. As another example, consider the on-the-job model. One may
observe business cycle indicators and use these as representations of A(¢,z). Fi-
nally, changes in the effect over ¢ of a variable x can be incorporated by the
inclusion of interactions between ¢ and x in the hazard.!'8

These extensions lead to less transparent models, and some of the distinct
advantages of the MPH model are lost this way (see Section 5). Moreover, it
should be stressed that the insertion of some time-varying covariates or time-
varying parameters into an MPH model more often than not does not lead to

a specification that can be generated by a theoretical model. This is intuitively

80One may use a nonparametric estimation method for an unrestricted specification of the

hazard rate 0(t, z), allowing for full interactions. See e.g. Dabrowska (1987).

30



clear from the nonstationary model in which unemployment benefits decrease
with the duration of unemployment.

As noted in Subsection 4.1, in applied work it is often assumed that each ex-
planatory variable acts multiplicatively on the hazard rate (i.e., ,(z) = exp(z'f)).
From the discussion above it is clear that economic theory often predicts that the
different structural determinants do not act multiplicatively on the hazard. Thus,
if each determinant is represented by different elements of x, then these elements
interact with each other in the hazard. This can be incorporated to a certain ex-
tent in the MPH model, as inclusion of interaction terms for the different elements
of z does not violate the (M)PH specification.

We end this section by noting that the economic justification of other popular
reduced-form duration model specifications is at least as difficult as the justi-
fication of the (M)PH specification. This holds in particular for the Accelerated
Failure Time model, in which the mean of logt is specified as a linear function
of x, so logt = —2' + ¢, and also for the additive hazard model, in which 0(¢|x)
is specified as 0(t|z) = 1 (t) + 0,(z). These two types of reduced-form duration
models enjoy popularity in biostatistics, where the relation between theory and
application is less compelling than in econometrics. Discrete-time reduced-form
duration model specifications are also difficult to justify; they often do not fol-
low from the underlying economic models (like discrete-time search models or

dynamic discrete-choice models).

5 Identification of the MPH model with single-
spell data

5.1 Some implications of the MPH model specification

In this section we examine identification of the MPH model with unobserved

heterogeneity,?’ if the data provide i.i.d. drawings from the conditional distri-

19 As an example, job search theory predicts that the elasticity of the exit rate out of unem-
ployment with respect to unemployment benefits depends on the level of the benefits. This can
be captured to some extent in a reduced-form analysis by including (logb)? as an additional

regressor (see Van den Berg, 1990c, for details).
20Identification of the determinants of the PH model is trivial if it is known that the data

are generated by a PH model.
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bution of t|z. In reality, the observations on ¢ may be right-censored (i.e., for
some observations it is only known that t exceeds a certain value) or interval-
censored (e.g. if durations are grouped into intervals), or the sampling design
may be non-random. Heckman and Singer (1984a), Ridder (1984), and Lancaster
(1990) contain extensive examinations of the implied duration distributions in
other sampling designs. Situations in which the data provide multiple durations
for the same individual are discussed in subsequent sections.

Throughout the section we make the following model assumption,

Assumption 5 : Independence of observed and unobserved explanatory

variables. In the inflow, v is independent of x.

Note that this assumption is stronger than the usual assumption in linear
regression models that « and € are uncorrelated or that they satisfy E(¢]|z) = 0.

It is useful to examine the distribution F'(¢|z) of t|z and derive the well-
known result that the duration dependence of the hazard function 6(¢|z) of this
distribution is more negative than the duration dependence of the hazard function
0(t|x,v) (Lancaster, 1979, was the first point out these results; see also the survey
in Lancaster, 1990, and Heckman and Singer, 1984a, who consider a generalization
of the MPH framework).

By definition, we have
F(t)r) = /F(t|x,v) dG(v) (13)
0

where G is the cumulative distribution function of v in the inflow into the state
of interest, and where F'(¢|z,v) has the associated hazard function 6(¢|z,v). Con-

sequently, 6(¢|z), which by definition equals f(t|x)/F(t|z), can be written as

[ 0(t]z, v) F(t|z, v) dG(v)

o(t|z) = 2 — 14
(t2 i (14)
By Bayes’ Theorem, we have for every ¢ that
F(t dG
AGO|T > t,7) = LU, ) dG(0) (15)

F(t|z)

(Note that here we use T to denote a random variable.) In general, therefore,

the distribution of v|T" > ¢,z depends on x for all ¢ > 0, even though it does
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not for ¢ = 0. The composition of the sample of survivors (as captured by the
distribution of v) changes as time proceeds, in a way that that depends on t and
x. This is an important aspect of the dynamic self-selection that occurs if one
examines subsamples of individuals with higher and higher durations.

By substituting (15) into (14) we obtain 0(t|z) = E, 7, ,(0(t|z,v)). Therefore,

O(t|z) = (t) - Oy(z) - E(v|T > t, x) (16)

Let us denote the integrated baseline hazard at ¢ as z(t),

z(t) = /tw(T) dr

Of course, — log F'(t|z,v) equals v-0,(x)-2(t). By substituting this into equations
(13) and (15) it follows that we can write

v - 6—v~00(x)~z(t) dG(U)

o0

f 6—v-00(x)~z(t) dG(’U)
0

o3

E@|T > t,z) = (17)

It is useful to rewrite 6(¢|z) in some different ways. First, note that the denom-
inator on the right-hand side of (17) (which equals F'(¢|z)) is nothing but the
Laplace transform L of the distribution of v, evaluated at 6,(z) - 2(t),

o0

L(s) = / =5 dG(v) (18)

0

Consequently, the numerator in (17) is nothing but minus the derivative of £

evaluated at 0,(x) - z(t). This means that we can rewrite equation (16) as follows,

L (by() - (1)
C(0o(x) - 2(1)) 19)

So all derivatives of this with respect to z and/or ¢ depend on G only by way of

O(t|x) = (t) - Op(x)

(derivatives of) the Laplace transform of G, evaluated at 6,(x)z(t). Equivalently,
all derivatives of 0(t|x) with respect to x and/or ¢ depend on G by way of moments

of v|T > t, . Specifically,

dlogf(tlx) ¥'(t) Var(v|T >t, )
dt @) E@[T >tz

P (t)0y ()
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Clearly, because of the presence of unobserved heterogeneity (i.e., Var(v) > 0,
which under regularity conditions implies that Var(v|T > t,x) > 0), the dura-
tion dependence in the observed (or “aggregate”) hazard function #(¢|x) is more
negative than otherwise. This is because in case of unobserved heterogeneity, the
individuals with the highest values of v (and thus the highest hazards) on average
leave the state quickest, so that the individuals who are still in this state at high
durations tend to have lower values of v and thus lower hazards. This phenomenon
has been called “weeding out” or “sorting”. It occurs in duration models with
unobserved heterogeneity in general, and so is not restricted to the MPH model.
The model thus allows for two competing explanations for observed negative dur-
ation dependence. If one ignores the presence of unobserved heterogeneity (i.e. if
one adopts a PH model whereas the data are generated by an MPH model with
Var(v) > 0), then the estimated duration dependence will be too negative. This
result has spurred the literature on the identification of duration models with
unobserved heterogeneity.

Unobserved heterogeneity has a similar effect on the derivative of log 6(t|x)
with respect to x,

dlogO(t|x 0 (x Var(v|T > t,x

Note that in the case 0,(z) = exp(z'/3), the first term on the right-hand side
reduces to (3, and 6(x) in the second term reduces to 6,(x)S. Because of the
presence of unobserved heterogeneity, the semi-elasticity of the observed hazard
function 0(t|z) with respect to x is closer to zero than otherwise. This can be
understood as follows. Within the group of individuals with a high value of 6,(z),
the weeding out induced by unobserved heterogeneity goes much faster than
within the group of individuals with a low value of 6,(x). This is a consequence
of the multiplicative specification of #(t|x, v): a high §,(z) and a high v reinforce
each other in producing a very high hazard. As a result, at a given duration
t > 0, the sample of survivors with high 6,(x) has on average lower values of v
than the sample of survivors with low 6,(x). This causes the observed average
difference between the hazards of the survivors of these groups to be smaller than
the true average difference between the two groups. It is important to stress that
this does not automatically imply that, if one ignores the presence of unobserved

heterogeneity while estimating the model with Maximum Likelihood, that then
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the effect of x on the individual hazard is under-estimated. This is basically
because [ has one more element than x, and the ML estimates of [ are jointly
determined. We return to this in Subsection 5.6.

Note that if E(v) < oo and ¢(0) < oo then for t = 0 the right-hand side of
(16) reduces to ¢(0)0,(z)E(v), and the function 6,(z) is then identified from data
on #(0|x). This makes sense, as at ¢ = 0 there is not yet any self-selection due to
weeding out. Before we proceed with the identification of the full model (i.e., of
the functions v, 6, and G), it is useful to introduce the function h(s), defined as
—L'(s)/L(s) (see equation (18)). Equation (19) can now be rewritten as

O(t|z) = (1) - O5(x) - h(2(1)6,(x)) (21)

This equation will be useful in Subsection 5.3 and further.

5.2 Identification results

There is a substantial literature on the identification of the MPH model.?! It is im-
portant to stress that no parametric functional form assumptions are made on the
underlying functions 6,1 and G, so the literature is concerned with nonparamet-
ric identification. In general it is assumed that the data provide the distribution
function F'(t|x) for all ¢ and .

It is useful to define identifiability as a property of the mapping from the de-
terminants 1, 6, and G, given their domain, to the data (as summarized in F'(t|x)
for all ¢ and z). Consider a given set of assumptions on the three determinants
(like the restriction that their function values must be nonnegative; below we
examine various sets of assumptions). These characterize the domain of the map-
ping. The MPH specification then defines the unique mapping from the domain
to the data. The model is identified if the mapping has an inverse, i.e. if for given
data?? there is a unique set of functions ¢, 6, and G in the domain that is able

to generate these data.?

2'Heckman (1991) provides an overview in which the MPH model is embedded in a more
general class of models. Heckman and Taber (1994) list identification proofs for MPH models,
non-MPH models, and more tightly specified MPH models without covariates.

220f course, these data must be in the image of the mapping.
23Tn fact, for technical reasons, the identification literature typically focuses on the model

determinant z instead of its derivative 1.
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Now let us consider the assumptions that are made on the determinants. These
include the regularity Assumptions 1-4, and Assumption 5 on the independence
of x and v. In addition, we list the following assumptions which will play a role

in the remainder of the chapter,

Assumption 6 : Variation in observed explanatory variables. The set X

of possible values of x contains at least two values, and ,(x) is not constant on
X.

Assumption 6b : Variation in observed explanatory variables. There is
an element x® of the vector x with the property that the set X of its possible values
contains a non-empty open interval. For given values of the other elements of x,
the value of x* varies over this interval. Moreover, 0,(x) as a function of x* is

differentiable and not constant on this interval.

Assumption 7 : Normalizations. For some a priori chosen t, and x,, there
holds that [{°(7)dT =1 and 0,(z,) = 1.

Assumption 8 : Tail of the unobserved heterogeneity distribution. E(v) <

Q.

Assumption 8b : Tail of the unobserved heterogeneity distribution. 7he
random variable v is continuous, and the probability density function g(v) of v
has the property that

lim 9(v)

Jim ey =1 (22)

where € € (0,1) is specified in advance, and where S(v) is a slowly varying

2

function,?* i.e. S has the property that, for every v > 0,

Jim S(uv)/S(u) =1.

For Assumption 6, a single dummy variable x suffices, provided that it has an

effect on the hazard function. In that case ,(x) takes on only two values on X.

24Gee Feller (1971) for an exposition on such functions.

36



Note that we define 6, to be identified if its value is known for each x € X. In
practice, one may start off with a parametric specification of 6,(x) and require
that all parameters can be recovered from the set of all pairs (z, f,(x)) with x € X.
In the case where 6(z) is (log-)linear in 2/f, this implies that the elements of x
should not be perfectly collinear.

Assumption 7 concerns an innocuous normalization of two of the three terms
in the hazard 6(t|z,v). Assumptions 8 and 8b require more discussion. Basically,
under Assumption 8, the right-hand tail of GG is not allowed to be too fat because
otherwise E(v) = co. Now consider Assumption 8b. It is important to stress that
the a priori choice of € determines the assumed class of heterogeneity distributions.
Basically, the smaller €, the fatter the tails. However, for any ¢ € (0,1), all
heterogeneity distributions have E(v) = oo (see Ridder, 1990). This means that
the right-hand tail of G is always fatter than under Assumption 8.

Elbers and Ridder (1982) were the first to prove the nonparametric identifica-
tion of the MPH model, under Assumptions 1-8. Their identification proof is not
constructive, i.e., the proof does not express the underlying functions 6,1 and
G directly in terms of observable quantities. Constructive identification proofs
are attractive because they suggest a nonparametric estimation method. Melino
and Sueyoshi (1990) provide a constructive proof for the case where Assumption
6 is tightened (to Assumption 6b, with the exception that ,(z) does not have to
be differentiable). However, this proof is difficult to use as an inspiration for an
attractive estimation strategy because it relies heavily on the observed duration
density at ¢ = 0, and x needs to be a continuous variable. Recently, Kortram et
al. (1995) provide a constructive proof for the original case with only two pos-
sible values for 6,(x). Lenstra and Van Rooij (1998) exploit this to construct a
consistent nonparametric model estimator. They do not provide the asymptotic
distribution of their estimator. Under somewhat stronger model assumptions than
above, Horowitz (1999) constructs a nonparametric estimation method that does

not follow an identification proof; rather, it exploits the similarity between the
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MPH model and the transformation model (see Subsection 4.1).252¢ He does
provide the asymptotic distribution of his model estimator.

Heckman and Singer (1984b) also prove nonparametric identification of the
MPH model. Their result turns out to be particularly interesting for the insights
it generates into fundamental properties of the MPH model. Contrary to Elbers
and Ridder (1982), they make Assumption 6b instead of the weaker Assumption
6, on the variation in z. More importantly, they make Assumption 8b instead
Assumption 8 on the class of heterogeneity distributions. Assumption 8b rules out
that v is degenerate. This means that the PH model as an underlying model is not
included in the set of MPH models considered by Heckman and Singer (1984b).
This is a disadvantage if the PH model is regarded to be an interesting special
case. This result should not be taken to mean that the MPH models considered by
Heckman and Singer (1984b) are not able to generate a PH specification for the
observed hazard 0(t|x). Consider the set of MPH models generated by a particular
choice of € in (22), and assume that v has a Positive Stable distribution. This

family of distributions is most easily characterized by its Laplace transform.

Family of Positive Stable distributions:
L(s) = exp(—s%), with a € (0, 1).

Note that lim,, £'(s) = —o0, so E(v) = 00.”" Using results in Ridder (1990)

and Feller (1971) it can be shown that in fact we have to take a exactly equal

ZIn fact, Horowitz (1999) assumes that 6o(z) = exp(z'f), and he accordingly calls the
estimator a semiparametric estimator. It should be stressed that this estimator and other non-
parametric and semiparametric estimators for the MPH model rely heavily on the shape of the
empirical survivor function for ¢ | 0. For a number of reasons, it is notoriously difficult to assess

this shape. For example, extremely short durations are often under-reported in real-life data.
Z6Horowitz (1999) also provides a useful list of existing semiparametric estimation methods

where parametric functional forms are assumed for either ¢ or G.
2TThe corresponding densities are bell-shaped (see Hougaard, 1986). Hougaard (1986)

provides a justification of this family as a family of distributions for v in MPH-type models.
Suppose that the individual duration can end for a number of different reasons {1,...,n}, with
cause-specific individual hazards that share the same baseline hazard and the same systematic
hazard but not the same individual heterogeneity value v;. The individual hazard, which is the
sum of the cause-specific individual hazards, then equals )" ¢(t)8o(x)v;, and this is an MPH
specification with v = ) v;. Now suppose that the v; are i.i.d. positive random variables, and

suppose that n — oo. If the scaled mean of the v; has a nondegenerate limiting distribution
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to € in order to obtain a G that satisfies (22). So, let v have a Positive Stable
distribution with parameter €. Then, by equation (19),

0(tlz) = av(t)[2()]* [0 (2)]° (23)

which is a PH specification, despite the fact that, according to the underlying
model, there is unobserved heterogeneity. For example, if the underlying MPH
model has a constant baseline hazard () = 1 then the observed hazard has the
(popular) Weibull PH specification with baseline hazard at*™!, with 0 < a =€ <
1, which displays negative duration dependence.?® Suppose that §,(x) = exp(z'3).
If the true model has a Positive Stable distribution of unobserved heterogeneity
and if the researcher assumes instead that there is no unobserved heterogeneity
and that t|x has a PH specification (an assumption that is confirmed by the datal)
then the parameter of interest 3 is estimated by Sa, so it is under-estimated in
absolute value.

These results have very important implications. First, the MPH model is non-
parametrically unidentified if the assumption that E(v) < oo is dropped (or, al-
ternatively, if Assumption 8b is dropped). Moreover, the adoption of a model
that is observationally equivalent to (but different from) the true model leads to
biased inference on the parameters of interest (see also Robins and Greenland,
1989). This is bad news, as it is often difficult to make any justified assumption
on the tail of the unobserved heterogeneity distribution. On the other hand, in
the case where v represents an important economic variable, economic theory
often provides a justification of E(v) < oo. In Subsection 5.5 we discuss some

examples of this.

then it must be a Positive Stable distribution (Feller, 1971). In fact, for a wide range of distribu-
tions of the underlying random variable, the limiting distribution converges to a Positive Stable
distribution. So, if v is an average of many different i.i.d. unobserved heterogeneity terms, then,
in many cases, the distribution of v is approximated by a Positive Stable distribution. Note
however that the underlying assumption that the different cause-specific hazards have the same
baseline hazard and systematic hazard, while perhaps often reasonable in medical science, is
often untenably strong in economics. Moreover, if v has a Positive Stable distribution and the
parameter « is not fixed, then the MPH model is not identified (see below).

28Tf the underlying hazard has Weibull duration dependence 1(t) = (1/a)t'/*~! and G is a
Positive Stable distribution with parameter a then the observed hazard does not change with

t, so t|z has an exponential distribution.
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Ridder (1990) addresses the fundamental identification problem in detail. He
argues that for any MPH model with E(v) < oo there are observationally equi-
valent models with E(v) = co. In particular, for any MPH model with E(v) < oo
there is basically one observationally equivalent MPH model satisfying (22), for
any € € (0,1). So, Assumption 8 as well as Assumptions 8b for given € can all be
interpreted as different untestable normalizations that impose identifiability on a
class of models that are unidentified.

Let us return to the case where v is degenerate (i.e., the PH model). Van
den Berg (1992) proves that the full set of MPH models that is observationally
equivalent to the PH model consists of models in which v is degenerate or has a
Positive Stable distribution. In the latter case, as is clear from (23), the duration
dependence of the baseline hazard and the absolute size of the effect of x are more
positive than in the resulting PH model. For the general case, Ridder (1990) shows
that some aspects of the MPH model are still identified if no assumptions on the
tail of G are made. For example, the sign of the effect of x is identified.

As we shall see below, one solution to the fundamental identification problem
is to rely on economic theory when choosing a functional form for G. Another

solution is to use information on multiple spells for the same individuals.

5.3 Interaction between duration and explanatory vari-

ables in the observed hazard

In this subsection we examine properties of the observed hazard 6(t|z) if the un-
derlying model has an MPH specification. These provide additional insights into
the identification of the model. Throughout most of this subsection we assume
that E(v) < oo, i.e. we adopt the MPH framework of Elbers and Ridder (1982).
At times we generalize results by examining the wider class of models where
E(v) < 0.

If there is no unobserved heterogeneity (so v is a constant), then the observed
hazard 6(t|z) is multiplicative in ¢ and x. Now suppose there is unobserved het-
erogeneity. If the observed hazard 6(¢|x) would be multiplicative in ¢t and x then
the model would be observationally equivalent to a model without unobserved
heterogeneity. Because of the nonparametric identifiability of the model, we know

that the latter cannot be true. Therefore, the observed hazard cannot be multi-
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plicative in ¢t and z. As a result, we obtain the fundamental insight that identific-
ation of G in MPH models comes from nonproportionality of the observed hazard
(t|z) (see Hougaard, 1991, Van den Berg, 1992, and Keiding, 1998). In terms of
equation (21): if there is unobserved heterogeneity then the function h(z(t)8,(x))
is not multiplicative in ¢ and z, and the interaction between ¢ and x identifies
G. Yet another way to formulate this is by stating that if there is unobserved
heterogeneity then log6(¢|x) is not additive in ¢ and z, so for some ¢ and x
0*logO(t|z)  0*logh(z(t)f,(x))

Otox o Otox 70 (24)

provided that z varies continuously and the appropriate differentiability condi-

tions are satisfied.

Now recall from the previous subsection that if the assumption that E(v) < oo
is dropped then a proportional specification for 0(¢|z) can also be generated by
MPH models with unobserved heterogeneity. Such models are characterized by
the property that v has a Positive Stable distribution. All other distributions for v
with E(v) = oo generate 6(t|z) that is not multiplicative in ¢ and z. Consequently,
if Positive Stable distributions are ruled out for v then the result on the relation
between unobserved heterogeneity and nonproportionality of the observed hazard
can be extended to include infinite-mean distributions for v.

In fact, unobserved heterogeneity can not generate just any type of interaction
between ¢ and z in 0(¢|z). Van den Berg (1992) shows that it is not possible that
there are whole intervals of ¢ and z on which there is no interaction.?® (Whether
the interaction is “large” is an empirical matter; as we shall see below, it is not
difficult to construct examples in which there is virtually no interaction for a wide
range of values of ¢.) Also, the following simple and appealing specification for

0(t|x) that allows for interaction cannot be generated with an MPH model,
0(t|z) = ()0 (x)e >0

because the function h(s) = exp(—as) cannot be generated by the model.3° In

the next subsection we also derive restrictions on the sign of the interaction for

29This follows because any distribution G that gives a function h such that h(z(t)f(z)) is

multiplicative in ¢t and = on an interval must be a Positive Stable distribution.
30This can be seen as follows. If the model is an MPH model then h(s) can be written as

—L'(s)/L(s), with L(s) being the Laplace transform of G. However, the function £(s) that
follows from the candidate h(s) = exp(—as) is not completely monotone and hence cannot be

a Laplace transform (see Feller, 1971).
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different ¢. All of this evidence implies that the class of models for 0(¢|x) that is
generated by MPH models is smaller than the general class of interaction models
for A(t|z). In other words, the MPH model is overidentified. The fact that the
function A must be such that it can be generated by a Laplace transform, the fact
that z(t) and 6,(z) affect the value of h only by way of their product, and the
fact that ¢ enters the interaction term by way of the integral of the multiplicative
term (), all impose restrictions on #(¢|x) as a function of ¢ and x.

At this stage it is instructive to examine the results in McCall (1996) on the
identification of an extension of the MPH model with E(v) < oo and 6,(z) =
exp(a'3). Specifically, he allows the parameter § to vary with ¢. This is an em-
pirically relevant extension (recall the discussion at the end of Section 4). Note
however that the extension creates a second type of interaction between ¢ and
x in the observed hazard, so the question arises whether the data enable a dis-
tinction between them. McCall (1996) shows that the model is not identified if x
can assume only two different possible values. However, if there is an explanat-
ory variable that attains all possible values between —oo and oo then the model
(i.e., ©,G and [(t)) is identified, so then the two types of interaction can be
distinguished empirically.

The inclusion of time-varying covariates (which is another empirically relevant
extension of the MPH model) creates yet another type of interaction between ¢
and z in the observed hazard. It is clear that in some cases a model with time-
varying covariates is not identified (for example, if §,(z(t)) is multiplicative in
t). However, Honoré (1991) illustrates that in some cases time-varying covariates
can also be helpful for identification. Suppose that x is time-invariant for part
of the population; some of them have the value x, while others have z,, with
0y(zy) # 0y(z,). Suppose in addition that for the other part of the population the
value of z changes discretely from z, to =, at duration ¢* > 0, and assume that
x satisfies the conditions for time-varying covariates laid out in Subsection 4.2.
Then the model is identified without any assumption on the tail of G' (so E(v)
may be finite or infinite). See Heckman and Taber (1994) for a generalization of
this result.

The results in McCall (1996), Honoré (1991) and Heckman and Taber (1994)
illustrate the fact that the interaction generated by the presence of unobserved

heterogeneity is rather specific. It is plausible that as more and more sources of
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interaction are included into the model, it becomes more and more difficult to
achieve identification. In the limit, the assumption that the underlying hazard
is multiplicative in ¢, 2z, and v is essential for identification. If this assumption
is dropped then obviously any nonproportional specification can be generated
without the need to allow for unobserved heterogeneity, and the model would
be unidentified (see also Heckman, 1991). In particular, the specification (19)
can also be generated as an individual hazard, which equals the observed hazard

because of the absence of unobserved heterogeneity.

5.4 The sign of the interaction

In this subsection we examine the sign of the interaction between ¢ and z in
6(t|x). This sign is a potentially interesting model characteristic, as its empirical
counterpart may be readily observed from the data. Moreover, economic theory
sometimes makes predictions of the sign of the interaction. For example, the
ranking model of unemployment by Blanchard and Diamond (1994) predicts that
the aggregate exit rate out of unemployment as a function of ¢ decreases more in a
“bad” steady state (i.e. a steady state where the exit rates are low anyway) than
in a good steady state. If the steady state is represented by a dummy variable x
then this means that the interaction between ¢ and x is predicted to be always
positive.

The discussion is facilitated by using 6,(x) and z interchangeably. Obviously,
this entails no loss of generality in the examination of the sign of the interaction,
provided that it is kept in mind that x has a positive effect on 0(t|z,v). For
convenience we take x to vary continuously, so that the sign of the interaction
can be expressed as the sign of the cross-derivative of log h(z(t)x) with respect
to t and z (see equation (24); recall that 0(t|x) = ¢ (t) - O,(x) - h(2(t)0,(z)) ).

The derivative of log h(z(t)z) with respect to x equals h'(z(t)x)z(t)/h(z(t)x).
The sign of the cross-derivative of log h(z(t)x) with respect to ¢ and = then equals
the sign of the derivative of sh/(s)/h(s) evaluated at s = z(¢)z. The function h(s)
is determined by the Laplace transform L(s) of G. Therefore, the sign of the in-

teraction at a certain ¢ and x is completely determined by G.3! Given that z(t)x

311t follows from the results in Subsection 5.1 that sh'(s)/h(s) at s = z(t)x can be expressed

in terms of the moments of v|T" > t, = (specifically, it depends on the first three moments).
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takes on all values in [0, 00), knowledge of the sign of sh'(s)/h(s) for all s is ne-
cessary in order to infer whether this sign is unambiguous for all ¢ and z. To put
this more bluntly, the full specification of the unobserved heterogeneity distri-
bution determines the sign of the interaction between duration and explanatory
variables in the observed hazard.

The first notable result concerns the sign of the interaction for small ¢. In
general, the interaction is strictly negative on an interval [0, £).3* This negative
interaction means that if = is large then the observed duration dependence for
small ¢ is more negative than if x is small. This can be understood as follows.
In the sub-population of individuals with a high value of z, the individuals who
also have a high v will have a disproportionally high hazard. As a result, those
individuals leave the state very quickly, and this has a strong negative duration-
dependence effect on the observed hazard for the individuals with high z. Among
the individuals with low x, this weeding out phenomenon occurs at a much lower
speed, so their observed hazard decreases less strongly. It is important to stress
that this intuitive explanation does not work for ¢ > 0, because the distribution
of v among survivors at ¢ > 0 depends on zx itself.

Lancaster (1979) shows that if G has a Gamma distribution,

Family of Gamma distributions:

g(v) =" /T(r) - v" "' exp(—cv) for all v > 0, with ¢, > 0,
then the interaction is negative for all £ and z, so the negative interaction sign for
small ¢ can be extended to all ¢. Unfortunately, this result cannot be generalized
to include all possible G. To see this, consider discrete distributions for G' with

a finite number of mass points (or points of support), each of them positive and
finite,

Family of discrete distributions with a finite number of
mass points, each of them positive and finite:
Pr(v=uw,)=p;, foralli=1,2,... n,

with 0 < v, <v, <...<wv, <00,0<Dp,pyy...,0, <L,>" p,=1,n<o0

32For example, if Var(v) < oo and lims o ¢(t) € (0, 00] then 92 logf(t|z)/0tdx < 0 at t = 0.
If E(v?) < oo and limg g ¢(t) € [0, 0] then 8% log6(t|x)/0tdz < 0 on an interval next to ¢t = 0.
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(this is a popular specification in empirical work; see Subsection 5.5 below). We
shall show that it is intuitively plausible that in this case, as t — oo, the de-
rivative 0logf(t|x)/0x goes to its value at ¢ = 0 (so that this derivative varies
with ¢ in a non-monotone way, i.e. the cross-derivative does not have the same
sign everywhere). When ¢ increases, the group of survivors becomes increasingly
more homogeneous, since the individuals with v > v; leave unemployment on
average earlier than the individuals with v = v,. In the limit, the group of sur-
vivors is homogeneous (all remaining individuals have v = v;) so the value of
Jlogf(t|r)/0x equals the value in a model without unobserved heterogeneity,
which is 0(z)/0,(z) (see equation (20)). This in turn equals the value that is
taken by 0log#(t|z)/0x in general at t = 0 (see equation (20)), because at ¢t = 0

the selection due to heterogeneity has not yet taken place.?3

Example 7. Let v have a discrete distribution with two points of support with
Pr(v = 1/5) = Pr(v = 3/5) = 1/2. Then the cross-derivative of logf(t|z) with
respect to ¢ and x equals zero if z(t)f,(z) is about 4.6 and it is positive if and

only if z(t)f,(r) exceeds that number.

In this example, there is a positive value of z(t)6,(x) for which the observed
hazard is multiplicative in ¢ and z (i.e. the cross-derivative is zero) despite the
presence of unobserved heterogeneity. However, the corresponding values of ¢ and
x have measure zero in the set of all possible values of ¢ and x. Note that the above
results implies that, if G is discrete with a finite number of points of support,
the observed hazard 6(¢|x) can be approximated by a PH specification if ¢ is
sufficiently large.

Incidentally, it is not difficult to construct examples where the weeding out
of individuals with high v occurs very quickly after ¢ = 0. If v has two points of
support where one of them is extremely large, then the individuals with large v
leave the state almost immediately. As a result, the magnitude of the interaction
between x and ¢ is virtually zero for almost all £ > 0.

The family of discrete distributions is not the only family that generates a non-

33These results imply that, when comparing an individual with a relatively small z to one
with a relatively large x, the proportionate difference between the observed hazards diminishes

as time starts to run from ¢ = 0 onward, but it ultimately returns to the level at ¢t = 0.
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monotone sign of the interaction. Other examples include uniform distributions
with support [¢;, ¢,] with 0 < ¢; < ¢, < o0 as well as many other distributions
with a positive lower bound of the support (see Abbring and Van den Berg, 1998,
for details). In general, it seems difficult to derive conditions on G such that the
interaction is always negative.®® In the next subsection we return to this issue,
when we examine the limiting distribution of v|T" > ¢,z as t — oo, for a wide
class of distributions G.

Recall that in general for small ¢ the interaction is negative. It turns out that,
even if the interaction may be positive for larger ¢, the cumulative interaction

remains negative. With this we mean that (under suitable regularity conditions),

/t 0% log (r|x)
0

9 0n dr <0

for all ¢ and x. This can be seen by noting that this integral equals 0 log 0(7|z)/0x
at 7 = t minus the same expression at 7 = 0, and, by equation (20), this is
negative.

We end this subsection by noting a remarkable result on the effect of x on
the observed hazard 0(t|x) in MPH models.?® One may be tempted to think that
this effect is always positive if x has a positive effect on the underlying hazard
(t|x,v). However, this is not a general property of the model. Intuitively, if a
fraction of individuals has a very high value of v then, in the sub-population of
individuals with high z, the high-v individuals leave the state extremely quickly.
The drop in the mean value of v among the survivors with high x is then so
large that their hazard may on average fall below the value of those with lower x
values. In such a case, the negative effect of the drop in v on 6(¢|x) is not offset
by the positive effect of the large x. In terms of equation (20), the second term

on the right-hand side dominates the first one.

Ezample 8. Consider again the discrete distribution for v with Pr(v = 1/5) =
Pr(v =3/5) = 1/2 (see Example 7). Then 00(t|x)/0x is always positive. However,

34Negative interaction is equivalent to the statement that —L'(e¥)/L(eY) is log-concave on
y € (—00,00), but this does not seem to correspond to a well-known class of distributions for

G.

35Even though this result is not concerned with the sign of the interaction, its interpretation
fits in with the latter subject.
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if the highest mass point is at 5/2 instead of 3/5 the this derivative is negative

for values of ¢ and z such that z(¢)f,(z) is in an interval around 1.

In sum, the observed hazard of a high-z individual can be smaller than that
of a low-z individual. This means that it is not possible to deduce the sign of
the effect of x on the underlying individual hazard from the observed relation
between x and the observed hazard at a certain duration ¢. It should however
be stressed that this remarkable effect can only occur for some local duration
intervals. Specifically, the observed survivor function F(t|z) and the observed
mean duration E(t|x) are always decreasing in x (iff ,(x) increases in x). This

can be seen from the relations
F(tlz) = E,(F(t|z,v)) = L(2(t)8(x))
E(t|) = E,E(t|z,v) = /0°° L(=(1)0y(x))dt

where E, denotes the expectation with respect to G' (note that £ decreases in its

argument; see equation (18)).

5.5 Specification of the unobserved heterogeneity distri-

bution

Studies in which parameterized MPH models are estimated have wrestled with
the choice of a functional form for G (see e.g. Heckman and Singer, 1984a). This
choice is thought to be harder to justify than the choice for a functional form for
the baseline hazard 1, as economic theory often suggests a shape for the latter.
In this subsection we examine parametric families of distributions that can be
given supporting arguments as a choice for G. We start with families that can
be supported by limit arguments. Next we show that economic theory sometimes
actually does make informative predictions on important aspects of the shape of
G. This typically concerns cases where a key source of individual heterogeneity

is observed by labor market participants but not by the researcher.

5.5.1 Discrete distributions

Suppose that the baseline hazard and the systematic hazard have parametric

functional forms with a finite number of parameters, but that the only assumption
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on G is that it has a finite mean (or satisfies (22)). For this case, Heckman and
Singer (1984c) show that the Maximum Likelihood estimator of G is a discrete
distribution, provided that some regularity conditions are met.3¢ For a given
sample, the parameters of this discrete distribution (the number of points of
support, their location, and their associated probabilities) are chosen such as to
maximize the likelihood function. The result by Heckman and Singer (1984c)
illustrates the flexibility of discrete distributions as heterogeneity distributions.
Intuitively, if the number of points of support increases, then any true underlying
distribution G can be approximated well. In practice, it is often difficult to find
more than a few different mass points. Usually, if more than two or three points of
support are taken then the estimates of some of them coincide. Standard practice
in case of discrete G is to estimate the model with a number of mass points that
is either predetermined or equal to the maximum number that could be detected,
and to report standard errors conditional on this choice. It is important to stress
that such approaches are not “nonparametric” in the true sense of the word, and
that the standard errors do not reflect uncertainty with respect to the actual
number of mass points.

The fact that it is often difficult to find more than a few mass points may
reflect a lack of informativeness on GG in the data. Recall that the data do not
provide observations on drawings from G, but that G enters the likelihood func-
tion as a mixing distribution. The information on G comes from the observed
interaction between ¢ and x in the data, and it may be that a mixing distribution
with a few mass points is often able to capture most of this. The simulations in
Heckman and Singer (1984c) strongly confirm this. They find that the parameters
of ¢ and 6, as well as the shape of the distribution of ¢|z are well estimated if G
is assumed to be discrete with an unknown number of mass points, even if the
true G is continuous. The estimated number of mass points is typically small.

For GG discrete with a finite number of points of support, each of them positive
and finite, we restate the following model properties. First, E(v) < oo. Secondly,
the interaction between ¢ and x in #(t|z) is not monotone; it is negative for small
t and positive for very large ¢. Thirdly, the effect of  on 0(t|z) is not always

monotone even if the effect on 6(t|x, v) is.

36See Trussell and Richards (1985), Lancaster (1990) and Baker and Melino (2000) for addi-

tional insights into this estimator and for alternative computational strategies.
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5.5.2 Gamma distributions

In applications, the family of Gamma distributions has perhaps been the most
popular choice for GG. This stems from the resulting analytic tractability: all
relevant properties of the distribution of ¢z can be expressed in closed-form
solutions. In their recent working paper, Abbring and Van den Berg (1998) are
the first to provide a less ad-hoc justification for the choice of the family of Gamma
distributions for G. Suppose that zero is the lower bound of the support of the
true (unknown) G, with v being a continuous random variable (we do not make
assumptions on the upper bound of the support of G). Then, under mild regularity
conditions, the unobserved heterogeneity distribution among the survivors at
duration ¢ converges to a Gamma distribution if ¢ — oco. In fact, we have to
scale the distribution of v among survivors because the unscaled distribution
converges to zero (note that the Gamma family is invariant to scaling). This
result implies that, in many cases, the heterogeneity distribution among survivors
at high durations can be approximated well by a Gamma distribution, and this
provides a motivation to adopt the Gamma family for G(v) itself.

For G(v) equal to a Gamma distribution, we restate the following model
properties. First, E(v) < co. Secondly, the interaction between ¢t and z in 6(t|x)
is monotone and negative for all ¢. Thirdly, the effect of x on 0(t|z) is always
monotone if the effect on 6(¢|x,v) is monotone.

The limit result in Abbring and Van den Berg (1998) does not hold if the true

G(v) is a discrete distribution with a finite number of points of support.3”

5.5.3 Suggestions from economic theory

Now let us turn to (aspects of) shapes of G(v) that can be justified by economic
theory. First, as a general remark, it should be noted that economic theory often
predicts that the exit rate out of a state is bounded from above. Consider the
search theories of Section 3. In general, the exit rate out of unemployment can

be written as AF(¢). The second term in this expression is a probability which

3TRecall that in such a case the sign of the interaction is positive for large ¢, whereas in the
case of a Gamma distribution it is negative for large ¢. The latter suggests that, if in practice
a choice must be made between a discrete G or a Gamma G, it is useful to examine the sign
of the interaction between ¢ and z in the data on 6(¢|z) for large ¢ (see Hougaard, 1991, for an

example).
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necessary lies between zero and one. If the first term is infinite then there are
no frictions in the first place, and the models reduce to standard labor market
models with zero unemployment durations. According to this line of reasoning,
6(t|x,v) should be bounded from above, which implies that the support of G is

bounded from above (which in turn implies that E(v) < 00).?

Suggestions from equilibrium search models

Suppose worker behavior is described by the search models of Section 3. In the
literature, these models have been extended to include employer behavior. For
surveys of the theoretical and empirical analysis of such “equilibrium search mod-
els”, see Ridder and Van den Berg (1997), Mortensen and Pissarides (1999), and
Van den Berg (1999). To fix thoughts, consider the equilibrium search model
of Bontemps, Robin and Van den Berg (1999) where unemployed and employed
workers search, and different workers have different values of leisure b. If the job
offer arrival rates are the same in employment and unemployment, then the re-
servation wage of an unemployed worker with value of leisure b is simply equal
to b. Now suppose that b has a continuous distribution H(b) in the population.
An employer sets his wage w such as to maximize his steady-state profits. We
assume that the number of firms is fixed, or, alternatively, that an entry fee has
to be paid. It is not optimal for any firm to offer a wage equal to the lower bound
b of the distribution H(b), because then its steady-state labor force and profit
rate are zero. The lowest wage w in the market is strictly larger than b. As a
result, there is a positive fraction of individuals who accept any wage offer (i.e.,
who have b < w).

In this model, the individual exit rate out of unemployment equals AF(b).
Now suppose that the researcher wants to estimate a reduced-form model of un-
employment durations. The individual value of leisure b is unobserved, so it is
reasonable to take the unobserved heterogeneity term v to represent the accept-
ance probability F(b) (provided that there is no additional source of unobserved

heterogeneity). As a result, the distribution G(v) has support in [0, 1]. But there

380ne may argue that X is affected by an optimally chosen search intensity, and that the
distribution of structural determinants in the population is such that the resulting distribution
of A does not have an upper bound. However, in search and matching models, A is at least
partially determined by the meeting technology of the labor market; this technology is a market
characteristic that cannot be fully dominated by individual behavior.
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is a positive fraction of workers with F(b) = 1, so G has a mass point at the
upper bound of its support (i.e., at v = 1). If the highest wage in the market @ is
smaller than the highest level of b then GG also has a mass point at zero. In that
case (G is a defective distribution; a positive fraction of individuals is unemployed
forever. In practice it may not be difficult to sort out the latter individuals from
the data (i.e. to observe whether b > W), because it does not make sense for
these individuals to search for a job, so they may classify themselves as being
nonparticipants.

It is not difficult to see that this result extends to more general equilibrium
search models. Often, employer behavior is such that a positive fraction of unem-
ployed workers accepts any wage offer and consequently has the maximum hazard

level for the transition into employment.

Suggestions from on-the-job search models

Consider the stationary on-the-job search model of Subsection 3.2. Published
statistics on nationwide job mobility contain information on the marginal job
duration distribution, i.e. on the distribution of job durations unconditional on
the wage in the job. The wage then represents unobserved heterogeneity in the
job duration data.

The distribution of ¢ given the wage w on the job is exponential with density
F(thw) = (5 + A F (w))eOHxF et (25)

Consider the job durations ¢ of a cohort of workers who have just left unemploy-
ment for a job (this constitutes the inflow into employment at a given point of
time). If all unemployed workers accept any wage that is offered to them then, in
this cohort, the wage w is distributed according to F'(w). To obtain the marginal
job duration distribution for this cohort, we have to integrate (25) with respect
to dF'(w). This gives

; 1 0+ 7th
= [ e e

which is a “mixture of exponentials” i.e., a mixture of distributions with constant

hazards, with a uniform mixture distribution for the hazards with support on the
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interval (,0 + A;).3° This is not surprising. The conditional hazard of t|w is
constant over the job duration. It is then mixed with respect to a determinant
(w) of the conditional hazard. Workers are merely concerned with the ordering
of the current wage and the wage offer, and not with the shape of the underlying
wage offer distribution itself. Their location on the job ladder therefore determines
their hazard. Note that, as a result, the marginal job duration distribution does
not depend on F.

In terms of an MPH model, §(¢|x) can be thought of as being generated by
0(t|z,v) = v, where v has a uniform distribution on (4, + \,).*® This result for
a cohort of newly employed workers can be generalized to other (more relevant)
sampling schemes. Ridder and Van den Berg (1998) apply this approach to study
job mobility with aggregate data.

The argument above also applies to other settings where only the rank of the
individual’s heterogeneity value affects the individual’s hazard rate, and where
these values and their ranks are unobservable. Moscarini (1998) examines a job
search model for the unemployed where individuals are ranked by employers on
the value of some time-invariant characteristic. The rate at which an individual
obtains a job depends on the fraction of the unemployed that has worse char-
acteristics. For a specific matching technology, this results in an unemployment
duration distribution that is again a mixture of exponential distributions with a

uniform mixture distribution.

5.6 Effects of misspecification of functional forms

Generally, in applications, ¢ and/or G(v) are assumed to have a parametric func-
tional form (see Lancaster, 1990, for a catalogue of popular functional forms). We
finish this section on properties of the MPH model by summarizing some results
on the effects of misspecification of these functional forms on the probability lim-
its of the Maximum Likelihood (ML) estimates. Throughout the subsection (and

39This can be further simplified to

e—6t

abw [14+6t = (1+ (6 + Ap)t)e™ M.
1

f®)
4ONote that, if § or A\; depend on t or z, then this is not an MPH model anymore.
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in line with this literature) we assume that

0o(x) = exp(f, + ')

and that all moments of v exist. The model is normalized by taking E(v) = 1. The
only type of censoring that is considered concerns independent right-censoring at
a fixed duration.

A natural starting point concerns the misspecification due to omission of un-
observed heterogeneity from the model, if it is present in the data-generating
process. Recall that in Subsection 5.1 we argued that the estimated duration
dependence will be too negative, and the effect of  may be inconsistently estim-
ated as well. Gail, Wieand and Piantadosi (1984) provide the following result. If
the baseline hazard 1 (t) is known a priori, if one erroneously ignores unobserved
heterogeneity in the model specification, and if there is no censoring, then £, is
consistently estimated with ML. In fact, it is not difficult to show that

. 1 o
plimf, =, — E(;) < By, plimg, = f3;
where plim@- denotes the probability limit of the ML estimator of f3; (i.e., the
value to which the estimate converges in probability as the sample size increases).
Note that E(1/v) > 1/E(v) = 1if and only if Var(v) > 0, i.e. if there is unobserved
heterogeneity. 42

Unfortunately, these welcome results do not generalize in any way to more
realistic settings. Ridder (1987) shows that censoring in the data makes Bl incon-
sistent (unless the specified G equals the true G or 5, = 0). The asymptotic bias is

towards zero if the specified model assumes absence of unobserved heterogeneity.

41See also Lancaster (1983). Ridder (1987) generalizes this result by proving the following:
if the baseline hazard is known in advance, the assumed G is fully specified without unknown
parameters, the assumed G is not equal to the true G, and there is no censoring, then §; is

consistently estimated.
42This is not in conflict with the result in Subsection 5.1 that dlogf(t|z)/dz = B1(1 — a)

for some a > 0. Somewhat loosely one may say that Bo ensures that the average level of the
specified log 6(t|z) agrees to the average level in the data, and that the effect of z in the data
is best captured by Bl = (1. Note that in this specific model, E(log z(t)|z, v) is additive in v
and z. In particular, E(log z(t)|z,v) = —fp — '81 —logv + ¢, with ¢ & —0.58 being the mean
of an EV1 random variable, and with the function z(.) completely known. So by analogy to the

regression model, dispersion in v does not affect the estimate of ;.

23



Lancaster (1985b) shows that if the baseline hazard is known to have a Weibull
specification with an unknown parameter, one ignores unobserved heterogeneity,
and there is no censoring, then the estimates of both the Weibull parameter and
B, are asymptotically biased towards zero. In fact, they are all biased in the same
proportion. Basically, in this case, ML gets the regression function for log¢ right,
but we are after the original parameters of the individual hazard function in-
stead of the elasticities of the mean log duration. Ridder (1987) also shows that
misspecification of the shape of the baseline hazard results in inconsistency of Bl.

The results above are all analytically derived. For more general model settings,
the effects of misspecification have been analyzed by way of extensive Monte
Carlo simulations. Ridder (1987) allows for censoring in the Lancaster (1985b)
model, and he allows for misspecified GG in the assumed model. It turns out that
censoring exacerbates the asymptotic bias in 31 due to misspecification of G,
and the results become sensitive to the assumed specification of GG. Moreover,
it turns out that the estimates display a large small-sample bias even if the
model specification is correct. This bias disappears very slowly when the sample
size increases. Such small-sample biases are absent for the PH model without
unobserved heterogeneity; see Andersen, Bentzon and Klein (1996).

Ridder (1987) also examines the performance of ML estimation of an assumed
model with a Weibull baseline hazard and a Gamma distribution for v, if both are
misspecified. The simulations reinforce the negative results above. Ridder (1987)
conjectures that if the baseline hazard is flexibly specified with a sufficient num-
ber of unknown parameters, and if censoring is virtually absent, then it does not
matter which family of distributions is assumed for GG in order to obtain a reli-
able estimate of ;. However, the simulation results in Baker and Melino (2000)
go against this.*® Most of the biases due to the above problems can be substan-
tial, depending on the situation at hand. For the Partial Likelihood estimation
method, similar results have been derived (see e.g. Bretagnolle and Huber-Carol,
1988).

By now there are also many studies of real-life single-spell data in which it is

reported that the estimates of (the parameters of) 5,,1¢ and G are sensitive to

431t should be noted, though, that Baker and Melino (2000) do not examine an MPH model
but a discrete-time model where the individual per-period exit probability is a logistic function

of ¥(t)0o(x)v. Whether these models behave similarly is an issue for further research.
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changes in the assumed family of distributions for G or the assumed set of x or
the assumed functional form of 1, even though sometimes the over-all fit of the
model does not change with this in any substantial way (see e.g. Heckman and
Singer, 1984a, Trussell and Richards, 1985, Hougaard, Myglegaard and Borch-
Johnsen, 1994). Keiding, Andersen and Klein (1997) provide a survey of studies
with biostatistical data.

The recent literature on semiparametric and nonparametric estimation of the
MPH model provides some interesting additional insights on this. First of all,
Hahn (1994) examines models with Weibull duration dependence, and he as-
sumes that v is a continuous random variable with a finite mean. He shows that
with single-spell data, the information matrix is singular, and that there is no
\/n—consistent estimator for 3; and the Weibull parameter.** Thus, in a certain
sense, there is less information on the model parameters than what is typically
available in econometric analyses. Secondly, Heckman and Taber (1994) and Kor-
tram et al. (1995) show that the mapping from the data-generating process to the
data is not continuous, so that two distinct MPH models can generate very sim-
ilar data.®> Thirdly, the nonparametric (or semiparametric) estimator developed
by Horowitz (1999) has convergence rates that are smaller than y/n. In particu-
lar, under certain assumptions (including absolute continuity of an element of x,
differentiability of ¢(¢) and the density of v, and E(v?) < o), the convergence

—2/5

rates of 3; and v can be at most almost equal to n~*°, which is obviously slower

/2 For the heterogeneity distribution and density G and g, the rate of

2

than n~
convergence is (logn)~%, which is very slow.

Together, these results lead to the following conclusion. In the absence of
strong prior information on the determinants of the MPH model, single-spell
data do not enable a robust assessment of the relative importance of these de-

terminants as explanations of random variation in the observed durations (even

41Gee Klaassen and Lenstra (1998) for a generalization of this result.
45 As an example, consider the simplest MPH model, with 8(z) = exp(z) where z is a single

dummy variable, and with absence of duration dependence and unobserved heterogeneity. The
distribution of t|z is virtually the same as the distribution generated by an MPH model with
0o(z) = exp(2z), duration dependence proportional to 2¢, and v distributed as a Positive Stable
distribution with parameter 1/2 with the upper tail replaced by a finite mass point (see Kortram
et al., 1995, for details; note the similarity to the example in the discussion in Subsection 5.2;
also note that here E(v) < 00).
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if the unobserved heterogeneity mean is known to be finite). Minor changes in
the assumed parametric specification, leading to a similar over-all fit, may pro-
duce very different parameter estimates. This implies that estimation results from
single-spell data are sensitive to misspecification of the functional forms associ-
ated with these determinants. Therefore, interpretations based on such results
are often unstable and should be performed with extreme caution.

In biostatistics, this state of affairs has led to a renewed interest in Accelerated
Failure Time models for the analysis of single-spell duration data (see Hougaard,
Myglegaard and Borch-Johnsen, 1994, and Keiding, Andersen and Klein, 1997,
for a survey). Note that such models allow for robust inference on the effect of x
on the mean of log .16 In a way, the choice for the AFT model means that all hope
is given up on the attempt to (i) disentangle genuine duration dependence from
the effect of unobserved heterogeneity, and (i) quantify the effect of covariates
on the individual hazard as opposed to the observed hazard, with single-spell
data. From an economic-theoretic point of view, however, the AFT approach is
unsatisfactory, because, as we have seen in Sections 2 and 4, the parameters of
the individual hazard are the parameters of interest. It may therefore be better
to exploit predictions from the underlying economic theory when specifying the
duration model, and/or look for data with multiple spells.*”

If one is only interested in the sign or significance of a covariate effect on the
individual durations then the AFT approach may be useful. Recall from Subsec-
tion 5.4 that in MPH models the sign of the effect of x on the mean duration is
always the same as the sign of the effect on the individual hazard, regardless of the
specification of i) or G'. Regression of log ¢ on x therefore provides robust evidence
on this sign (see Solomon, 1984, 1986, for proofs; Li, Klein and Moeschberger,
1993, provide supporting Monte Carlo evidence on the performance of test stat-
istics for the significance of the effect of x). Such an approach may be useful if

one is interested in whether participation in a treatment program (to be repres-

46Indeed, Horowitz (1996) shows that the 3 parameters in the transformation model (9) can
be consistently estimated with an estimator with convergence rate equal to n~'/2. Recall that

the AFT model is a special case of the transformation model.
47 Another approach would be to estimate the model nonparametrically using methods de-

scribed in Subsection 5.2. It is still too early to assess whether this approach is fruitful. Yet
another approach is to use population data (if available). See Van den Berg and Van Ours

(1996) for an example of this based on a discrete-time model.
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ented by x) has any effect. However, in economics, data on treatment effects are
usually non-experimental and treatment assignment is selective, so then z is not

exogenous (see Subsection 9.2).

6 The MPH model with multi-spell data

6.1 Multi-spell data

This section deals with identification of the MPH model if the data provide
durations of multiple spells in a given state by a given individual, i.e. if the data
are multi-spell data. Here, an individual has a given value of v, and his spell
durations are independent drawings from the univariate duration distribution
F(t|x,v), where, of course, v is unobserved, so that the durations given just z are
not independent. We mostly focus on an “ideal” case in which the data consist
of a random sample of individuals and provide two uncensored durations for
each individual in the sample. Actually, the use of the term “individual” is not
very appropriate here, as the setup includes cases in which physically different
individuals are assumed to share the same value of v and we observe one or more
durations for each of these individuals. It is convenient to refer to such a group of
individuals as a stratum. It depends on the context whether one may assume that
v,1, and 6, are identical across durations for the same individual or stratum. In
subsequent sections we examine more general models, in which ¢ and 6, may
vary across spells, the values of v in different spells may be stochastically related,
and other dependencies between the durations are allowed. It is useful to think of
the present section as being concerned with a model for a single type of duration,
where we have multiple spells of this type of duration for each “individual”,
whereas the subsequent sections are concerned with models for different types of
durations with single or multiple spells of each type for each “individual”.

The empirical analysis of MPH models with multi-spell duration data is wide-
spread. For example, Newman and McCullogh (1984) use such data to estimate
reduced-form models for birth intervals, while Ham and Rea (1987) and Coleman
(1990) use such data to estimate reduced-form unemployment duration models.*®
Lillard (1993) and Lillard and Panis (1996) estimate marriage duration models

48 Ham and Rea (1987) use a discrete-time model.
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with multi-spell data. In these applications, the multiple spells with a given value
of v are associated with a single physical individual. There are also many ap-
plications in which multiple spells with a given v are associated with different
physical individuals (see e.g. Kalbfleisch and Prentice, 1980). The heterogeneity
term is then assumed to be identical across individuals within some group or
stratum. Typically, different individuals within a stratum are allowed to have
different values of x. As we shall see below, this may actually be very useful
for inference.?® Recent applications include Guo and Rodriguez (1992), Wang,
Klein and Moeschberger (1995), Sastry (1997), Ridder and Tunali (1999), and
Lindeboom and Kerkhofs (2000). Arroyo and Zhang (1997) survey applications
in the analysis of fertility. In studies on lifetime durations of identical twins, the
unobserved heterogeneity terms are often assumed to capture unobserved genetic
determinants, so then v is identical within twin pairs (see e.g. Hougaard, Harvald
and Holm, 1992a).

To proceed, note that the individual hazard function 0(t|z,v) is the same
for both durations associated with the “individual”. The value of x may differ
between the corresponding spells. If necessary we denote the values by z; and z,,
respectively. Conditional on x and v, the two durations ¢, and ¢, are independent.
Conditional on z, the variables ¢, and ¢, are independent if there is no unobserved
heterogeneity, i.e. if v is not dispersed.

If 6,(x) = exp(2'F) then

t1
log/ P(u)du = -z} f —logv + ¢,
0
(26)

to
log/ b(u)du = —zL8 — logv + &,
0

where €, and ¢, are i.i.d. EV1 distributed. Equations (26) suggest a similarity to
standard panel data models with fixed effects. We return to this below.

The joint density f(¢,,t,|z) of t; and ¢, given = can be expressed as

fltntole) = [T [ ftlen o) f ol o) dG) (27)

“9ndeed, with stratified partial likelihood inference, estimation of the systematic hazard 6y

is driven by the variation in z (see Subsection 6.2).
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in which G' denotes the joint distribution of v across “individuals” in the popu-
lation. The density f(t;|z;,v) can of course be expressed in terms of the determ-
inants of # (see Section 2). The joint survivor function of ¢; and ¢, given z can
then be expressed as

F(t,, ty)z) = /00 eI (@1) +2()0 @)l gy (1))

0

In many applications, the individual likelihood contribution is based on the
density (27). In terms of panel data analysis, this means that the values of
v are treated as “random effects” when estimating the model with Maximum
Likelihood.?® An alternative empirical approach treats v as individual-specific
parameters or “incidental” parameters. The likelihood function is then written

for given unknown values of these (and the other) parameters.®

6.2 Identification results

One may distinguish between two approaches in the literature on identification
of the MPH model with multi-spell data. The first approach below is concerned
with the full identification of the model and relies on results that were discussed
in Section 5. The second approach is concerned with the identification of the sys-
tematic hazard 6, and follows from properties of a particular estimation method.

We start with the first approach. Honoré (1993) shows that the MPH model
with multi-spell data is identified under much weaker assumptions than in Section
5. In fact, we do not need to assume that there are observed explanatory variables
x at all. In other words, the analysis is conditional on a given value of x, and we
may allow for full interaction of the actual value of x with the model determinants:
1 may depend on z in an unspecified way, and v and x may be dependent in the
population. Note that here x does not vary across spells for a given individual.

We may write
O(tlz,v) = ¢(tlx) -v,  vlz~G(v]z)

This includes of course as a special case that ¢ (¢|z) can be written as ¢ (t)6,(z).

50Here, as in the model with single spells, standard maximization of the likelihood may be
computationally unfeasible for particular parametric specifications for G and . In such cases,
use of the EM algorithm may be preferable (see Lancaster, 1990, for details).

1Gee Lancaster (2000a) for a general overview of incidental parameters in econometrics.
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This model is identified given regularity assumptions corresponding to As-
sumptions 2-4, and given a normalization of the integrated baseline hazard (ana-
logical to Assumption 7). Thus, if two observations are available for each v, then
the identification of the model does not require an untestable assumption on the
tail of the unobserved heterogeneity distribution G anymore, and, perhaps even
more importantly, v and x are allowed to be dependent. The identification of this
distribution does not come anymore from the interaction between the duration
and the observable explanatory variables in the observed hazard. The identifica-
tion does however need proportionality of the duration effect and the unobserved
heterogeneity term in the individual hazard. It should be noted that this model

is nevertheless overidentified; see Subsection 8.2.2.

Ezample 9. Let 1» = 1 (so there is no duration dependence) and z; = z,(= x),
and suppose that v has a Positive Stable distribution (see Subsection 5.2). Such
distributions have infinite means. As we have seen, the resulting MPH model
for single spells is observationally equivalent to a PH model without unobserved
heterogeneity and a Weibull baseline hazard. However, it is easy to see that the

joint survivor function of ¢, and ¢, equals

F(ty, tola) = exp (= [0y ()]t +15))
(with 0 < & < 1), whereas if there is no unobserved heterogeneity and the baseline
hazard has a Weibull specification (¢(t) = at®!) then

F(ty, ty|v) = exp ([0 ()] (87 + 5))

so the two models are observationally distinct, even if 6, = 1.

Now let us turn to the second approach to identification, which focuses on the
effect of observed explanatory variables on the individual hazard function. The
systematic hazard 6, is identified under very weak conditions if the data contain
multiple spells with the same value of v. This has been known for some time, for
the reason that a nonparametric estimation method exists for 6, in this setup (see
Kalbfleisch and Prentice, 1980, and Chamberlain, 1985). In fact, this estimation
method is applicable to a model setup that is more general than the MPH model.

To proceed, it is useful to distinguish between observed explanatory variables z*
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which do not vary within strata, and observed explanatory variables x which do
vary within strata. We assume for expositional reasons that the hazard function is

multiplicative in a part depending on x* and a part depending on . In particular,
O(t|z*, x,v) = P(t|z", v) - O,(x), v|z*,x ~ G(v|z*, x) (28)

This specification allows for full interaction of the values of v and z* with the
elapsed duration ¢ in the hazard function. This implies that we allow the baseline
hazard to differ across strata (i.e., across groups of spells with the same v).
Moreover, v, x* and x may be dependent. The basic idea of the estimation method
is that a Cox partial likelihood can be constructed within strata. For a given
stratum, the partial likelihood depends only on 6, and not on G or % or the
values of v or z*. These likelihoods can be combined to construct an over-all
partial likelihood which can be used to estimate 6, (see the above references for
details).

Clearly, the effects of the explanatory variables x* cannot be estimated from
this. In other words, to be able to estimate the effect of an observed explanatory
variable with this approach, it is essential that the values of the variable some-
times differ across spells within a stratum. In case of two spells per stratum, this

amounts to x; # x,. To see this, note that within such a stratum,

0 (25)
0o (1) + 0y(z5)

Pr(tl > t2|.'L'1,.'L'2,’U) =

which is only informative on 6, if z; # x,.

The within-stratum baseline hazard i as a function of ¢t can subsequently
be estimated nonparametrically. Yamaguchi (1986) surveys these methods. Kal-
bfleisch and Prentice (1980) and Ridder and Tunal (1999) contain useful expos-
itions on the inclusion of time-varying covariates.

What does this “stratified partial likelihood” estimation approach imply for
the identification of #, in the MPH model with multi-spell data? This function
is identified up to a multiplicative constant if 6,, ), and G in equation (28) sat-
isfy regularity assumptions corresponding to Assumptions 1-4, and if x varies
between spells within strata. Again, we do not need independence of observed
and unobserved explanatory variables, and we do not need an assumption on the

tail of the distribution of the unobservables. Note that the identification result is
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valid under a specification of the hazard function that is much more general than
the MPH specification.

The approach of the previous paragraphs is particularly appealing if the in-
dividual v are regarded as incidental parameters. With full ML, such parameters
can in general not be estimated consistently if asymptotically the number of strata
goes to infinity with a fixed number of spells per stratum (Lancaster, 2000a). In
the above approach, however, these parameters cancel out of the partial likeli-
hood. Somewhat loosely one may say that if multiple durations are available for
each v, then duration analysis becomes similar to standard dynamic panel data
analysis, where one can get rid of the so-called “fixed effects” before estimating
the other parameters. This raises the question to what extent first-differencing of
the durations within strata can also be applied to get rid of v. It seems that this
is only feasible if the baseline hazard has a particular functional-form specifica-
tion, notably the Weibull specification. Assume that the duration dependence is
described by at®~! for all spells and strata. In addition, assume that v is the same
for all spells in a stratum, and assume for convenience that 6,(z;,) = exp(z}f).
For two spells ¢, ¢, within a stratum, with observed explanatory variables z; and

x,, respectively, the difference of equations (26) gives

s
logt, —logt, = —&(xl —x,) + ”

Note that e, — ¢, has a fully specified distribution (as the difference of two
i.i.d. EV1 random variables). Thus, with Weibull duration dependence, first-
differencing results in an equation from which the Weibull parameter and the
systematic hazard can be reliably estimated without the need to make any as-
sumption on the unobserved heterogeneity distribution. Indeed, v and z are al-
lowed to be dependent.

The identification results discussed in this subsection have been of enormous
importance for applied duration analysis. If two observations are available for each
v then the identification of the model does not require an untestable assumption
on the tail of the unobserved heterogeneity distribution G anymore, and v and
x need not be independent anymore. We only need some fairly innocuous regu-
larity assumptions and normalizations (of course, in addition to proportionality
assumptions on the hazard function). The recent applied literature contains a

number of studies showing that the estimates of the parameters of interest are
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robust with respect to the functional-form specification of GG, in case of multiple
observed durations for each v (see Nielsen et al., 1992, Guo and Rodriguez, 1992,
Goniil and Srinivasan, 1993, and Bonnal, Fougere and Sérandon, 1997). These
results are in sharp contrast to those found for the single-spell model (Section 5).
It should also be noted that Hahn (1994) finds that his result on singularity of
the information matrix in the case of single-spell data (see Subsection 5.6) does
not carry over to the case of multi-spell data. Moreover, the stratified partial
likelihood estimators are y/n—consistent.

We finish this section by mentioning an important caveat with multi-spell
data. This concerns the fact that the analysis of multi-spell data is particularly
sensitive to censoring. With single-spell data, many types of censoring are in-
nocuous in the sense that their effect can be captured by standard adjustments
to the likelihood function (see Andersen et al., 1993, recall also the discussion
in Subsection 4.2). With multi-spell data, one has to be more careful. Consider
the case where two durations ¢, and ¢, follow each other in time, and where the
data are subject to right-censoring at a fixed duration after the common starting
point of the ¢, durations. Then the moment at which ¢, is right-censored is not
independent from ¢, itself. To see this, consider individuals for which v is large.
For these individuals, ¢, will on average be short. As a result, ¢, will on average
start at a relatively early moment. This in turn implies that ¢, will often be right-
censored at a relatively high duration. In sum, ¢, and the variable determining the
moment at which it is censored are both affected by the unobserved character-
istic v. This violates the standard censoring assumptions of duration analysis (see
Visser, 1996, for general results, and Keiding, 1998). As a result, standard partial
likelihood estimation methods (like the one above) cannot be applied. Moreover,
one cannot estimate (characteristics of) the distribution of ¢, in isolation from
t, (see Ridder and Tunali, 1999, for an informative exposition). With censoring
in general, first-differencing (like above) is not possible. Finally, the value of ¢,
may even affect the probability that the beginning of the second spell is observed
at all, in which case a subsample of individuals for which both ¢, and ¢, are ob-

served is selective (this is even true if there is no unobserved heterogeneity).5? Of

2In a recent working paper, Woutersen (2000) develops consistent GMM-type estimators
that deal with a number of these problems, while treating unobserved heterogeneity as a fixed
effect.
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course, with censoring, one may still use standard ML estimation methods with
random effects. However, if the realization of ¢, is often unobserved then the use
of multi-spell data does not provide much gain over the use of single-spell data.
In sum, the less censoring in the data, the larger the advantages of multi-spell
data.

7 An informal classification of reduced-form

multiple-duration models

In general one may think of many different ways to model a relation between
duration variables. In the applied econometric literature on the estimation of
multiple-duration models, the range of different models is actually not so large.
In this section we provide a rather informal model classification that covers most
of the models used in practice.”® The next sections examine the models in more
detail. It should be stressed that we are not concerned with abstract point pro-
cesses where the durations between events can be related for many reasons (see
e.g. Snyder and Miller, 1991, for a survey). Also, we are not concerned with the
multiple-duration models in engineering where the lifetime of a system depends
on the lifetimes of its components. The latter models are often not very useful to
describe economic behavior (although they are an important input in economic
analyses of machine maintenance; see e.g. Ryu, 1993). As we shall see, some of
the models that we consider are more natural when dealing with successive spells
in a given state or with successive spells in different states,> whereas others
are more natural in the case of competing risks, and yet others are useful in all
these cases. In fact, the recent empirical literature often uses models that simul-

taneously allow for two different types of dependence of the duration variables.

33See Hougaard (1987) for an older classification, based on statistical model properties.
4 Again, what constitutes a state depends on the application at hand (i.e. depends on the

relevant underlying theoretical framework). It is possible that what in one application are re-
garded as multiple durations in the same state, are regarded in another application as durations
in different states. In practice, for a given individual and a given definition of states, the specific-
ations for the marginal distributions of different spells in a given state are similar, whereas the
specifications for the marginal distributions of spells in different states do not contain common

parameters or functions.
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The MPH model with multi-spell data (Section 6) can also be interpreted as a
multiple-duration model, as it specifies the joint distribution of the durations in
the spells that an individual experiences. We shall see that this specification is in
fact a special case of a popular type of multiple-duration model. For expositional
reasons we shall restrict ourselves to two duration variables throughout the re-

mainder of this chapter.

“Lagged” durations

The first popular type of dependence concerns an effect of a realized past duration
on the current hazard. This type of dependence was introduced by Heckman
and Borjas (1980). Suppose that two durations ¢, and ¢, each follow their own
PH model, with 6, (t|,) = 1, (t;)0, (x,) and 0,(t,t;, 25) = ¥y(t5)0(7,)E(ty),
where ¢, starts at or after the moment at which ¢, is realized. Basically, this
dependence is modeled by including ¢, as an additional covariate in the hazard
for t,. Usually, the underlying economic theory provides a causal interpretation
for this type of dependence.?® Because of the analogy to a regression model with
lagged endogenous variables among the explanatory variables, this dependence
is sometimes called “lagged-duration dependence”. Obviously, different types of
restrictions can be imposed on the model determinants 6,6, ,,v;, and t,. For
example, if ¢, and ¢, denote durations in the same state then it may be imposed
that ¢y = 1y, , =z, and/or Oy, (5) = by, (7).

Instead of including the value of ¢, in the individual hazard for ¢,, one may
also use an indicator of whether the individual has been in the state associated
with ¢, during the year before the start of £,, or indeed any other realization of
past behavior. In applied labor economics, these types of dependence have been
incorporated in reduced-form models for the effects of labor market programs
on subsequent unemployment durations and employment durations. It should be
stressed however that these studies also allow for other dependencies; see below
for examples.

Recently, in financial econometrics, lagged-duration dependence models have

55Here and elsewhere, the relation between the duration variables can be formulated by using
the concept of Granger-noncausality. However, for the basic models examined in this chapter,
there is no gain from doing this (see Abbring, 1998). See Florens and Fougere (1996) for a

formal analysis of causality in more general continuous-time processes.
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been used for the analysis of durations between successive market events such as
a buy or sell of a security on a stock market (see e.g. Engle and Russell, 1998,
and Bauwens and Giot, 1998). In these models, the hazard function of the i
duration depends on the realizations of previous durations by way of an autore-
gressive scheme. The baseline hazard is assumed to have a Weibull specification

with a single common parameter for all durations.

Shocks

The second popular type of dependence concerns situations where two durations
occur simultaneously, and where the realization of one duration variable has an
immediate effect on the hazard of the other duration variable. This type of de-
pendence has been introduced by Freund (1961). To focus the mind, suppose that
the realization of ¢, affects the level of the hazard of ¢, afterwards. This can be
captured by the inclusion of an indicator of whether ¢, is realized, as a time-
varying regressor in the hazard specification of ¢,. For example, the hazard of ¢,
can be specified as 1, (t,) exp(xh S, + 01(t, < t,)), where I(.) denotes the indicator
function, which is 1 if its argument is true and 0 otherwise. From Subsection 4.2
we know that such a specification requires conditions on the exogeneity of ;.
Basically, ¢; needs to be weakly exogenous, and anticipation by the individual
of the future realization of ¢, is ruled out. Note that the individual is allowed to
know the (determinants of the) probability distribution of ¢,.

The underlying economic theory often provides a causal interpretation for
the above type of dependence. Obviously, ¢, and ¢, denote durations in different
states, so it does not make sense to impose restrictions across the two hazards.

In practice, it may be too restrictive to assume that the realization of ¢, merely
affects the level of the hazard of ¢,. More generally, the realization may be allowed
to affect the whole shape of the hazard of ¢, after the realization of ¢,.°® In applied
econometrics, such types of dependence have been incorporated in reduced-form

models for the effect of certain treatments®” on worker labor-market behavior;

56In an empirical analysis of panel survey attrition, Van den Berg, Lindeboom and Ridder
(1994) examine a slightly different model in which there is a positive probability that t, is
realized immediately after realization of ¢;. Here, ¢; and ¢, are the duration until the individual
respondent makes a transition to another labor market state, and the duration until attrition

from the panel, respectively.
57In biostatistics, Ay is often called the treatment effect if = captures whether the subject has
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we return to this below. In addition, the model described above can be seen as
a special case of models in which an individual experiences different stochastic
processes which affect each other by way of shifts in the hazard for one process if
the other process generates an event. The latter type of models have been used to
study the interaction between marital status, number of children, health status,
and labor market status. For example, if an unemployed woman marries then
her transition rate to employment may drop. It should again be stressed that
these studies often also allow for other types of dependence between the duration

variables; see below.

Related unobserved determinants
The third type of dependence between duration variables concerns dependence by
way of their unobserved determinants. Specifically, consider two durations ¢, and
t, which each follow their own MPH model, so 0,(t;|z;, v;) = ¥;(t;)0 ;(x;)v;, with
© = 1,2. Then the dependence between ¢, and ¢, given z is modeled by allowing v,
and v, to be related. In Subsection 8.1 below we provide a more precise definition.
This multivariate extension to the MPH model is called the Multivariate Mixed
Proportional Hazard (MMPH) model. This has in fact been the most popular
multiple-duration model by far.’® Note that the relation between the durations
is spurious to the extent that it results from the fact that we do not observe v,.

The MMPH model applies to cases where the two durations occur simultan-
eously (possibly with the same starting point) as well as to cases where they occur
successively. Again, different types of restrictions can be imposed on the model
determinants 6 ,, 0, 5,1, 1, and the joint distribution G(v,,v,), depending on
the extent to which ¢, and ¢, represent durations in the same state. Clearly, the
MPH model of Section 6 with a single state and multi-spell data is the special
case with 0y, = 05,1, =1, and v; = v,.

The MMPH model is regarded as a convenient and flexible model for depend-
ent durations. Of course, there are often good reasons to suspect the presence
of important related unobserved determinants, and by now there is an abund-

ant applied literature in which MMPH models are estimated. In the econometric

received a treatment at the beginning of the spell. Here, we avoid that terminology, and we
reserve the term “treatment” for treatments occurring during a spell.

8Flinn and Heckman (1982b) provide an early analysis of this model.
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contributions to this literature, the variety of types of states and durations that
are considered is vast. Flinn and Heckman (1982b, 1983), Coleman (1990), and
Rosholm (1997) estimate MMPH models for the durations of unemployment, em-
ployment, etc. in order to study transition rates between different labor market
states. Generally, the unobserved determinants of the durations spent in different
states are allowed to be related, and the unobserved determinants of different
durations spent by an individual in the same state are assumed to be identical.
In their studies of attrition in longitudinal panel survey data, Van den Berg,
Lindeboom and Ridder (1994), Carling and Jacobson (1995) and Van den Berg
and Lindeboom (1998) estimate MMPH models for the joint durations of labor-
market spells (like a spell of unemployment or a job spell) and the duration of
panel survey participation. Lillard and Panis (1998) include attrition in a similar
way in their model for the joint durations of marriage, non-marriage, and life.
Note that this approach to attrition is in line with the popular modeling setup
for sample selection introduced by Heckman (1979).

As we saw in Section 6, MPH models are sometimes estimated under the
assumption that the unobserved heterogeneity term is identical across different
physical individuals within some group or stratum. Sastry (1997) extends this
setup by allowing each individual to belong to two groups with different aggreg-
ation levels (families and towns). There is unobserved heterogeneity across each
type of group. This effectively amounts to an MMPH specification for the dur-
ations of members of different families living in the same town. Similarly, the
approach in studies on lifetime durations where the unobserved heterogeneity
terms are assumed to be identical across siblings can be generalized to allow v,
and v, for siblings to be a sum of a common determinant and an independent
person-specific component (see e.g. Petersen, 1996, Yashin and Iachine, 1997, and
Zahl, 1997, for applications).?® Such a specification for G has gained less popular-
ity in econometrics, for the obvious reason that in econometric applications the

association of unobserved heterogeneity to genetic factors is less compelling.

¥ The applications of this paragraph illustrate a disadvantage of the “multi-state / multi-
spell” terminology: sometimes two spells are in the same state but one does not want to impose
that the unobserved heterogeneity terms are identical, so that the multi-spell setup of Section

6 does not apply.
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Combinations of dependencies
The presence of related unobserved determinants is particularly important if one
is interested in one of the other two types of dependence that we described above.
The estimate of the causal effect will be biased if one ignores the spurious depend-
ence that results from the related unobserved determinants. To deal with this,
the empirical model should take account of this spurious dependence. The model
should allow both for a causal effect and for related unobserved heterogeneity.
As examples of a combination of lagged duration dependence and related
unobserved heterogeneity, see Heckman, Hotz and Walker (1985), who allow
“lagged” durations between the births of previous children to affect the hazard
of the duration of the current birth interval, and who allow for correlated unob-
served heterogeneity as well (see Omori, 1997, and Lancaster, 2000b, for other
examples). Lillard (1993), Lillard and Panis (1996), Abbring, Van den Berg and
Van Ours (1997), Eberwein, Ham and LaLonde (1997), and Van den Berg, Van
der Klaauw and Van Ours (1998) analyze models where the realization of one
duration variable has an immediate effect on the hazard of the other duration
variable, allowing for related unobserved heterogeneity in order to deal with se-
lectivity. Let us examine them in somewhat more detail. Abbring, Van den Berg
and Van Ours (1997) and Van den Berg, Van der Klaauw and Van Ours (1998)
study the effect on the exit rate out of unemployment of a punishment for insuffi-
cient search effort. The duration until punishment is modeled by way of an MPH
model, and the exit rate out of unemployment permanently shifts to another
level at the moment the punishment is applied. Lillard (1993) estimates a model
for the joint durations of marriage and time until conception of a child, and his
model allows the rate at which the marriage dissolves to shift to another level at
moments of child birth. Lillard and Panis (1996) estimate a model on the joint
durations of marriage, non-marriage, and life, and their model allows the death
rate to shift to another level at moments of marriage formation and dissolution.
Eberwein, Ham and LaLonde (1997) estimate a (discrete-time) model for the ef-
fect of participation in training programs on individual labor market transitions,
and they allow the exit rate out of unemployment to shift to another level at the
moment of inflow into the program. See Van den Berg, Holm and Van Ours (1999)
for a similar analysis in continuous time. In all these applications, the duration

variable ¢, needs to satisfy the exogeneity conditions of Subsection 4.2 for given
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values of the unobserved heterogeneity terms. This rules out anticipations of the
realizations of ¢,, but the individual is allowed to know the (determinants of the)
probability distribution of ;.

In the applied literature on the effects of training on unemployment durations,
“training” is often regarded to be a separate labor market state, and the effect
of training on subsequent labor market transitions can then be captured by a
model with lagged-duration dependence (or a model where the fact that one has
had any training is allowed to affect subsequent transitions). In order to deal
with selectivity of those who enrol in training, it is important to allow for related
unobserved heterogeneity terms affecting the inflow into training as well as the
other transition rates. Gritz (1993) and Bonnal, Fougere and Sérandon (1997)
contain sophisticated examples of such analyses. Ham and LaLonde (1996) use
experimental data to estimate models for the effects of training on individual
labor market transition rates.

In the absence of unobserved heterogeneity, the specification, identification,
and ML estimation of models with lagged-duration dependence is relatively straight-
forward. The same holds for models with changes in the hazard of one duration
in response to realization of the other duration (given appropriate assumptions
on the direction of the causality; see Florens and Fougere, 1996). However, mod-
els with related unobserved heterogeneity terms are less transparent. In the next
section we therefore examine MMPH models in detail. Subsequently, in Section
9, we briefly examine the models where related unobserved heterogeneity is com-
bined with a “causal” effect of one duration on the other (that is, we examine a
combination of lagged duration dependence and unobserved heterogeneity, and a

combination of a shift in the hazard and unobserved heterogeneity).

Some theoretical considerations

We finish this section by stressing that, like in Section 4, it is often not clear
to what extent the reduced-form specifications of the dependence between two
durations can be justified by economic-theoretical models. This is particularly
true for models where the hazard of one duration immediately changes in response
to the realization of the other duration. In many cases, individuals may anticipate
the realization of the other duration, and the moment at which the anticipation

starts is often unobserved. In applications this has to be examined carefully.
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In the analysis of MMPH models, as a rule, the assumed parametric family
of the joint unobserved heterogeneity distribution G(vy,v,) treats v, and v, in
a symmetric way: given the unknown parameters of GG, the role of v, and v, in
G(vy, v,) can be interchanged without changing G. In particular, if G is continuous
then the supports of v; and v, are assumed to be the same, and if GG is discrete then
the numbers of points of support are assumed to be the same for v, and v,. It is
sometimes difficult to justify such symmetric distributions with economic theory.
If, according to the theory, individuals improve their situation when ending one
spell and starting another, then the characteristics associated with the second
spell should be “superior” in some sense to those of the first spell. If v, represents
the characteristics of the first spell and v, of the second, then this suggests that the
support of v, should depend on the realization of v,. Consider for example the on-
the-job search model discussed in Subsection 5.5.3. If one observes two consecutive
job spells and if the wages are unobserved, then the unobserved heterogeneity
term of the second spell exceeds the term of the first spell. Unfortunately, such
bivariate heterogeneity distributions have not yet been studied (see Koning et al.,
2000, for an application in a structural analysis of an on-the-job search model).

Finally, we address whether the hazards of different durations of the same
individual depend on the same set of explanatory variables or not. Economic
theory often predicts that both hazards depend on the individual’s behavior, and
that the forward-looking individual’s optimal strategy depends on all structural
determinants. For example, in a job search model with two possible employment
destination states, the decision on whether to accept a job offer depends on the
arrival rates and wage offer distributions of both types of employment, regardless
of the employment type of the actual offer (see Thomas, 1998). In such cases, if the
observed explanatory variables are characteristics of the individual himself, then
it does not make sense to exclude elements of x from one hazard that are included
in the other hazard. In other words, in such cases, x; = z, (note incidentally that
this provides an argument against the assumption that unobserved heterogeneity
is independent across spells for a given individual; see also Lillard, 1993). In the
event that the researcher observes a determinant of one of the hazards whereas
this determinant is assumed to be unobserved by the individual, then it makes
sense to include this determinant only in the corresponding hazard. Finally, if one

hazard is mechanical and independent of the individual’s behavior then obviously
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it does not need to depend on the determinants of the other hazard (see Van den
Berg, 1990b, and Ryu, 1993, for examples).

8 The Multivariate Mixed Proportional Haz-

ard model

8.1 Definition

In this subsection we define the MMPH model. Next, Subsection 8.2 deals with
identification of this model under different situations with respect to the timing of
the two underlying spells. We assume that the situation is either such that both
durations always start at exactly the same point of time, or that one duration ne-
cessarily follows the other. In Subsection 8.3 we discuss parametric specifications
for the joint distribution of unobserved heterogeneity and the degree of flexibility
of the corresponding models.

For the sake of convenience, we again use the term “individual” to denote the
subject that experiences certain spells. In the first situation with respect to the
timing of the spells (starting at the same time) we consider the population of
individuals in the inflow into the states corresponding to the duration variables,
whereas in the second situation (successive durations) we consider the population
of individuals in the inflow in the state corresponding to the first duration. Flinn
and Heckman (1982b), Chesher and Lancaster (1983), and Ham and LaLonde
(1996) consider less “ideal” sampling designs.

We assume that all individual differences in the hazard function of ¢; can be
characterized by observed explanatory variables x and unobserved characteristics
v,. Similarly, all individual differences in the hazard function of ¢, can be char-
acterized by observed explanatory variables z and unobserved characteristics v,.
(Of course, one may impose exclusion restrictions on the set of elements of = that
is allowed to affect the systematic hazard 6 ;(x) associated with exit i.) For an
individual with explanatory variables x, v,, vy, the hazard functions of ¢, and %,
conditional on x,v,,v, are denoted by 0,(t,|z,v,) and 6,(¢,|z,v,). The MMPH

model is now defined by

Definition 2 : MMPH model. There are functions 1y,1y,6, 1,00 such that

for every t,,ty,x, v, vy there holds that
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0,(t, ], v,) = ¥y (ty) - Oy, (z) - v,

)

(29)
Oy (to]7, v9) = thy(ts) - 90,2@) Uy

For convenience, we take 1,1y, 0, 1,0 5, 1, vy, and the distribution G of vy, v, in
the population to satisfy the regularity assumptions that correspond to Assump-
tions 1-4 for v, 6,,v, G in the MPH model.

Conditional on z, v,, v,, the durations ¢, and ¢, are independent. Conditional
on z, the variables ¢, and ¢, are only dependent if v; and v, are dependent. So,
in the case of independence of v; and v,, the model reduces to two unrelated
ordinary MPH models for ¢, and ¢,.

In terms of a regression specification with 6 ;(x) = exp(2'5;), this model can

be rewritten as

t1
log/ Y, (u)du = —2'B, —logv, + &,
0
(30)

t
log/ " by(u)du = —' By — log v, + &
0

where £, and ¢, are i.i.d. EV1 distributed, but where v, and v, may be related.
Now consider the joint distribution of ¢, and ¢, given z. The joint density

f(ty,ty]z) can be expressed as

f(ty,to]2) = /000 /000 fi(ti ]z, ) fotolm, vy) dG(vy, vy)

in which we already implicitly assume that v,, v, are independent of z, and in
which the probability density function of ¢;|x,v; is for convenience denoted by
fi(t;|z,v;). The latter density can of course be expressed in terms of the de-
terminants of 6, (see Section 2). Let z(¢;) denote the integrated baseline hazard
associated with ¢,. The joint survivor function of ¢, and ¢, can then be expressed

as

F(tl, t, |J§) _ /0 6721“1)90,1(117)111*22(t2)90,2($)v2 dG(’Ul, ,02)
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In many applications, the individual likelihood contribution is based on the dens-
ity above (that is, if the unobserved heterogeneity terms are not treated as in-
cidental parameters). In terms of panel data analysis, this means that v, v, are
treated as “random effects” when estimating the model with Maximum Likeli-
hood.

8.2 Identification results

In this subsection we consider identification results for the MMPH model. It is
important to stress that no parametric functional form assumptions are made on
the underlying functions 6, ;, 1, and G, so, as in Subsection 5.2, we are concerned

with nonparametric identification.

8.2.1 Competing risks

Recall from Subsection 8.1 that we consider two different situations with respect
to the timing of the two spells. In the first situation, both spells start at the
same point of time for a given individual, and the individual is observed until the
first duration is completed. This is called a competing-risks model, as one may
envisage the individual having two options to leave the current state, and the
realization of one option is necessary and sufficient for leaving the state. In the
second situation with respect to the timing of the spells, the two spells cannot
overlap. Moreover, in the second situation both durations can be followed until
completion, so there is more information available than in the first situation (see
Subsection 8.2.2 below).

In the competing-risks setting, the data provide information on min{¢,,%,}
and on argmin, ¢, (i.e. on which duration is the one that ends first). So, as-
sume that the data provide the distribution of this “identified minimum”. It is
well known that this does not suffice to identify the most general competing-
risks model (with an arbitrary joint distribution for ¢,,t,, without covariates).
In particular, for every model with dependent t,,¢, there is an observationally
equivalent model with independent ¢,,¢, (see e.g. Lancaster, 1990).

Now let us assume that ¢, and ¢, are generated by an MMPH model with
regularity assumptions corresponding to Assumptions 1-4. As in Subsection 5.2,

some additional assumptions are needed for identification. These include the equi-
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valents of Assumption 5 (so z is independent of v,,v,), Assumption 7 (normal-

;) < 00). In addition, we need to strengthen

izations), and Assumption 8 (E(v,

Assumption 6 on the dispersion of x,

Assumption 9 : Variation in observed explanatory variables in the competing-
risks setting. The functions 0, (x),0,(x) attain all values in a set (0,0,,) x

(0,?0,2) with 0 < ?071,5072, when x varies over the set X of possible values of x.

If 6, ,(z) = exp(a'B;) then sufficient for this is that z has two continuous covariates
which affect both hazards 6, but with different coefficients for different ¢, and
which are not perfectly collinear. Moreover, in the population, these covariates
must attain all values ranging to minus infinity.

Heckman and Honoré (1989) prove the nonparametric identification of the
model under these assumptions. In fact, they strengthen Assumption 9 by taking
50,1' = 00, because they examine a class of models that is somewhat more general
than the class of MMPH models (see Abbring and Van den Berg, 2000b). In
any case, note that Assumption 9 is stronger than Assumption 6 on the range of
values that 6, attains in the MPH model. This is not surprising. However, it is
important to note that the identification does not require exclusion restrictions
on the hazard specification of either duration. Moreover, identification does not
require parametric functional form restrictions on the distribution of unobserved
heterogeneity. In the case of binary data on the “identified minimum” (i.e., it is
observed which duration ends first but not when) such restrictions are necessary
to achieve identification. This illustrates the fact that the timing of events in
duration data provides a valuable source of information concerning the underlying
model.

It is interesting to obtain some insight into the identification of whether the
durations are dependent or not, since this distinguishes the above identification
result from the earlier literature in which competing risks models without covari-
ates were examined. In the sequel of this subsection we use T}, T, to denote the

random duration variables, and ¢,, ¢, to denote realizations of these. We define
05 (ti |z, T, > t,)

to be the hazard of the duration 1) at the value ¢,, conditional on = and condi-

tional on the duration T, exceeding t,. More generally, the hazard 05 (t,|z, T, > t,)
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corresponds to the conditional distribution of 7|z, T, > t,. We evaluate this
hazard for given ¢, and t,, and in fact we take t, = t,;. Obviously, the hazard
05 (ty|lz, Ty > t,) can be defined analogically. It is important that the “condi-
tional” hazards 07 (¢,|z,T, > t,) and 05(t,|z,T; > t,) are observable quantities,
as they can be expressed in terms of the distribution of the data. (Note that the
“marginal” hazards 6,(t;|z) are unobserved due to the competing risks setting.)

If v, and v, are independent, then
01ty |x, T, > ty) = 0,(t1]x) and  03(L,]x, Ty > 1y) = 0,(ty])

The assumption in Heckman and Honoré (1989) on the values that can be at-
tained by 6 ;(x) implies that 6, () and 0, ,(z) are not perfectly related, and
that there is some independent variation in both. As a result, if v, and v, are
independent then 6 ,(z) does not affect 07 (t,|x,T, > t,), and 6, ,(x) does not
affect 05(ty|z, Ty > t,).

Now let us examine what happens if v; and v, are dependent. It is straight-
forward to show that

. E, |0,(t,|z,v,) exp (— [i* 0, (u|z,v,)du — [i* Oy (u|z, vy)du
O (|2, T, > t)) = [ ( )}

E, [exp (— [0, (ulz, v))du — [ 0, (ulz, v2)du)]

with 6, as in (29), and with E, denoting the expectation with respect to the
bivariate distribution G(v;,v,). If we differentiate this with respect to 6 ,(z)

then the resulting expression has the same sign as
—Cov(vy, volz, Ty > 1, T, > 1)

(provided that ¢, > 0). If v; and v, are dependent then in general there are many
values of ¢, such that the above expression is nonzero.

In sum, the derivative of 0 (t,|x, T}, > t,) with respect to 6, ,(x) and its mirror
image for ¢, are informative on the dependence or independence of the unobserved
heterogeneity terms. This is intuitively very plausible. If the systematic hazard of
t, does not directly affect the individual hazard of ¢, but does affect the observed
hazard of ¢; then this indicates that there is a spurious relation between the
durations by way of their unobserved determinants. It should again be stressed
that this is not based on an exclusion restriction in the usual sense of the word. All

explanatory variables are allowed to affect (the means of) both duration variables
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— they are just not allowed to affect the whole duration distributions in the same
way. %

The above results are based on the availability of “single-spell” data. In
the present context, this means that for each individual in the sample there
is one observation of the “identified minimum” (which consists of min{¢,,¢,} and
arg min, ¢,). Now suppose that the individual-specific value of the v;, v, pair is in-
variant over time. In a recent working paper, Abbring and Van den Berg (2000b)
show that some of the assumptions made by Heckman and Honoré (1989) can be
weakened substantially if the data provide multiple observations on the identified

minimum for each individual.

8.2.2 Successive durations

If the two spells are successive, and both durations can be followed until comple-
tion, then the data provide the joint distribution F'(¢,,t,|x). In fact, it is merely
for expositional reasons that we take the spells to be successive: if they occur
(partly) simultaneously and are both observed until completion then the results
of this subsection are valid as well, provided that the durations satisfy the model
as defined in Subsection 8.1.

The most general model specification does not impose restrictions across the
marginal duration distributions, so it allows for ¢, # 1,0, | # 0,5, and v, # v,.
For both marginal hazard functions in this model we make regularity assumptions
corresponding to Assumptions 1-4. In addition, we adopt the equivalents of the
Assumptions 5-8 that were made to identify the MPH model. Honoré (1993)
shows that under these assumptions the MMPH model is identified. (Assumptions
6 and 8 may be jointly replaced by Assumptions 6b and 8b.)

This result is not surprising, because the data on t,|z identify the determin-
ants of the MPH model for #; (which are ¢;, 6 ;, and the marginal distribution of
v;), provided that the assumptions for identification of this MPH model are satis-
fied. The relation between v, and v, is subsequently identified from the observed
relation between ¢, and t, given x.

Sometimes it makes sense to impose a priori restrictions across the mar-

800f course, the 6y ;(x) are not directly observed. Heckman and Honoré (1989) identify these
by examining data at zero durations. Whether this can be used to construct a useful test

statistic on independence remains to be seen.
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ginal duration distributions. The most restrictive specification imposes that 1, =
V9,651 = b5, and v; = v,. We already know from Section 6 that this model
is identified under weak assumptions. Now let us consider an intermediate case
in which we impose that v, = v, but allow the baseline hazards v, and v, to
be different. In addition, we do not assume that there are observed explanatory
variables x. In other words, the analysis is conditional on a given value of x, and
we allow for full interaction of the actual value of x with the model determinants:
; may depend on z in an unspecified way, and v and = may be dependent in the
population (from this point of view we do not consider an “intermediate” case,

as this generalizes the MMPH specification). Thus,
0;(t|z,v) = ¢(tlx) -v,  v|z~G(vlz)

This includes of course as a special case that ¢;(¢|z) can be written as ¢, (t)f, ;(x).
We make regularity assumptions corresponding to Assumptions 2-4. Honoré
(1993) shows that this model is identified, provided that a normalization is im-
posed on the integrated baseline hazard (analogical to Assumption 7). Note that
we do not need to make assumptions corresponding to the previously made As-
sumptions 5, 6, and 8. Perhaps the most important issue here is that identification
does not require independence of v and x. In many applications, such independ-
ence is difficult to justify. Like in Section 6, if unobserved heterogeneity values
are identical across different durations then the model is similar to a standard

dynamic panel data model.

8.3 Specification of the bivariate unobserved heterogen-
eity distribution
8.3.1 Dimensionality

The types of justifications used for parametric functional forms of G' in MPH
models are often unavailable for MMPH models. This is particularly true for the
choice of a specification for the dependence of v, and v,. In this subsection we
focus on the choice of the dimensionality of the distribution of G' (or more accur-
ately, the dimension of the support of GG). In Subsection 8.3.2 we then examine
the types of dependence that can be generated by different parametric functional

forms for a G with a given dimensionality.

78



The so-called “one-factor loading specification” has been a popular specific-
ation for a bivariate distribution of unobserved heterogeneity terms in MMPH
models (see Flinn and Heckman, 1982b, 1983, for early applications, and Heck-
man, Hotz and Walker, 1985, Heckman and Walker, 1987, 1990, and Bonnal,
Fougere and Sérandon, 1997, for subsequent applications). This specification re-
duces the dimensionality of the distribution G from 2 to 1. In particular, it as-

sumes that there is a univariate random variable z such that
v; = exp(a; + v;2) i=1,2 (31)

(Note that this z does not refer to the integrated baseline hazard here.) This
specification can be straightforwardly generalized to a higher number of different
durations as well as a higher dimension of the random variable z. If z is two-
dimensional then we obtain a “two-factor loading specification”, etc.

The two (related) advantages of the “factor loading specifications” are (1)
they restrict the number of unknown parameters, leading to a sparse specifica-
tion, and (2) they limit the computational burden of the estimation of the model.
The number of parameters related to G equals the number of parameters of
the distribution of z, plus the number of a; and 7, parameters, minus normaliza-
tions. This typically increases linearly with the number of different durations n. If
vy,...,v, has a genuine multivariate distribution then the number of parameters
related to G typically increases quadratically with n. To illustrate the compu-
tational advantage, consider the case where logv,,...,logv, has a multivariate
normal distribution. The evaluation of the joint density function of ¢, ..., ¢, then
requires the evaluation of an n—dimensional integral. However, if the v, are re-
lated by a one-factor loading specification then the integral is one-dimensional.
See for example Bonnal, Fougere and Sérandon (1997), where n = 8. Note that
computational burden is less of a problem in the case of discrete v; and n smaller
than, say, 4.

Hougaard (1987) stresses that it is too restrictive to assume that v; = v,
if the corresponding spells do not concern the same state. If (i) v; = v,, and
(77) both durations are always observed, and (iii) each duration is described by
an identified MPH model, then the full unobserved heterogeneity distribution
is completely identified from data on only one of the durations. We now show
that somewhat similar problems may arise in the case of a one-factor loading

specification for G.
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Indeed, the main disadvantage of the one-factor loading specification con-
cerns the relation it imposes on the marginal duration distributions on the one
hand, and the dependence of the durations on the other. If Var(v,) > 0 and
Var(vy) > 0 then it automatically follows that Cov(v,,v,) # 0. So if the data
provide evidence for unobserved heterogeneity in the marginal distributions of ¢,
and t,, then the model implies that these durations must be dependent. Simil-
arly, if the durations are independent, then the model implies that there is no
unobserved heterogeneity for at least one of the durations. If the dependence
between the durations changes, then necessarily the marginal duration distribu-
tions change as well. Lindeboom and Van den Berg (1994) show in detail that
these may amount to serious restrictions on the specification of the full model.

To illustrate this issue, suppose that the distribution of z belongs to a para-
metric family of distributions with two parameters: a location parameter y and
a scale parameter o (for example, z has a normal distribution with parameters y
and o). Then

z2=u+ o0z,

where Z has a completely specified distribution. By substituting this into (31),
it is clear that we can only identify oy + v,1, @y + Yo, v,0, and 7,0. This
implies that in effect we only have two parameters at our disposal to capture
the 3 second moments of logwv,,logwv, (which are Var(logv,), Var(logv,), and

Cov(logvy,loguv,)).

8.3.2 The dependence between the durations

In this subsection we examine the dependence of the two duration variables in the
MMPH model. For this purpose we use some summary measures of the association
between two random variables. For a given association measure we focus on two
issues: first, which range of values of this association measure can be attained by
the MMPH model in general, and secondly, to what extent is this range further
narrowed if G is assumed to belong to specific families of distributions. The first
issue is of importance for a comparison of the MMPH model to other models for
the dependence between duration variables. The second issue is of importance for

a comparison of the flexibility of different families of heterogeneity distributions,
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and to obtain insight into the range of bivariate models that can be generated by
a specific G. The results in this subsection are from Van den Berg (1997).

The regression-type specification of the MMPH model (see equation (30))
suggests that Corr(log z,(t,), log z,(t,)|x) may be an interesting summary meas-
ure of the association between ¢, and ¢,. Unfortunately it turns out that for our
purposes it is not, because it can attain every value in (—1, 1) for given baseline
hazards, by choosing an appropriate G. Moreover, it can attain every value in
(—1,1) within the popular parametric families of distributions for G. Consider
instead Corr(t,,1,|x), and assume for the moment that the baseline hazards are
constant. The correlation of the duration variables is informative on the strength
of the linear relationship between these variables. It is a commonly used measure
that is readily understood. Here, it equals

Cov(+, 1)
Corr(t, t,|z) = L
2 [Var(2) + E(%)

i v

(32)

1/2

Note that it does not depend on x and that its sign equals the sign of Corr(1/v,,1/v,).
Van den Berg (1997) shows that

1 1
—3 < Corr(t,,t,|7) < 3

regardless of the values of () and 6,(x), and regardless of the shape of
G(vy,vy) (but provided that the right-hand side of (32) exists). The inequalities
are sharp in the sense that they can be approached arbitrarily closely by choosing
appropriate G.

The result above (and most of the results below) can be easily generalized to
models with Weibull baseline hazards. In that case, the upper and lower bound
depend on the parameters of the baseline hazard, but they are always strictly
between —1 and 1, and the lower bound is always closer to zero than the upper
bound.5!

In the empirical literature, the most frequently used families of distributions

for v,, v, are (1) the family of bivariate discrete distributions with two points of

61Gimilar results can be derived for bivariate accelerated failure time models and bivariate
duration models in discrete time, notably the discretized (i.e. rounded-off) bivariate MPH model
and the rather popular bivariate discrete-time duration model in which the exit probabilities

have logistic specifications.
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support for v; and for vy, and (2) the family of bivariate normal distributions
for logv,,logv,. These families include as special cases the one-dimensional dis-
tributions with perfect correlations (these can be represented by the one-factor
loading specification (31)). Coleman (1990), Van den Berg, Lindeboom and Rid-
der (1994), Carling and Jacobson (1995), and Van den Berg and Lindeboom
(1998) adopt multivariate discrete distributions for G,%?, whereas Butler, Ander-
son and Burkhauser (1986), Lillard (1993), Xue and Brookmeyer (1996), Lillard
and Panis (1996, 1998), and Ng and Cook (1997) adopt multivariate normal
distributions.%® Tt turns out that in the discrete case, every value in (—1/3,1/2)
can be attained. By implication, this is also true in the case of more than two
points of support for each v;. In the normal case, Corr(¢,,,|x) can only attain
values in [—3 + 2v/2,1/2), where the lower bound equals about —0.17.

The lower bound —1/3 is attained for a discrete distribution for v,, v, such
that Pr(v, = ¢;,v, = 00) = Pr(v; = 00,v, = ¢,) = 1/2, with 0 < ¢}, ¢, < 00.5
In that case, the bivariate distribution of ¢,,t,|x is such that, with probability
1/2, t,|x is zero and t,|x has an exponential distribution, and with probability
1/2 this holds with ¢, and ¢, interchanged. We conclude that in an MMPH model
these (and similar) duration distributions cannot be generated if logv,,logwv,
has a normal distribution, which may be a disadvantage of the latter if one is

interested in a flexible specification.%®

62Engberg, Gottschalk and Wolf (1990) estimate a bivariate discrete-time duration model in
which the individual per-period exit probabilities are logistic functions of ¢;(¢;)6o,;(z)v;, and in
which G has a bivariate discrete distribution. Meghir and Whitehouse (1997) estimate a similar
discrete-time model, with a genuine bivariate discrete distribution, but with probit specifications
for the exit probabilities. Heckman, Hotz and Walker (1985), Heckman and Walker (1987, 1990)
and Gritz (1993) adopt discrete distributions for z in a one-factor loading specification. Card
and Sullivan (1988), Mroz and Weir (1990), Ham and LaLonde (1996) and Eberwein, Ham and
LaLonde (1997) estimate discrete-time bivariate duration models with logistic probabilities and

a one-factor loading specification for z with a discrete distribution.
63Flinn and Heckman (1982b, 1983) and Bonnal, Fougere and Sérandon (1997) adopt normal

distributions for z in a one-factor loading specification. In a sensitivity analysis, the latter study

also adopts a discrete distribution for z.
64This should not be interpreted as an advantage of discrete random variables for vy, v,

vis-a-vis continuous random variables, for one can construct families of bimodal continuous

distributions for G such that —1/3 can be approached arbitrarily closely.
65Butler, Anderson and Burkhauser (1989) assume vy, vs to have a bivariate discrete distri-

bution with points of support that are fixed in advance. This means that the only parameters
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For the general model as well as within the parametric families discussed
above, the distributions that give the largest and smallest possible value of
Corr(t,,ty|z) are such that logv, and logwv, are perfectly correlated. This means
that the range of values for Corr (¢, t,|x) is the same as in the case of a one-factor
loading model (see equation (31)) with an appropriate distribution of z. In other
words, a reduction of the class of G to one-factor loading specifications does not
further restrict the range of values that Corr(t,, t,|z) can attain.®® From this point
of view, one-dimensional random variation in the unobserved heterogeneity terms
is sufficient for maximum flexibility in terms of the correlation of the durations.

As an alternative measure of association, consider Kendall’s 7 (or “Kendall’s
coefficient of concordance”). This is the most popular global ordinal measure
of association in the literature on multivariate durations (see e.g. Genest and
MacKay, 1986, Oakes, 1989, and Guo and Rodriguez, 1992). There are several
equivalent ways to formally define it. The definition given by Kendall (1962) is

particularly useful for general multivariate duration models,
T(ty, to|w) = 4E(F (¢, ty]r)) — 1

where the expectation is taken with respect to F'(¢,t,|x) itself. Kendall’s 7 only
attains values in [—1,1]. It is an ordinal measure, and it is informative on the
strength of any monotone relation. It equals 1 (—1) if and only if £, is a monotone
increasing (decreasing) function of ¢,. Because it is invariant under monotone
transformations of the random variables, the value of 7(¢;,,|z) in the MMPH
model does not depend of the baseline hazards or on the values of the systematic
hazards (so the baseline hazards can be taken as constants, and the conditioning
on x can be omitted). As a result, it only depends on the distribution G of
the unobserved heterogeneity terms, which is exactly the part of the model that
causes the dependence of the durations.

For convenience, assume that G/(v;, v,) follows a one-factor loading specifica-
tion, i.e. suppose (31) holds. It turns out that all values between —1 and 1 can be

attained by (¢, t,), within any family of continuous distributions for z. However,

of G to be estimated are the probabilities associated with these points of support. This can be

shown to narrow the range of values of Corr(t1,t2|z) as well, in particular if the points for v;

or v are chosen to be relatively close to one another (see Van den Berg, 1997, for examples).
66Note that if v; = vy then this range reduces to (0,1/2).
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if z (and therefore v,) is restricted to have a discrete distribution with n points

of support (n =2,3,...,00), then

1+1<(t ty) <1 !
J— JR— T _ —
n 1» %2 n

These inequalities are sharp in the sense that they are approached arbitrarily
closely for appropriate values of the parameters in the one-factor loading spe-
cification (31).

The results for 7 are clearly quite different from those for the correlation
coefficient. This is because 7 detects linear and nonlinear monotone relations alike,
and it does not depend on the relative magnitudes of the duration variables, but
only on their ordering. The fact that the range of values of 7(¢,,t,) is restricted
for discrete distributions with finite n can be explained as follows. In this case,
the population can be subdivided into a finite number of groups of individuals,
and within these groups, all individuals are the same in terms of their v; and v,.
This implies that there is a positive probability that two random drawings of ¢,
and ¢, are from the same group. Now consider all observations for a single group.
Because they all have the same v, and v,, there is no relation at all between ¢,
and t, within the group. This restricts the population value of 7(¢,,%,). It does
not affect the range of values of Corr(t,,t,|x) because the “within-group” lack
of correlation can be made quantitatively unimportant by making the “between-
group” differences large.

In all cases, the bounds for 7(¢,,t,) are attained by “spreading out” the het-
erogeneity distribution as much as possible. If z is continuous then the resulting
bivariate distribution of t;,%,|z is such that all probability mass is on a single
curve for ¢; and t,. We conclude that in an MMPH model such a duration distri-
bution cannot be generated if z has a discrete distribution with a finite number
of points of support. This suggests that it is useful in empirical applications to
try to increase the number of mass points.

We finish this subsection by noting that in applications it may also be interest-
ing to examine the dependence of the residual duration variables if one conditions
on survival up to a certain duration. It may also be interesting to examine how
the (non-causal) effect of the realization of one duration variable on the hazard
rate of the other changes with the realized value of the first duration variable.
Oakes (1989), Anderson et al. (1992), Hougaard, Harvald and Holm (1992b) and
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Yashin and Iachine (1999) provide analyses for the general case, and they also

discuss how the dependence patterns are affected by the functional form of G.

9 Causal duration effects and selectivity

9.1 Lagged endogenous durations

In this subsection we briefly examine bivariate duration models with lagged-
duration dependence as well as mutually related unobserved heterogeneity terms.
Recall from Section 7 that such models have been used to study the impact of
the length of an unemployment spell on the length of the next unemployment
spell. Also recall that the estimate of the effect of the previous duration is biased
if one ignores the spurious dependence from related unobserved determinants.

In terms of the hazards, the model specification reads

0,(t |z, v)) = i(ty) '90,1(x) " Uy
(33)

Oy(talty, ,v9) = y(ty) '90,2(@ E(t)) - vy
and we make the following regularity assumption on the function &,
Assumption 10 The function £(t) is positive for every t € [0, c0).

If v; and v, are independent, then, conditional on x, the durations ¢, and %,
are only dependent if £(¢,) is not a constant. In the general case, the joint density

of t; and ¢, given x is straightforwardly expressed as

fltntol) = [7 [ At v) f(blth e v) 4G, 0)

in obvious notation. Note that if one allows for more than two consecutive spells
then in practice there may be initial-conditions problems, as one may not observe
the duration of the first spell.

If both durations can be followed until completion, then the data provide the
joint distribution F'(t{,t,|x). Honoré (1993) shows that this model is identified

from these data, under some conditions. For both marginal hazard functions in
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this model we make regularity assumptions corresponding to Assumptions 1-4,
and we adopt regularity Assumption 10. In addition, we adopt the equivalents of
Assumptions 5, 6b, and 7 on v;, 6, ;, and 1,.57 We also normalize the function &,

and we replace the equivalent of Assumption 8 by a slightly different assumption,

Assumption 11 : Normalization. For some a priori chosen t,, there holds
that £(t,) = 1.

Assumption 12 : Tails of the joint unobserved heterogeneity distribu-

tion. E(v,) < oo and E(v,v,) < 0.

Sufficient for Assumption 12 is that E(v?) < oo for 7 = 1,2. In sum, we adopt
Assumptions 14, the equivalents of Assumptions 5, 6b, and 7, and Assumptions
10-12.

Here, as in the model with successive durations and v; # v, (Subsection 8.2.2),
identification requires assumptions on the tails of the distributions of v, and v,
(notably, finiteness of moments), and it requires that the individual hazards are
proportional in ¢ and z. It is plausible that these assumptions can be substantially
weakened if the data provide multiple observations on ¢,,¢, for each v,, v, pair
(see Woutersen, 2000, for results).

9.2 Endogenous shocks

In this subsection we examine bivariate duration models with the property that
the hazard of the duration £, moves to another level at the moment at which the
other duration ¢, is completed, with mutually related unobserved heterogeneity
terms. Recall from Section 7 that such models have been used to study the effect
of punishments and training on the exit rate out of unemployment and the effect
of marriage dissolution on the death rate. Also recall that the estimate of the
change of the hazard is biased if one ignores the spurious dependence from related
unobserved determinants. Finally, recall that we need to rule out anticipations of
the realizations of ¢,, but the individual is allowed to know the (determinants of
the) probability distribution of ¢,.

67In fact, the differentiability condition in Assumption 6b can be weakened to continuity

here.
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We adopt a framework where the two durations start at the same point of
time, and where the realization of ¢, affects the shape of the hazard of ¢, from
t, onwards. The data provide observations of ¢, and z. If ¢, is completed before
t, then we also observe ¢,; if not then we merely observe that ¢, exceeds ¢,. The
model and data are thus distinctly asymmetric in the two durations. Somewhat
loosely, one may say that ¢, is the “main” duration, or the “endogenous duration
of interest”, whereas ¢, is an “explanatory” duration, and the causal effect of ¢,
on t, is the “treatment effect”.

In terms of the hazards, the model specification reads

91 (t1|l‘, Ul) = ¢1 (tl) : 00’1 (J,‘) Uy
(34)
Oy (talty, 2, 05) = thy(ty) - Oy () - elli<t) gy,

where I(.) denotes the indicator function, which is 1 if its argument is true and
0 otherwise. If v, and v, are independent, then, conditional on z, the durations
t, and t, are only dependent if § # 1. In the general case, the joint density of ¢,
and t, given x is straightforwardly derived as in the previous subsection.

In a recent working paper, Abbring and Van den Berg (2000a) provide identi-
fication results for this model. In fact, they allow § to depend on past observables.
These results are similar to those for Subsection 9.1 in that they require inde-
pendence of = from v,, vy, and they require an assumption on the first moments
of vy, vy. If multiple observations are available for each v, v, pair then such as-
sumptions are not needed.

Contrary to models of binary treatments and binary outcomes, the treatment
effect 0 is identified without the need to rely on exclusion restrictions or paramet-
ric functional-form assumptions regarding the distribution of v, v,. In particular,
the set of explanatory variables affecting ), ; does not have to be larger than the
set affecting 0 ,, and the joint distribution of v,,v, can be any member of a
broad nonparametric class of distributions. These results imply that the timing
of events conveys useful information on the treatment effect. This information is

discarded in a binary framework. In conclusion, duration analysis is useful for the
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study of treatment effects in non-experimental settings.5%:5

10 Conclusions and recommendations

Since the early 1980s, the econometric analysis of duration variables has become
widespread. This chapter has provided an overview of duration analysis, with
an emphasis on the specification and identification of duration models, and with
special attention to models for multiple durations.

We have seen that the hazard function of the duration distribution is the
focal point and basic building block of econometric duration models. Properties
of the duration distribution are generally discussed in terms of properties of
the hazard function. The individual hazard function and the way it depends on
its determinants are the “parameters of interest”. This approach is dictated by
economic theory. Theories that aim at explaining durations focus on the rate at
which the subject leaves the state at a certain duration given that the subject
has not done so yet. In particular, they explain this exit rate in terms of external
conditions at the point of time corresponding to that duration and in terms of
the underlying economic behavior of the subject given that he is still in the state
at that duration.

The Mixed Proportional Hazard model and its special cases are by far the most
popular duration models based on a specification of the hazard function. We have
seen that the recent mathematical-statistical literature on counting processes has
formulated precise conditions under which time-varying explanatory variables
can be included in MPH models in such a way that one can still perform valid
econometric inference with standard methods. Specifically, these variables have to
be “predictable” stochastic processes. Here, “predictability” is a rather technical
concept with a meaning similar to that of weak exogeneity.

The MPH model and its special cases are often regarded to be useful reduced-

68The model of this subsection does not allow the size of the treatment effect to depend on
unobserved heterogeneity. Given the recent interest in heterogeneity of treatment effects (see
e.g. Heckman, LaLonde and Smith, 1999), it is a challenge for future research to incorporate

this into duration analysis. See Abbring and Van den Berg (2000a) for results on this.
69Robins (1998) analyzes treatment effects in a different type of duration models where

unobserved determinants of the duration of interest may vary over time and may depend on

the treatment.
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form models for duration analysis. The resulting estimates are then interpreted
with the help of some economic theory. Unfortunately, the proportionality as-
sumption of the (M)PH model can in general not be justified on economic-
theoretical grounds. However, if the optimal strategy of the individual is myopic
(e.g. because of repeated search, or because the discount rate is infinite), then
this proportionality can often be deduced from economic theory.

The MPH model is nonparametrically identified from single-spell data, given
an assumption on the tail of the unobserved heterogeneity distribution, like fi-
niteness of its mean. However, the model is nonparametrically unidentified if such
an assumption is dropped. Moreover, the adoption of a model that is observation-
ally equivalent to (but different from) the true model leads to incorrect inference
on the parameters of interest. This is bad news, as it is often difficult to make
any justified assumption on the tail of the unobserved heterogeneity distribution.
In applications where the unobserved heterogeneity term represents an import-
ant economic variable, economic theory might provide a justification of the finite
mean assumption.

Let the finite mean assumption be satisfied. The observed hazard function of
the duration given the observed explanatory variables is nonproportional, mean-
ing that it cannot be expressed as a product of a term depending only on the
elapsed duration and a term depending only on the observed explanatory vari-
ables. With single-spell data, the unobserved heterogeneity distribution in MPH
models is identified from the interaction between the duration and the explanat-
ory variables in the observed hazard, or, in other words, from the observed type
of nonproportionality of the observed hazard. However, unobserved heterogen-
eity can not generate just any type of interaction. The class of models for the
observed hazard that is generated by MPH models is smaller than the general
class of interaction models for the observed hazard. In other words, the MPH
model is overidentified with single-spell data.

In MPH models, the sign of the interaction between the duration and the
explanatory variables in the observed hazard is affected by the type of unobserved
heterogeneity distribution. However, under weak conditions, the sign is always
negative at small durations regardless of the type of heterogeneity distribution.
If unobserved heterogeneity has a Gamma distribution, then the interaction is

negative at all durations and all values of the systematic part of the hazard
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function. If unobserved heterogeneity has a discrete distribution with two positive
mass points then the interaction is negative at small durations and positive at
large durations.

In MPH models, the effect of an explanatory variable on the observed hazard
can be negative at some durations even if the explanatory variable has a positive
effect on the underlying individual (or systematic) hazard. This means that it
is not possible to deduce the sign of the effect of the explanatory variable on
the underlying individual hazard from the observed effect of the variable on the
observed hazard at certain durations. Fortunately, this remarkable effect can only
occur for some local duration intervals.

By now, there is overwhelming evidence that with single-spell data, minor
changes in the assumed parametric specification of the MPH model, while lead-
ing to a similar over-all fit, may produce very different parameter estimates. Also,
very different models may generate similar data. Estimation results from single-
spell data are sensitive to misspecification of the functional forms associated
with the model determinants, and this sensitivity is stronger than usual in eco-
nometrics. In the absence of strong prior information on the model determinants,
single-spell data do not enable a robust assessment of the relative importance
of these determinants as explanations of random variation in the observed dur-
ations. Therefore, interpretations based on estimation results are often unstable
and should be performed with extreme caution.

In biostatistics, this state of affairs has led to a renewed interest in Acceler-
ated Failure Time models as alternative reduced-form duration models for the
analysis of single-spell duration data. From an econometric point of view, the
AFT approach is unsatisfactory, because it does not focus on the parameters of
the individual hazard as the parameters of interest. However, if one is only inter-
ested in the sign or significance of a covariate effect on the individual durations
then the AFT approach may be useful.

In practice, it may be useful to exploit predictions from the underlying eco-
nomic theory when specifying the duration model, by imposing these as restric-
tions on the functional form of the heterogeneity distribution or the baseline
hazard. It may be even more useful to look for data with multiple spells (see be-
low). Now suppose that these options are not available. Concerning the baseline

hazard, the conceived wisdom is that a piecewise constant specification is then the
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most useful. Such a specification is flexible and convenient from a computational
point of view. Concerning the unobserved heterogeneity distribution, it may be
useful to start off with an informal examination of the sign of the interaction in
the observed hazard. If it is negative at all durations then a Gamma distribution
may give a better fit whereas if it is positive at large durations then a discrete
distribution may give a better fit.

By now, the empirical analysis of MPH models with multi-spell duration data
is widespread. Basically, if two observations are available for each unobserved
heterogeneity value, then the identification of the model does not require an
untestable assumption on the tail of the unobserved heterogeneity distribution
anymore, and, perhaps even more importantly, observed and unobserved explan-
atory variables are allowed to be dependent. The identification of this distribution
does not come anymore from the interaction between the duration and the ob-
servable explanatory variables in the observed hazard. Data on multiple spells
for the same individual therefore remove the identification problems associated
with single-spell data. Moreover, a consensus has emerged that multi-spell data
allow for reliable inference that is robust with respect to the specification of
the unobserved heterogeneity distribution. Multi-spell duration data make dura-
tion analysis more similar to dynamic panel data analysis. It should however be
stressed that the analysis of multi-spell data is particularly sensitive to censoring.

The chapter pays special attention to models for multiple durations. Here,
the marginal duration distributions need not be the same. In general one may
think of many different ways to model a relation between duration variables. In
the applied econometric literature on the estimation of multiple-duration mod-
els, the range of different models is actually not so large. Typically, the models
allow for dependence between the duration variables by way of their unobserved
determinants, with each single duration following its own MPH model. In addi-
tion to this, the model may allow for a “causal” effect of one duration on the
other, as motivated by an underlying economic theory. The first popular type of
causal effect concerns an effect of a realized past duration on the current hazard.
Basically, this is modeled by including the realized past duration as an additional
covariate in the hazard for the current duration. The second popular type of
causal effect concerns situations where two durations occur simultaneously, and

where the realization of one duration variable has an immediate effect on the
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hazard of the other duration variable. This includes models of treatment effects
in the presence of selectivity and in the absence of exclusion restrictions.

For such models, identification results have been derived which are similar
in contents to those for MPH models with single-spell data. The identification
conditions can be weakened substantially if multiple observations are available
for each value of the heterogeneity pair, or if cross-restrictions are imposed on
the distributions of the two durations in the multiple duration model.

The multiple-duration model where the marginal duration distributions each
satisfy an MPH specification, and the durations can only be dependent by way
of their unobserved determinants, is called the Multivariate Mixed Proportional
Hazard (MMPH) model. In the empirical analysis with such models it is import-
ant to assume a genuine multivariate distribution for the unobserved heterogen-
eity terms. Here, “genuine” means that there is no deterministic relation between
any two heterogeneity terms. More restrictive specifications, like the one-factor
loading specification, impose cross-restrictions on the marginal duration distri-
butions and the dependence of the durations. In such cases, if the data provide
evidence for unobserved heterogeneity in the marginal duration distributions,
then the model implies that these durations must be dependent. Similarly, in
such cases, if the durations are independent, then the model implies that there
is no unobserved heterogeneity for at least one of the durations.

Factor loading specifications have been popular because they restrict the num-
ber of unknown parameters, leading to a sparse specification, and they limit the
computational burden of the estimation of the model. However, the latter can
also be achieved by adopting a (multidimensional) discrete distribution for the
unobserved heterogeneity terms. In fact, discrete heterogeneity distributions are
particularly flexible, in the sense that they are able to generate a relatively wide
range of values for the association measures of the corresponding durations. In
empirical applications with MMPH models, it is therefore useful for computa-
tional reasons and for reasons of flexibility to assume a multidimensional discrete
distribution for the unobserved heterogeneity terms. One may then try to in-
crease the number of mass points. If the number of duration types is relatively
large then one may reduce the number of parameters of the multidimensional

discrete distribution somewhat by imposing, say, a two-factor loading structure.
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