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Abstrat

Sine the early 1980s, the eonometri analysis of duration variables has beome wide-

spread. This hapter provides an overview of duration analysis, with an emphasis on

the spei�ation and identi�ation of duration models, and with speial attention to

models for multiple durations. Most of the hapter deals with so-alled redued-form

duration models, notably the popular Mixed Proportional Hazard (MPH) model and its

multivariate extensions. The MPH model is often used to desribe the relation between

the empirial exit rate and \bakground variables" in a onise way. However, sine the

appliations usually interpret the results in terms of some eonomi-theoretial model,

we examine to what extent the deep strutural parameters of some important theoret-

ial models an be related to redued-form parameters. We subsequently examine the

spei�ation and identi�ation of the MPH model in great detail, we provide intuition

on what drives identi�ation, and we infer to what extent biases may our beause of

misspei�ations. This examination is arried out separately for the ase of single-spell

data and the ase of multi-spell data. We also ompare di�erent funtional forms for

the unobserved heterogeneity distribution.

Next, we examine models for multiple durations. In the applied eonometri liter-

ature on the estimation of multiple-duration models, the range of di�erent models is

atually not very large. Typially, the models allow for dependene between the dur-

ation variables by way of their unobserved determinants, with eah single duration

following its own MPH model. In addition to this, the model may allow for an interest-

ing \ausal" e�et of one duration on the other, as motivated by an underlying eonomi

theory. For all these models we examine the onditions for identi�ation. Some of these

are intimately linked to partiular estimation strategies. The multiple-duration model

where the marginal duration distributions eah satisfy an MPH spei�ation, and the

durations an only be dependent by way of their unobserved determinants, is alled the

Multivariate Mixed Proportional Hazard (MMPH) model. For this model, we address

the issue of the dimensionality of the heterogeneity distribution and we ompare the

exibility of di�erent parametri heterogeneity distributions.

On a number of oasions, we inorporate reent insights from the biostatistial

literature on duration analysis, and we ontrast points of view in this literature to

those in the eonometri literature. Finally, throughout the hapter, we disuss the

importane of the possible olletion of additional data.
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1 Introdution

Duration analysis is a ore subjet of eonometris. Sine the early 1980s, the em-

pirial analysis of duration variables has beome widespread. There are a number

of distint reasons for this development. First of all, many types of behavior over

time tend inreasingly to be regarded as movements at random intervals from

one state to another. Examples inlude movements by individuals between the

labor market states of employment, unemployment and nonpartiipation, and

movements between di�erent types of marital status. This development reets

the fat that dynami aspets of eonomi behavior have beome more important

in eonomi theories, and that in these theories the arrival of new information

(and thus the hange in behavior in response to this) ours at random intervals.

Seondly, longitudinal data overing more than just one spell per respondent are

widely available in labor eonomis, as well as in demography and medial si-

ene. Appliations of duration analysis inlude, in labor eonomis, the duration

of unemployment and the duration of jobs (see e.g. the survey by Devine and

Kiefer, 1991), strike durations (e.g., Kennan, 1985), and the duration of training

programs (Bonnal, Foug�ere, and S�erandon, 1997). In business eonomis, dura-

tion models have been used to study the duration until a major investment (e.g.,

Anti Nilsen and Shiantarelli, 1998). In population eonomis, duration analysis

has been applied to study marriage durations (Lillard, 1993), the duration until

the birth of a hild (Hekman and Walker, 1990), and the duration until death.

In eonometri analyses dealing with seletive observation, duration models have

been used to study the duration of panel survey partiipation (e.g., Van den

Berg and Lindeboom, 1998). In marketing, duration models have been used to

study household purhase timing (e.g., Vilassim and Jain, 1991), in onsumer

eonomis to study the duration until purhase of a durable or storable produt

(Antonides, 1988, and Boizot, Robin and Visser, 1997), and in migration eonom-

is to study the duration until return migration (e.g., Lindstrom, 1996). Reently,

duration models have been applied in areas in eonomis where the unit under

onsideration is not an individual or �rm. For example duration models have been

used in maro eonomis to study the duration of business yles (e.g., Diebold

and Rudebush, 1990), in �nane to study the duration between stok-market

share transations (Engle and Russell, 1998), in politial eonomis to study the
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duration of wars (see Horvath, 1968), and in industrial organization to study the

duration of a patent (Pakes and Shankerman, 1984).

This hapter presents an overview of duration analysis. A substantial part

of the hapter deals with so-alled redued-form duration models, notably the

famous Mixed Proportional Hazard (MPH) model. This model expresses the exit

rate to a destination state as a rather simple funtion of observed and unobserved

explanatory variables and the elapsed duration in the urrent state. This model

and its speial ases, most notably the Proportional Hazard (PH) model, have

been used in hundreds of empirial studies (see e.g. Devine and Kiefer, 1991,

for referenes in miro labor eonomis). Parametri versions of the model are

inluded in statistial pakages like STATA, SAS, S-PLUS and SPSS (see Pelz and

Klein, 1996, for a omparison of some pakages). We examine the spei�ation

and identi�ation of the MPH model in detail, and we infer to what extent biases

may our beause of misspei�ations.

The MPH model is often used to desribe the relation between the empirial

exit rate and \bakground variables" in a onise way, and to provide estimates of

the e�et of an explanatory variable on the duration variable. However, sine the

appliations usually interpret the results in terms of some eonomi-theoretial

model, it is important to examine to what extent the deep strutural parameters

of this theoretial model an be related to the redued-form parameters. As we

shall see, eonomi theory in general does not lead to a \proportional" spei�-

ation as in the MPH duration model, and this ompliates the interpretation of

the redued-form estimates.

Reently, the empirial analysis of multiple durations has beome widespread.

In many ases it is simply a neessity to address the issue of whether di�er-

ent durations (given the observed explanatory variables) are not independently

distributed. For example, if the duration data are ensored then it matters for

empirial inferene how the time until ensoring is related to the duration of in-

terest. More generally, if a spell under observation an terminate in a number of

di�erent ways (\ompeting risks") then it matters whether the latent durations

to the di�erent destinations are related. As we shall see, eonomi theory often

predits that suh durations are related. In fat, the issue of whether di�erent

durations are related is often an important question in its own right. Beause

of this, urrent eonometri researh often involves the simultaneous analysis of
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multiple observed spells of the same type of duration for a given individual, or

multiple observed spells of di�erent types of durations for a given individual. For

example, it may involve simultaneous and onseutive durations in labor market

states and marital states. It may also involve the analysis of treatment e�ets

on a duration variable, if the duration until treatment (or the duration of the

treatment) is stohasti. In this hapter we therefore pay speial attention to the

analysis of multiple durations. We examine di�erent types of relations between

duration variables, as motivated by eonomi theory. We then examine the way

in whih they an be inorporated in multivariate extensions1 of the MPH model,

and we disuss identi�ation of the determinants of these multivariate models as

well as identi�ation of deep strutural parameters. For the ase where the de-

pendene runs by way of related unobserved explanatory variables (in whih ase

we all the model a multivariate MPH (MMPH) model), we ompare di�erent

parametri heterogeneity distributions. One of the main onlusions of the se-

tions on multiple-duration models is that, in miroeonometri researh involving

self-seletion, duration data are muh more informative than binary data. This

is important beause eonomi theory generally predits the absene of exlusion

restritions based on harateristis of the individual under onsideration, so that

these an not be used for identi�ation.

So far, we have been vague on the meaning of notions like \state", \duration",

\exit rate", and \explanatory variable". In Setion 2 we provide some formal

de�nitions. We stress that the eonomi meaning of these notions is entirely

ontext-dependent: what distinguishes states or transitions in one study may

not be relevant in another study. Throughout the hapter we will be onerned

with the eonomi insights that an be obtained from duration analysis. For

that reason we outline in Setion 3 some motivating underlying eonomi models

for durations. In partiular, we examine searh models of individual labor market

behavior. After these preparatory setions we examine the MPH model in Setions

4 and 5. Setion 6 deals with the identi�ation of the MPH model in ase the

data provide durations of multiple spells in a given state for a given individual.

Suh data are alled multi-spell data. Again, the meaning of these notions is

rather vague at this stage. Basially, the idea is that the data provide multiple

1In this hapter, \multivariate" refers to multiple durations and not to multiple explanatory

variables.
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independent drawings from the individual-spei� duration distribution. Setions

7{9 deal with multiple-duration models in general. These onstitute a very broad

lass of models, and they inlude, as a speial ase, the model of Setion 6 with

durations of multiple spells in a given state for a given individual. Setion 10

onludes and provides reommendations on empirial approahes.

Throughout the hapter, time is taken to be ontinuous.2 When speifying a

duration distribution, the point of departure will invariably be the exit rate or

hazard rate (this is motivated in Setion 2). This implies that we do not fous

on so-alled Aelerated Failure Time models (see e.g. Kalbeish and Prentie,

1980), whih enjoy some popularity outside eonomis. At times, though, we

ompare the latter models to models that are based on a spei�ation of the

hazard rate.

In this hapter we do not fous on estimation methods or spei�ation tests.

Applied studies generally use well-established estimation methods like Maximum

Likelihood, Cox Partial Likelihood, Conditional Likelihood, or nonparametri

methods. The book by Lanaster (1990), whih is the most omprehensive volume

on eonometri duration analysis so far, provides an exellent survey on estima-

tion methods and spei�ation tests for MPH models in eonometris. Andersen

et al. (1993) survey the literature on the modern statistial foundations. Kiefer

(1988) and Yamaguhi (1991) luidly explain the basis of the empirial analysis

of duration models. Finally, the survey by Neumann (1997) disusses spei�a-

tion tests as well, and also pays attention to the estimation of strutural (searh)

models.

2 Basi onepts and notation

Consider the spells experiened by ertain subjets in a ertain state. The dur-

ation of the spell is stohasti and is denoted by T , and realizations of T are

denoted by t.3 The umulative distribution funtion of T is denoted by F , so

2See Meyer, 1995, for a survey of disrete-time redued-form duration models. These models

inlude ontinuous-time models where time is aggregated into intervals of unit length, as well

as models where time is genuinely disrete.
3Throughout most of the hapter, we use t to denote the random variable as well as its

realization. This abusive notation has beome ommon in duration analysis beause it allows

for onise formulations that are generally unambiguous.
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F (t) = Pr(T � t), with F (0) = 0. The survivor funtion of T is de�ned as one

minus the distribution funtion and is denoted by F , so

F (t) = 1� F (t)

As noted in the introdution, we restrit attention to ontinuous random vari-

ables T , and we denote a probability density funtion of T by f . In fat, F; F , and

f will be used as generi symbols for umulative distribution funtions, survivor

funtions, and probability density funtions, respetively, and their arguments

make lear whih random variable is onsidered.

In a disrete-time setting, the hazard funtion of T at t is de�ned as the

probability that the spell is ompleted at t given that it has not been ompleted

before t, as a funtion of t. With T ontinuous, we de�ne the hazard funtion as

�(t) = lim
dt#0

Pr(T 2 [t; t + dt)jT � t)

dt

So, somewhat loosely, the hazard funtion is the rate at whih the spell is om-

pleted at t given that it has not been ompleted before, as a funtion of t. The

value of the hazard funtion (for a partiular t, or for arbitrary t) is alled the

\hazard rate" or simply \the hazard". It is also alled the \exit rate" to stress

the fat that ompletion of the spell is equivalent to exit out of the state of in-

terest. Again, we use � as a generi symbol for a hazard, and its argument makes

lear whih random variable is onsidered. The hazard funtion �(t) is said to

be duration dependent if its value hanges over t. Positive (negative) duration

dependene means that �(t) inreases (dereases).

The hazard funtion provides a full haraterization of the distribution of T ,

just like the distribution funtion, the survivor funtion, and the density funtion.

All of these an be expressed in terms of one another. For F; F , and f this is well

known. Conerning �, the following relations (whih are easy to derive) express

� in terms of the other funtions, and vie versa,

�(t) =
f(t)

1� F (t)

F (t) = exp

�
�
Z t

0
�(u)du

�
t � 0 (1)
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The hazard funtion is the foal point of eonometri duration models. That

is, properties of the distribution of T are generally disussed in terms of proper-

ties of �. There are two major reasons for this. First, and most importantly, this

approah is ditated by eonomi theory. In general, theories that aim at explain-

ing durations fous on the rate at whih the subjet leaves the state at duration

t given that he has not done so yet. In partiular, they explain the hazard at t in

terms of external onditions at t as well as the underlying eonomi behavior of

the subjets that are still in the state at t. Theoretial preditions about a dura-

tion distribution thus run by way of the hazard of that distribution. It is obvious

that if the ompletion of a spell is at least partly a�eted by external onditions

that hange over time (e.g. due to external shoks), and if one attempts to de-

sribe behavior of the subjet over time in a hanging environment, then it is

easier to think about the rate of leaving at t given that one has not done so than

to fous on the unonditional rate of leaving at t. In the next setion we provide

some examples of suh theories.

It is often stated that a major advantage of using the hazard funtion as a

basi building blok of the model is that it failitates the inlusion of time-varying

ovariates. This is, of ourse, part of the argument of the previous paragraph; it

reformulates the issue from the point of view of a builder of redued-form models.

The seond major advantage of using the hazard funtion as the basi building

blok of the model is entirely pratial. Real-life duration data are often subjet

to ensoring of high durations. In that ase it does not make sense to model the

duration distribution for those high durations.

Whereas the hazard funtion is the foal point of model building in duration

analysis, the mean of the endogenous variable is the foal point in regression

analysis. On some oasions in the hapter we ompare duration models to re-

gression models. For future referene it is useful to present the equation below.

This equation follows diretly from the fundamental result that the integrated

hazard funtion
R t

0 �(u)du has an exponential distribution4 with parameter 1.

log
Z t

0

�(u)du = " (3)

4Family of exponential distributions:

f(t) = #e�#t for all t � 0; with # > 0 (2)
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Here, " has an Extreme Value { Type I (EV1) distribution. This distribution does

not have any unknown parameters; its density equals

Extreme Value { Type 1 distribution:

f(") = e" � e� exp("); for all �1 < " <1:

Equation (3) therefore again shows that one the hazard funtion is ompletely

spei�ed, then so is the duration distribution. Note that the transformation of

t on the left-hand side of (3) an be interpreted as a partiular hange in the

time measurement sale. The equation states that after this transformation, the

only variation left in the duration onerns the purely random variation that

is unrelated to the determinants of �(t). Note that if one spei�es a model for

�(t) then a natural model spei�ation test follows from a omparison of the

empirial distribution of the estimated left-hand side of (3) to the distribution of

" (see Lanaster, 1990).

3 Some strutural models of durations

In this setion we briey disuss some eonomi-theoretial models that predit

distributions of duration variables. These theoretial models have been strutur-

ally estimated using data on suh duration variables, and they have been used

to interpret estimates of redued-form duration models. The ommon feature of

the models is that they are searh models, whih desribe the duration until

an event as the outome of a deision on the optimal moment of stopping the

searh for something desirable.5 For expositional reasons we phrase the models

in terms of searh for jobs by individual agents on the labor market (although

they are appliable to many other types of searh). Job searh models have been

very popular as explanatory theoretial frameworks for redued-form eonometri

duration analyses (see Devine and Kiefer, 1991).

5There are many other theoretial models that give rise to duration distributions. Examples

are learning models (see e.g. Jovanovi, 1984) and dynami disrete hoie models (see e.g.

Rust, 1994, for a survey). The latter an be onsidered as generalizations of basi searh mod-

els although they are neessarily in disrete time; as suh they give rise to disrete duration

distributions. These models may also be used to explain multiple durations for a given subjet

(see e.g. Van der Klaauw, 1996).
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3.1 Standard searh model

3.1.1 Stationarity

In this subsetion we onsider the prototype job searh model for the behavior

of unemployed workers. Here, the duration variable of interest is the unemploy-

ment duration. Sine this model has been disussed extensively many times (e.g.

Mortensen, 1986), the present exposition is brief.

The model aims to desribe the behavior of unemployed individuals in a dy-

nami and unertain environment. Job o�ers arrive at random intervals following

a Poisson proess with arrival rate �. A job o�er is a random drawing (without

reall) from a wage o�er distribution with distribution funtion F (w).6 It is as-

sumed that all jobs are full-time jobs. Every time an o�er arrives, the deision

has to be made whether to aept the o�er or rejet it and searh further. One a

job is aepted it will be held forever at the same wage, so job-to-job transitions

are exluded. It is assumed that individuals know � and F but that they do not

know in advane when job o�ers arrive and what wages are assoiated with them.

During the spell of unemployment a bene�t b is reeived. Unemployed individu-

als aim at maximization of their own expeted present value of inome over an

in�nite horizon. The subjetive rate of disount is denoted by �.

The variables �; w; b and � are measured per unit time period. It is assumed

that the model is stationary. This means that �; F; b and � are assumed to be

onstant, and, in partiular, independent of unemployment duration and alen-

dar time and independent of all events during unemployment. To ensure that

attention is restrited to eonomially meaningful ases, and to guarantee the

existene of the optimal strategy, we assume that 0 < �;EF (w); b; � < 1. For

ease of exposition we take F to be ontinuous.

Let R denote the expeted present value of searh when following the optimal

strategy. Beause of the stationarity assumption and the in�nite-horizon assump-

tion, the unemployed individual's pereption of the future is independent of time

or unemployment duration, so the optimal strategy is onstant during the spell

of unemployment and R does not depend on the elapsed unemployment duration

t. It is well known (see e.g. Mortensen, 1986) that there is a unique solution to

6Note that F here denotes a distribution of wage o�ers rather than a duration distribution.
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the Bellman equation for R, satisfying

�R = b + �Ewmaxf0; w
�
� Rg (4)

In this equation, the expetation is taken over the wage o�er distribution F .

Equation (4) has a familiar struture (see e.g. Pissarides, 1990). The return of

the asset R in a small interval around t equals the sum of the instantaneous

utility ow in this interval, and the expeted exess value of �nding a job in this

interval. When an o�er of w arrives at t then there are two options: (i) to rejet

it (exess value zero), and (ii) to aept it (exess value w=��R). It is lear that

the optimal poliy is to hoose option (ii) i� w > �R. Therefore, the optimal

strategy of the worker an be haraterized by a reservation wage �: a job o�er

is aeptable i� its wage exeeds �, with � = �R. Using equation (4), � an be

expressed in terms of the model determinants,

� = b+
�

�

Z
1

�

F (w)dw

Note that this equation has a unique solution for �.

The hazard (or exit rate out of unemployment, or transition rate from unem-

ployment into employment) � equals the produt of the job o�er arrival rate and

the onditional probability of aepting a job o�er,

� = �F (�)

As a result of the stationarity assumption, � does not depend on the elapsed

duration of unemployment. Consequently, the duration of unemployment t has

an exponential distribution (see (2)) with parameter �.

Versions of this model have been struturally estimated with individual data

on unemployment durations and wages. \Strutural" here means that the theor-

etial framework is assumed to desribe the empirial distribution of durations

and wages. This enables estimation of the determinants �; F; : : : of individual

behavior. See Yoon (1981), Flinn and Hekman (1982a), Narendranathan and

Nikell (1985) and Van den Berg (1990b) for examples of this, and Wolpin (1995)

for a survey.

13



3.1.2 Nonstationarity without antiipation

The stationarity assumption made in the previous subsetion is often unreal-

isti. The values of the strutural determinants may hange beause of duration

dependene of the amount of unemployment bene�ts, a stigma e�et of being

long-term unemployed, poliy hanges, or business yle e�ets. Sooner or later

these features of the labor market and personal harateristis of job searhers

are reognized and used in determining the optimal strategy. So, generally, the

optimal strategy is not onstant in ase of nonstationarity.

To proeed, assume that the individual's searh environment is subjet to

unantiipated hanges in the values of the strutural determinants. Thus, the

values of these determinants may hange over the duration, but the individual

always thinks that they will remain onstant at their urrent values. This might

be a reasonable assumption in ase of a hange in � that is due to a random

maroeonomi shok, or in ase of a hange in b that is due to a sudden hange

in the bene�ts system.

By exploiting the analogy to the stationary model, we obtain the following

equations for the reservation wage funtion �(t), giving the reservation wage at

time t, and the hazard funtion �(t),

�(t) = b(t) +
�(t)

�(t)

Z
1

�(t)

F (wjt)dw

�(t) = �(t)F (�(t)jt)

where F (wjt) denotes the wage o�er distribution at time t (so it should not be

interpreted as a distribution onditional on the realization of a random dura-

tion variable). In general, �(t) varies with t. The distribution funtion for the

duration of unemployment subsequently follows from equation (1). See Naren-

dranathan (1993) for a strutural empirial analysis of a nonstationary model

without antiipation.

3.1.3 Nonstationarity with antiipation

In many ases it is not realisti to assume that individuals do not antiipate

hanges in the values of �; F; and b. In this subsetion we onsider nonstation-

arity with antiipation, along the lines of Van den Berg (1990a).7 The strutural

7Some speial ases of this model have been examined earlier; see e.g. Mortensen (1986).

14



determinants �; F; and b are allowed to vary over the duration t in a determin-

isti way (so dependene on past o�er arrival times or wage levels assoiated with

rejeted o�ers is ruled out). This entails that the proess with whih job o�ers

arrive is a non-homogeneous Poisson proess. We assume that job searhers have

perfet foresight in the sense that they orretly antiipate hanges in the values

of �; F; and b. In other words, we expet people to know how these are related to

t. As usual, individuals do not know in advane when job o�ers arrive, or whih

w are assoiated with them. Finally, we assume that �; F; and b are onstant for

all suÆiently high t. The latter implies that the optimal strategy is also onstant

for suÆiently high t.

LetR(t) denote the expeted present value of searh if unemployment duration

equals t, when following the optimal strategy. Under regularity onditions, there

is a unique ontinuous solution to the Bellman equation for R(t), satisfying

�R(t) =
dR(t)

dt
+ b(t) + �(t):Ewjtmaxf0; w

�
� R(t)g

at points at whih R(t) is di�erentiable in t, where the expetation is taken over

the wage o�er distribution F (wjt) at t. Notie the similarity with equation (4)

above. The return of the asset R(t) in a small interval around t equals the sum

of the appreiation of the asset in this interval, the instantaneous utility ow in

this interval, and the expeted exess value of �nding a job in this interval. The

optimal strategy an be haraterized by a reservation wage funtion �(t) that

gives the reservation wage at time t. Using the fat that �(t) = �R(t), it follows

that

d�(t)

dt
= ��(t)� �b(t)� �(t)

Z
1

�(t)
(w � �(t))dF (wjt)

This di�erential equation has a unique solution for �(t), given the boundary

ondition that follows from the assumption that the model is stationary for all

suÆiently high t.

The hazard funtion �(t) now equals

�(t) = �(t)F (�(t)jt)

In general, �(t) varies with t. The distribution funtion for the duration of un-

employment subsequently follows from equation (1).
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For examples of strutural empirial analyses of nonstationary models with

antiipation, see Wolpin (1987), Van den Berg (1990a), Engberg (1991), and

Garia-Perez (1998).

3.2 Repeated-searh model

Models of repeated searh allow the eonomi agent to searh further for better

mathes after a math has been formed. The best-known model of repeated searh

is the so-alled on-the-job searh model whih aims to desribe the behavior of

employed individuals who searh for a better job (see Mortensen, 1986, for an

overview). In the basi on-the-job searh model, a job is haraterized by its wage

w whih is taken to be onstant within a job. For a working individual, the searh

environment is spei�ed in exatly the same way as we did in Subsetion 3.1.1 for

an unemployed individual. In partiular, we assume the model to be stationary.

The optimal strategy is onstant during a job spell, and the the expeted present

value of searh R(w) when following the optimal strategy in a job with wage w

satis�es

�R(w) = w + �Ew� maxf0; R(w�)�R(w)g

where the expetation is taken with respet to the distribution F of wage o�ers

w�. Clearly, the optimal strategy is suh that one aepts a job if and only if the

o�ered wage w� exeeds the urrent wage w, so it suÆes to ompare instant-

aneous inome ows (i.e., the optimal strategy is \myopi"), and the reservation

wage simply equals the urrent wage.

For a given urrent wage w, the hazard of the job duration distribution (or

exit rate out of the present job) equals

� = �F (w)

As a result, the duration of a job with a wage w has an exponential distribution

with this parameter �. Note that models of repeated searh are informative on

the joint distribution of onseutive job durations.

If, during employment, exogenous separations our at a rate Æ, then this does

not a�et the optimal strategy. The exit rate out of the present job then equals
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�F (w)+Æ. See Flinn (1996) for an example of strutural estimation of this model

with job duration data.8

Burgess (1989) introdues a rather manageable type of nonstationarity in this

model. The individual's searh environment (i.e., � and F ) is subjet to shoks

that are not job-spei� but rather suh that they at similarly on all employed

workers. The shoks may be antiipated or unantiipated. It is intuitively obvious

that this nonstationarity does not hange the optimal strategy: it remains optimal

to aept another job if and only if its wage exeeds the urrent wage. We thus

obtain for the job-to-job transition rate,

�(t) = �(t)F (wjt)

Throughout the remainder of the hapter, it is important to keep in mind

that empirial duration analysis is ultimately interested in strutural parameters

that represent determinants of individual behavior. This is also true for empir-

ial analysis in whih redued-form models are estimated that are not expliitly

spei�ed as a theoretial model. In the sequel we return to this issue.

4 The Mixed Proportional Hazard model

4.1 De�nition

For sake of onveniene, we use the term \individual" to denote the subjet that

experienes ertain spells in a given state. We onsider the population of indi-

viduals that onsists of the inow into this given state. This an be the inow at

a given point of time, or the inow at any time. We assume that, for a given indi-

vidual in this population, the subsequent duration T is an absolutely ontinuous

and positive random (duration) variable. The distribution of T (or, equivalently,

the hazard funtion) may vary aross individuals. We assume that all individual

variation in the hazard funtion an be haraterized by a �nite-dimensional ve-

tor of observed explanatory variables (or \ovariates", or \regressors") x and an

8The empirial analysis of so-alled equilibrium searh models, whih endogenize the wage

o�er distribution F , often involves the joint estimation of the distributions of unemployment

durations and job durations. See e.g. Van den Berg and Ridder (1998), Bontemps, Robin and

Van den Berg (2000), and Bowlus, Kiefer and Neumann (2001).
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unobserved heterogeneity term v. The latter term an be interpreted as a fun-

tion of unobserved explanatory variables.9 In this subsetion we assume that x is

time-invariant, and onsequently we de�ne the Mixed Proportional Hazard model

as a model with time-invariant explanatory variables. In the next subsetion we

introdue time-varying explanatory variables.

For an individual with explanatory variables x and unobserved heterogeneity

v, the hazard funtion of the random variable T evaluated at the duration t is

denoted by �(tjx; v). This notation highlights the fat that we ondition on x and

v. The standard MPH model is now de�ned by

De�nition 1 : Standard MPH model. There are funtions  and �0 suh

that for every t and every x and v there holds that

�(tjx; v) =  (t) � �0(x) � v (5)

This model was developed by Lanaster (1979), whih inludes an empirial

appliation to unemployment duration data, and by Vaupel, Manton and Stall-

ard (1979).10 The funtion  (t) is alled the \baseline hazard" sine it gives the

shape of the hazard funtion for any given individual. Only the level of the haz-

ard funtion is allowed to di�er aross individuals. The term �0(x) is alled the

\systemati part" of the hazard. In applied work, it is ommon to speify

�0(x) = exp(x0�); (6)

so that �(tjx; v) is multipliative in all separate elements of x.

For onveniene, we make a number of regularity assumptions on the determ-

inants of the model.

Assumption 1 The vetor x is k-dimensional with 1 � k < 1. The funtion

�0(x) : X � RI k is positive for every x 2 X .

Assumption 2 The funtion  (t) is positive and ontinuous on [0;1), exept

that limt#0  (t) may be in�nite. For every t � 0 there holds that
R t

0  (�)d� <1,

while limt!1

R t

0  (�)d� =1.

9Lanaster (1990) shows that v to some extent may also represent measurement errors in T

and x.
10Nikell (1979) ontains the �rst estimation of a disrete-time MPH-type model.
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Assumption 3 The distribution G of v in the inow satis�es Pr(0 < v <1) =

1.

Assumption 4 The individual value of v is time-invariant.

It should be stressed that, for virtually all of the results in the hapter, these

onditions are stronger than needed. This is partiularly true for Assumption 2.

It is often suÆient that  (t) is integrable, and sometimes it is suÆient thatR t

0  (�)d� < 1 only on some interval. For expositional reasons, we do not deal

with this. On the other hand, for identi�ation, additional assumptions are needed

(see Setion 5). We do not list those here beause it is interesting to ontrast

alternative assumptions in the light of identi�ability issues.

It is useful to examine the speial ase in whih there is no unobserved het-

erogeneity (v � 1). In that ase the model is alled a Proportional Hazard (PH)

model (this model was developed by Cox, 1972, and predates the MPH model).

The PH model spei�ation is regarded to be simple and yet suÆiently rih

to apture many data properties. The popularity of the PH model in redued-

form duration analysis is omparable to the popularity of the linear regression

model in redued-form regression analysis. Note that the general regression-type

expression for the integrated hazard funtion (see (3)) redues to

log
Z t

0

 (u)du = �x0� + " (7)

for the PH model, where we substituted (6) and " has an EV1 distribution. It

should again be stressed that " represents the purely random variation in the

duration outome { it does not apture unobserved individual harateristis.

In omparison to a linear regression model (say log t = x0� + ", with " having

an unknown distribution with mean zero), the left-hand side of (7) has a more

general spei�ation, sine it involves an unknown transformation of the duration

variable, whereas the right-hand side has a more restritive spei�ation, sine

the distribution of the error term is ompletely spei�ed. Thus, the PH model

and the regression model are not nested, and they derive their exibility from

di�erent soures.

The � parameters in the linear regression model are estimated onsistently by

OLS under a wide range of distributions of ". Similarly, the � parameters in the

PH model are estimated onsistently by Partial Likelihood under a wide range of
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spei�ations of the baseline hazard  (t). More preisely, the � parameters are

estimated onsistently by maximization of a partial likelihood funtion that does

not depend on the baseline hazard funtion, whih an be estimated nonpara-

metrially in a seond stage (see Lanaster, 1990, for details). This is arguably

one of the great advantages of the PH model, but it does not arry over to the

MPH model in general.

For the MPH model, equation (3) redues to

log
Z t

0

 (u)du = �x0� � log v + " (8)

where again we substituted (6), and where again " has an EV1 distribution.

The equation states that the log integrated baseline hazard funtion given x has

the same distribution as the distribution of a random variable that is the sum

of an EV1 random variable and another random variable (namely �x0� � log v

given x). Sine we have not made an assumption on the distribution of v, it

is lear that spei�ation (8) is muh more general than (7). Now we have a

exible spei�ation for both the transformation of t and the distribution of the

error term. However, the latter distribution annot be just any distribution. For

example, it annot be a normal distribution, beause the sum of an EV1 random

variable and another random variable annot have a normal distribution (see

Ridder, 1990). It turns out that the MPH model is atually identi�ed under an

assumption on the tail of the distribution of v (see Setion 5).

We end this subsetion by mentioning some other redued-form duration mod-

els. Consider the following model,

log z(t) = �x0� + � (9)

with z(t) positive and inreasing in t. This redues to the MPH model if the \error

term" � is distributed as the sum of an EV1 random variable and another random

variable. If no assumption is made on the distribution of � then (9) is alled a

\transformation model" (see Horowitz, 1996). If it is subsequently imposed that

z(t) = t then we obtain the Aelerated Failure Time (AFT) model,

log t = �x0� + �

For future referene it is useful to note that in the AFT model the survivor

funtion an be written as

F (tjx) = exp(�	(t � ex0�)) (10)
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where 	 is the integrated hazard funtion of the random variable exp(�). Clearly,

the individual harateristis at on the duration distribution by transforming

the time sale from t to t exp(x0�). This may be an aurate desription of the

atual variation in the lifetime distributions of omplex self-evolving organisms

or mehanisms. Beause of the one-to-one relation between a distribution and its

hazard funtion, the AFT spei�ation an be translated into a spei�ation of

the hazard funtion of tjx. Obviously, the latter need not be an MPH spei�ation.

Note that in the transformation model and the AFT model, the hazard does not

serve as the foal point of model spei�ation. This has strongly limited the use of

these models in soial siene duration analyses. We return to this in Subsetion

5.6.

4.2 Time-varying explanatory variables

In pratie, explanatory variables are often time-varying, and there are often

good reasons to assume that the hazard funtion is a�eted by the urrent value

of the explanatory variable (instead of e.g. its value at the beginning of the spell).

In this subsetion we disuss the inorporation of suh explanatory variables in

the PH model and (at the end of the subsetion) the MPH model. Given that

the hapter avoids measure theory, the exposition in this subsetion is restrited

to be rather informal, and we refer the reader to the referenes below for more

rigorous analyses.

At �rst sight it may seem that time-varying explanatory variables an be

inorporated in the PH model by replaing x by x(t),

lim
dt#0

Pr(T 2 [t; t+ dt)jT � t; fx(u)gt0)
dt

=  (t) � �0(x(t)) (11)

where fx(u)gt0 denotes the time path of x up to t, and where, possibly, �0(x(t)) =

exp(x(t)0�). However, there are some aveats here. First, the values of the ex-

planatory variables at t may in some sense be endogenous. The subjet under

study may have inside information at t on the future realization of the random

variable T , and this information may a�et the values of his observed explanatory

variables at t and his hazard rate at t. It may then be erroneously onluded that

the observed explanatory variables have a ausal e�et on the duration. Consider

an unemployed individual who knows that he will start to work in a job at a given
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future date and may for that reason deide not to enrol in a training program at

t. If this is ignored in the empirial analysis then the e�et of the number x(t)

of ompleted training programs at t on the exit rate out of unemployment at t

may be under-estimated. A seond aveat onerns the fat that x(t) ould ause

the duration distribution to be disontinuous at ertain durations. This would

ompliate the statistial and empirial analysis.

To proeed, assume that the time-varying explanatory variables onstitute a

stohasti proess X = fX(t) : t � 0g. Without loss of generality we take X(t)

to represent all explanatory variables for the hazard rate at t. Note that we may

trivially inlude time-invariant or fully deterministi explanatory variables in X,

and reall that for the time being we assume that all heterogeneity is observed.

Kalbeish and Prentie (1980) develop a lassi�ation of duration models with

time-varying ovariates, in order to desribe lasses for whih standard eonomet-

ri proedures an be applied. This lassi�ation is rather vague and not exhaust-

ive (Hekman and Taber, 1994). Fortunately, the reent mathematial-statistial

literature on ounting proesses and martingales has allowed a breakthrough on

these issues. The ounting proess approah assumes that the durations, the val-

ues of the time-varying explanatory variables, and the observational plan, are all

outomes of stohasti proesses (as suh, it allows for quite general ensoring

shemes; see Fleming and Harrington, 1991, Andersen and Borgan, 1985, and

Andersen et al., 1993, for exellent surveys, and Ridder and Tunal�, 1999, for

an exposition whih also avoids measure theory and inludes an eonometri ap-

pliation). The approah fouses on a PH model framework in whih X has the

property that:

� X is a preditable proess.

Here, preditability basially means that the values of all explanatory variables

for the hazard at t must be known (and observable to the researher) just before

t. In other words, the values of the variables whih apture all individual vari-

ation in the hazard rate at t must be known and observable at t�. In yet other

words, the values of the explanatory variables at t are inuened only by events

that have ourred up to time t, and these events are observable. The informa-

tion on the values at time t does not help in prediting a transition at t. Note

that preditability does not mean that the whole future realization of X an be
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predited at some point in time. Below we give some examples. As Ridder and

Tunal� (1999) point out, the onept of preditability is basially the same as

the onept of weak exogeneity in time series analysis (and is thus weaker than

the onept of strong exogeneity). In addition to preditability, we need a teh-

nial assumption whih basially ensures that the realized outomes of X(t) and

�0(X(t)) are bounded. Fleming and Harrington (1991) ontains a more preise

exposition with expliit use of measure theory. The ounting proess approah

has been very suessful in the derivation of (asymptoti) properties of estimators

and test statistis for general settings, inluding generalizations of the ommonly

used estimators and test statistis in duration analysis (see the referenes above).

Now onsider the stohasti proess Pr(T � tjfX(u)gt
0), whih is a proess

given the evolution of X up to t, as a funtion of t. Assume that this proess is

absolutely ontinuous. SuÆient for this (in addition to the preditability of X)

is, basially, that T does not have a stritly positive probability of ourrene at

t, given X up to t. Given absolute ontinuity, the ounting proess model an

be expressed as a model of hazard funtions. Conversely, a PH model of hazard

funtions, with X having the above properties, and with absolute ontinuity of

the above proess, an be thought of as being generated by a PH ounting proess

model (Fleming and Harrington, 1991, Arjas, 1989). It should be noted that these

results have been derived for models with

�0(X(t)) = exp(X(t)0�)

and ertain other spei�ations of �0 (see Andersen and Borgan, 1985).

The results imply that if we start o� with a PH-type model of a hazard

funtion, and X has the properties above, then we an perform valid eonometri

inferene using standard methods, on the basis of spei�ation (11) for the hazard

rate. This is, in a nutshell, why preditability of the time-varying explanatory

variable is an extremely useful property. Given preditability, we may apply the

standard tools of duration analysis.11

It is useful to examine the preditability for some speial ases for X. First,

if X is time-invariant then it is obvious that it is preditable. Now suppose its

path is fully known in advane. For example, the unemployment bene�ts level

11Note that in ase of stohasti explanatory variables it does not make sense to talk about

\the" probability distribution of T .
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as a funtion of the elapsed unemployment duration may be determined at the

date of inow into unemployment, by the institutional setting. Clearly, X is then

preditable as well. If X is stohasti then somewhat loosely one may state that

if the urrent value of X only depends on past and outside random variation then

X is preditable (Andersen and Borgan, 1985). Now onsider the ase in whih

the individual has inside information on future realizations of X. For example,

an unemployed individual may expet a baby or may expet partiipation in a

training program at a future date. This information may be used as input in

the individual's deision problem and as a result may a�et the urrent hazard

rate. If this information is not known to the analyst then X is not preditable.

The same is true if the individual antiipates the realization of T and if this

a�ets the urrent hazard. Note that it is intuitively plausible that, in these

ases, standard inferene may lead to inonsistent estimates. These ases inlude

so-alled instantaneous feedbak e�ets: preditability is not satis�ed if X jumps

in an unexpeted way at t. This does not mean that jumps in regressor values are

not allowed at all if one demands preditability. Suppose that one wants to model

that an individual's hazard rate inreases by a ertain amount immediately after

the realization of another duration variable � whih is independently distributed

from the duration of interest and from other time-varying ovariates. This an

be aptured by a time-varying regressor I(t > �), whih is preditable.

Now onsider the ase where a time-invariant explanatory variable is unob-

served (i.e., onsider MPH models). If we ondition on the unobserved hetero-

geneity value v and do as if v is observed then the above analysis remains valid.

If v is treated as unobserved then v is not preditable. As we shall see in Setion

5, ignoring the unobserved heterogeneity in empirial inferene generally leads to

inonsistent inferene. In this ase, the standard solution is to jointly model the

hazard funtion and the distribution of v, and to integrate v out of the likelihood.

We end this subsetion by making a few omments. First, time-varying ex-

planatory variables may play a very di�erent role in other redued-form duration

models, suh as the AFT model. This reets the fat that suh models do not
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take the hazard funtion as the point of departure for the model spei�ation.12

Seondly, as noted above, the ounting proess approah allows for quite general

ensoring shemes; in fat, what is needed is that the observational plan is a

preditable proess. Thirdly, in the remainder of the hapter, the fous is mostly

on models without time-varying explanatory variables. The motivation for this

is basially the same as the one (impliitly) adopted in most of the methodolo-

gial literature on duration models, namely that the analysis of these models is

relatively manageable and that the results reate a good starting point for future

analysis of more general models. Below, whenever we enounter time-varying

explanatory variables, we taitly assume that the onditions that ensure valid

inferene with standard methods are satis�ed.

4.3 Theoretial justi�ation

As mentioned above, the MPH model and its speial ases are often regarded to

be useful redued-form models for duration analysis. The resulting estimates are

generally interpreted with the help of some eonomi theory. However, the MPH

model spei�ation is not derived from eonomi theory, and it remains to be seen

whether the MPH spei�ation is atually able to apture important theoretial

relations, and, onversely, whether the MPH spei�ation an be generated by

theory.

The main assumption underlying the MPH model is that the three determ-

inants of the hazard at multipliatively on the hazard. This implies that if the

elapsed duration has a positive e�et on the hazard, then this e�et is stronger

for individuals with harateristis that also have a positive e�et on the hazard.

Of ourse, the distintion between two of the three determinants (the observed

and unobserved explanatory variables) is only relevant from an empirial point of

view. If the researher ould observe all determinants without measurement er-

ror, then the unobserved heterogeneity term an be omitted. Within a theoretial

12For example, onsider the formulation (10) of the AFT model. Typially, time-varying

explanatory variables are inluded in this model by way of

F (tjfX(u)gt
0
) = exp(�	(

Z t

0

exp(X(u)0�)du))

In that ase, the hazard rate at t depends on the whole history fX(u)gt
0
of X .
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framework it is irrelevant whether a ertain bakground variable an be observed

by the researher or not. This means that from a theoretial point of view, the

most important assumption of the MPH model is that the elapsed duration and

the explanatory variables at multipliatively on the hazard.

In eonomis, this assumption is often hard to justify. We illustrate this by

examining the eonomi theories disussed in Setion 3.13 First onsider the job

searh model of Subsetion 3.1.2. We allow all strutural determinants to di�er

aross individuals, and this is aptured by time-invariant explanatory variables

x. We assume that the analyst observes x (and the duration t) but does not

diretly observe how the strutural determinants, the optimal strategy, or the

aeptane probability hange with t. If suh hanges would be diretly observed

then obviously it would make sense to inlude them as time-varying explanatory

variables. We return to time-varying explanatory variables towards the end of the

subsetion.

From Subsetion 3.1.2 we obtain the following system of equations, in obvious

notation,

�(t; x) = b(t; x) +
�(t; x)

�(t; x)

Z
1

�(t;x)
F (wjt; x)dw

�(t; x) = �(t; x)F (�(t; x)jt; x)

Intuitively, the main reason for why it is diÆult to obtain a multipliative

struture for �(t; x) is that in general F (�(t; x)jt; x) is not multipliative in �,

whih in turn depends on \everything in the model" in a non-multipliative fash-

ion. Below are a few speial ases where the resulting �(t; x) is proportional in t

and x. Note that these assume that hanges in the strutural determinants are

unantiipated.

Example 1. Let F be a Pareto distribution,

Family of Pareto distributions:

F (w) = (w0=w)
� for all w > w0; with w0; � > 0 (12)

13The problem is more general, though.
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where we atually assume � > 1 to ensure that the optimal strategy exists, and

where the parameters w0 and � of F may depend on t and x. Let in addition

b � 0. Then

�(t; x) = �(t; x)(�(t; x) � 1)

Let the disount rate � vary with x but not with t, and let the shape parameter �

vary with t but not with x (for example, long-term unemployed workers reeive on

average lower wage o�ers). Then the hazard is proportional in t and x. Of ourse,

the same result applies if � only varies with t and � only with x. Also, if � is a

�xed onstant and � is proportional in t and x, then the hazard is proportional

as well. Note that the assumption b � 0 is very strong.14

Example 2. Let � =1, so that workers do not are about the future. Then � � b,

and

�(t; x) = �(t; x)F (b(t; x)jt; x)

If �(t; x) varies with t (e.g. beause the long-term unemployed are stigmatized)

but not with x, and F and b vary with x but not with t, then the hazard is

proportional in t and x. Alternatively, if F and b do not depend on either t or x

and � is proportional in t and x, then the hazard is proportional as well.

Example 3. Let the strutural determinants be suh that � is always smaller than

the lowest wage in the market (e.g., bene�ts are so low that the reservation wage

is below the mandatory minimum wage). Then F (�) = 1 always, and

�(t; x) = �(t; x)

so, if � is proportional in t and x, then the hazard is proportional as well.

Example 4. This ase is based on Yoon (1985), whih is one of the very few studies

to date on the theoretial justi�ation of the PH model. He examines a model

14In general, if one is prepared to adopt a linearized spei�ation for the reservation wage

�(t; x) as a funtion of its determinants, and if F has a Pareto distribution or an exponen-

tial distribution, then it is less diÆult to obtain a multipliative spei�ation for �(t; x). See

Lanaster (1985a).
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where jobs have a �xed and ommon tenure T �, after whih the individual dies.15

The variable b is assumed to equal bene�ts minus searh osts, and the model

requires that the net value of b is negative. There is no disounting of the future

(so the limiting ase � # 0 is onsidered). It is straightforward to show that �(t)

then follows from

�b(t; x) = �(t; x)T �
Z
1

�(t;x)
F (wjt; x)dw

Let F be a Pareto distribution (see (12)) with a �xed parameter � > 1 and a

parameter w0(t; x). It follows that

�(t; x) = [�(t; x)℄
�1

��1 [w0(t; x)℄
��

��1

"
�b(t; x)(� � 1)

T �

# �

��1

Obviously, there are many ways to obtain a PH spei�ation from this.

Now onsider antiipated hanges in the strutural determinants, i.e., onsider

the nonstationary job searh model of Subsetion 3.1.3. In partiular, for ease of

exposition, onsider a speial ase where the only hange onerns a drop in b at

a duration � (from b1 to b2). There still holds that �(t; x) = �(t; x)F (�(t; x)jt; x).
However, now the reservation wage �(t) for t < � depends on b1 and b2 as well as

on ��t. The smaller the remaining time interval ��t until the drop in b, the more

important the future bene�ts level b2 is for the urrent present value. As shown by

Van den Berg (1990a, 1995), there are two reasons for this. First, the disounting

of the future means that the far future arries less weight than the near future.

Seond, there is a probability that the individual leaves unemployment before � ,

and this probability is lower if � is in the near future. This probability depends

on the hazard funtion itself, in between t and � . As a result of all this, as the

duration t < � proeeds, the e�et on the hazard of b1 diminishes, and the e�et

of b2 inreases (with a magnitude that depends on all strutural determinants).

After � , the hazard does not depend on b1 anymore. It seems to be impossible to

justify a PH spei�ation with suh a theoretial model, exept for the following

limiting ase.

15Job separations leading to unemployment rather than death or permanent retirement are

hard to reonile with unantiipated duration dependene of the strutural determinants, be-

ause of the repetitive nature of unemployment.
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Example 5. Let � ! 1 in the nonstationary job searh model, so workers do

not are about the future. In that ase, even though an individual does have

information on future hanges, this does not a�et his optimal strategy, and the

exit rate out of unemployment is the same as in Example 2.

Finally, onsider the nonstationary on-the-job searh model of Subsetion 3.2,

and, in partiular, the job-to-job transition rate (whih will be our hazard rate).

Note that there is no \feedbak" from the strutural determinants to the value

of the reservation wage w. There holds that �(t; x) = �(t; x)F (wjt; x), where x

may inlude w, and the following result emerges.

Example 6. Let F be time-invariant in the nonstationary on-the-job searh model.

Then

�(t; x) = �(t; x)F (wjx)

whih supports a PH spei�ation if �(t; x) is multipliative in t and x. If F has a

Pareto distribution (see (12)), then its parameter w0 is allowed to depend on t.16;17

The main onlusions of this subsetion are as follows. First, the proportion-

ality restrition of the (M)PH model an in general not be justi�ed on eonomi-

theoretial grounds. Seond, if the optimal strategy is myopi (e.g. beause of

repeated searh, or beause the disount rate is in�nite), then this restrition

often follows from eonomi theory.

Despite the �rst onlusion, the (M)PH model has beome very popular in

redued-form duration analysis, in partiular in labor eonomis. The popularity

of a redued-form model that does not nest many strutural models distinguishes

duration analysis from the redued-form analysis of wage data with the linear

16The proportionality results in Examples 4 and 6 an also be generated with other families

of wage o�er distributions than the Pareto family. Notably, F an be exponentially distributed,

so F (w) = exp(��(w � w0)) on w > w0, with � > 0.
17Here, as in previous examples, if the job o�er arrival rate depends on an optimally hosen

searh intensity, then the sope for multipliative spei�ations is further redued. This is

beause this searh intensity is a seond \hannel" through whih all strutural determinants

a�et the hazard in a non-multipliative fashion (see e.g. Mortensen, 1986, for a theoretial

analysis of suh models).
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regression model, sine the linear spei�ation has been justi�ed extensively by

human apital theory and traditional labor supply theory. Part of the attrat-

iveness of the (M)PH model stems from the fat that it is diÆult to think of

a more parsimonious spei�ation of the hazard that inludes all single major

determinants of it. (Also, reall that the Partial Likelihood estimation method

allows for estimation of the systemati hazard of the PH model without the need

to parameterize or estimate the baseline hazard.) In pratie, the empirial ap-

pliation at hand does not always ditate a natural theoretial framework, and

sometimes the sope of the appliation does not warrant a full-blown theoretial

or strutural analysis. In suh ases, the (M)PH model is a useful framework

whose properties have been thoroughly studied in the literature.

Last but not least, the MPH framework an be extended to a ertain extent

to inorporate some features of the theory at hand. Notably, hanges over t in

the value of a variable x an be inorporated by the inlusion of time-varying

ovariates. For example, in the study of unemployment insurane bene�ts on exit

out of unemployment, the e�et of the remaining bene�t entitlement an be in-

luded as a time-varying ovariate (see e.g. Solon, 1985). Also, if the data provide

diret observations on how a strutural determinant, the reservation wage, or the

aeptane probability hange over time, then these an be inluded as time-

varying ovariates. As an example, onsider the models of Subsetion 3.1, and

suppose that �(t; x) is fully observed and F is a time-invariant Pareto distribu-

tion whih does not vary with x. Then �(t; x) = �(t; x)w�
0 [�(t; x)℄

��, so if �(t; x)

is multipliative in t and x then this supports a PH spei�ation with a time-

varying ovariate. As another example, onsider the on-the-job model. One may

observe business yle indiators and use these as representations of �(t; x). Fi-

nally, hanges in the e�et over t of a variable x an be inorporated by the

inlusion of interations between t and x in the hazard.18

These extensions lead to less transparent models, and some of the distint

advantages of the MPH model are lost this way (see Setion 5). Moreover, it

should be stressed that the insertion of some time-varying ovariates or time-

varying parameters into an MPH model more often than not does not lead to

a spei�ation that an be generated by a theoretial model. This is intuitively

18One may use a nonparametri estimation method for an unrestrited spei�ation of the

hazard rate �(t; x), allowing for full interations. See e.g. Dabrowska (1987).
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lear from the nonstationary model in whih unemployment bene�ts derease

with the duration of unemployment.

As noted in Subsetion 4.1, in applied work it is often assumed that eah ex-

planatory variable ats multipliatively on the hazard rate (i.e., �0(x) = exp(x0�)).

From the disussion above it is lear that eonomi theory often predits that the

di�erent strutural determinants do not at multipliatively on the hazard. Thus,

if eah determinant is represented by di�erent elements of x, then these elements

interat with eah other in the hazard. This an be inorporated to a ertain ex-

tent in the MPH model, as inlusion of interation terms for the di�erent elements

of x does not violate the (M)PH spei�ation.19

We end this setion by noting that the eonomi justi�ation of other popular

redued-form duration model spei�ations is at least as diÆult as the justi-

�ation of the (M)PH spei�ation. This holds in partiular for the Aelerated

Failure Time model, in whih the mean of log t is spei�ed as a linear funtion

of x, so log t = �x0� + �, and also for the additive hazard model, in whih �(tjx)
is spei�ed as �(tjx) =  (t) + �0(x). These two types of redued-form duration

models enjoy popularity in biostatistis, where the relation between theory and

appliation is less ompelling than in eonometris. Disrete-time redued-form

duration model spei�ations are also diÆult to justify; they often do not fol-

low from the underlying eonomi models (like disrete-time searh models or

dynami disrete-hoie models).

5 Identi�ation of the MPHmodel with single-

spell data

5.1 Some impliations of the MPH model spei�ation

In this setion we examine identi�ation of the MPH model with unobserved

heterogeneity,20 if the data provide i.i.d. drawings from the onditional distri-

19As an example, job searh theory predits that the elastiity of the exit rate out of unem-

ployment with respet to unemployment bene�ts depends on the level of the bene�ts. This an

be aptured to some extent in a redued-form analysis by inluding (log b)2 as an additional

regressor (see Van den Berg, 1990, for details).
20Identi�ation of the determinants of the PH model is trivial if it is known that the data

are generated by a PH model.
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bution of tjx. In reality, the observations on t may be right-ensored (i.e., for

some observations it is only known that t exeeds a ertain value) or interval-

ensored (e.g. if durations are grouped into intervals), or the sampling design

may be non-random. Hekman and Singer (1984a), Ridder (1984), and Lanaster

(1990) ontain extensive examinations of the implied duration distributions in

other sampling designs. Situations in whih the data provide multiple durations

for the same individual are disussed in subsequent setions.

Throughout the setion we make the following model assumption,

Assumption 5 : Independene of observed and unobserved explanatory

variables. In the inow, v is independent of x.

Note that this assumption is stronger than the usual assumption in linear

regression models that x and " are unorrelated or that they satisfy E("jx) = 0.

It is useful to examine the distribution F (tjx) of tjx and derive the well-

known result that the duration dependene of the hazard funtion �(tjx) of this
distribution is more negative than the duration dependene of the hazard funtion

�(tjx; v) (Lanaster, 1979, was the �rst point out these results; see also the survey
in Lanaster, 1990, and Hekman and Singer, 1984a, who onsider a generalization

of the MPH framework).

By de�nition, we have

F (tjx) =
1Z
0

F (tjx; v) dG(v) (13)

where G is the umulative distribution funtion of v in the inow into the state

of interest, and where F (tjx; v) has the assoiated hazard funtion �(tjx; v). Con-
sequently, �(tjx), whih by de�nition equals f(tjx)=F (tjx), an be written as

�(tjx) =

1R
0

�(tjx; v) F (tjx; v) dG(v)

F (tjx) (14)

By Bayes' Theorem, we have for every t that

dG(vjT > t; x) =
F (tjx; v) dG(v)

F (tjx) (15)

(Note that here we use T to denote a random variable.) In general, therefore,

the distribution of vjT > t; x depends on x for all t > 0, even though it does
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not for t = 0. The omposition of the sample of survivors (as aptured by the

distribution of v) hanges as time proeeds, in a way that that depends on t and

x. This is an important aspet of the dynami self-seletion that ours if one

examines subsamples of individuals with higher and higher durations.

By substituting (15) into (14) we obtain �(tjx) = EvjT>t;x(�(tjx; v)). Therefore,

�(tjx) =  (t) � �0(x) � E(vjT > t; x) (16)

Let us denote the integrated baseline hazard at t as z(t),

z(t) =

tZ
0

 (�) d�

Of ourse, � logF (tjx; v) equals v ��0(x) �z(t). By substituting this into equations

(13) and (15) it follows that we an write

E(vjT > t; x) =

1R
0

v � e�v��0(x)�z(t) dG(v)

1R
0

e�v��0(x)�z(t) dG(v)
(17)

It is useful to rewrite �(tjx) in some di�erent ways. First, note that the denom-

inator on the right-hand side of (17) (whih equals F (tjx)) is nothing but the

Laplae transform L of the distribution of v, evaluated at �0(x) � z(t),

L(s) =
1Z
0

e�s�v dG(v) (18)

Consequently, the numerator in (17) is nothing but minus the derivative of L
evaluated at �0(x) �z(t). This means that we an rewrite equation (16) as follows,

�(tjx) =  (t) � �0(x) �
�L0(�0(x) � z(t))
L(�0(x) � z(t))

(19)

So all derivatives of this with respet to x and/or t depend on G only by way of

(derivatives of) the Laplae transform of G, evaluated at �0(x)z(t). Equivalently,

all derivatives of �(tjx) with respet to x and/or t depend onG by way of moments

of vjT > t; x. Spei�ally,

d log �(tjx)
dt

=
 0(t)

 (t)
� Var(vjT > t; x)

E(vjT > t; x)
�  (t)�0(x)
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Clearly, beause of the presene of unobserved heterogeneity (i.e., Var(v) > 0,

whih under regularity onditions implies that Var(vjT > t; x) > 0), the dura-

tion dependene in the observed (or \aggregate") hazard funtion �(tjx) is more

negative than otherwise. This is beause in ase of unobserved heterogeneity, the

individuals with the highest values of v (and thus the highest hazards) on average

leave the state quikest, so that the individuals who are still in this state at high

durations tend to have lower values of v and thus lower hazards. This phenomenon

has been alled \weeding out" or \sorting". It ours in duration models with

unobserved heterogeneity in general, and so is not restrited to the MPH model.

The model thus allows for two ompeting explanations for observed negative dur-

ation dependene. If one ignores the presene of unobserved heterogeneity (i.e. if

one adopts a PH model whereas the data are generated by an MPH model with

Var(v) > 0), then the estimated duration dependene will be too negative. This

result has spurred the literature on the identi�ation of duration models with

unobserved heterogeneity.

Unobserved heterogeneity has a similar e�et on the derivative of log �(tjx)
with respet to x,

d log �(tjx)
dx

=
�0
0(x)

�0(x)
� Var(vjT > t; x)

E(vjT > t; x)
� z(t)�0

0(x) (20)

Note that in the ase �0(x) = exp(x0�), the �rst term on the right-hand side

redues to �, and �0
0(x) in the seond term redues to �0(x)�. Beause of the

presene of unobserved heterogeneity, the semi-elastiity of the observed hazard

funtion �(tjx) with respet to x is loser to zero than otherwise. This an be

understood as follows. Within the group of individuals with a high value of �0(x),

the weeding out indued by unobserved heterogeneity goes muh faster than

within the group of individuals with a low value of �0(x). This is a onsequene

of the multipliative spei�ation of �(tjx; v): a high �0(x) and a high v reinfore

eah other in produing a very high hazard. As a result, at a given duration

t > 0, the sample of survivors with high �0(x) has on average lower values of v

than the sample of survivors with low �0(x). This auses the observed average

di�erene between the hazards of the survivors of these groups to be smaller than

the true average di�erene between the two groups. It is important to stress that

this does not automatially imply that, if one ignores the presene of unobserved

heterogeneity while estimating the model with Maximum Likelihood, that then
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the e�et of x on the individual hazard is under-estimated. This is basially

beause � has one more element than x, and the ML estimates of � are jointly

determined. We return to this in Subsetion 5.6.

Note that if E(v) < 1 and  (0) < 1 then for t = 0 the right-hand side of

(16) redues to  (0)�0(x)E(v), and the funtion �0(x) is then identi�ed from data

on �(0jx). This makes sense, as at t = 0 there is not yet any self-seletion due to

weeding out. Before we proeed with the identi�ation of the full model (i.e., of

the funtions  ; �0 and G), it is useful to introdue the funtion h(s), de�ned as

�L0(s)=L(s) (see equation (18)). Equation (19) an now be rewritten as

�(tjx) =  (t) � �0(x) � h(z(t)�0(x)) (21)

This equation will be useful in Subsetion 5.3 and further.

5.2 Identi�ation results

There is a substantial literature on the identi�ation of the MPH model.21 It is im-

portant to stress that no parametri funtional form assumptions are made on the

underlying funtions �0;  and G, so the literature is onerned with nonparamet-

ri identi�ation. In general it is assumed that the data provide the distribution

funtion F (tjx) for all t and x.
It is useful to de�ne identi�ability as a property of the mapping from the de-

terminants  ; �0 and G, given their domain, to the data (as summarized in F (tjx)
for all t and x). Consider a given set of assumptions on the three determinants

(like the restrition that their funtion values must be nonnegative; below we

examine various sets of assumptions). These haraterize the domain of the map-

ping. The MPH spei�ation then de�nes the unique mapping from the domain

to the data. The model is identi�ed if the mapping has an inverse, i.e. if for given

data22 there is a unique set of funtions  ; �0 and G in the domain that is able

to generate these data.23

21Hekman (1991) provides an overview in whih the MPH model is embedded in a more

general lass of models. Hekman and Taber (1994) list identi�ation proofs for MPH models,

non-MPH models, and more tightly spei�ed MPH models without ovariates.
22Of ourse, these data must be in the image of the mapping.
23In fat, for tehnial reasons, the identi�ation literature typially fouses on the model

determinant z instead of its derivative  .
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Now let us onsider the assumptions that are made on the determinants. These

inlude the regularity Assumptions 1{4, and Assumption 5 on the independene

of x and v. In addition, we list the following assumptions whih will play a role

in the remainder of the hapter,

Assumption 6 : Variation in observed explanatory variables. The set X
of possible values of x ontains at least two values, and �0(x) is not onstant on

X .

Assumption 6b : Variation in observed explanatory variables. There is

an element xa of the vetor x with the property that the set X a of its possible values

ontains a non-empty open interval. For given values of the other elements of x,

the value of xa varies over this interval. Moreover, �0(x) as a funtion of xa is

di�erentiable and not onstant on this interval.

Assumption 7 : Normalizations. For some a priori hosen t0 and x0, there

holds that
R t0
0  (�)d� = 1 and �0(x0) = 1.

Assumption 8 : Tail of the unobserved heterogeneity distribution. E(v) <

1.

Assumption 8b : Tail of the unobserved heterogeneity distribution. The

random variable v is ontinuous, and the probability density funtion g(v) of v

has the property that

lim
v!1

g(v)

v�1��S(v)
= 1 (22)

where � 2 (0; 1) is spei�ed in advane, and where S(v) is a slowly varying

funtion,24 i.e. S has the property that, for every v > 0,

lim
u!1

S(uv)=S(u) = 1:

For Assumption 6, a single dummy variable x suÆes, provided that it has an

e�et on the hazard funtion. In that ase �0(x) takes on only two values on X .

24See Feller (1971) for an exposition on suh funtions.
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Note that we de�ne �0 to be identi�ed if its value is known for eah x 2 X . In

pratie, one may start o� with a parametri spei�ation of �0(x) and require

that all parameters an be reovered from the set of all pairs (x; �0(x)) with x 2 X .

In the ase where �0(x) is (log-)linear in x
0�, this implies that the elements of x

should not be perfetly ollinear.

Assumption 7 onerns an innouous normalization of two of the three terms

in the hazard �(tjx; v). Assumptions 8 and 8b require more disussion. Basially,

under Assumption 8, the right-hand tail of G is not allowed to be too fat beause

otherwise E(v) =1. Now onsider Assumption 8b. It is important to stress that

the a priori hoie of � determines the assumed lass of heterogeneity distributions.

Basially, the smaller �, the fatter the tails. However, for any � 2 (0; 1), all

heterogeneity distributions have E(v) = 1 (see Ridder, 1990). This means that

the right-hand tail of G is always fatter than under Assumption 8.

Elbers and Ridder (1982) were the �rst to prove the nonparametri identi�a-

tion of the MPH model, under Assumptions 1{8. Their identi�ation proof is not

onstrutive, i.e., the proof does not express the underlying funtions �0;  and

G diretly in terms of observable quantities. Construtive identi�ation proofs

are attrative beause they suggest a nonparametri estimation method. Melino

and Sueyoshi (1990) provide a onstrutive proof for the ase where Assumption

6 is tightened (to Assumption 6b, with the exeption that �0(x) does not have to

be di�erentiable). However, this proof is diÆult to use as an inspiration for an

attrative estimation strategy beause it relies heavily on the observed duration

density at t = 0, and x needs to be a ontinuous variable. Reently, Kortram et

al. (1995) provide a onstrutive proof for the original ase with only two pos-

sible values for �0(x). Lenstra and Van Rooij (1998) exploit this to onstrut a

onsistent nonparametri model estimator. They do not provide the asymptoti

distribution of their estimator. Under somewhat stronger model assumptions than

above, Horowitz (1999) onstruts a nonparametri estimation method that does

not follow an identi�ation proof; rather, it exploits the similarity between the
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MPH model and the transformation model (see Subsetion 4.1).25;26 He does

provide the asymptoti distribution of his model estimator.

Hekman and Singer (1984b) also prove nonparametri identi�ation of the

MPH model. Their result turns out to be partiularly interesting for the insights

it generates into fundamental properties of the MPH model. Contrary to Elbers

and Ridder (1982), they make Assumption 6b instead of the weaker Assumption

6, on the variation in x. More importantly, they make Assumption 8b instead

Assumption 8 on the lass of heterogeneity distributions. Assumption 8b rules out

that v is degenerate. This means that the PH model as an underlying model is not

inluded in the set of MPH models onsidered by Hekman and Singer (1984b).

This is a disadvantage if the PH model is regarded to be an interesting speial

ase. This result should not be taken to mean that the MPH models onsidered by

Hekman and Singer (1984b) are not able to generate a PH spei�ation for the

observed hazard �(tjx). Consider the set of MPH models generated by a partiular

hoie of � in (22), and assume that v has a Positive Stable distribution. This

family of distributions is most easily haraterized by its Laplae transform.

Family of Positive Stable distributions:

L(s) = exp(�s�); with � 2 (0; 1):

Note that lims#0 L0(s) = �1, so E(v) = 1.27 Using results in Ridder (1990)

and Feller (1971) it an be shown that in fat we have to take � exatly equal

25In fat, Horowitz (1999) assumes that �0(x) = exp(x0�), and he aordingly alls the

estimator a semiparametri estimator. It should be stressed that this estimator and other non-

parametri and semiparametri estimators for the MPH model rely heavily on the shape of the

empirial survivor funtion for t # 0. For a number of reasons, it is notoriously diÆult to assess

this shape. For example, extremely short durations are often under-reported in real-life data.
26Horowitz (1999) also provides a useful list of existing semiparametri estimation methods

where parametri funtional forms are assumed for either  or G.
27The orresponding densities are bell-shaped (see Hougaard, 1986). Hougaard (1986)

provides a justi�ation of this family as a family of distributions for v in MPH-type models.

Suppose that the individual duration an end for a number of di�erent reasons f1; : : : ; ng, with

ause-spei� individual hazards that share the same baseline hazard and the same systemati

hazard but not the same individual heterogeneity value vj . The individual hazard, whih is the

sum of the ause-spei� individual hazards, then equals
P
 (t)�0(x)vj , and this is an MPH

spei�ation with v =
P
vj . Now suppose that the vj are i.i.d. positive random variables, and

suppose that n ! 1. If the saled mean of the vj has a nondegenerate limiting distribution

38



to � in order to obtain a G that satis�es (22). So, let v have a Positive Stable

distribution with parameter �. Then, by equation (19),

�(tjx) = � (t)[z(t)℄��1[�0(x)℄
� (23)

whih is a PH spei�ation, despite the fat that, aording to the underlying

model, there is unobserved heterogeneity. For example, if the underlying MPH

model has a onstant baseline hazard  (t) = 1 then the observed hazard has the

(popular) Weibull PH spei�ation with baseline hazard �t��1, with 0 < � = � <

1, whih displays negative duration dependene.28 Suppose that �0(x) = exp(x0�).

If the true model has a Positive Stable distribution of unobserved heterogeneity

and if the researher assumes instead that there is no unobserved heterogeneity

and that tjx has a PH spei�ation (an assumption that is on�rmed by the data!)

then the parameter of interest � is estimated by ��, so it is under-estimated in

absolute value.

These results have very important impliations. First, the MPH model is non-

parametrially unidenti�ed if the assumption that E(v) < 1 is dropped (or, al-

ternatively, if Assumption 8b is dropped). Moreover, the adoption of a model

that is observationally equivalent to (but di�erent from) the true model leads to

biased inferene on the parameters of interest (see also Robins and Greenland,

1989). This is bad news, as it is often diÆult to make any justi�ed assumption

on the tail of the unobserved heterogeneity distribution. On the other hand, in

the ase where v represents an important eonomi variable, eonomi theory

often provides a justi�ation of E(v) < 1. In Subsetion 5.5 we disuss some

examples of this.

then it must be a Positive Stable distribution (Feller, 1971). In fat, for a wide range of distribu-

tions of the underlying random variable, the limiting distribution onverges to a Positive Stable

distribution. So, if v is an average of many di�erent i.i.d. unobserved heterogeneity terms, then,

in many ases, the distribution of v is approximated by a Positive Stable distribution. Note

however that the underlying assumption that the di�erent ause-spei� hazards have the same

baseline hazard and systemati hazard, while perhaps often reasonable in medial siene, is

often untenably strong in eonomis. Moreover, if v has a Positive Stable distribution and the

parameter � is not �xed, then the MPH model is not identi�ed (see below).
28If the underlying hazard has Weibull duration dependene  (t) = (1=�)t1=��1 and G is a

Positive Stable distribution with parameter � then the observed hazard does not hange with

t, so tjx has an exponential distribution.
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Ridder (1990) addresses the fundamental identi�ation problem in detail. He

argues that for any MPH model with E(v) < 1 there are observationally equi-

valent models with E(v) =1. In partiular, for any MPH model with E(v) <1
there is basially one observationally equivalent MPH model satisfying (22), for

any � 2 (0; 1). So, Assumption 8 as well as Assumptions 8b for given � an all be

interpreted as di�erent untestable normalizations that impose identi�ability on a

lass of models that are unidenti�ed.

Let us return to the ase where v is degenerate (i.e., the PH model). Van

den Berg (1992) proves that the full set of MPH models that is observationally

equivalent to the PH model onsists of models in whih v is degenerate or has a

Positive Stable distribution. In the latter ase, as is lear from (23), the duration

dependene of the baseline hazard and the absolute size of the e�et of x are more

positive than in the resulting PH model. For the general ase, Ridder (1990) shows

that some aspets of the MPH model are still identi�ed if no assumptions on the

tail of G are made. For example, the sign of the e�et of x is identi�ed.

As we shall see below, one solution to the fundamental identi�ation problem

is to rely on eonomi theory when hoosing a funtional form for G. Another

solution is to use information on multiple spells for the same individuals.

5.3 Interation between duration and explanatory vari-

ables in the observed hazard

In this subsetion we examine properties of the observed hazard �(tjx) if the un-
derlying model has an MPH spei�ation. These provide additional insights into

the identi�ation of the model. Throughout most of this subsetion we assume

that E(v) <1, i.e. we adopt the MPH framework of Elbers and Ridder (1982).

At times we generalize results by examining the wider lass of models where

E(v) � 1.

If there is no unobserved heterogeneity (so v is a onstant), then the observed

hazard �(tjx) is multipliative in t and x. Now suppose there is unobserved het-

erogeneity. If the observed hazard �(tjx) would be multipliative in t and x then

the model would be observationally equivalent to a model without unobserved

heterogeneity. Beause of the nonparametri identi�ability of the model, we know

that the latter annot be true. Therefore, the observed hazard annot be multi-
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pliative in t and x. As a result, we obtain the fundamental insight that identi�-

ation of G in MPH models omes from nonproportionality of the observed hazard

�(tjx) (see Hougaard, 1991, Van den Berg, 1992, and Keiding, 1998). In terms of

equation (21): if there is unobserved heterogeneity then the funtion h(z(t)�0(x))

is not multipliative in t and x, and the interation between t and x identi�es

G. Yet another way to formulate this is by stating that if there is unobserved

heterogeneity then log �(tjx) is not additive in t and x, so for some t and x

�2 log �(tjx)
�t�x

� �2 log h(z(t)�0(x))

�t�x
6= 0 (24)

provided that x varies ontinuously and the appropriate di�erentiability ondi-

tions are satis�ed.

Now reall from the previous subsetion that if the assumption that E(v) <1
is dropped then a proportional spei�ation for �(tjx) an also be generated by

MPH models with unobserved heterogeneity. Suh models are haraterized by

the property that v has a Positive Stable distribution. All other distributions for v

with E(v) =1 generate �(tjx) that is not multipliative in t and x. Consequently,

if Positive Stable distributions are ruled out for v then the result on the relation

between unobserved heterogeneity and nonproportionality of the observed hazard

an be extended to inlude in�nite-mean distributions for v.

In fat, unobserved heterogeneity an not generate just any type of interation

between t and x in �(tjx). Van den Berg (1992) shows that it is not possible that

there are whole intervals of t and x on whih there is no interation.29 (Whether

the interation is \large" is an empirial matter; as we shall see below, it is not

diÆult to onstrut examples in whih there is virtually no interation for a wide

range of values of t.) Also, the following simple and appealing spei�ation for

�(tjx) that allows for interation annot be generated with an MPH model,

�(tjx) =  (t)�0(x)e
��z(t)�0(x)

beause the funtion h(s) = exp(��s) annot be generated by the model.30 In

the next subsetion we also derive restritions on the sign of the interation for

29This follows beause any distribution G that gives a funtion h suh that h(z(t)�0(x)) is

multipliative in t and x on an interval must be a Positive Stable distribution.
30This an be seen as follows. If the model is an MPH model then h(s) an be written as

�L0(s)=L(s), with L(s) being the Laplae transform of G. However, the funtion L(s) that

follows from the andidate h(s) = exp(��s) is not ompletely monotone and hene annot be

a Laplae transform (see Feller, 1971).
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di�erent t. All of this evidene implies that the lass of models for �(tjx) that is
generated by MPH models is smaller than the general lass of interation models

for �(tjx). In other words, the MPH model is overidenti�ed. The fat that the

funtion h must be suh that it an be generated by a Laplae transform, the fat

that z(t) and �0(x) a�et the value of h only by way of their produt, and the

fat that t enters the interation term by way of the integral of the multipliative

term  (t), all impose restritions on �(tjx) as a funtion of t and x.

At this stage it is instrutive to examine the results in MCall (1996) on the

identi�ation of an extension of the MPH model with E(v) < 1 and �0(x) =

exp(x0�). Spei�ally, he allows the parameter � to vary with t. This is an em-

pirially relevant extension (reall the disussion at the end of Setion 4). Note

however that the extension reates a seond type of interation between t and

x in the observed hazard, so the question arises whether the data enable a dis-

tintion between them. MCall (1996) shows that the model is not identi�ed if x

an assume only two di�erent possible values. However, if there is an explanat-

ory variable that attains all possible values between �1 and 1 then the model

(i.e.,  ;G and �(t)) is identi�ed, so then the two types of interation an be

distinguished empirially.

The inlusion of time-varying ovariates (whih is another empirially relevant

extension of the MPH model) reates yet another type of interation between t

and x in the observed hazard. It is lear that in some ases a model with time-

varying ovariates is not identi�ed (for example, if �0(x(t)) is multipliative in

t). However, Honor�e (1991) illustrates that in some ases time-varying ovariates

an also be helpful for identi�ation. Suppose that x is time-invariant for part

of the population; some of them have the value x1 while others have x2, with

�0(x2) 6= �0(x1). Suppose in addition that for the other part of the population the

value of x hanges disretely from x1 to x2 at duration t� > 0, and assume that

x satis�es the onditions for time-varying ovariates laid out in Subsetion 4.2.

Then the model is identi�ed without any assumption on the tail of G (so E(v)

may be �nite or in�nite). See Hekman and Taber (1994) for a generalization of

this result.

The results in MCall (1996), Honor�e (1991) and Hekman and Taber (1994)

illustrate the fat that the interation generated by the presene of unobserved

heterogeneity is rather spei�. It is plausible that as more and more soures of
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interation are inluded into the model, it beomes more and more diÆult to

ahieve identi�ation. In the limit, the assumption that the underlying hazard

is multipliative in t; x; and v is essential for identi�ation. If this assumption

is dropped then obviously any nonproportional spei�ation an be generated

without the need to allow for unobserved heterogeneity, and the model would

be unidenti�ed (see also Hekman, 1991). In partiular, the spei�ation (19)

an also be generated as an individual hazard, whih equals the observed hazard

beause of the absene of unobserved heterogeneity.

5.4 The sign of the interation

In this subsetion we examine the sign of the interation between t and x in

�(tjx). This sign is a potentially interesting model harateristi, as its empirial

ounterpart may be readily observed from the data. Moreover, eonomi theory

sometimes makes preditions of the sign of the interation. For example, the

ranking model of unemployment by Blanhard and Diamond (1994) predits that

the aggregate exit rate out of unemployment as a funtion of t dereases more in a

\bad" steady state (i.e. a steady state where the exit rates are low anyway) than

in a good steady state. If the steady state is represented by a dummy variable x

then this means that the interation between t and x is predited to be always

positive.

The disussion is failitated by using �0(x) and x interhangeably. Obviously,

this entails no loss of generality in the examination of the sign of the interation,

provided that it is kept in mind that x has a positive e�et on �(tjx; v). For
onveniene we take x to vary ontinuously, so that the sign of the interation

an be expressed as the sign of the ross-derivative of log h(z(t)x) with respet

to t and x (see equation (24); reall that �(tjx) =  (t) � �0(x) � h(z(t)�0(x)) ).
The derivative of log h(z(t)x) with respet to x equals h0(z(t)x)z(t)=h(z(t)x).

The sign of the ross-derivative of logh(z(t)x) with respet to t and x then equals

the sign of the derivative of sh0(s)=h(s) evaluated at s = z(t)x. The funtion h(s)

is determined by the Laplae transform L(s) of G. Therefore, the sign of the in-

teration at a ertain t and x is ompletely determined by G.31 Given that z(t)x

31It follows from the results in Subsetion 5.1 that sh0(s)=h(s) at s = z(t)x an be expressed

in terms of the moments of vjT > t; x (spei�ally, it depends on the �rst three moments).
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takes on all values in [0;1), knowledge of the sign of sh0(s)=h(s) for all s is ne-

essary in order to infer whether this sign is unambiguous for all t and x. To put

this more bluntly, the full spei�ation of the unobserved heterogeneity distri-

bution determines the sign of the interation between duration and explanatory

variables in the observed hazard.

The �rst notable result onerns the sign of the interation for small t. In

general, the interation is stritly negative on an interval [0; ").32 This negative

interation means that if x is large then the observed duration dependene for

small t is more negative than if x is small. This an be understood as follows.

In the sub-population of individuals with a high value of x, the individuals who

also have a high v will have a disproportionally high hazard. As a result, those

individuals leave the state very quikly, and this has a strong negative duration-

dependene e�et on the observed hazard for the individuals with high x. Among

the individuals with low x, this weeding out phenomenon ours at a muh lower

speed, so their observed hazard dereases less strongly. It is important to stress

that this intuitive explanation does not work for t > 0, beause the distribution

of v among survivors at t > 0 depends on x itself.

Lanaster (1979) shows that if G has a Gamma distribution,

Family of Gamma distributions:

g(v) = r=�(r) � vr�1 exp(�v) for all v > 0; with ; r > 0;

then the interation is negative for all t and x, so the negative interation sign for

small t an be extended to all t. Unfortunately, this result annot be generalized

to inlude all possible G. To see this, onsider disrete distributions for G with

a �nite number of mass points (or points of support), eah of them positive and

�nite,

Family of disrete distributions with a �nite number of

mass points, eah of them positive and �nite:

Pr(v = vi) = pi for all i = 1; 2; : : : ; n;

with 0 < v1 < v2 < : : : < vn <1; 0 < p1; p2; : : : ; pn < 1;
Pn

i=1 pi = 1; n <1
32For example, if Var(v) < 1 and limt#0  (t) 2 (0;1℄ then �2 log �(tjx)=�t�x < 0 at t = 0.

If E(v3) <1 and limt#0  (t) 2 [0;1℄ then �2 log �(tjx)=�t�x < 0 on an interval next to t = 0.
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(this is a popular spei�ation in empirial work; see Subsetion 5.5 below). We

shall show that it is intuitively plausible that in this ase, as t ! 1, the de-

rivative � log �(tjx)=�x goes to its value at t = 0 (so that this derivative varies

with t in a non-monotone way, i.e. the ross-derivative does not have the same

sign everywhere). When t inreases, the group of survivors beomes inreasingly

more homogeneous, sine the individuals with v > v1 leave unemployment on

average earlier than the individuals with v = v1. In the limit, the group of sur-

vivors is homogeneous (all remaining individuals have v = v1) so the value of

� log �(tjx)=�x equals the value in a model without unobserved heterogeneity,

whih is �0
0(x)=�0(x) (see equation (20)). This in turn equals the value that is

taken by � log �(tjx)=�x in general at t = 0 (see equation (20)), beause at t = 0

the seletion due to heterogeneity has not yet taken plae.33

Example 7. Let v have a disrete distribution with two points of support with

Pr(v = 1=5) = Pr(v = 3=5) = 1=2. Then the ross-derivative of log �(tjx) with
respet to t and x equals zero if z(t)�0(x) is about 4:6 and it is positive if and

only if z(t)�0(x) exeeds that number.

In this example, there is a positive value of z(t)�0(x) for whih the observed

hazard is multipliative in t and x (i.e. the ross-derivative is zero) despite the

presene of unobserved heterogeneity. However, the orresponding values of t and

x have measure zero in the set of all possible values of t and x. Note that the above

results implies that, if G is disrete with a �nite number of points of support,

the observed hazard �(tjx) an be approximated by a PH spei�ation if t is

suÆiently large.

Inidentally, it is not diÆult to onstrut examples where the weeding out

of individuals with high v ours very quikly after t = 0. If v has two points of

support where one of them is extremely large, then the individuals with large v

leave the state almost immediately. As a result, the magnitude of the interation

between x and t is virtually zero for almost all t > 0.

The family of disrete distributions is not the only family that generates a non-

33These results imply that, when omparing an individual with a relatively small x to one

with a relatively large x, the proportionate di�erene between the observed hazards diminishes

as time starts to run from t = 0 onward, but it ultimately returns to the level at t = 0.
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monotone sign of the interation. Other examples inlude uniform distributions

with support [1; 2℄ with 0 < 1 < 2 < 1 as well as many other distributions

with a positive lower bound of the support (see Abbring and Van den Berg, 1998,

for details). In general, it seems diÆult to derive onditions on G suh that the

interation is always negative.34 In the next subsetion we return to this issue,

when we examine the limiting distribution of vjT > t; x as t ! 1, for a wide

lass of distributions G.

Reall that in general for small t the interation is negative. It turns out that,

even if the interation may be positive for larger t, the umulative interation

remains negative. With this we mean that (under suitable regularity onditions),

Z t

0

�2 log �(� jx)
���x

d� < 0

for all t and x. This an be seen by noting that this integral equals � log �(� jx)=�x
at � = t minus the same expression at � = 0, and, by equation (20), this is

negative.

We end this subsetion by noting a remarkable result on the e�et of x on

the observed hazard �(tjx) in MPH models.35 One may be tempted to think that

this e�et is always positive if x has a positive e�et on the underlying hazard

�(tjx; v). However, this is not a general property of the model. Intuitively, if a

fration of individuals has a very high value of v then, in the sub-population of

individuals with high x, the high-v individuals leave the state extremely quikly.

The drop in the mean value of v among the survivors with high x is then so

large that their hazard may on average fall below the value of those with lower x

values. In suh a ase, the negative e�et of the drop in v on �(tjx) is not o�set
by the positive e�et of the large x. In terms of equation (20), the seond term

on the right-hand side dominates the �rst one.

Example 8. Consider again the disrete distribution for v with Pr(v = 1=5) =

Pr(v = 3=5) = 1=2 (see Example 7). Then ��(tjx)=�x is always positive. However,

34Negative interation is equivalent to the statement that �L0(ey)=L(ey) is log-onave on

y 2 (�1;1), but this does not seem to orrespond to a well-known lass of distributions for

G.
35Even though this result is not onerned with the sign of the interation, its interpretation

�ts in with the latter subjet.
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if the highest mass point is at 5=2 instead of 3=5 the this derivative is negative

for values of t and x suh that z(t)�0(x) is in an interval around 1.

In sum, the observed hazard of a high-x individual an be smaller than that

of a low-x individual. This means that it is not possible to dedue the sign of

the e�et of x on the underlying individual hazard from the observed relation

between x and the observed hazard at a ertain duration t. It should however

be stressed that this remarkable e�et an only our for some loal duration

intervals. Spei�ally, the observed survivor funtion F (tjx) and the observed

mean duration E(tjx) are always dereasing in x (i� �0(x) inreases in x). This

an be seen from the relations

F (tjx) = Ev(F (tjx; v)) = L(z(t)�0(x))

E(tjx) = EvE(tjx; v) =
Z
1

0
L(z(t)�0(x))dt

where Ev denotes the expetation with respet to G (note that L dereases in its

argument; see equation (18)).

5.5 Spei�ation of the unobserved heterogeneity distri-

bution

Studies in whih parameterized MPH models are estimated have wrestled with

the hoie of a funtional form for G (see e.g. Hekman and Singer, 1984a). This

hoie is thought to be harder to justify than the hoie for a funtional form for

the baseline hazard  , as eonomi theory often suggests a shape for the latter.

In this subsetion we examine parametri families of distributions that an be

given supporting arguments as a hoie for G. We start with families that an

be supported by limit arguments. Next we show that eonomi theory sometimes

atually does make informative preditions on important aspets of the shape of

G. This typially onerns ases where a key soure of individual heterogeneity

is observed by labor market partiipants but not by the researher.

5.5.1 Disrete distributions

Suppose that the baseline hazard and the systemati hazard have parametri

funtional forms with a �nite number of parameters, but that the only assumption
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on G is that it has a �nite mean (or satis�es (22)). For this ase, Hekman and

Singer (1984) show that the Maximum Likelihood estimator of G is a disrete

distribution, provided that some regularity onditions are met.36 For a given

sample, the parameters of this disrete distribution (the number of points of

support, their loation, and their assoiated probabilities) are hosen suh as to

maximize the likelihood funtion. The result by Hekman and Singer (1984)

illustrates the exibility of disrete distributions as heterogeneity distributions.

Intuitively, if the number of points of support inreases, then any true underlying

distribution G an be approximated well. In pratie, it is often diÆult to �nd

more than a few di�erent mass points. Usually, if more than two or three points of

support are taken then the estimates of some of them oinide. Standard pratie

in ase of disrete G is to estimate the model with a number of mass points that

is either predetermined or equal to the maximum number that ould be deteted,

and to report standard errors onditional on this hoie. It is important to stress

that suh approahes are not \nonparametri" in the true sense of the word, and

that the standard errors do not reet unertainty with respet to the atual

number of mass points.

The fat that it is often diÆult to �nd more than a few mass points may

reet a lak of informativeness on G in the data. Reall that the data do not

provide observations on drawings from G, but that G enters the likelihood fun-

tion as a mixing distribution. The information on G omes from the observed

interation between t and x in the data, and it may be that a mixing distribution

with a few mass points is often able to apture most of this. The simulations in

Hekman and Singer (1984) strongly on�rm this. They �nd that the parameters

of  and �0 as well as the shape of the distribution of tjx are well estimated if G

is assumed to be disrete with an unknown number of mass points, even if the

true G is ontinuous. The estimated number of mass points is typially small.

For G disrete with a �nite number of points of support, eah of them positive

and �nite, we restate the following model properties. First, E(v) <1. Seondly,

the interation between t and x in �(tjx) is not monotone; it is negative for small

t and positive for very large t. Thirdly, the e�et of x on �(tjx) is not always

monotone even if the e�et on �(tjx; v) is.
36See Trussell and Rihards (1985), Lanaster (1990) and Baker and Melino (2000) for addi-

tional insights into this estimator and for alternative omputational strategies.
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5.5.2 Gamma distributions

In appliations, the family of Gamma distributions has perhaps been the most

popular hoie for G. This stems from the resulting analyti tratability: all

relevant properties of the distribution of tjx an be expressed in losed-form

solutions. In their reent working paper, Abbring and Van den Berg (1998) are

the �rst to provide a less ad-ho justi�ation for the hoie of the family of Gamma

distributions for G. Suppose that zero is the lower bound of the support of the

true (unknown) G, with v being a ontinuous random variable (we do not make

assumptions on the upper bound of the support ofG). Then, under mild regularity

onditions, the unobserved heterogeneity distribution among the survivors at

duration t onverges to a Gamma distribution if t ! 1. In fat, we have to

sale the distribution of v among survivors beause the unsaled distribution

onverges to zero (note that the Gamma family is invariant to saling). This

result implies that, in many ases, the heterogeneity distribution among survivors

at high durations an be approximated well by a Gamma distribution, and this

provides a motivation to adopt the Gamma family for G(v) itself.

For G(v) equal to a Gamma distribution, we restate the following model

properties. First, E(v) < 1. Seondly, the interation between t and x in �(tjx)
is monotone and negative for all t. Thirdly, the e�et of x on �(tjx) is always

monotone if the e�et on �(tjx; v) is monotone.

The limit result in Abbring and Van den Berg (1998) does not hold if the true

G(v) is a disrete distribution with a �nite number of points of support.37

5.5.3 Suggestions from eonomi theory

Now let us turn to (aspets of) shapes of G(v) that an be justi�ed by eonomi

theory. First, as a general remark, it should be noted that eonomi theory often

predits that the exit rate out of a state is bounded from above. Consider the

searh theories of Setion 3. In general, the exit rate out of unemployment an

be written as �F (�). The seond term in this expression is a probability whih

37Reall that in suh a ase the sign of the interation is positive for large t, whereas in the

ase of a Gamma distribution it is negative for large t. The latter suggests that, if in pratie

a hoie must be made between a disrete G or a Gamma G, it is useful to examine the sign

of the interation between t and x in the data on �(tjx) for large t (see Hougaard, 1991, for an

example).
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neessary lies between zero and one. If the �rst term is in�nite then there are

no fritions in the �rst plae, and the models redue to standard labor market

models with zero unemployment durations. Aording to this line of reasoning,

�(tjx; v) should be bounded from above, whih implies that the support of G is

bounded from above (whih in turn implies that E(v) <1).38

Suggestions from equilibrium searh models

Suppose worker behavior is desribed by the searh models of Setion 3. In the

literature, these models have been extended to inlude employer behavior. For

surveys of the theoretial and empirial analysis of suh \equilibrium searh mod-

els", see Ridder and Van den Berg (1997), Mortensen and Pissarides (1999), and

Van den Berg (1999). To �x thoughts, onsider the equilibrium searh model

of Bontemps, Robin and Van den Berg (1999) where unemployed and employed

workers searh, and di�erent workers have di�erent values of leisure b. If the job

o�er arrival rates are the same in employment and unemployment, then the re-

servation wage of an unemployed worker with value of leisure b is simply equal

to b. Now suppose that b has a ontinuous distribution H(b) in the population.

An employer sets his wage w suh as to maximize his steady-state pro�ts. We

assume that the number of �rms is �xed, or, alternatively, that an entry fee has

to be paid. It is not optimal for any �rm to o�er a wage equal to the lower bound

b of the distribution H(b), beause then its steady-state labor fore and pro�t

rate are zero. The lowest wage w in the market is stritly larger than b. As a

result, there is a positive fration of individuals who aept any wage o�er (i.e.,

who have b < w).

In this model, the individual exit rate out of unemployment equals �F (b).

Now suppose that the researher wants to estimate a redued-form model of un-

employment durations. The individual value of leisure b is unobserved, so it is

reasonable to take the unobserved heterogeneity term v to represent the aept-

ane probability F (b) (provided that there is no additional soure of unobserved

heterogeneity). As a result, the distribution G(v) has support in [0; 1℄. But there

38One may argue that � is a�eted by an optimally hosen searh intensity, and that the

distribution of strutural determinants in the population is suh that the resulting distribution

of � does not have an upper bound. However, in searh and mathing models, � is at least

partially determined by the meeting tehnology of the labor market; this tehnology is a market

harateristi that annot be fully dominated by individual behavior.
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is a positive fration of workers with F (b) = 1, so G has a mass point at the

upper bound of its support (i.e., at v = 1). If the highest wage in the market w is

smaller than the highest level of b then G also has a mass point at zero. In that

ase G is a defetive distribution; a positive fration of individuals is unemployed

forever. In pratie it may not be diÆult to sort out the latter individuals from

the data (i.e. to observe whether b > w), beause it does not make sense for

these individuals to searh for a job, so they may lassify themselves as being

nonpartiipants.

It is not diÆult to see that this result extends to more general equilibrium

searh models. Often, employer behavior is suh that a positive fration of unem-

ployed workers aepts any wage o�er and onsequently has the maximum hazard

level for the transition into employment.

Suggestions from on-the-job searh models

Consider the stationary on-the-job searh model of Subsetion 3.2. Published

statistis on nationwide job mobility ontain information on the marginal job

duration distribution, i.e. on the distribution of job durations unonditional on

the wage in the job. The wage then represents unobserved heterogeneity in the

job duration data.

The distribution of t given the wage w on the job is exponential with density

f(tjw) = (Æ + �1F (w))e�(Æ+�1F (w))t (25)

Consider the job durations t of a ohort of workers who have just left unemploy-

ment for a job (this onstitutes the inow into employment at a given point of

time). If all unemployed workers aept any wage that is o�ered to them then, in

this ohort, the wage w is distributed aording to F (w). To obtain the marginal

job duration distribution for this ohort, we have to integrate (25) with respet

to dF (w). This gives

f(t) =
1

�1

Z Æ+�1

Æ

ze�ztdz

whih is a \mixture of exponentials" i.e., a mixture of distributions with onstant

hazards, with a uniform mixture distribution for the hazards with support on the
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interval (Æ; Æ + �1).
39 This is not surprising. The onditional hazard of tjw is

onstant over the job duration. It is then mixed with respet to a determinant

(w) of the onditional hazard. Workers are merely onerned with the ordering

of the urrent wage and the wage o�er, and not with the shape of the underlying

wage o�er distribution itself. Their loation on the job ladder therefore determines

their hazard. Note that, as a result, the marginal job duration distribution does

not depend on F .

In terms of an MPH model, �(tjx) an be thought of as being generated by

�(tjx; v) = v, where v has a uniform distribution on (Æ; Æ + �1).
40 This result for

a ohort of newly employed workers an be generalized to other (more relevant)

sampling shemes. Ridder and Van den Berg (1998) apply this approah to study

job mobility with aggregate data.

The argument above also applies to other settings where only the rank of the

individual's heterogeneity value a�ets the individual's hazard rate, and where

these values and their ranks are unobservable. Mosarini (1998) examines a job

searh model for the unemployed where individuals are ranked by employers on

the value of some time-invariant harateristi. The rate at whih an individual

obtains a job depends on the fration of the unemployed that has worse har-

ateristis. For a spei� mathing tehnology, this results in an unemployment

duration distribution that is again a mixture of exponential distributions with a

uniform mixture distribution.

5.6 E�ets of misspei�ation of funtional forms

Generally, in appliations,  and/or G(v) are assumed to have a parametri fun-

tional form (see Lanaster, 1990, for a atalogue of popular funtional forms). We

�nish this setion on properties of the MPH model by summarizing some results

on the e�ets of misspei�ation of these funtional forms on the probability lim-

its of the Maximum Likelihood (ML) estimates. Throughout the subsetion (and

39This an be further simpli�ed to

f(t) =
e�Æt

�1t2

�
1 + Æt� (1 + (Æ + �1)t)e

��1t
�
:

40Note that, if Æ or �1 depend on t or x, then this is not an MPH model anymore.
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in line with this literature) we assume that

�0(x) = exp(�0 + x0�1)

and that all moments of v exist. The model is normalized by taking E(v) = 1. The

only type of ensoring that is onsidered onerns independent right-ensoring at

a �xed duration.

A natural starting point onerns the misspei�ation due to omission of un-

observed heterogeneity from the model, if it is present in the data-generating

proess. Reall that in Subsetion 5.1 we argued that the estimated duration

dependene will be too negative, and the e�et of x may be inonsistently estim-

ated as well. Gail, Wieand and Piantadosi (1984) provide the following result. If

the baseline hazard  (t) is known a priori, if one erroneously ignores unobserved

heterogeneity in the model spei�ation, and if there is no ensoring, then �1 is

onsistently estimated with ML. In fat, it is not diÆult to show that

plimb�0 = �0 � E(
1

v
) < �0; plimb�1 = �1

where plim b�i denotes the probability limit of the ML estimator of �i (i.e., the

value to whih the estimate onverges in probability as the sample size inreases).

Note that E(1=v) > 1=E(v) = 1 if and only if Var(v) > 0, i.e. if there is unobserved

heterogeneity.41;42

Unfortunately, these welome results do not generalize in any way to more

realisti settings. Ridder (1987) shows that ensoring in the data makes b�1 inon-
sistent (unless the spei�ed G equals the true G or �1 = 0). The asymptoti bias is

towards zero if the spei�ed model assumes absene of unobserved heterogeneity.

41See also Lanaster (1983). Ridder (1987) generalizes this result by proving the following:

if the baseline hazard is known in advane, the assumed G is fully spei�ed without unknown

parameters, the assumed G is not equal to the true G, and there is no ensoring, then �1 is

onsistently estimated.
42This is not in onit with the result in Subsetion 5.1 that d log �(tjx)=dx = �1(1 � a)

for some a > 0. Somewhat loosely one may say that b�0 ensures that the average level of the

spei�ed log �(tjx) agrees to the average level in the data, and that the e�et of x in the data

is best aptured by b�1 = �1. Note that in this spei� model, E(log z(t)jx; v) is additive in v

and x. In partiular, E(log z(t)jx; v) = ��0 � x0�1 � log v + , with  � �0:58 being the mean

of an EV1 random variable, and with the funtion z(:) ompletely known. So by analogy to the

regression model, dispersion in v does not a�et the estimate of �1.
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Lanaster (1985b) shows that if the baseline hazard is known to have a Weibull

spei�ation with an unknown parameter, one ignores unobserved heterogeneity,

and there is no ensoring, then the estimates of both the Weibull parameter and

�1 are asymptotially biased towards zero. In fat, they are all biased in the same

proportion. Basially, in this ase, ML gets the regression funtion for log t right,

but we are after the original parameters of the individual hazard funtion in-

stead of the elastiities of the mean log duration. Ridder (1987) also shows that

misspei�ation of the shape of the baseline hazard results in inonsisteny of b�1.
The results above are all analytially derived. For more general model settings,

the e�ets of misspei�ation have been analyzed by way of extensive Monte

Carlo simulations. Ridder (1987) allows for ensoring in the Lanaster (1985b)

model, and he allows for misspei�ed G in the assumed model. It turns out that

ensoring exaerbates the asymptoti bias in b�1 due to misspei�ation of G,

and the results beome sensitive to the assumed spei�ation of G. Moreover,

it turns out that the estimates display a large small-sample bias even if the

model spei�ation is orret. This bias disappears very slowly when the sample

size inreases. Suh small-sample biases are absent for the PH model without

unobserved heterogeneity; see Andersen, Bentzon and Klein (1996).

Ridder (1987) also examines the performane of ML estimation of an assumed

model with a Weibull baseline hazard and a Gamma distribution for v, if both are

misspei�ed. The simulations reinfore the negative results above. Ridder (1987)

onjetures that if the baseline hazard is exibly spei�ed with a suÆient num-

ber of unknown parameters, and if ensoring is virtually absent, then it does not

matter whih family of distributions is assumed for G in order to obtain a reli-

able estimate of �1. However, the simulation results in Baker and Melino (2000)

go against this.43 Most of the biases due to the above problems an be substan-

tial, depending on the situation at hand. For the Partial Likelihood estimation

method, similar results have been derived (see e.g. Bretagnolle and Huber-Carol,

1988).

By now there are also many studies of real-life single-spell data in whih it is

reported that the estimates of (the parameters of) �1;  and G are sensitive to

43It should be noted, though, that Baker and Melino (2000) do not examine an MPH model

but a disrete-time model where the individual per-period exit probability is a logisti funtion

of  (t)�0(x)v. Whether these models behave similarly is an issue for further researh.

54



hanges in the assumed family of distributions for G or the assumed set of x or

the assumed funtional form of  , even though sometimes the over-all �t of the

model does not hange with this in any substantial way (see e.g. Hekman and

Singer, 1984a, Trussell and Rihards, 1985, Hougaard, Myglegaard and Borh-

Johnsen, 1994). Keiding, Andersen and Klein (1997) provide a survey of studies

with biostatistial data.

The reent literature on semiparametri and nonparametri estimation of the

MPH model provides some interesting additional insights on this. First of all,

Hahn (1994) examines models with Weibull duration dependene, and he as-

sumes that v is a ontinuous random variable with a �nite mean. He shows that

with single-spell data, the information matrix is singular, and that there is no
p
n�onsistent estimator for �i and the Weibull parameter.44 Thus, in a ertain

sense, there is less information on the model parameters than what is typially

available in eonometri analyses. Seondly, Hekman and Taber (1994) and Kor-

tram et al. (1995) show that the mapping from the data-generating proess to the

data is not ontinuous, so that two distint MPH models an generate very sim-

ilar data.45 Thirdly, the nonparametri (or semiparametri) estimator developed

by Horowitz (1999) has onvergene rates that are smaller than
p
n. In partiu-

lar, under ertain assumptions (inluding absolute ontinuity of an element of x,

di�erentiability of  (t) and the density of v, and E(v2) < 1), the onvergene

rates of �i and  an be at most almost equal to n�2=5, whih is obviously slower

than n�1=2. For the heterogeneity distribution and density G and g, the rate of

onvergene is (logn)�2, whih is very slow.

Together, these results lead to the following onlusion. In the absene of

strong prior information on the determinants of the MPH model, single-spell

data do not enable a robust assessment of the relative importane of these de-

terminants as explanations of random variation in the observed durations (even

44See Klaassen and Lenstra (1998) for a generalization of this result.
45As an example, onsider the simplest MPH model, with �0(x) = exp(x) where x is a single

dummy variable, and with absene of duration dependene and unobserved heterogeneity. The

distribution of tjx is virtually the same as the distribution generated by an MPH model with

�0(x) = exp(2x), duration dependene proportional to 2t, and v distributed as a Positive Stable

distribution with parameter 1=2 with the upper tail replaed by a �nite mass point (see Kortram

et al., 1995, for details; note the similarity to the example in the disussion in Subsetion 5.2;

also note that here E(v) <1).
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if the unobserved heterogeneity mean is known to be �nite). Minor hanges in

the assumed parametri spei�ation, leading to a similar over-all �t, may pro-

due very di�erent parameter estimates. This implies that estimation results from

single-spell data are sensitive to misspei�ation of the funtional forms assoi-

ated with these determinants. Therefore, interpretations based on suh results

are often unstable and should be performed with extreme aution.

In biostatistis, this state of a�airs has led to a renewed interest in Aelerated

Failure Time models for the analysis of single-spell duration data (see Hougaard,

Myglegaard and Borh-Johnsen, 1994, and Keiding, Andersen and Klein, 1997,

for a survey). Note that suh models allow for robust inferene on the e�et of x

on the mean of log t.46 In a way, the hoie for the AFT model means that all hope

is given up on the attempt to (i) disentangle genuine duration dependene from

the e�et of unobserved heterogeneity, and (ii) quantify the e�et of ovariates

on the individual hazard as opposed to the observed hazard, with single-spell

data. From an eonomi-theoreti point of view, however, the AFT approah is

unsatisfatory, beause, as we have seen in Setions 2 and 4, the parameters of

the individual hazard are the parameters of interest. It may therefore be better

to exploit preditions from the underlying eonomi theory when speifying the

duration model, and/or look for data with multiple spells.47

If one is only interested in the sign or signi�ane of a ovariate e�et on the

individual durations then the AFT approah may be useful. Reall from Subse-

tion 5.4 that in MPH models the sign of the e�et of x on the mean duration is

always the same as the sign of the e�et on the individual hazard, regardless of the

spei�ation of  or G. Regression of log t on x therefore provides robust evidene

on this sign (see Solomon, 1984, 1986, for proofs; Li, Klein and Moeshberger,

1993, provide supporting Monte Carlo evidene on the performane of test stat-

istis for the signi�ane of the e�et of x). Suh an approah may be useful if

one is interested in whether partiipation in a treatment program (to be repres-

46Indeed, Horowitz (1996) shows that the � parameters in the transformation model (9) an

be onsistently estimated with an estimator with onvergene rate equal to n�1=2. Reall that

the AFT model is a speial ase of the transformation model.
47Another approah would be to estimate the model nonparametrially using methods de-

sribed in Subsetion 5.2. It is still too early to assess whether this approah is fruitful. Yet

another approah is to use population data (if available). See Van den Berg and Van Ours

(1996) for an example of this based on a disrete-time model.
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ented by x) has any e�et. However, in eonomis, data on treatment e�ets are

usually non-experimental and treatment assignment is seletive, so then x is not

exogenous (see Subsetion 9.2).

6 The MPH model with multi-spell data

6.1 Multi-spell data

This setion deals with identi�ation of the MPH model if the data provide

durations of multiple spells in a given state by a given individual, i.e. if the data

are multi-spell data. Here, an individual has a given value of v, and his spell

durations are independent drawings from the univariate duration distribution

F (tjx; v), where, of ourse, v is unobserved, so that the durations given just x are

not independent. We mostly fous on an \ideal" ase in whih the data onsist

of a random sample of individuals and provide two unensored durations for

eah individual in the sample. Atually, the use of the term \individual" is not

very appropriate here, as the setup inludes ases in whih physially di�erent

individuals are assumed to share the same value of v and we observe one or more

durations for eah of these individuals. It is onvenient to refer to suh a group of

individuals as a stratum. It depends on the ontext whether one may assume that

v;  ; and �0 are idential aross durations for the same individual or stratum. In

subsequent setions we examine more general models, in whih  and �0 may

vary aross spells, the values of v in di�erent spells may be stohastially related,

and other dependenies between the durations are allowed. It is useful to think of

the present setion as being onerned with a model for a single type of duration,

where we have multiple spells of this type of duration for eah \individual",

whereas the subsequent setions are onerned with models for di�erent types of

durations with single or multiple spells of eah type for eah \individual".

The empirial analysis of MPH models with multi-spell duration data is wide-

spread. For example, Newman and MCullogh (1984) use suh data to estimate

redued-form models for birth intervals, while Ham and Rea (1987) and Coleman

(1990) use suh data to estimate redued-form unemployment duration models.48

Lillard (1993) and Lillard and Panis (1996) estimate marriage duration models

48Ham and Rea (1987) use a disrete-time model.

57



with multi-spell data. In these appliations, the multiple spells with a given value

of v are assoiated with a single physial individual. There are also many ap-

pliations in whih multiple spells with a given v are assoiated with di�erent

physial individuals (see e.g. Kalbeish and Prentie, 1980). The heterogeneity

term is then assumed to be idential aross individuals within some group or

stratum. Typially, di�erent individuals within a stratum are allowed to have

di�erent values of x. As we shall see below, this may atually be very useful

for inferene.49 Reent appliations inlude Guo and Rodr��guez (1992), Wang,

Klein and Moeshberger (1995), Sastry (1997), Ridder and Tunal� (1999), and

Lindeboom and Kerkhofs (2000). Arroyo and Zhang (1997) survey appliations

in the analysis of fertility. In studies on lifetime durations of idential twins, the

unobserved heterogeneity terms are often assumed to apture unobserved geneti

determinants, so then v is idential within twin pairs (see e.g. Hougaard, Harvald

and Holm, 1992a).

To proeed, note that the individual hazard funtion �(tjx; v) is the same

for both durations assoiated with the \individual". The value of x may di�er

between the orresponding spells. If neessary we denote the values by x1 and x2,

respetively. Conditional on x and v, the two durations t1 and t2 are independent.

Conditional on x, the variables t1 and t2 are independent if there is no unobserved

heterogeneity, i.e. if v is not dispersed.

If �0(x) = exp(x0�) then

log
Z t1

0

 (u)du = �x01� � log v + "1

(26)

log
Z t2

0

 (u)du = �x02� � log v + "2

where "1 and "2 are i.i.d. EV1 distributed. Equations (26) suggest a similarity to

standard panel data models with �xed e�ets. We return to this below.

The joint density f(t1; t2jx) of t1 and t2 given x an be expressed as

f(t1; t2jx) =
Z
1

0

Z
1

0

f(t1jx1; v)f(t2jx2; v) dG(v) (27)

49Indeed, with strati�ed partial likelihood inferene, estimation of the systemati hazard �0

is driven by the variation in x (see Subsetion 6.2).
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in whih G denotes the joint distribution of v aross \individuals" in the popu-

lation. The density f(tijxi; v) an of ourse be expressed in terms of the determ-

inants of � (see Setion 2). The joint survivor funtion of t1 and t2 given x an

then be expressed as

F (t1; t2jx) =
Z
1

0

e�[z(t1)�0(x1)+z(t2)�0(x2)℄vdG(v)

In many appliations, the individual likelihood ontribution is based on the

density (27). In terms of panel data analysis, this means that the values of

v are treated as \random e�ets" when estimating the model with Maximum

Likelihood.50 An alternative empirial approah treats v as individual-spei�

parameters or \inidental" parameters. The likelihood funtion is then written

for given unknown values of these (and the other) parameters.51

6.2 Identi�ation results

One may distinguish between two approahes in the literature on identi�ation

of the MPH model with multi-spell data. The �rst approah below is onerned

with the full identi�ation of the model and relies on results that were disussed

in Setion 5. The seond approah is onerned with the identi�ation of the sys-

temati hazard �0 and follows from properties of a partiular estimation method.

We start with the �rst approah. Honor�e (1993) shows that the MPH model

with multi-spell data is identi�ed under muh weaker assumptions than in Setion

5. In fat, we do not need to assume that there are observed explanatory variables

x at all. In other words, the analysis is onditional on a given value of x, and we

may allow for full interation of the atual value of x with the model determinants:

 may depend on x in an unspei�ed way, and v and x may be dependent in the

population. Note that here x does not vary aross spells for a given individual.

We may write

�(tjx; v) =  (tjx) � v; vjx � G(vjx)

This inludes of ourse as a speial ase that  (tjx) an be written as  (t)�0(x).

50Here, as in the model with single spells, standard maximization of the likelihood may be

omputationally unfeasible for partiular parametri spei�ations for G and  . In suh ases,

use of the EM algorithm may be preferable (see Lanaster, 1990, for details).
51See Lanaster (2000a) for a general overview of inidental parameters in eonometris.
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This model is identi�ed given regularity assumptions orresponding to As-

sumptions 2{4, and given a normalization of the integrated baseline hazard (ana-

logial to Assumption 7). Thus, if two observations are available for eah v, then

the identi�ation of the model does not require an untestable assumption on the

tail of the unobserved heterogeneity distribution G anymore, and, perhaps even

more importantly, v and x are allowed to be dependent. The identi�ation of this

distribution does not ome anymore from the interation between the duration

and the observable explanatory variables in the observed hazard. The identi�a-

tion does however need proportionality of the duration e�et and the unobserved

heterogeneity term in the individual hazard. It should be noted that this model

is nevertheless overidenti�ed; see Subsetion 8.2.2.

Example 9. Let  = 1 (so there is no duration dependene) and x1 = x2(= x),

and suppose that v has a Positive Stable distribution (see Subsetion 5.2). Suh

distributions have in�nite means. As we have seen, the resulting MPH model

for single spells is observationally equivalent to a PH model without unobserved

heterogeneity and a Weibull baseline hazard. However, it is easy to see that the

joint survivor funtion of t1 and t2 equals

F (t1; t2jx) = exp (�[�0(x)℄�(t1 + t2)
�)

(with 0 < � < 1), whereas if there is no unobserved heterogeneity and the baseline

hazard has a Weibull spei�ation ( (t) = �t��1) then

F (t1; t2jx) = exp (�[�0(x)℄�(t�1 + t�2 ))

so the two models are observationally distint, even if �0 = 1.

Now let us turn to the seond approah to identi�ation, whih fouses on the

e�et of observed explanatory variables on the individual hazard funtion. The

systemati hazard �0 is identi�ed under very weak onditions if the data ontain

multiple spells with the same value of v. This has been known for some time, for

the reason that a nonparametri estimation method exists for �0 in this setup (see

Kalbeish and Prentie, 1980, and Chamberlain, 1985). In fat, this estimation

method is appliable to a model setup that is more general than the MPH model.

To proeed, it is useful to distinguish between observed explanatory variables x�
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whih do not vary within strata, and observed explanatory variables x whih do

vary within strata. We assume for expositional reasons that the hazard funtion is

multipliative in a part depending on x� and a part depending on x. In partiular,

�(tjx�; x; v) =  (tjx�; v) � �0(x); vjx�; x � G(vjx�; x) (28)

This spei�ation allows for full interation of the values of v and x� with the

elapsed duration t in the hazard funtion. This implies that we allow the baseline

hazard to di�er aross strata (i.e., aross groups of spells with the same v).

Moreover, v; x� and x may be dependent. The basi idea of the estimation method

is that a Cox partial likelihood an be onstruted within strata. For a given

stratum, the partial likelihood depends only on �0, and not on G or  or the

values of v or x�. These likelihoods an be ombined to onstrut an over-all

partial likelihood whih an be used to estimate �0 (see the above referenes for

details).

Clearly, the e�ets of the explanatory variables x� annot be estimated from

this. In other words, to be able to estimate the e�et of an observed explanatory

variable with this approah, it is essential that the values of the variable some-

times di�er aross spells within a stratum. In ase of two spells per stratum, this

amounts to x1 6= x2. To see this, note that within suh a stratum,

Pr(t1 > t2jx1; x2; v) =
�0(x2)

�0(x1) + �0(x2)

whih is only informative on �0 if x1 6= x2.

The within-stratum baseline hazard  as a funtion of t an subsequently

be estimated nonparametrially. Yamaguhi (1986) surveys these methods. Kal-

beish and Prentie (1980) and Ridder and Tunal� (1999) ontain useful expos-

itions on the inlusion of time-varying ovariates.

What does this \strati�ed partial likelihood" estimation approah imply for

the identi�ation of �0 in the MPH model with multi-spell data? This funtion

is identi�ed up to a multipliative onstant if �0;  ; and G in equation (28) sat-

isfy regularity assumptions orresponding to Assumptions 1{4, and if x varies

between spells within strata. Again, we do not need independene of observed

and unobserved explanatory variables, and we do not need an assumption on the

tail of the distribution of the unobservables. Note that the identi�ation result is

61



valid under a spei�ation of the hazard funtion that is muh more general than

the MPH spei�ation.

The approah of the previous paragraphs is partiularly appealing if the in-

dividual v are regarded as inidental parameters. With full ML, suh parameters

an in general not be estimated onsistently if asymptotially the number of strata

goes to in�nity with a �xed number of spells per stratum (Lanaster, 2000a). In

the above approah, however, these parameters anel out of the partial likeli-

hood. Somewhat loosely one may say that if multiple durations are available for

eah v, then duration analysis beomes similar to standard dynami panel data

analysis, where one an get rid of the so-alled \�xed e�ets" before estimating

the other parameters. This raises the question to what extent �rst-di�erening of

the durations within strata an also be applied to get rid of v. It seems that this

is only feasible if the baseline hazard has a partiular funtional-form spei�a-

tion, notably the Weibull spei�ation. Assume that the duration dependene is

desribed by �t��1 for all spells and strata. In addition, assume that v is the same

for all spells in a stratum, and assume for onveniene that �0(xi) = exp(x0i�).

For two spells t1; t2 within a stratum, with observed explanatory variables x1 and

x2, respetively, the di�erene of equations (26) gives

log t1 � log t2 = �
�

�
(x1 � x2) +

"1 � "2
�

Note that "1 � "2 has a fully spei�ed distribution (as the di�erene of two

i.i.d. EV1 random variables). Thus, with Weibull duration dependene, �rst-

di�erening results in an equation from whih the Weibull parameter and the

systemati hazard an be reliably estimated without the need to make any as-

sumption on the unobserved heterogeneity distribution. Indeed, v and x are al-

lowed to be dependent.

The identi�ation results disussed in this subsetion have been of enormous

importane for applied duration analysis. If two observations are available for eah

v then the identi�ation of the model does not require an untestable assumption

on the tail of the unobserved heterogeneity distribution G anymore, and v and

x need not be independent anymore. We only need some fairly innouous regu-

larity assumptions and normalizations (of ourse, in addition to proportionality

assumptions on the hazard funtion). The reent applied literature ontains a

number of studies showing that the estimates of the parameters of interest are
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robust with respet to the funtional-form spei�ation of G, in ase of multiple

observed durations for eah v (see Nielsen et al., 1992, Guo and Rodr��guez, 1992,

G�on�ul and Srinivasan, 1993, and Bonnal, Foug�ere and S�erandon, 1997). These

results are in sharp ontrast to those found for the single-spell model (Setion 5).

It should also be noted that Hahn (1994) �nds that his result on singularity of

the information matrix in the ase of single-spell data (see Subsetion 5.6) does

not arry over to the ase of multi-spell data. Moreover, the strati�ed partial

likelihood estimators are
p
n�onsistent.

We �nish this setion by mentioning an important aveat with multi-spell

data. This onerns the fat that the analysis of multi-spell data is partiularly

sensitive to ensoring. With single-spell data, many types of ensoring are in-

nouous in the sense that their e�et an be aptured by standard adjustments

to the likelihood funtion (see Andersen et al., 1993, reall also the disussion

in Subsetion 4.2). With multi-spell data, one has to be more areful. Consider

the ase where two durations t1 and t2 follow eah other in time, and where the

data are subjet to right-ensoring at a �xed duration after the ommon starting

point of the t1 durations. Then the moment at whih t2 is right-ensored is not

independent from t2 itself. To see this, onsider individuals for whih v is large.

For these individuals, t1 will on average be short. As a result, t2 will on average

start at a relatively early moment. This in turn implies that t2 will often be right-

ensored at a relatively high duration. In sum, t2 and the variable determining the

moment at whih it is ensored are both a�eted by the unobserved harater-

isti v. This violates the standard ensoring assumptions of duration analysis (see

Visser, 1996, for general results, and Keiding, 1998). As a result, standard partial

likelihood estimation methods (like the one above) annot be applied. Moreover,

one annot estimate (harateristis of) the distribution of t2 in isolation from

t1 (see Ridder and Tunal�, 1999, for an informative exposition). With ensoring

in general, �rst-di�erening (like above) is not possible. Finally, the value of t1

may even a�et the probability that the beginning of the seond spell is observed

at all, in whih ase a subsample of individuals for whih both t1 and t2 are ob-

served is seletive (this is even true if there is no unobserved heterogeneity).52 Of

52In a reent working paper, Woutersen (2000) develops onsistent GMM-type estimators

that deal with a number of these problems, while treating unobserved heterogeneity as a �xed

e�et.
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ourse, with ensoring, one may still use standard ML estimation methods with

random e�ets. However, if the realization of t2 is often unobserved then the use

of multi-spell data does not provide muh gain over the use of single-spell data.

In sum, the less ensoring in the data, the larger the advantages of multi-spell

data.

7 An informal lassi�ation of redued-form

multiple-duration models

In general one may think of many di�erent ways to model a relation between

duration variables. In the applied eonometri literature on the estimation of

multiple-duration models, the range of di�erent models is atually not so large.

In this setion we provide a rather informal model lassi�ation that overs most

of the models used in pratie.53 The next setions examine the models in more

detail. It should be stressed that we are not onerned with abstrat point pro-

esses where the durations between events an be related for many reasons (see

e.g. Snyder and Miller, 1991, for a survey). Also, we are not onerned with the

multiple-duration models in engineering where the lifetime of a system depends

on the lifetimes of its omponents. The latter models are often not very useful to

desribe eonomi behavior (although they are an important input in eonomi

analyses of mahine maintenane; see e.g. Ryu, 1993). As we shall see, some of

the models that we onsider are more natural when dealing with suessive spells

in a given state or with suessive spells in di�erent states,54 whereas others

are more natural in the ase of ompeting risks, and yet others are useful in all

these ases. In fat, the reent empirial literature often uses models that simul-

taneously allow for two di�erent types of dependene of the duration variables.

53See Hougaard (1987) for an older lassi�ation, based on statistial model properties.
54Again, what onstitutes a state depends on the appliation at hand (i.e. depends on the

relevant underlying theoretial framework). It is possible that what in one appliation are re-

garded as multiple durations in the same state, are regarded in another appliation as durations

in di�erent states. In pratie, for a given individual and a given de�nition of states, the spei�-

ations for the marginal distributions of di�erent spells in a given state are similar, whereas the

spei�ations for the marginal distributions of spells in di�erent states do not ontain ommon

parameters or funtions.
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The MPH model with multi-spell data (Setion 6) an also be interpreted as a

multiple-duration model, as it spei�es the joint distribution of the durations in

the spells that an individual experienes. We shall see that this spei�ation is in

fat a speial ase of a popular type of multiple-duration model. For expositional

reasons we shall restrit ourselves to two duration variables throughout the re-

mainder of this hapter.

\Lagged" durations

The �rst popular type of dependene onerns an e�et of a realized past duration

on the urrent hazard. This type of dependene was introdued by Hekman

and Borjas (1980). Suppose that two durations t1 and t2 eah follow their own

PH model, with �1(t1jx1) =  1(t1)�0;1(x1) and �2(t2jt1; x2) =  2(t2)�0;2(x2)�(t1),

where t2 starts at or after the moment at whih t1 is realized. Basially, this

dependene is modeled by inluding t1 as an additional ovariate in the hazard

for t2. Usually, the underlying eonomi theory provides a ausal interpretation

for this type of dependene.55 Beause of the analogy to a regression model with

lagged endogenous variables among the explanatory variables, this dependene

is sometimes alled \lagged-duration dependene". Obviously, di�erent types of

restritions an be imposed on the model determinants �0;1; �0;2;  1; and  2. For

example, if t1 and t2 denote durations in the same state then it may be imposed

that  1 �  2, x2 = x1, and/or �0;2(x2) = �0;1(x1).

Instead of inluding the value of t1 in the individual hazard for t2, one may

also use an indiator of whether the individual has been in the state assoiated

with t1 during the year before the start of t2, or indeed any other realization of

past behavior. In applied labor eonomis, these types of dependene have been

inorporated in redued-form models for the e�ets of labor market programs

on subsequent unemployment durations and employment durations. It should be

stressed however that these studies also allow for other dependenies; see below

for examples.

Reently, in �nanial eonometris, lagged-duration dependene models have

55Here and elsewhere, the relation between the duration variables an be formulated by using

the onept of Granger-nonausality. However, for the basi models examined in this hapter,

there is no gain from doing this (see Abbring, 1998). See Florens and Foug�ere (1996) for a

formal analysis of ausality in more general ontinuous-time proesses.
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been used for the analysis of durations between suessive market events suh as

a buy or sell of a seurity on a stok market (see e.g. Engle and Russell, 1998,

and Bauwens and Giot, 1998). In these models, the hazard funtion of the ith

duration depends on the realizations of previous durations by way of an autore-

gressive sheme. The baseline hazard is assumed to have a Weibull spei�ation

with a single ommon parameter for all durations.

Shoks

The seond popular type of dependene onerns situations where two durations

our simultaneously, and where the realization of one duration variable has an

immediate e�et on the hazard of the other duration variable. This type of de-

pendene has been introdued by Freund (1961). To fous the mind, suppose that

the realization of t1 a�ets the level of the hazard of t2 afterwards. This an be

aptured by the inlusion of an indiator of whether t1 is realized, as a time-

varying regressor in the hazard spei�ation of t2. For example, the hazard of t2

an be spei�ed as  2(t2) exp(x
0
2�2+ ÆI(t1 < t2)), where I(.) denotes the indiator

funtion, whih is 1 if its argument is true and 0 otherwise. From Subsetion 4.2

we know that suh a spei�ation requires onditions on the exogeneity of t1.

Basially, t1 needs to be weakly exogenous, and antiipation by the individual

of the future realization of t1 is ruled out. Note that the individual is allowed to

know the (determinants of the) probability distribution of t1.

The underlying eonomi theory often provides a ausal interpretation for

the above type of dependene. Obviously, t1 and t2 denote durations in di�erent

states, so it does not make sense to impose restritions aross the two hazards.

In pratie, it may be too restritive to assume that the realization of t1 merely

a�ets the level of the hazard of t2. More generally, the realization may be allowed

to a�et the whole shape of the hazard of t2 after the realization of t1.
56 In applied

eonometris, suh types of dependene have been inorporated in redued-form

models for the e�et of ertain treatments57 on worker labor-market behavior;

56In an empirial analysis of panel survey attrition, Van den Berg, Lindeboom and Ridder

(1994) examine a slightly di�erent model in whih there is a positive probability that t2 is

realized immediately after realization of t1. Here, t1 and t2 are the duration until the individual

respondent makes a transition to another labor market state, and the duration until attrition

from the panel, respetively.
57In biostatistis, �0 is often alled the treatment e�et if x aptures whether the subjet has
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we return to this below. In addition, the model desribed above an be seen as

a speial ase of models in whih an individual experienes di�erent stohasti

proesses whih a�et eah other by way of shifts in the hazard for one proess if

the other proess generates an event. The latter type of models have been used to

study the interation between marital status, number of hildren, health status,

and labor market status. For example, if an unemployed woman marries then

her transition rate to employment may drop. It should again be stressed that

these studies often also allow for other types of dependene between the duration

variables; see below.

Related unobserved determinants

The third type of dependene between duration variables onerns dependene by

way of their unobserved determinants. Spei�ally, onsider two durations t1 and

t2 whih eah follow their own MPH model, so �i(tijxi; vi) =  i(ti)�0;i(xi)vi, with

i = 1; 2. Then the dependene between t1 and t2 given x is modeled by allowing v1

and v2 to be related. In Subsetion 8.1 below we provide a more preise de�nition.

This multivariate extension to the MPH model is alled the Multivariate Mixed

Proportional Hazard (MMPH) model. This has in fat been the most popular

multiple-duration model by far.58 Note that the relation between the durations

is spurious to the extent that it results from the fat that we do not observe vi.

The MMPH model applies to ases where the two durations our simultan-

eously (possibly with the same starting point) as well as to ases where they our

suessively. Again, di�erent types of restritions an be imposed on the model

determinants �0;1; �0;2;  1;  2, and the joint distribution G(v1; v2), depending on

the extent to whih t1 and t2 represent durations in the same state. Clearly, the

MPH model of Setion 6 with a single state and multi-spell data is the speial

ase with �0;1 = �0;2;  1 =  2, and v1 = v2.

The MMPH model is regarded as a onvenient and exible model for depend-

ent durations. Of ourse, there are often good reasons to suspet the presene

of important related unobserved determinants, and by now there is an abund-

ant applied literature in whih MMPH models are estimated. In the eonometri

reeived a treatment at the beginning of the spell. Here, we avoid that terminology, and we

reserve the term \treatment" for treatments ourring during a spell.
58Flinn and Hekman (1982b) provide an early analysis of this model.
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ontributions to this literature, the variety of types of states and durations that

are onsidered is vast. Flinn and Hekman (1982b, 1983), Coleman (1990), and

Rosholm (1997) estimate MMPH models for the durations of unemployment, em-

ployment, et. in order to study transition rates between di�erent labor market

states. Generally, the unobserved determinants of the durations spent in di�erent

states are allowed to be related, and the unobserved determinants of di�erent

durations spent by an individual in the same state are assumed to be idential.

In their studies of attrition in longitudinal panel survey data, Van den Berg,

Lindeboom and Ridder (1994), Carling and Jaobson (1995) and Van den Berg

and Lindeboom (1998) estimate MMPH models for the joint durations of labor-

market spells (like a spell of unemployment or a job spell) and the duration of

panel survey partiipation. Lillard and Panis (1998) inlude attrition in a similar

way in their model for the joint durations of marriage, non-marriage, and life.

Note that this approah to attrition is in line with the popular modeling setup

for sample seletion introdued by Hekman (1979).

As we saw in Setion 6, MPH models are sometimes estimated under the

assumption that the unobserved heterogeneity term is idential aross di�erent

physial individuals within some group or stratum. Sastry (1997) extends this

setup by allowing eah individual to belong to two groups with di�erent aggreg-

ation levels (families and towns). There is unobserved heterogeneity aross eah

type of group. This e�etively amounts to an MMPH spei�ation for the dur-

ations of members of di�erent families living in the same town. Similarly, the

approah in studies on lifetime durations where the unobserved heterogeneity

terms are assumed to be idential aross siblings an be generalized to allow v1

and v2 for siblings to be a sum of a ommon determinant and an independent

person-spei� omponent (see e.g. Petersen, 1996, Yashin and Iahine, 1997, and

Zahl, 1997, for appliations).59 Suh a spei�ation for G has gained less popular-

ity in eonometris, for the obvious reason that in eonometri appliations the

assoiation of unobserved heterogeneity to geneti fators is less ompelling.

59The appliations of this paragraph illustrate a disadvantage of the \multi-state / multi-

spell" terminology: sometimes two spells are in the same state but one does not want to impose

that the unobserved heterogeneity terms are idential, so that the multi-spell setup of Setion

6 does not apply.
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Combinations of dependenies

The presene of related unobserved determinants is partiularly important if one

is interested in one of the other two types of dependene that we desribed above.

The estimate of the ausal e�et will be biased if one ignores the spurious depend-

ene that results from the related unobserved determinants. To deal with this,

the empirial model should take aount of this spurious dependene. The model

should allow both for a ausal e�et and for related unobserved heterogeneity.

As examples of a ombination of lagged duration dependene and related

unobserved heterogeneity, see Hekman, Hotz and Walker (1985), who allow

\lagged" durations between the births of previous hildren to a�et the hazard

of the duration of the urrent birth interval, and who allow for orrelated unob-

served heterogeneity as well (see Omori, 1997, and Lanaster, 2000b, for other

examples). Lillard (1993), Lillard and Panis (1996), Abbring, Van den Berg and

Van Ours (1997), Eberwein, Ham and LaLonde (1997), and Van den Berg, Van

der Klaauw and Van Ours (1998) analyze models where the realization of one

duration variable has an immediate e�et on the hazard of the other duration

variable, allowing for related unobserved heterogeneity in order to deal with se-

letivity. Let us examine them in somewhat more detail. Abbring, Van den Berg

and Van Ours (1997) and Van den Berg, Van der Klaauw and Van Ours (1998)

study the e�et on the exit rate out of unemployment of a punishment for insuÆ-

ient searh e�ort. The duration until punishment is modeled by way of an MPH

model, and the exit rate out of unemployment permanently shifts to another

level at the moment the punishment is applied. Lillard (1993) estimates a model

for the joint durations of marriage and time until oneption of a hild, and his

model allows the rate at whih the marriage dissolves to shift to another level at

moments of hild birth. Lillard and Panis (1996) estimate a model on the joint

durations of marriage, non-marriage, and life, and their model allows the death

rate to shift to another level at moments of marriage formation and dissolution.

Eberwein, Ham and LaLonde (1997) estimate a (disrete-time) model for the ef-

fet of partiipation in training programs on individual labor market transitions,

and they allow the exit rate out of unemployment to shift to another level at the

moment of inow into the program. See Van den Berg, Holm and Van Ours (1999)

for a similar analysis in ontinuous time. In all these appliations, the duration

variable t1 needs to satisfy the exogeneity onditions of Subsetion 4.2 for given
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values of the unobserved heterogeneity terms. This rules out antiipations of the

realizations of t1, but the individual is allowed to know the (determinants of the)

probability distribution of t1.

In the applied literature on the e�ets of training on unemployment durations,

\training" is often regarded to be a separate labor market state, and the e�et

of training on subsequent labor market transitions an then be aptured by a

model with lagged-duration dependene (or a model where the fat that one has

had any training is allowed to a�et subsequent transitions). In order to deal

with seletivity of those who enrol in training, it is important to allow for related

unobserved heterogeneity terms a�eting the inow into training as well as the

other transition rates. Gritz (1993) and Bonnal, Foug�ere and S�erandon (1997)

ontain sophistiated examples of suh analyses. Ham and LaLonde (1996) use

experimental data to estimate models for the e�ets of training on individual

labor market transition rates.

In the absene of unobserved heterogeneity, the spei�ation, identi�ation,

and ML estimation of models with lagged-duration dependene is relatively straight-

forward. The same holds for models with hanges in the hazard of one duration

in response to realization of the other duration (given appropriate assumptions

on the diretion of the ausality; see Florens and Foug�ere, 1996). However, mod-

els with related unobserved heterogeneity terms are less transparent. In the next

setion we therefore examine MMPH models in detail. Subsequently, in Setion

9, we briey examine the models where related unobserved heterogeneity is om-

bined with a \ausal" e�et of one duration on the other (that is, we examine a

ombination of lagged duration dependene and unobserved heterogeneity, and a

ombination of a shift in the hazard and unobserved heterogeneity).

Some theoretial onsiderations

We �nish this setion by stressing that, like in Setion 4, it is often not lear

to what extent the redued-form spei�ations of the dependene between two

durations an be justi�ed by eonomi-theoretial models. This is partiularly

true for models where the hazard of one duration immediately hanges in response

to the realization of the other duration. In many ases, individuals may antiipate

the realization of the other duration, and the moment at whih the antiipation

starts is often unobserved. In appliations this has to be examined arefully.
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In the analysis of MMPH models, as a rule, the assumed parametri family

of the joint unobserved heterogeneity distribution G(v1; v2) treats v1 and v2 in

a symmetri way: given the unknown parameters of G, the role of v1 and v2 in

G(v1; v2) an be interhanged without hangingG. In partiular, ifG is ontinuous

then the supports of v1 and v2 are assumed to be the same, and ifG is disrete then

the numbers of points of support are assumed to be the same for v1 and v2. It is

sometimes diÆult to justify suh symmetri distributions with eonomi theory.

If, aording to the theory, individuals improve their situation when ending one

spell and starting another, then the harateristis assoiated with the seond

spell should be \superior" in some sense to those of the �rst spell. If v1 represents

the harateristis of the �rst spell and v2 of the seond, then this suggests that the

support of v2 should depend on the realization of v1. Consider for example the on-

the-job searh model disussed in Subsetion 5.5.3. If one observes two onseutive

job spells and if the wages are unobserved, then the unobserved heterogeneity

term of the seond spell exeeds the term of the �rst spell. Unfortunately, suh

bivariate heterogeneity distributions have not yet been studied (see Koning et al.,

2000, for an appliation in a strutural analysis of an on-the-job searh model).

Finally, we address whether the hazards of di�erent durations of the same

individual depend on the same set of explanatory variables or not. Eonomi

theory often predits that both hazards depend on the individual's behavior, and

that the forward-looking individual's optimal strategy depends on all strutural

determinants. For example, in a job searh model with two possible employment

destination states, the deision on whether to aept a job o�er depends on the

arrival rates and wage o�er distributions of both types of employment, regardless

of the employment type of the atual o�er (see Thomas, 1998). In suh ases, if the

observed explanatory variables are harateristis of the individual himself, then

it does not make sense to exlude elements of x from one hazard that are inluded

in the other hazard. In other words, in suh ases, x1 = x2 (note inidentally that

this provides an argument against the assumption that unobserved heterogeneity

is independent aross spells for a given individual; see also Lillard, 1993). In the

event that the researher observes a determinant of one of the hazards whereas

this determinant is assumed to be unobserved by the individual, then it makes

sense to inlude this determinant only in the orresponding hazard. Finally, if one

hazard is mehanial and independent of the individual's behavior then obviously

71



it does not need to depend on the determinants of the other hazard (see Van den

Berg, 1990b, and Ryu, 1993, for examples).

8 The Multivariate Mixed Proportional Haz-

ard model

8.1 De�nition

In this subsetion we de�ne the MMPH model. Next, Subsetion 8.2 deals with

identi�ation of this model under di�erent situations with respet to the timing of

the two underlying spells. We assume that the situation is either suh that both

durations always start at exatly the same point of time, or that one duration ne-

essarily follows the other. In Subsetion 8.3 we disuss parametri spei�ations

for the joint distribution of unobserved heterogeneity and the degree of exibility

of the orresponding models.

For the sake of onveniene, we again use the term \individual" to denote the

subjet that experienes ertain spells. In the �rst situation with respet to the

timing of the spells (starting at the same time) we onsider the population of

individuals in the inow into the states orresponding to the duration variables,

whereas in the seond situation (suessive durations) we onsider the population

of individuals in the inow in the state orresponding to the �rst duration. Flinn

and Hekman (1982b), Chesher and Lanaster (1983), and Ham and LaLonde

(1996) onsider less \ideal" sampling designs.

We assume that all individual di�erenes in the hazard funtion of t1 an be

haraterized by observed explanatory variables x and unobserved harateristis

v1. Similarly, all individual di�erenes in the hazard funtion of t2 an be har-

aterized by observed explanatory variables x and unobserved harateristis v2.

(Of ourse, one may impose exlusion restritions on the set of elements of x that

is allowed to a�et the systemati hazard �0;i(x) assoiated with exit i.) For an

individual with explanatory variables x; v1; v2, the hazard funtions of t1 and t2

onditional on x; v1; v2 are denoted by �1(t1jx; v1) and �2(t2jx; v2). The MMPH

model is now de�ned by

De�nition 2 : MMPH model. There are funtions  1;  2; �0;1; �0;2 suh that

for every t1; t2; x; v1; v2 there holds that
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�1(t1jx; v1) =  1(t1) � �0;1(x) � v1
(29)

�2(t2jx; v2) =  2(t2) � �0;2(x) � v2

For onveniene, we take  1;  2; �0;1; �0;2; v1; v2; and the distribution G of v1; v2 in

the population to satisfy the regularity assumptions that orrespond to Assump-

tions 1{4 for  ; �0; v; G in the MPH model.

Conditional on x; v1; v2, the durations t1 and t2 are independent. Conditional

on x, the variables t1 and t2 are only dependent if v1 and v2 are dependent. So,

in the ase of independene of v1 and v2, the model redues to two unrelated

ordinary MPH models for t1 and t2.

In terms of a regression spei�ation with �0;i(x) = exp(x0�i), this model an

be rewritten as

log
Z t1

0

 1(u)du = �x0�1 � log v1 + "1

(30)

log
Z t2

0

 2(u)du = �x0�2 � log v2 + "2

where "1 and "2 are i.i.d. EV1 distributed, but where v1 and v2 may be related.

Now onsider the joint distribution of t1 and t2 given x. The joint density

f(t1; t2jx) an be expressed as

f(t1; t2jx) =
Z
1

0

Z
1

0

f1(t1jx; v1)f2(t2jx; v2) dG(v1; v2)

in whih we already impliitly assume that v1; v2 are independent of x, and in

whih the probability density funtion of tijx; vi is for onveniene denoted by

fi(tijx; vi). The latter density an of ourse be expressed in terms of the de-

terminants of �i (see Setion 2). Let zi(ti) denote the integrated baseline hazard

assoiated with ti. The joint survivor funtion of t1 and t2 an then be expressed

as

F (t1; t2jx) =
Z
1

0

e�z1(t1)�0;1(x)v1�z2(t2)�0;2(x)v2dG(v1; v2)

73



In many appliations, the individual likelihood ontribution is based on the dens-

ity above (that is, if the unobserved heterogeneity terms are not treated as in-

idental parameters). In terms of panel data analysis, this means that v1; v2 are

treated as \random e�ets" when estimating the model with Maximum Likeli-

hood.

8.2 Identi�ation results

In this subsetion we onsider identi�ation results for the MMPH model. It is

important to stress that no parametri funtional form assumptions are made on

the underlying funtions �0;i;  i and G, so, as in Subsetion 5.2, we are onerned

with nonparametri identi�ation.

8.2.1 Competing risks

Reall from Subsetion 8.1 that we onsider two di�erent situations with respet

to the timing of the two spells. In the �rst situation, both spells start at the

same point of time for a given individual, and the individual is observed until the

�rst duration is ompleted. This is alled a ompeting-risks model, as one may

envisage the individual having two options to leave the urrent state, and the

realization of one option is neessary and suÆient for leaving the state. In the

seond situation with respet to the timing of the spells, the two spells annot

overlap. Moreover, in the seond situation both durations an be followed until

ompletion, so there is more information available than in the �rst situation (see

Subsetion 8.2.2 below).

In the ompeting-risks setting, the data provide information on minft1; t2g
and on argmini ti (i.e. on whih duration is the one that ends �rst). So, as-

sume that the data provide the distribution of this \identi�ed minimum". It is

well known that this does not suÆe to identify the most general ompeting-

risks model (with an arbitrary joint distribution for t1; t2, without ovariates).

In partiular, for every model with dependent t1; t2 there is an observationally

equivalent model with independent t1; t2 (see e.g. Lanaster, 1990).

Now let us assume that t1 and t2 are generated by an MMPH model with

regularity assumptions orresponding to Assumptions 1{4. As in Subsetion 5.2,

some additional assumptions are needed for identi�ation. These inlude the equi-
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valents of Assumption 5 (so x is independent of v1; v2), Assumption 7 (normal-

izations), and Assumption 8 (E(vi) < 1). In addition, we need to strengthen

Assumption 6 on the dispersion of x,

Assumption 9 : Variation in observed explanatory variables in the ompeting-

risks setting. The funtions �0;1(x); �0;2(x) attain all values in a set (0; �0;1) �
(0; �0;2) with 0 < �0;1; �0;2, when x varies over the set X of possible values of x.

If �0;i(x) = exp(x0�i) then suÆient for this is that x has two ontinuous ovariates

whih a�et both hazards �i but with di�erent oeÆients for di�erent i, and

whih are not perfetly ollinear. Moreover, in the population, these ovariates

must attain all values ranging to minus in�nity.

Hekman and Honor�e (1989) prove the nonparametri identi�ation of the

model under these assumptions. In fat, they strengthen Assumption 9 by taking

�0;i =1, beause they examine a lass of models that is somewhat more general

than the lass of MMPH models (see Abbring and Van den Berg, 2000b). In

any ase, note that Assumption 9 is stronger than Assumption 6 on the range of

values that �0 attains in the MPH model. This is not surprising. However, it is

important to note that the identi�ation does not require exlusion restritions

on the hazard spei�ation of either duration. Moreover, identi�ation does not

require parametri funtional form restritions on the distribution of unobserved

heterogeneity. In the ase of binary data on the \identi�ed minimum" (i.e., it is

observed whih duration ends �rst but not when) suh restritions are neessary

to ahieve identi�ation. This illustrates the fat that the timing of events in

duration data provides a valuable soure of information onerning the underlying

model.

It is interesting to obtain some insight into the identi�ation of whether the

durations are dependent or not, sine this distinguishes the above identi�ation

result from the earlier literature in whih ompeting risks models without ovari-

ates were examined. In the sequel of this subsetion we use T1; T2 to denote the

random duration variables, and t1; t2 to denote realizations of these. We de�ne

��

1(t1jx; T2 > t1)

to be the hazard of the duration T1 at the value t1, onditional on x and ondi-

tional on the duration T2 exeeding t1. More generally, the hazard ��
1(t1jx; T2 > t2)
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orresponds to the onditional distribution of T1jx; T2 > t2. We evaluate this

hazard for given t1 and t2, and in fat we take t2 = t1. Obviously, the hazard

��2(t2jx; T1 > t2) an be de�ned analogially. It is important that the \ondi-

tional" hazards ��1(t1jx; T2 > t1) and ��2(t2jx; T1 > t2) are observable quantities,

as they an be expressed in terms of the distribution of the data. (Note that the

\marginal" hazards �i(tijx) are unobserved due to the ompeting risks setting.)

If v1 and v2 are independent, then

��1(t1jx; T2 > t1) = �1(t1jx) and ��2(t2jx; T1 > t2) = �2(t2jx)

The assumption in Hekman and Honor�e (1989) on the values that an be at-

tained by �0;i(x) implies that �0;1(x) and �0;2(x) are not perfetly related, and

that there is some independent variation in both. As a result, if v1 and v2 are

independent then �0;2(x) does not a�et ��1(t1jx; T2 > t1), and �0;1(x) does not

a�et ��2(t2jx; T1 > t2).

Now let us examine what happens if v1 and v2 are dependent. It is straight-

forward to show that

��1(t1jx; T2 > t1) =
Ev

h
�1(t1jx; v1) exp

�
� R t1

0 �1(ujx; v1)du�
R t1
0 �2(ujx; v2)du

�i
Ev

h
exp

�
� R t1

0 �1(ujx; v1)du�
R t1
0 �2(ujx; v2)du

�i

with �i as in (29), and with Ev denoting the expetation with respet to the

bivariate distribution G(v1; v2). If we di�erentiate this with respet to �0;2(x)

then the resulting expression has the same sign as

�Cov(v1; v2jx; T1 > t1; T2 > t1)

(provided that t1 > 0). If v1 and v2 are dependent then in general there are many

values of t1 suh that the above expression is nonzero.

In sum, the derivative of ��1(t1jx; T2 > t1) with respet to �0;2(x) and its mirror

image for t2 are informative on the dependene or independene of the unobserved

heterogeneity terms. This is intuitively very plausible. If the systemati hazard of

t2 does not diretly a�et the individual hazard of t1 but does a�et the observed

hazard of t1 then this indiates that there is a spurious relation between the

durations by way of their unobserved determinants. It should again be stressed

that this is not based on an exlusion restrition in the usual sense of the word. All

explanatory variables are allowed to a�et (the means of) both duration variables
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{ they are just not allowed to a�et the whole duration distributions in the same

way.60

The above results are based on the availability of \single-spell" data. In

the present ontext, this means that for eah individual in the sample there

is one observation of the \identi�ed minimum" (whih onsists of minft1; t2g and

argmini ti). Now suppose that the individual-spei� value of the v1; v2 pair is in-

variant over time. In a reent working paper, Abbring and Van den Berg (2000b)

show that some of the assumptions made by Hekman and Honor�e (1989) an be

weakened substantially if the data provide multiple observations on the identi�ed

minimum for eah individual.

8.2.2 Suessive durations

If the two spells are suessive, and both durations an be followed until omple-

tion, then the data provide the joint distribution F (t1; t2jx). In fat, it is merely

for expositional reasons that we take the spells to be suessive: if they our

(partly) simultaneously and are both observed until ompletion then the results

of this subsetion are valid as well, provided that the durations satisfy the model

as de�ned in Subsetion 8.1.

The most general model spei�ation does not impose restritions aross the

marginal duration distributions, so it allows for  1 6=  2; �0;1 6= �0;2; and v1 6= v2.

For both marginal hazard funtions in this model we make regularity assumptions

orresponding to Assumptions 1{4. In addition, we adopt the equivalents of the

Assumptions 5{8 that were made to identify the MPH model. Honor�e (1993)

shows that under these assumptions the MMPH model is identi�ed. (Assumptions

6 and 8 may be jointly replaed by Assumptions 6b and 8b.)

This result is not surprising, beause the data on tijx identify the determin-

ants of the MPH model for ti (whih are  i; �0;i, and the marginal distribution of

vi), provided that the assumptions for identi�ation of this MPH model are satis-

�ed. The relation between v1 and v2 is subsequently identi�ed from the observed

relation between t1 and t2 given x.

Sometimes it makes sense to impose a priori restritions aross the mar-

60Of ourse, the �0;i(x) are not diretly observed. Hekman and Honor�e (1989) identify these

by examining data at zero durations. Whether this an be used to onstrut a useful test

statisti on independene remains to be seen.
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ginal duration distributions. The most restritive spei�ation imposes that  1 =

 2; �0;1 = �0;2; and v1 = v2. We already know from Setion 6 that this model

is identi�ed under weak assumptions. Now let us onsider an intermediate ase

in whih we impose that v1 = v2 but allow the baseline hazards  1 and  2 to

be di�erent. In addition, we do not assume that there are observed explanatory

variables x. In other words, the analysis is onditional on a given value of x, and

we allow for full interation of the atual value of x with the model determinants:

 i may depend on x in an unspei�ed way, and v and x may be dependent in the

population (from this point of view we do not onsider an \intermediate" ase,

as this generalizes the MMPH spei�ation). Thus,

�i(tjx; v) =  i(tjx) � v; vjx � G(vjx)

This inludes of ourse as a speial ase that  i(tjx) an be written as  i(t)�0;i(x).

We make regularity assumptions orresponding to Assumptions 2{4. Honor�e

(1993) shows that this model is identi�ed, provided that a normalization is im-

posed on the integrated baseline hazard (analogial to Assumption 7). Note that

we do not need to make assumptions orresponding to the previously made As-

sumptions 5, 6, and 8. Perhaps the most important issue here is that identi�ation

does not require independene of v and x. In many appliations, suh independ-

ene is diÆult to justify. Like in Setion 6, if unobserved heterogeneity values

are idential aross di�erent durations then the model is similar to a standard

dynami panel data model.

8.3 Spei�ation of the bivariate unobserved heterogen-

eity distribution

8.3.1 Dimensionality

The types of justi�ations used for parametri funtional forms of G in MPH

models are often unavailable for MMPH models. This is partiularly true for the

hoie of a spei�ation for the dependene of v1 and v2. In this subsetion we

fous on the hoie of the dimensionality of the distribution of G (or more aur-

ately, the dimension of the support of G). In Subsetion 8.3.2 we then examine

the types of dependene that an be generated by di�erent parametri funtional

forms for a G with a given dimensionality.
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The so-alled \one-fator loading spei�ation" has been a popular spei�-

ation for a bivariate distribution of unobserved heterogeneity terms in MMPH

models (see Flinn and Hekman, 1982b, 1983, for early appliations, and Hek-

man, Hotz and Walker, 1985, Hekman and Walker, 1987, 1990, and Bonnal,

Foug�ere and S�erandon, 1997, for subsequent appliations). This spei�ation re-

dues the dimensionality of the distribution G from 2 to 1. In partiular, it as-

sumes that there is a univariate random variable z suh that

vi = exp(�i + iz) i = 1; 2 (31)

(Note that this z does not refer to the integrated baseline hazard here.) This

spei�ation an be straightforwardly generalized to a higher number of di�erent

durations as well as a higher dimension of the random variable z. If z is two-

dimensional then we obtain a \two-fator loading spei�ation", et.

The two (related) advantages of the \fator loading spei�ations" are (1)

they restrit the number of unknown parameters, leading to a sparse spei�a-

tion, and (2) they limit the omputational burden of the estimation of the model.

The number of parameters related to G equals the number of parameters of

the distribution of z, plus the number of �i and i parameters, minus normaliza-

tions. This typially inreases linearly with the number of di�erent durations n. If

v1; : : : ; vn has a genuine multivariate distribution then the number of parameters

related to G typially inreases quadratially with n. To illustrate the ompu-

tational advantage, onsider the ase where log v1; : : : ; log vn has a multivariate

normal distribution. The evaluation of the joint density funtion of t1; : : : ; tn then

requires the evaluation of an n�dimensional integral. However, if the vi are re-

lated by a one-fator loading spei�ation then the integral is one-dimensional.

See for example Bonnal, Foug�ere and S�erandon (1997), where n = 8. Note that

omputational burden is less of a problem in the ase of disrete vi and n smaller

than, say, 4.

Hougaard (1987) stresses that it is too restritive to assume that v1 � v2

if the orresponding spells do not onern the same state. If (i) v1 � v2, and

(ii) both durations are always observed, and (iii) eah duration is desribed by

an identi�ed MPH model, then the full unobserved heterogeneity distribution

is ompletely identi�ed from data on only one of the durations. We now show

that somewhat similar problems may arise in the ase of a one-fator loading

spei�ation for G.
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Indeed, the main disadvantage of the one-fator loading spei�ation on-

erns the relation it imposes on the marginal duration distributions on the one

hand, and the dependene of the durations on the other. If Var(v1) > 0 and

Var(v2) > 0 then it automatially follows that Cov(v1; v2) 6= 0. So if the data

provide evidene for unobserved heterogeneity in the marginal distributions of t1

and t2, then the model implies that these durations must be dependent. Simil-

arly, if the durations are independent, then the model implies that there is no

unobserved heterogeneity for at least one of the durations. If the dependene

between the durations hanges, then neessarily the marginal duration distribu-

tions hange as well. Lindeboom and Van den Berg (1994) show in detail that

these may amount to serious restritions on the spei�ation of the full model.

To illustrate this issue, suppose that the distribution of z belongs to a para-

metri family of distributions with two parameters: a loation parameter � and

a sale parameter � (for example, z has a normal distribution with parameters �

and �). Then

z = �+ �ez;
where ez has a ompletely spei�ed distribution. By substituting this into (31),

it is lear that we an only identify �1 + 1�, �2 + 2�, 1�, and 2�. This

implies that in e�et we only have two parameters at our disposal to apture

the 3 seond moments of log v1; log v2 (whih are Var(log v1), Var(log v2), and

Cov(log v1; log v2)).

8.3.2 The dependene between the durations

In this subsetion we examine the dependene of the two duration variables in the

MMPHmodel. For this purpose we use some summary measures of the assoiation

between two random variables. For a given assoiation measure we fous on two

issues: �rst, whih range of values of this assoiation measure an be attained by

the MMPH model in general, and seondly, to what extent is this range further

narrowed if G is assumed to belong to spei� families of distributions. The �rst

issue is of importane for a omparison of the MMPH model to other models for

the dependene between duration variables. The seond issue is of importane for

a omparison of the exibility of di�erent families of heterogeneity distributions,
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and to obtain insight into the range of bivariate models that an be generated by

a spei� G. The results in this subsetion are from Van den Berg (1997).

The regression-type spei�ation of the MMPH model (see equation (30))

suggests that Corr(log z1(t1); log z2(t2)jx) may be an interesting summary meas-

ure of the assoiation between t1 and t2. Unfortunately it turns out that for our

purposes it is not, beause it an attain every value in (�1; 1) for given baseline

hazards, by hoosing an appropriate G. Moreover, it an attain every value in

(�1; 1) within the popular parametri families of distributions for G. Consider

instead Corr(t1; t2jx), and assume for the moment that the baseline hazards are

onstant. The orrelation of the duration variables is informative on the strength

of the linear relationship between these variables. It is a ommonly used measure

that is readily understood. Here, it equals

Corr(t1; t2jx) =
Cov( 1

v1
; 1

v2
)

Q2
i=1

�
Var( 1

vi
) + E( 1

v2
i

)

�1=2 (32)

Note that it does not depend on x and that its sign equals the sign of Corr(1=v1; 1=v2).

Van den Berg (1997) shows that

�1

3
< Corr(t1; t2jx) <

1

2

regardless of the values of �0;1(x) and �0;2(x), and regardless of the shape of

G(v1; v2) (but provided that the right-hand side of (32) exists). The inequalities

are sharp in the sense that they an be approahed arbitrarily losely by hoosing

appropriate G.

The result above (and most of the results below) an be easily generalized to

models with Weibull baseline hazards. In that ase, the upper and lower bound

depend on the parameters of the baseline hazard, but they are always stritly

between �1 and 1, and the lower bound is always loser to zero than the upper

bound.61

In the empirial literature, the most frequently used families of distributions

for v1; v2 are (1) the family of bivariate disrete distributions with two points of

61Similar results an be derived for bivariate aelerated failure time models and bivariate

duration models in disrete time, notably the disretized (i.e. rounded-o�) bivariate MPHmodel

and the rather popular bivariate disrete-time duration model in whih the exit probabilities

have logisti spei�ations.
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support for v1 and for v2, and (2) the family of bivariate normal distributions

for log v1; log v2. These families inlude as speial ases the one-dimensional dis-

tributions with perfet orrelations (these an be represented by the one-fator

loading spei�ation (31)). Coleman (1990), Van den Berg, Lindeboom and Rid-

der (1994), Carling and Jaobson (1995), and Van den Berg and Lindeboom

(1998) adopt multivariate disrete distributions for G,62, whereas Butler, Ander-

son and Burkhauser (1986), Lillard (1993), Xue and Brookmeyer (1996), Lillard

and Panis (1996, 1998), and Ng and Cook (1997) adopt multivariate normal

distributions.63 It turns out that in the disrete ase, every value in (�1=3; 1=2)
an be attained. By impliation, this is also true in the ase of more than two

points of support for eah vi. In the normal ase, Corr(t1; t2jx) an only attain

values in [�3 + 2
p
2; 1=2), where the lower bound equals about �0:17.

The lower bound �1=3 is attained for a disrete distribution for v1; v2 suh

that Pr(v1 = 1; v2 = 1) = Pr(v1 = 1; v2 = 2) = 1=2, with 0 < 1; 2 < 1.64

In that ase, the bivariate distribution of t1; t2jx is suh that, with probability

1=2, t1jx is zero and t2jx has an exponential distribution, and with probability

1=2 this holds with t1 and t2 interhanged. We onlude that in an MMPH model

these (and similar) duration distributions annot be generated if log v1; log v2

has a normal distribution, whih may be a disadvantage of the latter if one is

interested in a exible spei�ation.65

62Engberg, Gottshalk and Wolf (1990) estimate a bivariate disrete-time duration model in

whih the individual per-period exit probabilities are logisti funtions of  i(ti)�0;i(x)vi, and in

whih G has a bivariate disrete distribution. Meghir and Whitehouse (1997) estimate a similar

disrete-time model, with a genuine bivariate disrete distribution, but with probit spei�ations

for the exit probabilities. Hekman, Hotz and Walker (1985), Hekman and Walker (1987, 1990)

and Gritz (1993) adopt disrete distributions for z in a one-fator loading spei�ation. Card

and Sullivan (1988), Mroz and Weir (1990), Ham and LaLonde (1996) and Eberwein, Ham and

LaLonde (1997) estimate disrete-time bivariate duration models with logisti probabilities and

a one-fator loading spei�ation for z with a disrete distribution.
63Flinn and Hekman (1982b, 1983) and Bonnal, Foug�ere and S�erandon (1997) adopt normal

distributions for z in a one-fator loading spei�ation. In a sensitivity analysis, the latter study

also adopts a disrete distribution for z.
64This should not be interpreted as an advantage of disrete random variables for v1; v2

vis-�a-vis ontinuous random variables, for one an onstrut families of bimodal ontinuous

distributions for G suh that �1=3 an be approahed arbitrarily losely.
65Butler, Anderson and Burkhauser (1989) assume v1; v2 to have a bivariate disrete distri-

bution with points of support that are �xed in advane. This means that the only parameters
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For the general model as well as within the parametri families disussed

above, the distributions that give the largest and smallest possible value of

Corr(t1; t2jx) are suh that log v1 and log v2 are perfetly orrelated. This means

that the range of values for Corr(t1; t2jx) is the same as in the ase of a one-fator

loading model (see equation (31)) with an appropriate distribution of z. In other

words, a redution of the lass of G to one-fator loading spei�ations does not

further restrit the range of values that Corr(t1; t2jx) an attain.66 From this point

of view, one-dimensional random variation in the unobserved heterogeneity terms

is suÆient for maximum exibility in terms of the orrelation of the durations.

As an alternative measure of assoiation, onsider Kendall's � (or \Kendall's

oeÆient of onordane"). This is the most popular global ordinal measure

of assoiation in the literature on multivariate durations (see e.g. Genest and

MaKay, 1986, Oakes, 1989, and Guo and Rodr��guez, 1992). There are several

equivalent ways to formally de�ne it. The de�nition given by Kendall (1962) is

partiularly useful for general multivariate duration models,

�(t1; t2jx) = 4E(F (t1; t2jx))� 1

where the expetation is taken with respet to F (t1; t2jx) itself. Kendall's � only

attains values in [�1; 1℄. It is an ordinal measure, and it is informative on the

strength of any monotone relation. It equals 1 (�1) if and only if t2 is a monotone

inreasing (dereasing) funtion of t1. Beause it is invariant under monotone

transformations of the random variables, the value of �(t1; t2jx) in the MMPH

model does not depend of the baseline hazards or on the values of the systemati

hazards (so the baseline hazards an be taken as onstants, and the onditioning

on x an be omitted). As a result, it only depends on the distribution G of

the unobserved heterogeneity terms, whih is exatly the part of the model that

auses the dependene of the durations.

For onveniene, assume that G(v1; v2) follows a one-fator loading spei�a-

tion, i.e. suppose (31) holds. It turns out that all values between �1 and 1 an be

attained by �(t1; t2), within any family of ontinuous distributions for z. However,

of G to be estimated are the probabilities assoiated with these points of support. This an be

shown to narrow the range of values of Corr(t1; t2jx) as well, in partiular if the points for v1

or v2 are hosen to be relatively lose to one another (see Van den Berg, 1997, for examples).
66Note that if v1 � v2 then this range redues to (0; 1=2).
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if z (and therefore vi) is restrited to have a disrete distribution with n points

of support (n = 2; 3; : : : ;1), then

�1 + 1

n
< �(t1; t2) < 1� 1

n

These inequalities are sharp in the sense that they are approahed arbitrarily

losely for appropriate values of the parameters in the one-fator loading spe-

i�ation (31).

The results for � are learly quite di�erent from those for the orrelation

oeÆient. This is beause � detets linear and nonlinear monotone relations alike,

and it does not depend on the relative magnitudes of the duration variables, but

only on their ordering. The fat that the range of values of �(t1; t2) is restrited

for disrete distributions with �nite n an be explained as follows. In this ase,

the population an be subdivided into a �nite number of groups of individuals,

and within these groups, all individuals are the same in terms of their v1 and v2.

This implies that there is a positive probability that two random drawings of t1

and t2 are from the same group. Now onsider all observations for a single group.

Beause they all have the same v1 and v2, there is no relation at all between t1

and t2 within the group. This restrits the population value of �(t1; t2). It does

not a�et the range of values of Corr(t1; t2jx) beause the \within-group" lak

of orrelation an be made quantitatively unimportant by making the \between-

group" di�erenes large.

In all ases, the bounds for �(t1; t2) are attained by \spreading out" the het-

erogeneity distribution as muh as possible. If z is ontinuous then the resulting

bivariate distribution of t1; t2jx is suh that all probability mass is on a single

urve for t1 and t2. We onlude that in an MMPH model suh a duration distri-

bution annot be generated if z has a disrete distribution with a �nite number

of points of support. This suggests that it is useful in empirial appliations to

try to inrease the number of mass points.

We �nish this subsetion by noting that in appliations it may also be interest-

ing to examine the dependene of the residual duration variables if one onditions

on survival up to a ertain duration. It may also be interesting to examine how

the (non-ausal) e�et of the realization of one duration variable on the hazard

rate of the other hanges with the realized value of the �rst duration variable.

Oakes (1989), Anderson et al. (1992), Hougaard, Harvald and Holm (1992b) and
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Yashin and Iahine (1999) provide analyses for the general ase, and they also

disuss how the dependene patterns are a�eted by the funtional form of G.

9 Causal duration e�ets and seletivity

9.1 Lagged endogenous durations

In this subsetion we briey examine bivariate duration models with lagged-

duration dependene as well as mutually related unobserved heterogeneity terms.

Reall from Setion 7 that suh models have been used to study the impat of

the length of an unemployment spell on the length of the next unemployment

spell. Also reall that the estimate of the e�et of the previous duration is biased

if one ignores the spurious dependene from related unobserved determinants.

In terms of the hazards, the model spei�ation reads

�1(t1jx; v1) =  1(t1) � �0;1(x) � v1
(33)

�2(t2jt1; x; v2) =  2(t2) � �0;2(x) � �(t1) � v2

and we make the following regularity assumption on the funtion �,

Assumption 10 The funtion �(t) is positive for every t 2 [0;1).

If v1 and v2 are independent, then, onditional on x, the durations t1 and t2

are only dependent if �(t1) is not a onstant. In the general ase, the joint density

of t1 and t2 given x is straightforwardly expressed as

f(t1; t2jx) =
Z
1

0

Z
1

0

f1(t1jx; v1)f2(t2jt1; x; v2) dG(v1; v2)

in obvious notation. Note that if one allows for more than two onseutive spells

then in pratie there may be initial-onditions problems, as one may not observe

the duration of the �rst spell.

If both durations an be followed until ompletion, then the data provide the

joint distribution F (t1; t2jx). Honor�e (1993) shows that this model is identi�ed

from these data, under some onditions. For both marginal hazard funtions in
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this model we make regularity assumptions orresponding to Assumptions 1{4,

and we adopt regularity Assumption 10. In addition, we adopt the equivalents of

Assumptions 5, 6b, and 7 on vi; �0;i; and  i.
67 We also normalize the funtion �,

and we replae the equivalent of Assumption 8 by a slightly di�erent assumption,

Assumption 11 : Normalization. For some a priori hosen t0, there holds

that �(t0) = 1.

Assumption 12 : Tails of the joint unobserved heterogeneity distribu-

tion. E(v1) <1 and E(v1v2) <1.

SuÆient for Assumption 12 is that E(v2i ) < 1 for i = 1; 2. In sum, we adopt

Assumptions 1{4, the equivalents of Assumptions 5, 6b, and 7, and Assumptions

10{12.

Here, as in the model with suessive durations and v1 6= v2 (Subsetion 8.2.2),

identi�ation requires assumptions on the tails of the distributions of v1 and v2

(notably, �niteness of moments), and it requires that the individual hazards are

proportional in t and x. It is plausible that these assumptions an be substantially

weakened if the data provide multiple observations on t1; t2 for eah v1; v2 pair

(see Woutersen, 2000, for results).

9.2 Endogenous shoks

In this subsetion we examine bivariate duration models with the property that

the hazard of the duration t2 moves to another level at the moment at whih the

other duration t1 is ompleted, with mutually related unobserved heterogeneity

terms. Reall from Setion 7 that suh models have been used to study the e�et

of punishments and training on the exit rate out of unemployment and the e�et

of marriage dissolution on the death rate. Also reall that the estimate of the

hange of the hazard is biased if one ignores the spurious dependene from related

unobserved determinants. Finally, reall that we need to rule out antiipations of

the realizations of t1, but the individual is allowed to know the (determinants of

the) probability distribution of t1.

67In fat, the di�erentiability ondition in Assumption 6b an be weakened to ontinuity

here.
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We adopt a framework where the two durations start at the same point of

time, and where the realization of t1 a�ets the shape of the hazard of t2 from

t1 onwards. The data provide observations of t2 and x. If t1 is ompleted before

t2 then we also observe t1; if not then we merely observe that t1 exeeds t2. The

model and data are thus distintly asymmetri in the two durations. Somewhat

loosely, one may say that t2 is the \main" duration, or the \endogenous duration

of interest", whereas t1 is an \explanatory" duration, and the ausal e�et of t1

on t2 is the \treatment e�et".

In terms of the hazards, the model spei�ation reads

�1(t1jx; v1) =  1(t1) � �0;1(x) � v1
(34)

�2(t2jt1; x; v2) =  2(t2) � �0;2(x) � eÆI(t1<t2) � v2

where I(.) denotes the indiator funtion, whih is 1 if its argument is true and

0 otherwise. If v1 and v2 are independent, then, onditional on x, the durations

t1 and t2 are only dependent if Æ 6= 1. In the general ase, the joint density of t1

and t2 given x is straightforwardly derived as in the previous subsetion.

In a reent working paper, Abbring and Van den Berg (2000a) provide identi-

�ation results for this model. In fat, they allow Æ to depend on past observables.

These results are similar to those for Subsetion 9.1 in that they require inde-

pendene of x from v1; v2, and they require an assumption on the �rst moments

of v1; v2. If multiple observations are available for eah v1; v2 pair then suh as-

sumptions are not needed.

Contrary to models of binary treatments and binary outomes, the treatment

e�et Æ is identi�ed without the need to rely on exlusion restritions or paramet-

ri funtional-form assumptions regarding the distribution of v1; v2. In partiular,

the set of explanatory variables a�eting �0;1 does not have to be larger than the

set a�eting �0;2, and the joint distribution of v1; v2 an be any member of a

broad nonparametri lass of distributions. These results imply that the timing

of events onveys useful information on the treatment e�et. This information is

disarded in a binary framework. In onlusion, duration analysis is useful for the
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study of treatment e�ets in non-experimental settings.68;69

10 Conlusions and reommendations

Sine the early 1980s, the eonometri analysis of duration variables has beome

widespread. This hapter has provided an overview of duration analysis, with

an emphasis on the spei�ation and identi�ation of duration models, and with

speial attention to models for multiple durations.

We have seen that the hazard funtion of the duration distribution is the

foal point and basi building blok of eonometri duration models. Properties

of the duration distribution are generally disussed in terms of properties of

the hazard funtion. The individual hazard funtion and the way it depends on

its determinants are the \parameters of interest". This approah is ditated by

eonomi theory. Theories that aim at explaining durations fous on the rate at

whih the subjet leaves the state at a ertain duration given that the subjet

has not done so yet. In partiular, they explain this exit rate in terms of external

onditions at the point of time orresponding to that duration and in terms of

the underlying eonomi behavior of the subjet given that he is still in the state

at that duration.

The Mixed Proportional Hazard model and its speial ases are by far the most

popular duration models based on a spei�ation of the hazard funtion. We have

seen that the reent mathematial-statistial literature on ounting proesses has

formulated preise onditions under whih time-varying explanatory variables

an be inluded in MPH models in suh a way that one an still perform valid

eonometri inferene with standard methods. Spei�ally, these variables have to

be \preditable" stohasti proesses. Here, \preditability" is a rather tehnial

onept with a meaning similar to that of weak exogeneity.

The MPH model and its speial ases are often regarded to be useful redued-

68The model of this subsetion does not allow the size of the treatment e�et to depend on

unobserved heterogeneity. Given the reent interest in heterogeneity of treatment e�ets (see

e.g. Hekman, LaLonde and Smith, 1999), it is a hallenge for future researh to inorporate

this into duration analysis. See Abbring and Van den Berg (2000a) for results on this.
69Robins (1998) analyzes treatment e�ets in a di�erent type of duration models where

unobserved determinants of the duration of interest may vary over time and may depend on

the treatment.
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form models for duration analysis. The resulting estimates are then interpreted

with the help of some eonomi theory. Unfortunately, the proportionality as-

sumption of the (M)PH model an in general not be justi�ed on eonomi-

theoretial grounds. However, if the optimal strategy of the individual is myopi

(e.g. beause of repeated searh, or beause the disount rate is in�nite), then

this proportionality an often be dedued from eonomi theory.

The MPH model is nonparametrially identi�ed from single-spell data, given

an assumption on the tail of the unobserved heterogeneity distribution, like �-

niteness of its mean. However, the model is nonparametrially unidenti�ed if suh

an assumption is dropped. Moreover, the adoption of a model that is observation-

ally equivalent to (but di�erent from) the true model leads to inorret inferene

on the parameters of interest. This is bad news, as it is often diÆult to make

any justi�ed assumption on the tail of the unobserved heterogeneity distribution.

In appliations where the unobserved heterogeneity term represents an import-

ant eonomi variable, eonomi theory might provide a justi�ation of the �nite

mean assumption.

Let the �nite mean assumption be satis�ed. The observed hazard funtion of

the duration given the observed explanatory variables is nonproportional, mean-

ing that it annot be expressed as a produt of a term depending only on the

elapsed duration and a term depending only on the observed explanatory vari-

ables. With single-spell data, the unobserved heterogeneity distribution in MPH

models is identi�ed from the interation between the duration and the explanat-

ory variables in the observed hazard, or, in other words, from the observed type

of nonproportionality of the observed hazard. However, unobserved heterogen-

eity an not generate just any type of interation. The lass of models for the

observed hazard that is generated by MPH models is smaller than the general

lass of interation models for the observed hazard. In other words, the MPH

model is overidenti�ed with single-spell data.

In MPH models, the sign of the interation between the duration and the

explanatory variables in the observed hazard is a�eted by the type of unobserved

heterogeneity distribution. However, under weak onditions, the sign is always

negative at small durations regardless of the type of heterogeneity distribution.

If unobserved heterogeneity has a Gamma distribution, then the interation is

negative at all durations and all values of the systemati part of the hazard
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funtion. If unobserved heterogeneity has a disrete distribution with two positive

mass points then the interation is negative at small durations and positive at

large durations.

In MPH models, the e�et of an explanatory variable on the observed hazard

an be negative at some durations even if the explanatory variable has a positive

e�et on the underlying individual (or systemati) hazard. This means that it

is not possible to dedue the sign of the e�et of the explanatory variable on

the underlying individual hazard from the observed e�et of the variable on the

observed hazard at ertain durations. Fortunately, this remarkable e�et an only

our for some loal duration intervals.

By now, there is overwhelming evidene that with single-spell data, minor

hanges in the assumed parametri spei�ation of the MPH model, while lead-

ing to a similar over-all �t, may produe very di�erent parameter estimates. Also,

very di�erent models may generate similar data. Estimation results from single-

spell data are sensitive to misspei�ation of the funtional forms assoiated

with the model determinants, and this sensitivity is stronger than usual in eo-

nometris. In the absene of strong prior information on the model determinants,

single-spell data do not enable a robust assessment of the relative importane

of these determinants as explanations of random variation in the observed dur-

ations. Therefore, interpretations based on estimation results are often unstable

and should be performed with extreme aution.

In biostatistis, this state of a�airs has led to a renewed interest in Aeler-

ated Failure Time models as alternative redued-form duration models for the

analysis of single-spell duration data. From an eonometri point of view, the

AFT approah is unsatisfatory, beause it does not fous on the parameters of

the individual hazard as the parameters of interest. However, if one is only inter-

ested in the sign or signi�ane of a ovariate e�et on the individual durations

then the AFT approah may be useful.

In pratie, it may be useful to exploit preditions from the underlying eo-

nomi theory when speifying the duration model, by imposing these as restri-

tions on the funtional form of the heterogeneity distribution or the baseline

hazard. It may be even more useful to look for data with multiple spells (see be-

low). Now suppose that these options are not available. Conerning the baseline

hazard, the oneived wisdom is that a pieewise onstant spei�ation is then the

90



most useful. Suh a spei�ation is exible and onvenient from a omputational

point of view. Conerning the unobserved heterogeneity distribution, it may be

useful to start o� with an informal examination of the sign of the interation in

the observed hazard. If it is negative at all durations then a Gamma distribution

may give a better �t whereas if it is positive at large durations then a disrete

distribution may give a better �t.

By now, the empirial analysis of MPH models with multi-spell duration data

is widespread. Basially, if two observations are available for eah unobserved

heterogeneity value, then the identi�ation of the model does not require an

untestable assumption on the tail of the unobserved heterogeneity distribution

anymore, and, perhaps even more importantly, observed and unobserved explan-

atory variables are allowed to be dependent. The identi�ation of this distribution

does not ome anymore from the interation between the duration and the ob-

servable explanatory variables in the observed hazard. Data on multiple spells

for the same individual therefore remove the identi�ation problems assoiated

with single-spell data. Moreover, a onsensus has emerged that multi-spell data

allow for reliable inferene that is robust with respet to the spei�ation of

the unobserved heterogeneity distribution. Multi-spell duration data make dura-

tion analysis more similar to dynami panel data analysis. It should however be

stressed that the analysis of multi-spell data is partiularly sensitive to ensoring.

The hapter pays speial attention to models for multiple durations. Here,

the marginal duration distributions need not be the same. In general one may

think of many di�erent ways to model a relation between duration variables. In

the applied eonometri literature on the estimation of multiple-duration mod-

els, the range of di�erent models is atually not so large. Typially, the models

allow for dependene between the duration variables by way of their unobserved

determinants, with eah single duration following its own MPH model. In addi-

tion to this, the model may allow for a \ausal" e�et of one duration on the

other, as motivated by an underlying eonomi theory. The �rst popular type of

ausal e�et onerns an e�et of a realized past duration on the urrent hazard.

Basially, this is modeled by inluding the realized past duration as an additional

ovariate in the hazard for the urrent duration. The seond popular type of

ausal e�et onerns situations where two durations our simultaneously, and

where the realization of one duration variable has an immediate e�et on the
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hazard of the other duration variable. This inludes models of treatment e�ets

in the presene of seletivity and in the absene of exlusion restritions.

For suh models, identi�ation results have been derived whih are similar

in ontents to those for MPH models with single-spell data. The identi�ation

onditions an be weakened substantially if multiple observations are available

for eah value of the heterogeneity pair, or if ross-restritions are imposed on

the distributions of the two durations in the multiple duration model.

The multiple-duration model where the marginal duration distributions eah

satisfy an MPH spei�ation, and the durations an only be dependent by way

of their unobserved determinants, is alled the Multivariate Mixed Proportional

Hazard (MMPH) model. In the empirial analysis with suh models it is import-

ant to assume a genuine multivariate distribution for the unobserved heterogen-

eity terms. Here, \genuine" means that there is no deterministi relation between

any two heterogeneity terms. More restritive spei�ations, like the one-fator

loading spei�ation, impose ross-restritions on the marginal duration distri-

butions and the dependene of the durations. In suh ases, if the data provide

evidene for unobserved heterogeneity in the marginal duration distributions,

then the model implies that these durations must be dependent. Similarly, in

suh ases, if the durations are independent, then the model implies that there

is no unobserved heterogeneity for at least one of the durations.

Fator loading spei�ations have been popular beause they restrit the num-

ber of unknown parameters, leading to a sparse spei�ation, and they limit the

omputational burden of the estimation of the model. However, the latter an

also be ahieved by adopting a (multidimensional) disrete distribution for the

unobserved heterogeneity terms. In fat, disrete heterogeneity distributions are

partiularly exible, in the sense that they are able to generate a relatively wide

range of values for the assoiation measures of the orresponding durations. In

empirial appliations with MMPH models, it is therefore useful for omputa-

tional reasons and for reasons of exibility to assume a multidimensional disrete

distribution for the unobserved heterogeneity terms. One may then try to in-

rease the number of mass points. If the number of duration types is relatively

large then one may redue the number of parameters of the multidimensional

disrete distribution somewhat by imposing, say, a two-fator loading struture.
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