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Abstract:

Very little is known on how traditional risk metrics behave in ultra high frequency
trading (UHFT). We fill this void firstly by examining the existence of the intraday
returns moments, and secondly by assessing the impact of their (non)existence in a risk
management framework. We show that in the case of UHFT, the returns third and fourth
moments do not exist, which entails that traditional risk metrics are unable to judge
capital adequacy adequately. Hence, the use of risk management techniques such as V aR

by market participants who engage with UHFT impose serious threats to the stability
of financial markets, given that capital ratios may be severely underestimated.
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1. Introduction

Highly sophisticated algorithms and fast computer technology have originated a new class of
trading known as Ultra High Frequency Trading (UHFT). UHFT has numerous advantages:
it offers a great deal of liquidity in the market; it facilitates the instantaneous transmission of
information into prices, pushing markets to be more efficient; and it creates a market place
for small (retail) as well as large investors (institutions).
However, UHFT also presents unique challenges,1 having been criticised as liable to cause
large market crashes,2 which may be amplified by the influx of algorithmic trading and the
order clustering caused by unintended trading strategy coordination (Beddington et al., 2012).
Hence, regulators3 and law scholars (e.g. Yadav, 2015) have proposed measures to curb UHFT.
As a consequence, market participants are required to measure and report several market
risk metrics, and to take them into account when calculating their regulated capital require-
ments.4,5 However, standards set by regulators are based on risk metrics that are calculated
- at most - at daily frequency. Given that UHFT takes place at higher frequencies, this leaves
the market risk generated by UHFT largely as a dark pool.
Very little is known about market risk associated with UHFT, and similarly little analysis
has been conducted on how traditional risk metrics such as Value at Risk (V aR, hereafter)
behave at such frequencies. In this note, we fill this gap by firstly investigating the exis-
tence of moments of intraday returns, and subsequently by assessing the impact of moments
(non)existence in a risk management framework, employed on UHFT strategies. Specifically,
we test for the existence of the first four (absolute) moments, using ultra high frequency data
from the currency market. We find that the distribution of the returns of the assets traded
under UHFT does not have finite moments of order higher than 2, implying that only the
mean and the variance exist at intraday frequencies. This implies that the V aR is infinite
when calculated with frequencies higher than daily. Hence, traditional risk measures like V aR
are not a good metric for the true market risk (see also Bradley and Taqqu, 2003), and should
therefore not be employed to gauge capital adequacy under UHFT. To put it differently, we
find that the potential capital loss implied by V aR is unlimited in the presence of UHFT, due
to the phenomenon we call superkurtosis.

2. Methodology

Our analysis is based on two steps. We start by verifying whether higher order moments exist
(Section 2.1); we then turn to assessing the impact of potential non-existence of high order
moments on V aR (Section 2.2).

1See for example the Final Project Report from The Government Office for Science, London - 2012
2See for example Bloomberg article in April 21st, 2015 by Silla Brush, Tom Schoenberg and Suzi Rin: How

a Mystery Trader With an Algorithm May Have Caused the Flash Crash and Kirilenko et al. (2017) for a
suggested solution.

3See for example the Press Release, European Parliament, MEPs Vote Laws to Regulate Financial Markets
and Curb High Frequency Trading (Apr. 15, 2014).

4For example, on January 16th, 2016 the Basel Committee on Banking Supervision published a document
that revised standards for minimum capital requirements for Market Risk.

5Consistent with the policy rationale underpinning the Committee has three consultative papers on the
Fundamental review of the trading book. (i) Fundamental review of the trading book, May 2012, (ii) A revised
market risk framework, October 2013 and (iii) Fundamental review of the trading book: Outstanding issues,
December 2014.
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2.1. Testing for the existence of the asset returns’ moments.

We test for the existence of up to the fourth moment of yt; in particular, we use the test
proposed by Trapani (2016) (see also Fedotenkov, 2013) for

{

H0 : E |yt|k = ∞
HA : E |yt|k <∞ , (2.1)

with k = 2, 3 and 4. In (2.1), the null hypothesis is the non-existence of the k-th absolute
moment. Following the guidelines in Trapani (2016), for each k, test statistics are based on

µk = ck × T−1
∑T

t=1 |yt|
k

(

T−1
∑T

t=1 |yt|
p
)k/p

(2.2)

where p = min{k − 1, 2} and

ck =











4
π when k = 2

1 when k = 3
1
3 when k = 4

. (2.3)

Some comments on (2.2) and (2.3) are in order. The first statistic to be employed is µ2, which

has been designed to test for H0 : E |yt|2 = ∞ - i.e., the non-existence of the variance. When
k = 2, the sample second moment (at the numerator) is made scale-invariant by dividing
by the square of the mean absolue value of yt; other rescaling would be possible (chiefly,
the median, which has the advantage of being well-defined), but the simulations in Trapani
(2016) show that the mean absolute value yields better power and size. For k = 2, 3, rescaling
is done using the sample variance, as is more natural. Turning to the multiplicative constants,
these follow the guidelines in Trapani (2016), where each sample moment is rescaled by the
corresponding sample absolute moment of a standard normal distribution.
Based on (2.2)-(2.3), we construct the test statistic

ψk = exp (µk)− 1. (2.4)

Trapani (2016) showed that

P
{

ω : lim
T→∞

ψk = ∞
}

= 1, under H0 : E |yt|k = ∞, (2.5)

P
{

ω : lim
T→∞

ψk = 0
}

= 1, under HA : E |yt|k <∞. (2.6)

Under H0, ψk diverges to positive infinity instead of having a limiting distribution. Thus,
we randomise it to produce a test statistic which has a well-defined limiting law, using the
following algorithm.

Step 1 Randomly generate an i.i.d. N (0, 1) sample of size R =
⌊

N1/2
⌋

, say
{

ξ
(k)
j

}R

j=1
,

independently across k, and define
{

ψ
1/2
k × ξ

(k)
j

}R

j=1
.

Step 2 For u =
{

−
√
2,
√
2
}

, generate ζ
(k)
j,n (u) = I

(

ψ
1/2
k × ξ

(k)
j ≤ u

)

, 1 ≤ j ≤ r.
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Step 3 For each u, define

ϑ
(k)
n,R (u) =

2√
R

R
∑

j=1

[

ζ
(k)
j,n (u)− 1

2

]

, (2.7)

and finally the test statistic

Θ
(k)
n,R =

1

2

[

(

ϑ
(k)
n,R

(

−
√
2
))2

+
(

ϑ
(k)
n,R

(√
2
))2

]

. (2.8)

Following the proofs in Trapani (2016) (see also Horváth and Trapani, 2017), it holds that

Θ
(k)
n,R

d∗

→ χ2
1, under H0, (2.9)

R−1Θ
(k)
n,R

P∗

→ 1, under HA, (2.10)

as T → ∞ for almost all realisations of {yt}Tt=1. In (2.9) and (2.10), “
d∗

→” and “
P∗

→” denote
convergence in distribution and in probability, respectively, with respect to P ∗, defined as the
probability conditional on {yt}Tt=1.

2.2. Assessing the impact of (non)existence of moments in risk management.

We consider a representative trader with unlimited capital, who wants to calculate the V aR
measure at each point in time. Each trading day t is divided in τ equidistant intraday subinter-
vals. The observed prices at day t are denoted as Ptj , for j = 1, 2, ..., τ , with sample frequency
defined as m = τ−1. We define daily log-returns as yt = logPtτ − logP(t−1)τ , and intraday
log-returns as ytj = logPtj − logPtj−1

.
Hence, the V aR for a long trading position at (1 − p) level of confidence, at sampling fre-

quency m, is defined as V aR
(m)
(1−p) such that P (ytj ≤ V aR

(m)
(1−p)). We compute V aR

(m)
(1−p)

non-parametrically, as the p-quantile of the of the log-returns at sampling frequency m,
{ytj , 1 ≤ j ≤ τ, 1 ≤ t ≤ T}.
We measure the potential losses conditional to a V aR violation (i.e. the losses that occur
when the returns are lower than the V aR measure) by constructing an evaluation function,

l
(m)
tj that measures the absolute distance between actual returns, ytj , and the V aR measure:

l
(m)
tj =

{

|ytj − V aR
(m)
(1−p)| if ytj < V aR

(m)
(1−p)

0 otherwise.
(2.11)

The total potential losses over the sample period are computed as L(m) =
∑T

t=1

∑τ
j=1 l

(m)
tj .

To allow comparison across the different sampling frequencies we compute the daily adjusted

losses per V aR violation as L̄(m) = 1361(Nm)−1L(m), for N =
∑T

t=1

∑τ
j=1 I

(m)
tj , where:

I
(m)
tj =

{

1 if ytj < V aR
(m)
(1−p)

0 otherwise.
(2.12)

We multiply the number of violations by the daily adjustment, 1361/m, where 1361 reflects
the 1-minute observations per day that the market is open.
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3. Data and empirical results

We use 1-minute data of the front-month futures contracts for the EUR/USD exchange rate,
obtained from TickData. The period of the study spans from August 1, 2003 to August 5,
2015. We focus on the exchange rate market as it is considered continuously trading, so that
we do not have to take into consideration significant data alterations. The choice of the specific
exchange rate is justified by the fact that (i) it is the most liquid currency pair, and (ii) it
represents the most heavily traded exchange rate for financial transactions. Our final sample
consists of 3028 trading days, which contain more than 16 million 1-minute data.
We start our analysis with results on the existence of moments in Table 1.6 The results show
that only the second moment exists across all sampling frequencies. By contrast, the null
hypothesis for the non-existence of the third and fourth moments cannot be rejected for all
intraday sampling frequencies, suggesting that these moments do not exist. On the contrary,
moving to lower sampling frequencies, i.e. daily, weekly and biweekly, the existence of the
relevant moments is statistically valid.

Table 1

Tests for moments existence

Series Size µ2 µ3 µ4

Θ
(2)
n,R p-value Θ

(3)
n,R p-value Θ

(4)
n,R p-value

1m 5, 350, 729 0.122 0.00 2313 0.95 1.78× 10
6

0.66

2m 2, 675, 323 0.245 0.00 1635 0.28 8.91× 10
5

0.67

5m 1, 070, 149 0.613 0.00 1034 0.42 3.56× 10
5

0.75

10m 535, 033 1.223 0.00 731 0.79 1.78× 10
5

0.85

15m 356, 719 1.839 0.00 597 0.36 1.18× 10
5

0.71

20m 269, 464 2.434 0.00 519 0.57 8.98× 10
4

0.80

30m 178, 318 3.679 0.00 422 0.62 5.94× 10
4

0.84

60m 95, 140 6.896 0.05 308 0.56 3.17× 10
4

0.90

daily 4, 035 0.042 0.00 1.56 0.00 0.99 0.00

weekly 815 1.230 0.00 0.044 0.00 1.73 0.00

biweekly 375 0.041 0.00 1.508 0.00 0.836 0.00

Table 1 suggests that it is important to study the impact of the non-existence of higher order
moments in a risk management setting. To this end, we consider a scenario where traders
assume that moments do exist at the intraday frequencies. Under this scenario, we calculate
the potential losses (L(m) and L̄(m)), conditional to V aR violation, as shown in Section 2.2
(see Figure 1).

In all cases considered, potential losses are decidedly higher for the higher sampling frequen-
cies, while they decrease gradually as the sampling frequency decreases. This holds for both
the total potential losses (L(m)) and the daily adjusted potential losses (L̄(m)). For instance,

6We have also considered lower frequencies than the biweekly and the results show that all moments
continue to exist
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Fig 1. Potential losses under V aR

in the 1-minute sampling frequency we observe that a trader would have lost 48 times more
capital than anticipated by the V aR, whereas the daily adjusted losses, for the same frequency,
are about 25% more.

4. Conclusions

The findings of this study are reported for the first time in the literature. We maintain that
these results stem from superkurtosis - i.e., from the non-existence of higher order moments
at high frequencies. We note that these extreme losses in the higher frequencies are calculated
assuming that a trader believes that the higher moments do exist. Hence, we can deduct that
real losses are significantly higher (even infinite) since we have already established that these
moments do not exist.
Therefore, employing traditional risk measures for market participants who engage with UHF
imposes serious threats to the stability of the financial markets, given that capital ratios may
be severely underestimated.
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