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Abstract 

 

This paper estimates the linkages among total Sulphur dioxide (SO2) emissions, total GDP and 

energy efficiency using China’s provincial panel data from 2002 to 2015. We investigate total 

emissions rather than per capita emissions or ambient concentrations, since it is total 

emissions that the environment cares about. Energy efficiency is estimated using stochastic 

frontier analysis and decomposed into both persistent and transient efficiency. We then 

investigate the long-run dynamics among SO2 emissions, economic growth and energy efficiency 

by employing the panel-based error correction model and taking the effects of cyclical variations 

into account. Our analysis shows that GDP has a positive impact on total SO2 emissions in the 

short run and gains in energy efficiency have a significant negative effect on emissions in the 

long run. By controlling the effects of business cycle, the effects of GDP on emissions remain 

positive in both short and long run. Cross-sectional analysis provides similar insights. We argue 

that economic growth itself is an emission generator. Therefore, the government needs to 

establish a long-run strategy to curb the emissions by improving energy efficiency.  
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1. Introduction 

The consumption of fossil energy has resulted in environmental degradation both locally and 

globally. Since environmental protection has been perceived as obstacles to sustainable 

economic development worldwide, especially for developing countries, the issue of effectively 

balancing the environmental pollution and economic growth has been extensively studied both 

theoretically and empirically. 

As the largest developing country, China has enjoyed the highest economic growth rate in the 

world in the last decade; meanwhile it has also suffered from severe environmental degradation 

and turned out to be the largest emitter for carbon dioxide (CO2) since 2006, which is around 

11 billion tones in 2013. For the Sulfur dioxide (SO2), although China has achieved significant 

reduction since 2007 from 36.6 megaton to 8.4 megaton at 2016, it is still the world second 

largest emitter (Li et al., 2017). On the other hand, along with consecutive years of double-

digit economic growth, energy consumption has also drastically increased in China. The annual 

average growth rate of energy consumption is 9.5 per cent from 2000 to 2008, which is 3.8 

times higher than the world average. Although the growth rate of energy consumption began 

decreasing in recent years as it moves to the regime of “new normal” growth, China remain the 
largest consumer of energy worldwide.  

More importantly, due to the heavy dependence on fossil-based energy sources, China’s 
massive use of energy directly leads to grave environmental problems, especially air pollution. 

It seems that the largest developing country has fallen into a dilemma and been asked to choose 

between a prosperous economy and a clean environment. The question of how to realize 

sustainable development has therefore become prominent on the central policy agenda.   

In this paper, we hope to offer some new perspectives to address China’s environmental 
problems. By employing the error-correction model to the aggregate level of data, we show 

gross domestic product (GDP) has a positive impact on total SO2 emissions in the short run, 

and gains from energy efficiency have a negative effect on emissions in the long run. By 

controlling the effects of business cycle, the effects of GDP on emissions remain positive in 

both short run and long run. This suggests economic growth itself is emission generator. Only 

with the improvement in energy efficiency, the emissions will eventually begin to decrease as 

the inverted U-shaped EKC predicts. 

This paper contributes to the literature in several aspects. Firstly, we question the argument of 

the inverted-U shaped relationship between economic growth and environmental quality, the 

so-called EKC hypothesis. In theory, it says environmental quality decreases as the economy 

develops at the early stage; the trend reverses as rising income per capita passes beyond the 

turning point. The earliest empirical study of EKC was a paper written by Grossman and 

Krueger (1991). Subsequent studies have extended growth-environment literature by including 

other explanatory factors for pollution, new methodologies and different pollutants. One of the 

rationales behind the EKC is the improvement in energy efficiency. However, the empirical 

evidence has been largely mixed in the literature of the EKC hypothesis for SO2 for the case of 

China (Hai et al. 2005; Shen 2006; Llorca and Meunié 2009; Wang et al. 2016); there is no 

study that directly investigates the effects of energy efficiency on SO2 emissions in China. 

Therefore, instead of including both scale and technical effects in GDP as the traditional way 

of EKC, we capture the technical effect separately by using energy efficiency as explanatory 

variable. In another paper, Agras and Chapman (1999) estimated EKC by including the price 
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of energy as explanatory variable and found income was not a significantly relevant indicator 

of environmental quality. In this paper, we will control energy price as an explanatory variable 

for energy efficiency. 

Secondly, we offer an integrated three-dimensional analysis of the energy-growth-pollution 

nexus. Granger causality between total energy consumption and growth has been studies 

extensively. These studies have been mostly confined to a bivariate model with energy use and 

GDP, such as Yuan et al. (2008), Ozturk (2010), Belke et al. (2011), and Yildinm et al. (2014). 

However, some studies questioned the potential bias of bivariate model by omitting relevant 

key variables such as energy price (Zachariadis, 2007; Costantini and Martini, 2010; Belke et 

al., 2011). 

In addition to a bivariate model, a number of studies also investigate the relationship between 

energy consumption, economic development and environmental pollution, particularly CO2 

emissions. Mixed empirical results have been found due to different econometric methods and 

datasets have been adopted by these studies (Ramanathan 2008; Alam et al., 2011; Ghosh, 2010; 

Jayanthakumaran et al., 2012; Vidyarthi, 2013). In general, economic growth is positively 

associated with energy use and in turn emissions of air pollutants if not controlled properly. 

Instead of using data at national level, Yuan and Zuo (2014) employed provincial data in China 

to study the relationship of energy consumption, economic development and environmental 

pollution. They found the economic growth and pollution reduction can achieve simultaneously 

if reasonable energy and industrial structure and improved energy efficiency are put into place. 

However, energy efficiency is calculated as energy consumption per GDP in this paper, and no 

sound econometric method to rigorously estimate the impact of energy efficiency on growth 

and pollution. 

Instead of using energy consumption, in this paper, we investigate the linkage through a two-

step approach. In the first step, we develop an energy demand model to estimate energy 

efficiency through stochastic frontier analysis (SFA). Particularly, we distinguish between 

transient energy efficiency in the short run and persistent energy efficiency in the long run. The 

estimated efficiency is then used in the second step to analyze its impact on SO2 emissions. We 

choose total SO2 emission as the indicator for environmental damage since it persists as 

contaminant and directly leads to respiratory illness and acid rain, compared to CO2, which is 

not a direct threat to human health. Another distinction between previous studies and ours is 

that we consider total amount of emissions rather than per capita emissions. The main reason 

that the environment cares about is total emissions.  The variables at the per-capita level may 

result in over-optimistic and misleading conclusions. Since total emission is the major 

determinant to the environmental effect, it is informative to investigate the environmental issue 

at the aggregate level.  

Thirdly, we bridge the technical energy efficiency with economic development and investigate 

the energy efficiency-growth-pollution nexus empirically. Although at macro level, numerous 

papers have explored the casual relationship between total energy consumption and economic 

growth as reviewed above, empirical evidence on the relationship between energy efficiency 

and economic growth or pollution is thin. One paper directly linked emission efficiency to 

pollution is Hanley et al. (2009), who simulated the impact of improving energy efficiency on 

pollution in Scotland by using a computable general equilibrium model. They found that an 

improvement in energy efficiency ultimately increased energy use due to the lower energy 
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price. However, in their paper, energy efficiency is not directly calculated by an econometric 

method. In addition, the case of China investigated by this paper has both rapid economic 

growth and high pollution at the same time, which is in different development stage compared 

with Scotland. Lastly, the energy market in China is controlled by the central government, so 

the price of energy is not or only partly determined by the market. Therefore, the findings of 

this paper may provide different insights for the world largest developing country. Another 

related paper (Rajbhandari and Zhang, 2017) studied the impact of energy efficiency on 

economic growth based on a panel data of 56 countries, where energy efficiency is proxied by 

energy intensity, measured as energy use per unit of economic output.  

In this paper, we estimate energy efficiency by SFA approach for several reasons. First and 

most importantly, it has been widely discussed in the literature that energy intensity is not a 

good indicator for energy efficiency, as energy intensity is a complex outcome of a set of 

factors including energy efficiency (Filippini and Hunt, 2011; Filippini and Zhang, 2016). SFA 

offers a way to estimate the underlying energy efficiency. Second, it is able to deal with 

measurement errors. Our data is based on provincial statistics which may suffer from 

measurement errors. Third, omitted variable bias problem can be mitigated in SFA while this 

may create significant bias by using other non-parameter methods. Therefore, SFA provides 

more precise estimation of energy efficiency compared to other methods (Zhang and Adom, 

2018). Recent development of SFA also allows us to distinguish between persistent and 

transient energy efficiency. Furthermore, we suggest the use of an error correction model (ECM) 

for the econometric specification, which follows the tradition of Narayan (2010). Finally, we 

decompose the short-term fluctuations of cyclical effects from the long-term trend effects by 

employing the method suggested by Hodrick and Prescott (1997). As macroeconomic variables 

are usually correlated with business cycle, we need to remove the effects of business cycle in 

the data to allow for a precise estimation of the long-term effects of energy efficiency and GDP 

on total emissions. The true effect can be buried in the unfiltered data due to cyclical 

fluctuations.  

The rest of this paper is organized as follows: in section 2, we describe the energy demand 

model to be used for stochastic frontier analysis, the error-correction model, and the Hodrick-

Prescott approach. In section 3, the data descriptive statistics is presented and the unit-root and 

co-integration tests are discussed. Section 4 shows the results for energy efficiency by using 

stochastic frontier analysis. Section 5 presents the empirical results of error-correction model. 

Section 6 introduces structural break and cross-sectional analysis for robustness check. Section 

7 concludes the paper and provides several policy implications. 

 

2. Methodology and econometric specification 

2.1 Stochastic frontier analysis  

Stochastic frontier analysis is one of the common practices for estimating energy efficiency. 

As confirmed from previous empirical studies (Hunt and Filippini, 2011; Filippini and Zhang, 

2016; Zhang, 2017; ) that energy intensity or energy productivity is not a good indicator to 

describe energy efficiency of an economic entity, estimation of energy efficiency using a 

rigorous econometric method is essential for future policy advice. In this paper, we apply the 

aggregate energy demand for Chinese provinces as suggested by Filippini and Zhang (2016) 
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with the specification of Pitt and Lee (1981), and Greene (2005a,b) to estimate the provincial 

transient and persistent energy efficiency in China.  

The provincial energy demand frontier function is given by: 

  𝐸𝑖𝑡 = 𝐸(𝑋𝑖𝑡, 𝐷𝑇𝑡, 𝐸𝐹𝑖𝑡)                                                                                           (1) 

In the equation, Eit is the energy consumption at the aggregate level for province i at time t. Xit 

is a vector of control variables that affect the energy demand, including Pit, GDPit, POPit, HSit, 

CLMit, TRNit, SHIit, SHSit, DTt, and EFit. 

Pit is the index for the energy price; GDPit denotes the provincial real GDP in billion Chinese 

Yuan. POPit and HSit are two demographic variables to capture the total population and average 

household size. The climate change effect is captured by CLMit, the total number of heating 

degree days and cooling degree days. TRNit represents the effect of transport sector on energy 

demand using the total number of public and private cars. SHIit and SHSi, are the variables to 

capture the economic structure of a province. SHIit is the share of the industrial sector in 

provincial GDP, and SHSit the share of the service sector in provincial GDP. DTt reflects 

general technological progress, which assumes to be a function t and t2. EFit is the level of 

energy efficiency for province i at year t. One difference between our model and Filippini and 

Zhang (2016) is that we use only HSit to capture the potential economies of scale effects derived 

from demographic changes, while Filippini and Zhang (2016) consider two types of economics 

of scale. 

By log-log transformation of equation 1 as suggested in Filippini and Hunt (2011), we have the 

following equation to be estimated:  ln 𝐸𝑖𝑡 = 𝛼 + 𝛼𝑃𝑃𝑖𝑡 + 𝛼𝑌𝐺𝐷𝑃𝑖𝑡 + 𝛼𝐻𝑆𝐻𝑆𝑖𝑡 + 𝛼𝑃𝑂𝑃𝑃𝑂𝑃𝑖𝑡 + 𝛼𝐶𝐿𝑀𝐶𝐿𝑀𝑖𝑡 + 𝛼𝑇𝑅𝑁𝑇𝑅𝑁𝑖𝑡 +𝛼𝑆𝐻𝐼𝑆𝐻𝐼𝑖𝑡 + 𝛼𝑆𝐻𝑆𝑆𝐻𝑆𝑖𝑡 + 𝛼𝑇𝑇 + 𝛼𝑇2𝑇2 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡                                             (2) 𝑣𝑖𝑡 is the normally distributed error term. 𝑢𝑖𝑡  indicates the inefficiency levels with half-normal 

distribution.  

SFA family is composed of a wide range of model specifications. We follow the argument of 

Filippini and Zhang (2016) to estimate the persistent energy efficiency using Pitt and Lee (1981) 

and transient energy efficiency using Greene (2005a, b). However, both models suffer from 

potential bias due to unobserved heterogeneity (Farsi et al., 2005a, b). Therefore, Pitt and Lee 

(1981) tend to underestimate the energy efficiency as it considers the individual random effects 

as inefficiency; while Greene (2005a, b) tends to overestimate the energy efficiency as the 

individual random effects are considered as unit-specific heterogeneity. To address these issues, 

we adjust the model by adding the Mundlak components as proposed by Farsi et al. (2005a, b), 

which is an auxiliary equation expressed by the group-means of the explanatory variables.   𝛼𝑖 = 𝛾𝑋𝑖̅ + 𝛿𝑖,      𝑋𝑖̅ = 1𝑇 ∑ 𝑥𝑖𝑡𝑇𝑡=1 ,      𝛿𝑖~𝑖𝑖𝑑(0, 𝜎𝛿2)                                     (3) 

By integrating equation 3 into equation 2, we can estimate the following energy demand 

frontier function: ln 𝐸𝑖𝑡 = 𝛼 + 𝛼𝑃𝑃𝑖𝑡 + 𝛼𝑌𝐺𝐷𝑃𝑖𝑡 + 𝛼𝐻𝑆𝐻𝑆𝑖𝑡 + 𝛼𝑃𝑂𝑃𝑃𝑂𝑃𝑖𝑡 + 𝛼𝐶𝐿𝑀𝐶𝐿𝑀𝑖𝑡 + 𝛼𝑇𝑅𝑁𝑇𝑅𝑁𝑖𝑡 +𝛼𝑆𝐻𝐼𝑆𝐻𝐼𝑖𝑡 + 𝛼𝑆𝐻𝑆𝑆𝐻𝑆𝑖𝑡 + 𝛼𝑇𝑇 + 𝛼𝑇2𝑇2 + 𝛾𝑋𝑖̅ + 𝛿𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡                           (4) 
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The efficiency score, either persistent or transient, for each province can be calculated by using 

the conditional mean of the inefficiency term 𝐸[𝑢𝑖𝑡|𝑢𝑖𝑡 + 𝑣𝑖𝑡]. According to Jondrow et al. 

(1982), the level of energy efficiency (EFit) can be expressed in the following way:  

 

)ˆexp( it
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                                                                                             (5)                                          

where Eit is the energy consumption values from statistics and 𝐸𝑖𝑡𝐹  is the minimum demand of 

the ith province at time t. The value of EFit ranges between 1 (100% efficient), and 0 (100% 

inefficient). The overall energy efficiency is calculated by multiplying the persistent with the 

transient energy efficiency.  

 

2.2 Error correction model and the aggregate estimation 

The error correction model is a dynamical system with the characteristics that the deviation of 

the current state from its long-run relationship will be fed into its short-run dynamics. The 

error-correction of SO2 emission model has two parts. The first part is a long-run equilibrium 

SO2 emission function given by ln𝑆𝑂2𝑖𝑡 = 𝛽0 − 𝛽1ln 𝐺𝐷𝑃𝑖𝑡 − 𝛽2𝐸𝐹𝑖𝑡 + 𝜖𝑖𝑡                                                             (6) 

where ln𝑆𝑂2𝑖𝑡 is the natural logarithms of SO2 emissions at time t in province i.  𝜖𝑖𝑡 is the white 

noise. The second part represents the short-run dynamics of error-correction equation: ∆ln𝑆𝑂2𝑖𝑡 = 𝛼1 + 𝛼2∆ln𝐺𝐷𝑃𝑖𝑡 + 𝛼3∆𝐸𝐹𝑖𝑡+ 𝑡 + 𝜆𝑢𝑖,𝑡−1 + 𝜀𝑖𝑡                                 (7) 

where all variables are as defined above and εit is the short-run random disturbance term. ∆ is 

the operator for first difference; and 𝑢𝑖,𝑡−1is the lag of the random disturbance term. Equation 

(7) gives the determinants of SO2 emissions in the short run, which include current and past 

changes in the scale and technology cost variables and the lag of the residual from the long-run 

SO2 emission level. The parameter 𝜆  that appears on 𝑢𝑖,𝑡−1  in equation (7) is the error-

correction coefficient, reflecting the speed of adjustment. The presence of 𝑢𝑖,𝑡−1 in equation (7) 

reflects that actual SO2 emissions do not always equal the optimal level defined by the long-

run factors specified in equation (6). Therefore, in the short run, the economy adjusts its 

emission levels to correct any deviation from the long-run equilibrium. The larger 𝜆 is, the 

greater response to the previous period’s deviation from long-run equilibrium. Specifically, if ln𝑆𝑂2is greater than its long-run equilibrium solution, a negative 𝜆 is required to make the 

system back to equilibrium. At the opposite extreme, it also necessitates a negative  𝜆  to 

increase  ∆ln𝑆𝑂2 when ln𝑆𝑂2 is less than its long-run equilibrium. 

By integrating equation (6) and (7), an elementary error correction model for this study could 

be represented as follows, which could be used to estimate the short-run and long-run 

parameters jointly. ∆ln𝑆𝑂2𝑖𝑡 = 𝛼1 + 𝛼2∆ln 𝐺𝐷𝑃𝑖𝑡 + 𝛼3∆𝐸𝐹𝑖𝑡+𝜆[ln𝑆𝑂2𝑖,𝑡−1 − 𝛽0 − 𝛽1ln 𝐺𝐷𝑃𝑖,𝑡−1 −𝛽2𝐸𝐹𝑖,𝑡−1] + 𝜀𝑖𝑡                                                                                                        (8) 
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2.3 The Hodrick-Prescott filter and the decomposition estimation 

As macroeconomic variables are usually correlated with business cycle, we need to remove the 

effects of business cycle in the data to allow for a precise estimation of the long-term effects. 

Hodrick and Prescott (1997) proposed a procedure to decompose a time series as the sum of a 

smoothly varying trend component and a cyclical component. In order to further study the 

dynamics among emissions, economic growth and energy efficiency; we first apply the 

Hodrick-Prescott filter to separate the trend component from cyclical component of the three 

interested series. The Hodrick-Prescott filter solves the following minimization problem: min𝐶𝑖𝑡,𝑌𝑖𝑡  ∑ (𝐶𝑖𝑡)2 + 𝜌[Δ2(𝑌𝑖𝑡 − 𝐶𝑖𝑡)]2𝑇𝑡=1                                                                      (9) 

where 𝑌𝑖𝑡 is the observed variable, 𝐶𝑖𝑡 is the cyclical component, the trend component (𝑇𝑖𝑡) can 

be calculated as the difference of the two, namely 𝑌𝑖𝑡 − 𝐶𝑖𝑡 . 𝜌 = 𝜎𝑇2/𝜎𝐶2  is the smoothing 

coefficient, where 𝜎𝑇2  and 𝜎𝐶2  are the variances of the trend and cyclical component 

respectively.  

After applying the Hodrick and Prescott procedure, each of the observed variables, namely SO2 

emissions, real GDP and energy efficiency, are decomposed into two parts: the cyclical 

component 𝐶𝑖𝑡 and the trend component 𝑇𝑖𝑡. We then apply the ECM, by using the 𝑇𝑖𝑡 values 

for each of the variables in equation (8), to the trend component as it is now absent from the 

effects of business cycle.  

 

3. Data 

In this paper, we use annual data on the total volume of SO2 emissions, total real GDP, and 

total consumption of energy. Our data cover 29 provinces for a period of 13 years, from 2002 

to 2014, from China Statistical Yearbook, 60 years of statistical compilation of new China and 

Wind database. The data does not include Hong Kong, Macau and Tai Wan due to missing 

information. Descriptive statistics of the variables used in our study are presented in Table 1. 

Table 1: Descriptive Statistics of the data 

Variable Obs Mean Std. Dev. Min Max 

Energy consumption                      377 0.0133 0.0074 0.001 0.0389 

Real Price index (year2002=1)      377 1.6719 0.4388 1 2.7409 

Real GDP (billion RMB)               377 928.67 847.25 34.065 5030.99 

Average household size  377 3.1696 0.3503 2.33 4.06 

Total population (million)             377 44.987 25.981 5.29 107.24 

Heating and cooling degree days 377 646.02 715.49 0 7704.9 

Number of vehicles                       377 3.9199 4.2801 0.121 25.419 

Share of industry sector (%)          377 48.145 6.7713 21.3 61.5 

Share of service sector (%)            377 40.062 8.0917 28.6 77.9 

Total SO2 emissions (k Tons)         377 767.40 431.17 32 2003 

Note: Data on Energy consumption are obtained from China Energy Statistical Yearbook, and 

other data are obtained from China Statistical Yearbook (various years).  

For time-series data and panel data, unit-root tests are required before proceeding with 

regression analysis. Use of classical regressions to estimate the econometric relationship 
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among variables requires that the data are stationary, otherwise it may lead to the “spurious 
regression” problem. Some non-stationary series contain common trends but essentially have 

no correlation. Regression based on such non-stationary data is meaningless even if it exhibits 

a high R-square. As suggested by Maddala and Wu (1999), we apply the Fisher test for panel 

unit root using an augmented Dickey-Fuller test (ADF).‡ The results imply that Ln(SO2) and 

Ln(GDP) have a unit-root since the unit-root tests are statistically insignificant even at 10 per 

cent level. Therefore, it is reasonable to conclude that the two variables are non-stationary. 

However, stationarity could be achieved by some simple transformation, such as first 

difference. The test results show that the series of Ln(SO2) and Ln(GDP) are said to be 

integrated of order one denoted as I(1).  

An important assumption implicit in the ECM is that the random disturbance term 𝑢𝑡  is 

stationary. This implies that actual SO2 emission levels do not permanently drift away from 

what is determined by long-run factors specified in equation (1). Since the levels of the 

variables in equation (1) are generally nonstationary, the stationarity of 𝑢𝑡 requires that these 

non-stationary variables be co-integrated as discussed in Engle and Granger (1987). Since our 

unit-root tests above indicate that all variables are I(1), we perform the panel cointegration test 

developed by Pedroni (1999, 2001). The tests indicate a co-integrating relationship between 

the variables. 

Figure 1 is a scatter plot of the statistical values of the two key variables and its trend 

components after filtering out the business cycle impacts. This figure shows total emissions 

present relatively large fluctuations from business cycle, compared real GDP.  

 

Figure 1: The scatter plots of the statistical data and the filtered data for GDP and SO2 

(scaled values) 

  

Panel a: GDP                                          Panel b: SO2 

Note: The vertical axis is the statistical data values and the horizontal axis is the filtered data. 

 

4. Energy efficiency estimation  

                                                           
‡ In a preliminary version of the paper, we have applied other tests including Levin-Lin-Chu (LLC) test, Breitung 

test, Im-Pesaran-Shin (IPS) test. The test results come to the same conclusion that panels contain unit roots.  
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The estimation results of the SFA models are given in Table 2. Overall, most of the estimated 

coefficients and lambda have the expected signs and are statistically significant. The estimated 

values of coefficients for the two models are similar.  

Table 2: Estimation results of SFA 

 (1) (2) 

 Persistent transient 

VARIABLES   

   

Price -0.036 -0.019 

 (0.027) (0.043) 

ln GDP 0.652*** 0.694*** 

 (0.097) (0.066) 

ln Population 0.096 0.113 

 (0.081) (0.119) 

ln Household size -0.473*** -0.394*** 

 (0.119) (0.142) 

ln Transport 0.183*** 0.133** 

 (0.040) (0.055) 

ln Climate -0.001 0.003 

 (0.005) (0.004) 

%Service -0.004** -0.003 

 (0.002) (0.003) 

%Industrial 0.000 0.001 

 (0.002) (0.002) 

T 0.030** 0.045* 

 (0.013) (0.023) 

T2 -0.005*** -0.005*** 

 (0.000) (0.001) 

Constant 9.609*** 8.319*** 

 (2.493) (0.758) 

Mundlak adjustment yes yes 

Log likelihood 412.2 419.2 

lambda 4.578*** 2.644*** 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

We find that price does not influence energy demand as the coefficient of price is insignificant. 

This may be due to the low variation in price and state-controlled price system. The income 

elasticity (coefficient of GDP) is around 0.7 and statistically significant in all two models. The 

coefficients of household size and population show the effect of demographics on energy 

demand. We find that population has positive impact for both models. Household size is shown 

to negatively impact the energy demand, suggesting the existence of economies of scale. This 

is reasonable as it is very unlikely that one family will purchase air conditioners by the number 

of family members.  

The sign of the estimated coefficients of transport is positive and statistically significant, which 

implies that the energy use for transport is one of the driving forces of the energy demand in 

China. The estimated coefficients of climate are small and insignificant in all models. The 

energy use for comfortable environment has no significant impact due to both low penetration 
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rates of heating systems and the small share of electricity use for cooling, as shown in Zhang 

(2013).   

The economic structure factors (the share of industrial sector to GDP and the share of service 

sector to GDP) have the expected signs. The DT is captured by the coefficients of T and T2 

combined. The positive sign of T and the negative sign of T2 together suggest that the declining 

trend of energy use occurs only in the later period.  

In Table 3 we provide the descriptive statistics of the estimated persistent and transient energy 

efficiency scores. As expected, the average persistent efficiency is lower than the average 

transient efficiency. The overall efficiency is around 0.73. 

Table 3: Descriptive statistics of the estimated efficiency 

Variable Obs Mean Std. dev. Min Max 

Persistent 377 0.80 0.15 0.47 0.98 

Transient 377 0.92 0.05 0.60 0.99 

Overall 377 0.73 0.14 0.39 0.94 

 

5. Empirical results of ECM and discussion 

Table 4 presents our empirical estimations with four model specifications. Model 1 and 2 

consider only GDP and the underlying energy efficiency into account, while model 3 and 4 

include additional controls. In model 1, the coefficient of “D.lnGDP” is positive. It shows that 
GDP will have positive and statistically significant effects on SO2 emissions in the short run, 

however, such effect becomes insignificant in the long run. This is consistent with the EKC 

literature. The coefficient of λ is negative as required. 

Although there is a time trend of declining emissions through general technological 

development, efficiency seems to be less helpful in curbing the emissions in the short run. We 

find that efficiency can contribute to the emission reduction in the long run as it shows in the 

result. This may suggest that the inverted-U shape of EKC is the result of efficiency 

improvement. GDP itself is no magic for turning down the ever-increasing emissions. Model 

2 is almost the same as model 1. The only difference is that in the short run equation we use 

the first difference of transient efficiency instead of overall efficiency, as transient efficiency 

reflects the short-run variations of energy efficiency. The results are more or less the same as 

in Model 2 except that the coefficient of D.efficiency is slightly higher.   

Moreover, we introduce additional controls in our model. Specifically, we introduce price 

variable to capture the price effect, two structural variables to capture the structural change of 

provincial economy, and one variable to capture the population change. As shown in model 3 

and 4. The sign of all coefficients are the same as in model 1 and 2. The only difference is that 

the positive effect of GDP on SO2 emission becomes statistically significant, which further 

proves that inverted U shape will never happen if the government cares only GDP growth while 

ignoring other measures such as efficiency improvement.  
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Table 4: Error Correction Model results 

 Model 1 Model 2 Model 3 Model 4 

VARIABLES     

Long-run Error-correction     

lnGDP 0.112 0.112 1.151*** 1.151*** 

 (0.195) (0.195) (0.111) (0.111) 

Efficiency -1.688*** -1.688*** -2.408*** -2.408*** 

 (0.294) (0.294) (0.113) (0.113) 

     

Short-run      

λ -0.533*** -0.533*** -0.474*** -0.474*** 

 (0.055) (0.055) (0.105) (0.105) 

D.lnGDP 1.343*** 1.343*** 2.186*** 2.186*** 

 (0.409) (0.409) (0.782) (0.409) 

D.efficiency (overall) 0.126 --- -0.041 --- 

 (0.347)  (0.957)  

D.efficiency (transient) --- 0.170 --- 0.256 

  (0.222)  (0.534) 

t -0.016*** -0.016*** -0.068*** -0.068*** 

 (0.004) (0.004) (0.017) (0.017) 

Constant 1.269*** 1.269*** -11.848*** -11.848*** 

 (0.146) (0.146) (2.660) (2.660) 

Additional controls No No Yes Yes 

     

Log likelihood 582.4 582.4 819.9 819.9 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

As we have discussed earlier, that long-run estimation may be affected by the cyclical 

fluctuations. We first remove the cyclical component of GDP by applying the Hodrick-Prescott 

filter. The filtered GDP is used in the long-run part of the ECM model. We re-run Model 1 and 

2, the results are shown in Table 5.  

As seen from Table 5, almost all the results hold. The only difference is the effects of GDP in 

the long run. The coefficients of GDP in the long-run error correction component is positive 

and statistically significant after removing the cyclical variations. This suggests that in the long 

run, GDP will increase SO2 emission, although with small magnitude as compared to the short 

run. This confirms that economic growth itself cannot solve the problem of environmental 

degradation.    

 

6. The structural break and cross section analysis 

In this section, we conduct an analysis to capture the potential structural break. Several reasons 

support our hypothesis. First, the financial crisis in 2008 affected the global economy, and 

China was no exception. Second, the central government put great efforts to fight for pollution 

and emission mitigation. Related policies can cause behavioral change in production and 

consumption and therefor affect energy demand and emissions. For example, strict 
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environmental regulation might alter production behavior of firms by changing the input mix 

away from pollution-intensive inputs to less pollution-intensive inputs. In this regard, the 

environmental policies would cause behavior to change that firms will to either invest and 

improve the productive use of dirty energy or switch to cleaner energy types. It is expected that 

there was significant technological update, leading to a jump in terms of technology level rather 

than a smooth transition.  

 

Table 5: Error Correction Model results after Hodrick-Prescott filter 

 Model 1’ Model 2’ Model 3’ Model 4’ 
VARIABLES     

Long-run Error-correction     

lnGDP (filtered) 0.543*** 0.543*** 1.150*** 1.150*** 

 (0.173) (0.173) (0.024) (0.024) 

Efficiency (overall) -1.822*** -1.822*** -2.426*** -2.426*** 

 (0.260) (0.260) (0.025) (0.025) 

     

Short-run      

λ -0.543*** -0.543*** -0.489*** -0.489*** 

 (0.060) (0.060) (0.106) (0.106) 

D.lnGDP 1.119*** 1.119*** 2.236*** 2.236*** 

 (0.409) (0.409) (0.771) (0.771) 

D.efficiency (overall) 0.121 --- 0.031 --- 

 (0.342)  (0.943)  

D.efficiency (transient) --- 0.167  0.310 

  (0.220)  (0.529) 

t -0.044*** -0.044*** -0.070*** -0.070*** 

 (0.005) (0.005) (0.017) (0.017) 

Constant -4.801*** -4.801*** -12.235*** -12.325*** 

 (0.539) (0.539) (2.684) (2.684) 

Additional control No No Yes Yes 

Log likelihood 584.1 584.1 842.1 842.1 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 

 

We first calculate the average GDP, energy efficiency and SO2 level over time and perform the 

tests of structural break in both GDP and energy efficiency. We use the Quandt-Andrews 

unknown breakpoint test, as it is able to test for multiple structural breakpoints, selecting the 

maximum breakpoint location based on different statistical tests (Zhang et al., 2018).  Table 6 

shows the result. According to the results and various statistics in the table, we find a significant 

structural break in both GDP and energy efficiency in the year 2008. This structural break point 

coincides well with the start of financial crisis in 2008. Therefore, it makes sense to interact 

the time dummy and GDP and energy efficiency. This section presents the results of such 

models through a cross-sectional analysis.  
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Since we have relatively large panels and relatively few years, a cross-sectional regression in 

which we simply average over the time periods in each province is feasible. We divide the 

sample into two separate time segments and calculate the average for each variable for the 29 

provinces in each of the time segments. According to our structural break test, we divide the 

sample into following two periods, first period from 2002 to 2007, second period from 2008 to 

2014. We create a time dummy variable, D1, which equals to zero for period one, and equals 

to one for the second period.  

 

Table 6: the results of structural break tests 

(1) Test for GDP   

Statistic                                     Value                Prob.   

    

Maximum LR F-statistic (2008)   8.208116  0.0600 

Maximum Wald F-statistic (2008) 8.208116  0.0600 

    

Exp LR F-statistic                         2.783237  0.0201 

Exp Wald F-statistic                         2.783237  0.0201 

    

Ave LR F-statistic                         3.752267  0.0234 

Ave Wald F-statistic                         3.752267  0.0234 

 

(2) Test for energy efficiency         

Statistic                                     Value                Prob.   

                      

Maximum LR F-statistic (2008) 8.216325  0.0598 

Maximum Wald F-statistic (2008) 8.216325  0.0598 

    

Exp LR F-statistic                         2.760063  0.0207 

Exp Wald F-statistic                         2.760063  0.0207 

    

Ave LR F-statistic                         3.709833  0.0243 

Ave Wald F-statistic                         3.709833  0.0243 

    

Note: Null Hypothesis for the test is no breakpoints within 15% trimmed data. 

 

In this section, we then estimate the following new equations. First, we consider a simple time 

dummy in the model as follows: ln𝑆𝑂2𝑖𝑡 = 𝛼1 + 𝛼2ln𝐺𝐷𝑃𝑖𝑡 + 𝛼3𝐸𝐹𝑖𝑡+𝛼4 𝐷1 + 𝜀𝑖𝑡,    

      i=1,2,…, 29;  t=1,2;  

      𝐷1 = 0 if t=1; 𝐷1 = 1 if t=2                                                                            (10) 
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Furthermore, we would like to assess how the level of 𝑆𝑂2 is affected by economic growth and 

energy efficiency over time. The interaction terms between the period dummy variable and 

ln(GDP), EF are used to replace the dummy variables. The model used to estimate the effects 

of GDP is then written as follows:  ln𝑆𝑂2𝑖𝑡 = 𝛽1 + 𝛽2ln𝐺𝐷𝑃𝑖𝑡 + 𝛽3𝐸𝐹𝑖𝑡+𝛽5 𝐷1 ∗ ln𝐺𝐷𝑃𝑖𝑡 + 𝜀𝑖𝑡                               (11) 

And the model used to estimate the effects of energy efficiency is written as follows: ln𝑆𝑂2𝑖𝑡 = 𝛽1 + 𝛽2ln𝐺𝐷𝑃𝑖𝑡 + 𝛽3𝐸𝐹𝑖𝑡+𝛽6 𝐷1 ∗ 𝐸𝐹𝑖𝑡 + 𝜀𝑖𝑡                                     (12) 

We do not include two interaction terms in one equation because the interaction terms are 

highly correlated. The correlation coefficient between 𝐷1 ∗ ln𝐺𝐷𝑃𝑖𝑡 and 𝐷1 ∗ 𝐸𝐹𝑖𝑡 is 0.97. The 

regression results of our cross-sectional analysis are presented in Table 9. The second column 

demonstrates the results of equation (11) and the third column shows the results of equation 

(12). 

From Table 7, the coefficients for GDP and Efficiency are significant in almost all three cross-

sectional models. Additionally, the signs of lnGDP and Efficiency are positive and negative, 

respectively, as expected. These outcomes illustrate that the impact of GDP on SO2 is positive 

while the impact of energy efficiency on SO2 is negative. The time dummy variable is 

significant at 5 per cent, implying the SO2  emission of later period in the 29 provinces is 

significantly less than that of the earlier period.  

Table 7: Cross-sectional analysis 

 1 1a 2 2a 3 3a 

VARIABLES       

       

lnGDP 0.408*** 0.513*** 0.415*** 0.522*** 0.405*** 0.507*** 

 (0.089) (0.078) (0.111) (0.092) (0.108) (0.093) 

Efficiency -1.375** -1.670*** -1.373* -1.668*** -1.144 -1.392*** 

 (0.681) (0.455) (0.769) (0.489) (0.713) (0.395) 

Time dummy D1 -0.331** -408*** --- --- --- --- 

 (0.152) (0.103)     

D1*lnGDP --- --- -0.012** -0.015*** --- --- 

   (0.005) (0.004)   

D1*Efficiency --- --- --- --- -0.434** -0.516*** 

     (0.179) (0.155) 

Constant -5.744** -4.232** -5.930* -4.454** -5.861** -4.333* 

 (2.293) (1.853) (3.029) (2.243) (2.878) (2.608) 

       

Additional controls No Yes No Yes No Yes 

R-squared 0.317 0.701 0.318 0.703 0.315 0.693 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

 

The results in the last two columns of Table 7 provide interesting results. The coefficients of 

the interaction terms are statistically significant and negative. It shows that in the second period, 
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GDP has relatively lower impacts on SO2 emissions, as in the second period, the effects of 

GDP on emission is the sum of the coefficients of β2  and β5 . Since β5 is negative , this 

suggests that the GDP increases SO2 emissions at an decreasing rate.  

The results of the last column show the time effects of energy efficiency on SO2 emissions. In 

the first period, the impact of energy efficiency on SO2 emission is the coefficient of efficiency, 

namely -1.144. The effects of energy efficiency on SO2 in the second period is the sum of the 

coefficients of β3  and β6 , namely -1.578, according to the definition of equation 12. This 

implies that the energy efficiency reduces SO2 emissions at an increasing rate. 

For a robustness check, we again introduce additional controls in all the three models including 

variables to capture the price effects and economic structural change. The results are presented 

in column 1a, 2a and 3a. All the results confirm our main conclusions. 

 

7. Conclusions and policy implications 

In this paper, we have revisited the classical nexus among total Sulphur dioxide emission, total 

real GDP and energy efficiency, using a panel database of 29 provinces in China. We first 

estimate energy efficiency by employing stochastic frontier analysis, which has been proved to 

be a rigorous econometric approach for future policy advice. The error correction model is then 

applied to study the short-run and long-run relationships among SO2 emissions, economic 

growth and energy efficiency. Particularly, we have separated the business cycle effects from 

the macro data to ensure a robust estimation of the relationships. In addition, we consider the 

potential structural break and explore the relationship between SO2 and GDP or energy 

efficiency via the cross-sectional analysis.  

Both panel and cross-sectional analyses offer similar insights for us. Total real GDP has a 

positive impact on total SO2 emissions, even after removing the cyclical component, which 

suggests that economic growth alone cannot solve pollution issues. In the long run, we find 

that an increase in energy efficiency has significant negative impact on SO2 emissions, 

whatever the cyclical component is included or not.  

The above results offer several important policy implications. Firstly, reduction in energy 

intensity proposed by Chinese government to curb climate change and other pollutants may not 

work. Our empirical results show that the increase in total GDP causes non-decreasing trend 

of total SO2 emissions, so reduction in energy intensity cannot alleviate the pollution issues 

without preventing its increasing trend. Therefore, it is necessary to devise appropriate energy 

efficiency measures to eventually decrease the total pollution in the long term.  

In addition, it is beneficial for the government to encourage green research and development 

of environment-friendly technology. Our analysis shows that the increasing size of 

transportation has significant impact on driving up the energy demand. Emission from transport 

is one of the major sources for environmental pollution in China. The transformation towards 

green transport system with renewable-powered cars is an important outlet for reducing 

pollutions. Currently, China has invested hugely in the development of electric cars, and even 

hydrogen transportation.   

Thirdly, some literature indicated there may exist significant energy rebound effect due to 

lower energy price resulted from improving in energy efficiency (Hanley et al., 2009), our SFA 
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estimation show that the impact of energy price on energy demand is insignificant, probably 

because low variation in price resulted from state-controlled price system. A deep reform in 

the price system will stimulate the power of market by reducing the energy demand and 

inducing innovations for efficiency improvement. Although there have been several rounds of 

market reform, the rigidity of energy price remains a big challenge. Since 2018 the Chinese 

government has initiated the environmental tax and national carbon trading, which implicitly 

increases the cost of using dirty energy sources. It is a strong signal that the government is 

moving a step towards marketable mitigation of pollution rather than command-and-control 

approach.   

Fourthly, to alleviate the pollution issues in China, one of the core strategies adopted by the 

central government was to switch from coal to natural gas. The first kind of plan was released 

by Beijing government in 2010. Beijing’s four remaining coal-burning power plants were due 

to switch over to natural-gas combined heat and power (CHP) systems by the winter of 2014 

at the latest. Other cities followed similar approaches. However, energy is essential input for 

economic growth and more than 70% of energy reserve is coal and natural gas reserves are 

limited in China, so it is not easy to lower its dependency on coal in the short run. When 

economy booms, we cannot simply shut down the coal power plant to curb pollution; as 

economic growth slows, many previous closed small coal power plants reopen again due to the 

higher cost of natural gas. Our empirical results show even in the short run the improvement in 

energy efficiency can contribute emission reduction whatever the cyclical effects are included 

or not, so improving energy efficiency can be useful for a developing country to balance 

between economic growth and pollution control in both the short and long run. Therefore, with 

high volatility of energy supply market in the world and energy structure of Chinese economy, 

policies of enhancing energy efficiency could offer more sustainable win-win balance between 

the environment and economy.  

Finally, from a global perspective, as China is becoming a world leader in energy efficiency 

development and we have confirmed that efficiency indeed has powerful effect for the 

environment, China can export such expertise to other developing or undeveloped countries as 

part of its aid. This will not only show its strong leadership, but also regenerate the positive 

benefit of energy efficiency in other regions, and contribute to the global flight for the climate 

change.  
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