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Abstract

This paper investigates the optimal (effort-maximizing) structure of multi-stage sequential-
elimination contests with pooling competition in each stage. We allow the contest organizer

to design the contest structure in two arms: contest sequence (the number of stages, and the

number of remaining contestants in each stage), and prize allocation. First, we find that the

optimality of “winner-take-all” (single final winner, single final prize, no intermediate prizes)

is independent of the contest sequence. Second, we show that the more complete the contest

sequence is, the more efforts can be induced from the contestants. Therefore, the optimal

contest eliminates one contestant at each stage until the finale, while a single winner takes over

the entire prize purse. Our results not only rationalize various forms of multi-stage contests

conducted in reality, such as the well-known Fox TV show “American Idol”, but also shed light

on the design of internal organizational hierarchy.

JEL Nos: C7, D7

1 Introduction

Situations in which economic agents expend costly and non-refundable resources in order

to win a limited number of prizes are fairly ubiquitous. For instance, high school students

engage in academic efforts to compete for college admissions. Firms participate in research
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tournament to win a procurement contract of innovation. Cities lobby the International

Olympic Committee in order to host Olympic Games. In modeling contests, the economic

literature conventionally assumes that the contest lasts for only one stage, in which each

contestant competes against all others for a single prize (“winner-take-all”). Many contests

in reality, however, last for more than one stages, and require contestants to repeatedly

exert efforts. In the final stage, the finalists expend resources to compete for the prizes;

while in each preliminary stage, the remaining contestants compete for the “tickets” to the

next round. In most of the contexts, no prize other than the “tickets” is awarded in the

preliminary stages.

Numerous real world contest settings exhibit such a multi-phase sequential competition

structure. One such example is the “election of London” to host the 2012 summer Olympic

Game. While 9 cities initially submit applications, only 5 of them (London, Madrid, Moscow,

NewYork and Paris) are shortlisted as the candidates for the final election. The 2005 DARPA

(Defense Advanced Research Projects Agency) Grand Challenge, a race among autonomous

robots held in the Mojave Desert along a route of 132.2 miles, also exemplifies a sequential

competition setting. A total of 43 teams were selected out of 195 applicants to participate

in the NQE (National Qualification Event), which cut the 43 teams down to 23 for the final

race. In the end, “Stanley”, the Stanford Racing Team’s autonomous robotic car, completed

the course first and earned a $2 million prize.1 In research tournaments, the procurement

firms select the few most attractive ideas from a larger pool of innovation proposals, and only

the selected are eligible for the further race towards successful innovation (see Fullerton and

McAfee, 1999). In many Asian countries, in contrast to the K-12 system in U.S., students

have to take more than one major screening exams in order to be admitted into colleges. In

recruiting new faculty members, economics departments usually interview a large group of

candidates, but extend on-campus visit invitations to only a small number of them.

Central to the contest literature is the inquiry how the design or the rule of the contest

affects the total efforts contestants expend. As argued by Gradstein and Konrad (1999),

“. . . the contest structures are the outcome of a careful design with the view of attaining a

variety of objectives, one of which is maximization of efforts by contenders”. The efforts of

the contestants benefit the contest organizer in many occasions, such as professional sports,

1We thank Ivan Png for alerting us of this example.
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research tournament, as well as political rent-seeking. Following this thread of thinking,

our paper addresses the issue of optimal (effort-maximizing) contest design in a multi-phase

sequential Tullock contest setting with pooling competition in each stage. We recognize that

the structure of a multi-stage contest consists of two aspects: the sequence (the number

of stages, and the number of remaining contestants in each stage), and the allocation

of prizes. Specifically, we answer the following questions. First, given the sequence of

a multi-stage contest, and a fixed total of prize purses, how does the contest organizer

allocate the prize mass to the recipients in order to maximize the efforts? Does a “winner-

take-all” (single-winner and single-prize) contest necessarily dominate a contest that awards

intermediate prizes? Second, given the number of participants and the total value of prizes,

does a multi-stage contest, which sequentially eliminates contestants, drive more efforts, as

compared to a single-stage simultaneous contest? What is the optimal contest sequence?

Third, does the sequence of the contest intertwine with the prize allocation in influencing

the efforts?

We investigate the optimal contest sequence and the optimal prize allocation in a unified

framework. We consider a multi-stage contest, in which N identical contestants compete for

a fixed prize mass, instead of a given single prize. Each stage-contest is a pooling contest,

in which each remaining contestant competes against all other remaining contestants. In

each preliminary stage, a contestant competes not only for the “tickets” to the next stage,

but also for nonnegative intermediate prizes. In the final stage, the remaining contestants

compete for nonnegative final prizes only. We allow the contest organizer to maximize the

total efforts in two arms: choosing the optimal contest sequence and allocating optimally

the prize mass. We first show that the optimal allocation of the prize mass is independent of

the contest sequence structure, and a “winner-take-all” (single-prize) contest dominates all

other prize allocations. We then show that the more “complete” the contest sequence is, the

more efforts the contestants expend.2 As a consequence, the optimal contest that maximizes

the total efforts is a (N − 1)-stage “Pyramid” contest that eliminates one contestant at each
stage, and a single final winner takes over the entire prize purse. To summarize, our study

provides rationales for (i) the multi-stage contest widely observed in reality; and (ii) the

winner-take-all principle commonly assumed in modeling rent-seeking competition in a more

2We will define the concept of completeness in Section 3.3.
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general setting.

The Relation to the Literature

Baye, Kovenock and de Vries (1993) raise the question “why do politicians frequently ‘an-

nounce’ that they have narrowed down a set of potential recipients of a ‘prize’ to a slate of

finalists?” They examine the scenario, in which the politician optimally shortlists a set of fi-

nalists from a pool of rent seekers (who differ in their valuations for the final prize) to induce

more competition, while the process of shortlisting does not involve rent-seeking activities

on the part of contestants. A handful of papers, in contrast, have modeled the process of

shortlisting as the preliminary stages of a sequential contest, which requires contestants to

repeatedly expend efforts. For instance, Amegashie (1999) considers a two-stage contest. In

the first stage of the contest, contestants are divided into groups, and a single winner stands

out from each group to participate in the second-stage (final) competition.

Rosen (1986) models the organizational hierarchy as a series of pairwise contests: em-

ployees compete for promotion along the ladder of hierarchy. He shows that a larger top

prize increases the overall efforts. Harbaugh and Klumpp (2005), as well as Matros (2005),

consider two-stage tournament contests that group contestants in preliminary stages. In

contrast to Amegashie (1999), they study the optimal intertemporal effort allocation of the

contestants faced with resource constraints. Gradstein (1998) also contributes to this re-

search agenda by comparing a simultaneous contest with a contest that consists of a series

of pairwise subcontests.

Rosen (1986) considers a 2N−contestant N−stage sequential contest: in each stage, two
of the remaining contestants are matched into head-to-head confrontation, and the winner

survives for the next stage. Yet he does not justify the optimality of the contest structure. In

the sense of endogenizing the contest structure, our paper is more closely related to Gradstein

and Konrad (1999), as well as Moldovanu and Sela (2006). Gradstein and Konrad (1999)

consider multi-stage imperfectly discriminatory contests that group identical contestants

in preliminary stages. In contrast to Rosen (1986) and Amegashie (1999), they allow the

contest organizer to flexibly design the contest structure as a matching scheme. They show

that the multi-stage contest adopted by Rosen (1986) may emerge as the optimum if the

contest success function is less discriminatory. In a perfectly discriminatory contest setting,
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Moldovanu and Sela (2006) study the optimal contest architecture that specifies whether

and how the contestants should be split into subgroups in the first-stage competition. They

find that the optimality of contest architecture depends upon the properties of contestants’

cost function, as well as the objective of the contest organizer. A single grand static contest

maximizes the expected total efforts for the case of linear cost of effort. If the effort cost

function is convex, a designer can benefit from splitting the contestants into several subgroups

in the preliminary stage of the contest.

Our paper differs from these papers in two regards. Firstly, we allow remaining con-

testants to compete against “all others” in each stage, instead of matching them into differ-

ent groups. We consider each stage of competition in the sequential elimination process as a

multiple-winner multiple-loser contest (as first suggested by the seminal paper of Clark and

Riis (1996)): the winners are first selected to proceed to the next stage, while the rest of

contestants are eliminated.3 Amegashie (2000) compares the two following ways of “short-

listing” in two-stage contests: pooling (contestants compete against all others in each stage)

and grouping (contestants are divided into groups). He shows that the former generates a

higher rent-dissipation rate. Fu and Lu (2005) also provide theoretical evidence supporting

that pooling competition generates higher rent-dissipation rate. These studies partially jus-

tify why we adopt a pooling competition in each stage of the game. Our paper is also related

to Fullerton and McAfee (1999) in modeling “shortlisting”. In a two-stage model, they show

that the optimal research tournament requires competing companies to participate in an

all-pay auction (as a screening scheme) to win the entry, while only a subset of firms (the

most competitive firms) engage in innovation activities.

Secondly, few of these papers allow for flexible prize allocation in multi-stage contest

settings. Most of papers in the contest literature assume that the prize structure is ex-

ogenously given, and is governed by the “winner-take-all” principle: a single final winner

receives a single indivisible prize. Besides Rosen (1986), the exceptions are Krishna and

Morgan (1998), Moldovanu and Sela (2001) and Matros (2005). Krishna and Morgan (1998)

justify the winner-take-all principle in small tournaments. Moldovanu and Sela (2001) con-

3Clark and Riis (1998) suggest an interesting multi-stage contest with a different rule. In their paper,

winners are first selected in each stage to receive the stage prizes, but then they have to exit from the contest;

while the losers proceed to the next stage and continue to exert efforts in order to compete for the remaining

prizes.
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sider the optimal prize allocation in a one-stage perfectly discriminatory contest (all-pay

auction). Matros (2005) allows the contest organizer to flexibly allocate his/her budget be-

tween a single winner’s prize and losers’ rewards to maximize the total efforts in a two-stage

contest, and shows that a winner-take-all contest dominates.

Our paper proceeds as follows. Section 2 sets up the model. In Section 3, we first derive

the general solution of equilibrium efforts in a multi-stage multi-prize contest. We then

present our results on the optimal contest structure. In addition, we discuss the implications

and applications of these results. Section 4 provides a concluding remark.

2 The Model

N(≥ 3) risk-neutral contestants are engaged in a multi-stage sequential contest with non-
negative intermediate and final prizes. The contest organizer has a total budget of Γ0 for

prize allocation. For this moment, we fix the sequence of the contest, i.e. the number of

stages and the numbers of survivors in each stage. Let L denote the number of stages in

the contest, and Nl denote the number of contestants in stage l ∈ {1, 2, ..., L}. In stage
l ∈ {1, 2, ..., L − 1}, Nl contestants participate, and Nl+1 of them survive and proceed to

the next stage. Clearly, we have N1 ≡ N . There are Nl nonnegative intermediate prizes

Wm
l ,m ∈ {1, . . . , Nl}, available for each stage l ∈ {1, 2, ..., L−1}. At stage L, NL contestants

compete for NL nonnegative final prizes W
m
L ,m ∈ {1, . . . , NL}.

4 The sequence of a given

contest is therefore represented by a L-term non-increasing sequence {N1,N2,..., NL}. Clearly,

we should have N1 = N ≥ N2 ≥ ... ≥ NL ≥ 1.
At all stages l = 1, 2, ..., L, the remaining contestants simultaneously exert their nonneg-

ative efforts eil, i = 1, 2, ..., Nl. The tickets to the next stage and the stage prizes are allocated

in a sequential lottery process as modeled by Clark and Riis (1996). Once a contestant is

selected, he/she is immediately removed from the pool, while the rest of them are eligible for

the next draw. Define Ωm
l to be the set of remaining contestants up for the m−th draw in

stage l, where m ∈ {1, 2, . . . , Nl}. Denote (e
1
l , ..., e

i−1
l , ei+1l , ..., eNl

l ) by e
−i
l . The conditional

probability that a contestant i ∈ Ωm
l is selected in the m−th draw is then given by

4Some final prizes are allowed to be zero.
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p(eil, e
−i
l ;Ω

m
l ) = eilÁ

X

j∈Ωml

ejl . (1)

In the case that all contestants up for a draw make zero effort, we assume that the

selected is randomly chosen from the pool. Moreover, we assume that if Ωm
l reduces to a

singleton, then the only contestant is automatically selected for sure regardless of his effort.

At stage l ∈ {1, 2, ..., L}, the contestant selected in them−th draw is awarded the prizeWm
l .

In addition, at stage l ∈ {1, 2, ..., L − 1}, the contestants who are selected in the first Nl+1

draws proceed to the (l+1)−th stage, while the other Nl−Nl+1 contestants are eliminated.

We define Γl ≡
NlX

m=1

Wm
l to be the sum of prizes awarded in stage l, and Γ ≡

LX

l=1

Γl to be

the total of the prizes in the whole contest.

Denote by Vl the conditional (symmetric) equilibrium expected payoff of a representative

contestant at stage l. For convenience, we define VL+1 = 0. At stage l ∈ {1, 2, ..., L},
a representative contestant i rationally chooses his/her effort eil to maximize his expected

payoff

V i
l =

Nl+1X

m=1

[Pm(e
i
l, e

−i
l )(Vl+1 +Wm

l )] +

NlX

m=Nl+1+1

[Pm(e
i
l, e

−i
l )W

m
l ]− eil, (2)

where Pm(e
i
l, e

−i
l ) is the probability that contestant i is selected in them−th draw. Note that

Pm(e
i
l, e

−i
l ) =

X

∀Ωml

[Pr(Ωm
l ) Pr(i ∈ Ωm

l )p(e
i
l, e

−i
l ;Ω

m
l )], where Pr(Ω

m
l ) is the probability that the

remaining contestants up for the m-th draw are Ωm
l , and Pr(i ∈ Ωm

l ) is the probability that

contestant i belongs to Ωm
l . Since we consider the symmetric equilibrium, we assume all

contestants other than i exert the same effort e0l without loss of generality. Under this

simplification,

Pm(e
i
l, e

−i
l ) =

(Nl − 1)!
(Nl −m)!

(Πm−1
k=1

e0l
eil + (Nl − k)e0l

)
eil

eil + (Nl −m)e0l
. (3)

Denote by el the symmetric equilibrium effort. From (3), when eil = el, i = 1, ..., Nl,

∂Pm(eil ,e
−i
l )

∂eil
is given by

∂Pm(el, ..., el)

∂eil
=

(1−
m−1P
g=0

1
Nl−g )

Nlel
. (4)
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The first order condition for the interior equilibrium effort el is thus

Nl+1X

m=1

[
∂Pm(el, ..., el)

∂eil
(Vl+1 +Wm

l )] +

NlX

m=Nl+1+1

[
∂Pm(el, ..., el)

∂eil
Wm

l ]− 1 = 0. (5)

(4) and (5) lead to

Nl+1X

m=1

[(1−
m−1P
g=0

1

Nl − g
)(Vl+1 +Wm

l )] +

NlX

m=Nl+1+1

[(1−
m−1P
g=0

1

Nl − g
)Wm

l ]−Nlel = 0. (6)

Proposition 1 In a symmetric interior equilibrium of the contest in stage l, each remaining

contestant exerts an effort of

el =

PNl+1

m=1 [(1−
m−1P
g=0

1
Nl−g )(Vl+1 +Wm

l )] +

NlX

m=Nl+1+1

[(1−
m−1P
g=0

1
Nl−g )W

m
l ]

Nl
. (7)

Proposition 1, which directly stems from the first order condition (6), gives the interior

equilibrium individual effort of each remaining contestant in stage l. It strictly increases

with the expected future payoff Vl+1 as the coefficient of Vl+1 is
PNl+1

m=1(1 −
m−1P
g=0

1
Nl−g ) =

Nl+1 −
PNl+1−1

g=0
Nl+1−g
Nl−g ≥ 0. Note that the term

m−1P
g=0

1
Nl−g strictly increases with m, the

index for the order of the draw. Thus, the equilibrium effort el also increases with the

value of “earlier” prizes Wm
l (the prizes awarded with earlier draws), where m satisfies

1−
m−1P
g=0

1
Nl−g > 0. However, el decreases with the values of later prizesW

m
l , where m satisfies

1−
m−1P
g=0

1
Nl−g < 0.

Define Φl to be Φl ≡
PNl+1

m=1 [(1−
m−1P
g=0

1
Nl−g )(Vl+1+W

m
l )]+

NlX

m=Nl+1+1

[(1−
m−1P
g=0

1
Nl−g )W

m
l ]. The

solution for the symmetric equilibrium effort is valid and satisfies (6) if and only if Φl ≥ 0
holds for {Wm

l }
Nl
m=1. Otherwise a corner solution applies and the equilibrium effort would be

zero. Φl < 0 may happen when sufficiently large prizes are awarded for the latest draws. In

this case, the contestants prefer not to make positive effort, but to wait for the latest prizes.

As a result, the first order condition for interior solution fails, and the corner solution of

zero effort arises. Here and hereafter, we assume Φl ≥ 0, and restrict our attention to the
(unique) symmetric interior equilibrium. In Section 3.2, we will show in detail that there is

no loss of generality to focus only on the prize allocations that lead to interior equilibrium.
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Rearrange the terms in (6), we have

Nlel = Nl+1Vl+1 − Vl+1
Nl+1−1P
g=0

Nl+1 − g

Nl − g
+ Γl −

NlX

m=1

(Wm
l

mX

k=1

1

Nl − k + 1
). (8)

Define the total efforts E ≡
LX

l=1

Nlel. In this context, we assume that the total efforts

accrue to the benefit of the contest organizer. Thus, the contest organizer is to choose the

optimal sequences {Nl}
L
l=1 and prize allocation {W

m
l |m = 1, ..., Nl; l = 1, ..., L} to maximize

the total efforts E, subject to the budget constraint

Γ ≤ Γ0. (9)

3 Results

3.1 Preliminary Results

For convenience, we define ΓL+1 = 0. In a stage l, ∀l ∈ {1, 2, ..., L}, every symmetric contes-
tant has the same chance of winning each component of the total stage-award Nl+1Vl+1+Γl

(including Nl stage prizes and Nl+1 tickets to the next stage) in a symmetric equilibrium.

Therefore, the conditional equilibrium expected payoff of a representative contestant at stage

l is Vl = (Nl+1Vl+1 + Γl)/Nl − el, where el is his/her equilibrium effort at stage l. The total

of the Nl contestants’ equilibrium expected payoffs can then be written as

NlVl = Nl+1Vl+1 + Γl −Nlel, (10)

which implies

Nlel = Nl+1Vl+1 + Γl −NlVl. (11)

Lemma 1 E = Γ−NV1.

Proof. Summing up (11) over the L stages gives

E ≡
L−1X

l=1

Nlel +NLeL

=
L−1X

l=1

(Nl+1Vl+1 −NlVl) +
L−1X

l=1

Γl +NLeL

= NLVL −NV1 +
L−1X

l=1

Γl +NLeL. (12)
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Note that in the last stage of the contest, i.e. stage L, we have NLVL = ΓL − NLeL.

Thus,

E = ΓL −NV1 +
L−1X

l=1

Γl

= Γ−NV1. (13)

Q.E.D.

Lemma 1 is fairly intuitive. V1 represents the conditional expected payoff a representative

contestant receives in the first stage. The contestant does not only gain from the intermediate

prizes awarded in this stage, but also from the values of the “tickets” to future stages. As

a consequence, V1 is the payoff every contestant expects from the whole contest in the very

beginning of the contest. Thus, NV1 represents the total surplus all contestants receive in

the contest, which, by the risk neutrality of the contestants, is equivalent to the difference

between the total prize mass Γ and the total efforts E.

From (8), the total equilibrium efforts in each stage are determined by the conditional

expected payoffs of a representative contestant in next stage, and the stage prizes awarded

in the current stage. Using (8) and (11), we can write in the following Lemma contestants’

payoffs in the current stage (Vl) in terms of the future expected payoff (Vl+1), and the

intermediate prizes of the current stage prizes.

Lemma 2 NlVl = Vl+1
Nl+1−1P
g=0

Nl+1−g
Nl−g +

NlX

m=1

(Wm
l

mX

k=1

1
Nl−k+1), for l ∈ {1, 2, ..., L}.

Using Lemma 2, we are able to recursively solve for V1 as in Lemma 3, which states that

V1 can be written as a function of the prizes in the current and all future stages.

Lemma 3 V1 =
LX

l=1

{( Πl
j=1

1
Nj
)(Πl−1

j=1

Nj+1−1P
g=0

Nj+1−g
Nj−g )

NlX

m=1

(Wm
l

mX

k=1

1
Nl−k+1)}.

Combining Lemmas 1 and 3, we have the following result.

Proposition 2 A N-person L-stage sequential-elimination contest, with the sequence struc-

ture {Nl}
L
l=1, prize allocation {W

m
l |m = 1, ..., Nl; l = 1, ..., L} and a total prize purse Γ,

induces the total equilibrium efforts of

E = Γ−N
LX

l=1

{(Πl
j=1

1

Nj
)(Πl−1

j=1

Nj+1−1P
g=0

Nj+1 − g

Nj − g
)

NlX

m=1

(Wm
l

mX

k=1

1

Nl − k + 1
)}. (14)
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3.2 The Optimal Prize Allocation

Lemma 3 shows that given the sequence of the contest, a contestant’s equilibrium surplus

V1 completely depends on the allocation of the prize purses. If the contest organizer intends

to maximize the total efforts E, how many final winners should be allowed for? Does it pay

to create intermediate prizes that are awarded in earlier stages? Next, we address how the

contest organizer optimally allocates his/her total budget Γ0 over the
LX

l=1

Nl possible prizes.

By Lemma 1, the optimal prize allocation that maximizes the total efforts must minimize the

equilibrium surplus V1. Thus, we can focus on the minimization of V1 to solve the original

effort-maximization problem.

Before we proceed, we first clarify why there is no loss of generality if we focus on prize

allocations that lead to symmetric interior equilibrium. Recall (6). An interior equilibrium

requires Φl ≡
PNl+1

m=1 [(1−
m−1P
g=0

1
Nl−g )(Vl+1+Wm

l )]+

NlX

m=Nl+1+1

[(1−
m−1P
g=0

1
Nl−g )W

m
l ] ≥ 0. Suppose

that the prize allocation makes Φl < 0, which leads to the corner solution, i.e. el = 0. First,

note that if we allocate the entire Γl to the first draw prize, it must follow that Φl ≥ 0.

Second, Φl is continuous in {W
m
l }

Nl
m=1. Thus, the contest organizer can always shift the prize

mass Γl from later prizes to earlier prizes within the stage, and reach an allocation that

delivers exactly Φl = 0. The first order condition (6) is then reinstated and it renders an

interior equilibrium with el = 0. Thus, by appropriately shifting the prize mass from later

prizes to earlier prizes, we can always apply condition (6) and obtain an interior equilibrium,

which generates the same outcome as the corner solution equilibrium. Note from (10) that

this adjustment of prizes does not alter Vl as well. As a result, it does not affect the total

efforts in any other stage of the contest. This means that we can ignore the possibility of a

corner solution, and assume Φl to be nonnegative without loss of generality.

Theorem 1 (“Winner-take-all”) Given a contest sequence {Nl}
L
l=1, the optimal contest

prize allocation that maximizes the total efforts E requires the entire prize purse to be allo-

cated to the first prize in the final stage, i.e. W 1
L = Γ0.

Proof. The proof consists of three steps.

Define for brevityDl ≡ ( Πl
j=1

1
Nj
)(Πl−1

j=1

Nj+1−1P
g=0

Nj+1−g
Nj−g )

NlX

m=1

(Wm
l

mX

k=1

1
Nl−k+1). From Lemma

11



3, we can then write V1 as the sum of the L separate terms Dl, l ∈ {1, 2, ..., L}, i.e.,

V1 =
LX

l=1

Dl. (15)

Step One: Wm
l = 0, if m > 1, l ∈ {1, 2, ..., L}.

For any fixed Γl, l ∈ {1, 2, ..., L}, Dl is minimized if the entire prize purse in stage l is

allocated to the first prize W 1
l because

mX

k=1

1
Nl−k+1 increases with m. Thus for the optimal

prize allocation, we must have Wm
l = 0, if m > 1, l ∈ {1, 2, ..., L}.

Step Two: W 1
l = 0, for l ∈ {1, 2, ..., L−1}, and W 1

L = Γ, given a fixed total prize

purse Γ ≤ Γ0.

Step one implies that V1 can be reduced to the following form for the optimal prize

allocation

V1 =
LX

l=1

{( Πl
j=1

1

Nj
)(Πl−1

j=1

Nj+1−1P
g=0

Nj+1 − g

Nj − g
)
W 1

l

Nl
}. (16)

Next, we show that for l ∈ {1, 2, ..., L−1}, if we move the prize massW 1
l toW

1
l+1, it further

reduces V1. For this purpose, we need only to compare the coefficients ofW 1
l andW

1
l+1. Thus,

we compare (Πl
j=1

1
Nj
)(Πl−1

j=1

Nj+1−1P
g=0

Nj+1−g
Nj−g )

1
Nl
with ( Πl+1

j=1
1
Nj
)(Πl

j=1

Nj+1−1P
g=0

Nj+1−g
Nj−g )

1
Nl+1

. Ignor-

ing the common elements, we only need to compare 1
Nl
to ( 1

Nl+1
)2

Nl+1−1P
g=0

Nl+1−g
Nl−g . Obviously,(

1
Nl+1

)2

Nl+1−1P
g=0

Nl+1−g
Nl−g < ( 1

Nl+1
)2(Nl+1

Nl+1

Nl
) = 1

Nl
, because, Nl+1−g

Nl−g < Nl+1

Nl
if g > 0. It follows that the

weight on W 1
l is strictly greater than that on W 1

l+1, which implies that shifting the mass of

W 1
l to W

1
l+1 strictly reduces V1.

Thus in order to minimize V1, all prize mass allocated to prizes in an earlier stage (l < L)

should be reallocated to W 1
L. Given the total amount of prizes Γ, we thus have W

1
L = Γ.

Thus, we show that a “winner-take-all” contest maximizes the total efforts for any given

contest sequence.

Step Three: Γ = Γ0, i.e., the contest organizer uses up the entire budget on

prizes.

Based on steps one and two, Proposition 2 leads to that E can be reduced to the following

form for the optimal prize allocation

E = Γ[1−N( ΠL
j=1

1

Nj
)(ΠL−1

j=1

Nj+1−1P
g=0

Nj+1 − g

Nj − g
)
1

NL
]. (17)
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Note thatN(ΠL
j=1

1
Nj
)(ΠL−1

j=1

Nj+1−1P
g=0

Nj+1−g
Nj−g )

1
NL
= N

N2
L
ΠL−1
j=1 [

1
Nj

Nj+1−1P
g=0

Nj+1−g
Nj−g ] <

N
N2
L
ΠL−1
j=1

Nj+1

Nj
=

1
NL
≤ 1. Thus E strictly increases with Γ. Therefore, the entire budget Γ0 should be allocated

to W 1
L.

Q.E.D.

Theorem 1 establishes that if the contestant organizer has the flexibility to allocate a

fixed prize mass, a multi-stage contest that maximizes the total efforts must combine all

the resource into a single final prize and reward it to a single final winner, regardless of the

sequence of the contest. Our results therefore provide a rationale for the commonly assumed

“winner-take-all” principle in modeling rent-seeking competition. Clark and Riis (1996) show

that contestants expend more efforts if the contest is governed by a “winner-take-all” rule

than they do if the number of positive prizes exceeds one. Theorem 1 confirms this insight

in the context of multi-stage elimination contests.

Lemma 3 shows that V1 is a weighted sum of the prizes awarded in all stages. The weights

on prizes exhibit two interesting features. On one hand, within a single stage, an earlier

prize has a smaller weight. This is due to the fact that a higher probability of winning an

earlier prize demands higher efforts from a contestant. As a result, within a stage l, the

contest organizer can increase the efforts by allocating the entire stage purse Γl to the first-

draw prize, i.e. W 1
l = Γl.

5 Therefore, we can focus on the contest structure that allocates

the prize purse only to the first-draw prize of each stage. On the other hand, between any

two stages, a first-draw prize awarded in a later stage has a smaller weight. The intuition is

that contestants have to (repeatedly) exert their further efforts to win a prize awarded in a

later stage. In other words, a prize at a higher rank of the ladder demands more efforts from

a contestant. To induce the highest subsequent efforts, all resources should then be allocated

as one single prize at the last stage. Aggregating both the “within” and “between” effects

leads to the optimality of “winner-take-all” in our multi-stage setting.

3.3 The Optimal Contest Sequence: Pyramid Contest

Having established the “winner-take-all” principle as the optimal prize allocation rule in

any multi-stage contest, it remains to ask what is the optimal sequence of the contest (the

number of stages and the number of remaining contestants in each stage). Next, we study

5This effect is consistent with the “winner-take-all” principle in Moldovanu and Sela (2001).
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how the contest organizer optimally chooses the sequence {Nl}
L
l=1 to maximize the total

efforts E. By Theorem 1, the allocation of prize mass is independent of the sequence of the

contest, we therefore simply restrict our attention to the case with a single prize W 1
L = Γ0.

Rewriting Lemma 3 by setting all prizes other than W 1
L to be zero leads to

V1 = ( Π
L
j=1

1

Nj
)(ΠL−1

j=1

Nj+1−1P
g=0

Nj+1 − g

Nj − g
)
Γ0
NL

. (18)

First of all, for mathematical convenience, we consider only the contest sequences with

NL = 1 for the optimal sequence without loss of generality. By the optimality of “winner-

take-all” principle in prize allocation, a single winner survives the last stage of the contest

and takes over the entire prize purse. Thus, a L−stage contest with NL > 1 is equivalent to a

hypothetical (L+1)−stage contest represented by the sequence {{Nl}
L
l=1, 1}, i.e. NL+1 = 1.

In the hypothetical (L+1)−stage contest, one contestant is selected at stage L to enter stage
L+1, but does not receive prize in stage L. But the “last man standing” automatically wins

Γ0 in stage L+1 without exerting effort. Consequently, we have eL+1 = 0 and VL = Γ0, and

equation (18) still applies. We thus consider in the following analysis only contest sequences

with NL = 1.

Second, we assume that the contest sequence {Nl}
L
l=1 is strictly decreasing. Equation

(16) implies that if Nl = Nl+1, then eliminating stage l does not affect V1. Based on the

above two results, we can search for the optimal contest sequence by considering only the

sequences {Nl}
L
l=1, where N1 = N > N2 > ... > NL = 1, without loss of generality.

In a L−stage contest with a sequence of {Nl}
L
l=1 where NL = 1, suppose there exists

J < L such that NJ − NJ+1 > 1. We imagine to insert an additional stage between stage

J and stage J + 1, in which M ∈ {NJ+1 + 1, ..., NJ − 1} contestants selected from the NJ

contestants at the J-th stage compete for the NJ+1 tickets to stage J + 1. Does adding this

additional stage necessarily induce more total efforts from the contestants?

The effect of this additional stage on the total efforts in the contest is not readily seen:

although the additional stage M creates a new source of efforts MeM , the impact of this

additional stage on the contestants’ effort entries in previous stages is ambiguous. First,

from (8), NJeJ may either decrease or increase, although NJeJ tends to be reduced as the

value of the ticket to the next stage is lower (VM = (NJ+1VJ+1−MeM)/M < VJ+1). This is

due to the fact that in (8), NJeJ is not a monotonic function of the number of survivors to
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the next stage.6 For the same reason, the impact of the additional stage on the stage payoff

VJ is also indefinite. Second, the additional stage’s impact on the efforts in stages prior to

stage J , Njej, j < J, is also ambiguous. From (8), Njej, j < J , would change in the same

direction as Vj+1, which in turn changes in the same direction as VJ .

Let E({Nl}) denote the set composed of all the integers in the sequence {Nl}.

Definition 1 A contest sequence {Ñl} is more complete than {Nl} if and only if E({Nl}) ⊂
E({Ñl}).

We show in the following theorem that any additional stage always increases the total

efforts, regardless of the existing contest structure.

Theorem 2 The more complete the contest sequence is, the higher the total efforts are

induced.

Proof. Denote by E0 the total efforts in the original contest {Nl}, while by EM the total

efforts in the new contest after one additional stage M is inserted. We only need to show

EM > E0.

Denote by eV1 the equilibrium expected payoff that the N contestants anticipate at the

first stage of the contest after the additional stage is inserted. By Lemma 1, we simply need

to show eV1 < V1.

Under the optimal prize allocation characterized in Theorem 1, Lemma 2 leads to that

V1 =
VJ+1
JQ
l=1

Nl

·
JQ
l=1

(
Nl+1−1P
g=0

Nl+1 − g

Nl − g
). (19)

Similarly,

eV1 =
VJ+1

M
JQ
l=1

Nl

· [
J−1Q
l=1

(
Nl+1−1P
g=0

Nl+1 − g

Nl − g
)](

M−1P
g=0

M − g

NJ − g
)(
NJ+1−1P
g=0

NJ+1 − g

M − g
). (20)

6The following example shows that the component Nl+1 −
Nl+1−1P
g=0

Nl+1−g
Nl−g is not a monotonic function of

Nl+1. Assume Nl = 5. Then Nl+1−
Nl+1−1P
g=0

Nl+1−g
Nl−g = 1.35 when Nl+1 = 2;Nl+1−

Nl+1−1P
g=0

Nl+1−g
Nl−g = 1.57 when

Nl+1 = 3;Nl+1 −
Nl+1−1P
g=0

Nl+1−g
Nl−g = 1.28 when Nl+1 = 4.
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To establish that eV1 < V1, we need to show
1
M
(
NJ+1−1P
g=0

NJ+1−g
M−g )(

M−1P
g=0

M−g
NJ−g ) <

NJ+1−1P
g=0

NJ+1−g
NJ−g .

Since M−g
NJ−g is decreasing in g,

M−1P
g=0

M−g
NJ−g

M
<

NJ+1−1P
g=0

M−g
NJ−g

NJ+1
. Thus,

1

M
(
NJ+1−1P
g=0

NJ+1 − g

M − g
)(
M−1P
g=0

M − g

NJ − g
)

<
1

NJ+1
(
NJ+1−1P
g=0

NJ+1 − g

M − g
)(
NJ+1−1P
g=0

M − g

NJ − g
)

<
NJ+1−1P
g=0

NJ+1 − g

NJ − g
. (21)

The last step follows Chebyshev Sum Inequality.

Q.E.D.

Theorem 2 is important. It establishes that an additional stage of competition always

reduces a representative contestant’s expected payoff V1, so as to increase the total efforts.

A contest sequence is not optimal, as long as the difference between any two successive

terms in the sequence {Nl}
L
l=1 exceeds one. The total efforts of the contest can be increased

if additional stages can be inserted, regardless of its existing structure. Thus, the opti-

mal contest sequence is represented by a N−term strictly decreasing arithmetic sequence

{Nl|Nl = N − l + 1, l = 1, 2, ..., N.}. The last term NN = 1 represents the unique final

winner. In other words, the contest lasts for N − 1 stage, and one contestant is eliminated
in each stage.7 We name it as a complete-sequence “Pyramid” contest.

Theorem 3 In a setting with N contestants and a prize budget Γ0, the effort-maximizing

sequential contest with pooling competition in each stage lasts for N − 1 stages, while elimi-
nating one contestant each stage, and a single final winner takes over the entire prize purse

of Γ0.

Theorem 3 naturally stems from Theorem 1 and Theorem 2. Thus, we conclude that

the optimal contest must be organized as a “winner-take-all” complete-sequence “Pyramid”

contest.

Theorem 4 The optimally designed N-person contest with the total prize purse of Γ0, i.e.

7In stage N − 1, two remaining contestants compete for one final prize.
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the “winner-take-all” “Pyramid” contest, induces a total equilibrium effort of

E = Γ0 · {1−

N−1Q
l=1

[
N−l−1P
g=0

(N−l)−g
(N−l+1)−g ]

N−1Q
l=1

(N − l + 1)

}. (22)

Theorem 4 explicitly shows the equilibrium total efforts in the optimally designed N-

person contest. The result directly arises from Lemma 1 and (18), and the fact that the

sequence structure of the optimal contest is represented by a complete sequence of integers

from N to 1.

3.4 Discussion

So far we have shown that a contest drives more efforts, provided that the contestants

have to survive a longer line of shots before they win the final prize. Our results therefore

provide a rationale for the widely observed multi-phase sequential competition in reality.

Baye, Kovenock, and de Vries (1993) argue that the contest organizer (politicians) may

strategically shortlist a subset of finalists, according to their valuations, to participate in

rent-seeking competitions (for instance, IOC selects potential candidate cities up for the

election of hosting cities of Olympic Games), in order to increase the rent-seeking revenue.

We suggest an alternative view to this thread of thinking: shortlisting benefits the contest

organizer even if the contestants are identical.

Our paper provides useful insights to contests design. We show that the optimal contest

that generates the most efforts is a “winner-take-all” complete-sequence “Pyramid” contest.

The famous Fox TV show “American Idol” echoes our results pretty well. The show is

basically a singing contest. Twelve contestants are picked out from “thousands and thou-

sands of hopeful superstars”. These twelve “winners”, however, are not met with immediate

success. The remaining part of the contest proceeds exactly in the form of a “Pyramid”

contest which we have established to be optimal. The series of the shows then last for eleven

weeks. In each week every remaining contestant makes his/her performance. After each

show, one of the remaining contestants is voted off by viewers, while the others proceed to

the next stage. The procedure repeats until the finale, in which two survivors compete face

to face, and one of them becomes the new “American Idol”. We see that the organization
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structure of “American Idol” turns out to coincide with the effort-maximizing contest we

have established.

Our results provide insights to contests design even when the organizer is faced with con-

straints on contest structure. For instance, a contest may have to be conducted with a fixed

number of stages, while the contest organizer has only the flexibility to choose the number

of contestants who survive each stage. Proposition 2 has fully characterized the maximal

total efforts that result from any given contest sequence structure. The restricted optimal

contest sequence can thus be identified through direct comparison across finite possibilities.

Rosen (1986) and Gradstein and Konrad (1999) draw the analogy between the internal

hierarchy of an organization and a multi-stage contest. As argued by Gradstein and Kon-

rad (1999): “One can interpret the organization’s hierarchy in a steady state as consisting

of a series of contests among the individual members of each level of the hierarchy for the

promotion to an upper level.” Our results have two important implications on the design

of internal organizational structure. Firstly, we show, by Theorem 2, that a hierarchical

structure does increase the total efforts agents expend inside the organization. This result

provides an alternative rationale for organizational hierarchy. Secondly, our results shed

light on the design of internal incentive (compensation) scheme. We show that in the op-

timal contest, the total of prize purses should be combined into a single final prize, and no

intermediate award should be given away. In the context of organizational hierarchy, the

winner-take-all principle may not be feasible. Yet our results do not lose its appeal in this

aspect. Recall Lemma 3, which gives a representative contestant’s expected payoffs in terms

of the prize structure. We see that V1 is in fact a weighted sum over the prizes, and the

weights associated with the prizes diminish as the level of the prizes ascends. It implies that

more generous purses for top-ranking prizes (wage, or other benefits) “maintain the incentive

in career” (Rosen (1986)) and increase the overall efforts. Our results confirm the insights

suggested by Rosen (1986): “contestants who succeed in attaining high ranks in elimination

career ladders rest on their laurels in attempting to climb higher, unless top-ranking prizes

are given a disproportionate weight in the purse”.
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4 Concluding Remarks

This paper studies the optimal contest structure in a multi-phase sequential competition

setting. We allow the contest organizer to design the optimal contest in two arms: the

contest sequence and the allocation of a fixed total of prize purses. We show that the contest

organizer must allocate the entire prize mass to a single final prize, regardless of the contest

sequence. We further show that additional stages always increase the total efforts. This result

provides important insights for the design of multi-stage contests. Therefore we conclude

that the optimal contest must be a “winner-take-all” complete-sequence “Pyramid” contest

that eliminates one contestant in each stage until the finale.

This paper concerns itself with one aspect of contests design: the maximization of total

efforts, and leaves tremendous room for future extensions. First of all, we have not considered

the cost of organizing the contest. The contest organizer may be concerned about the

additional costs that could arise from additional stages, which should be taken into account

in future research on the optimal design of multi-stage contests. Secondly, we do not consider

the heterogeneity in abilities or preferences among contestants. One interesting extension is

to allow for contestants with differing types. We believe that extensions in this direction will

not vary the main themes of our results. Nevertheless, it is still interesting to investigate

whether a stronger contestant is more likely to win the final prize in a multi-stage contest

than he/she does in a single-stage one. In that sense, a model with asymmetric players may

shed light on the screening effect of the multi-stage contest. In addition, our study considers a

contest success function with linear impact of effort. Perhaps, another challenging extension

would be to allow for other forms of contest technologies. Finally, our model assumes that

contestants’ efforts affect only the outcome of the sub-contest in the current stage. One may

extend this model by allowing for “accumulatable” efforts, in which case efforts made in the

current stage can be carried over into future stages and continue to influence contestants’

likelihoods of winning.
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