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Abstract

This paper analyses Bayesian persuasion of a privately informed
receiver in a linear framework. The sender is restricted to censorship,
that is, to strategies in which each state is either perfectly revealed
or hidden. I develop a new approach to finding optimal censorship
strategies based on direct optimisation. T also show how this approach
can be used to restrict the set of optimal censorship schemes, and to
analyse optimal censorship under certain classes of distributions of the
receiver’s type.
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1 Introduction

This paper analyses a Bayesian persuasion game between a sender and a
privately informed receiver. Both the sender and the receiver have linear
utility functions. There is a continuum of states. The sender wants the
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receiver to act; the receiver only wants to act if his type is lower than the
state.

The paper differs from the existing literature in two respects: it focuses on
a particular class of persuasion strategies; and it develops a novel approach
to finding the optimal strategy.

Specifically, the paper analyses a model in which the sender is restricted
to censorship strategies: every state of the world is either revealed perfectly,
or not revealed at all. In other words, the sender pools some states into a
single set, and for each of the other states she sends a unique message.

A restriction to censorship strategies is relevant to a number of situations
in which the sender needs to choose whether to transmit information that
originates from an exogenous source. Consider, for example, a firm that
wants to persuade customers to buy its product. A customer’s willingness
to do so depends on his preference type, as well as on a state of the world,
which reflects the product’s quality. The firm cannot credibly commit to
an experiment that maps states to messages. It can, however, submit its
product for review by independent experts. Some reviewers tend to detect
and report very high quality; others — very low quality, etc. By choosing a
set of reviewers, the firm can choose which states are revealed.

As another example, consider an authoritarian government that seeks to
maximise the number of citizens that take a certain action (such as vot-
ing for the government, joining a pro-government rally, or refusing to join
an anti-government protest). A citizen’s willingness to do so depends on
her type (which measures the degree to which she supports the government’s
ideology), and on the news (which is a measure of how competent the govern-
ment is)!. The government can restrict the set of available news by choosing
which independent media outlets are allowed to operate in the country?.

The key contribution of this paper is in developing a novel approach to
finding the optimal censorship scheme when the sender is constrained to
censorship strategies. Specifically, the paper takes a direct optimisation ap-
proach: for a given censorship strategy it checks whether profitable deviations

! Thus, the citizen wants to support the government when his belief in the government’s
competence outweighs his dislike of the government’s ideology. This is in line with models
of expressive voting (Brennan and Hamlin, 1998), in which voters, irrespective of the
outcome of the vote, derive intrinsic utility from voting for an alternative that is correct
from their point of view.

2See the working paper version of Kolotilin et al. (2017) for an application of Bayesian
persuasion to government censorship of the media.



exist.

Intuitively, because the sender is restricted to either revealing the state
perfectly or censoring it, her persuasion strategy is fully described by a set
S of states that are censored. For that set to be optimal, the sender must be
unwilling to reveal any state that belongs to S, or to censor any state that
does not belong to S.*> The change in the sender’s expected payoff result-
ing from such deviations is driven by two factors. First, whether a state is
censored or not affects the sender’s expected payoff when Nature draws that
state. This happens because if the state is revealed, the receiver acts if and
only if his type is below the state; while if it is censored, the receiver acts if
and only if his type is below the expected value of the state conditional on
it being in S. Second, whether or not a state is censored changes the afore-
mentioned expectation, and hence affects the sender’s payoff in the event any
state is censored. The magnitude of these two effects depends on the shape
of the distribution of the receiver’s type — hence, that distribution affects
the optimal censorship strategy. This logic underlies Proposition 1, which
establishes a necessary condition for a censorship strategy to be optimal.

While this condition is only necessary and not sufficient, it substantially
reduces the set of potentially optimal strategies. The rest of the paper shows
that this result is sufficiently powerful to gain several new insights.

First, I demonstrate how Proposition 1 can be used to restrict the set
of optimal strategies. In general, S can be “complex”, consisting of many
disjoint intervals. However, Proposition 2 shows that at the optimum, this
“complexity” of S is bounded by the number of peaks of the density of the
receiver’s type.

Second, I analyse the simple case when the density of the receiver’s type
is single-peaked. In this case, censorship is known to be an unconstrained
optimal persuasion strategy*. The result of Proposition 1 can then be used
to describe the effect of a sufficiently large shift in the location of the peak,
and in the distribution of the state. Specifically, Propositions 3 and 4 show
that the sender censors more states when the peak decreases, or when the
expected state increases.

Third, I examine the case when the density of type is bimodal. In that
case, censorship is not, in general, an optimal strategy®. But what if the

3More precisely, the paper analyses marginal changes in the sender’s payoff that occur
if she reveals or censors an infinitesimally small interval of states.

1See Alonso and Camara (2016b) and Kolotilin (2018).

5See Proposition 3 in Kolotilin (2018).



sender is restricted to censorship strategies? In Propositions 5 and 6, I char-
acterise optimal censorship policies for different classes of bimodal distri-
butions. Specifically, T show that depending on the shape of the bimodal
density, the sender either censors intermediate states while revealing high
and low states, or reveals intermediate states while censoring high and/or
low states.

This paper belongs to the growing literature on Bayesian persuasion with
linear utilities (see, for example, Gentzkow and Kamenica, 2016; Kolotilin
and Zapechelnyuk, 2019; Kolotilin and Li, 2019; Dworczak and Martini,
forthcoming). In particular, Kolotilin et al. (2017) and Kolotilin (2018) ana-
lyse linear persuasion in a setting in which, as in this paper, the receiver has
private information. Alonso and Camara (2016b) also study the case when
the receiver is privately informed. More generally, a number of papers have
studied Bayesian persuasion of a group of heterogeneous receivers®. My pa-
per differs from the rest of the literature by focusing on censorship strategies,
and using an optimisation approach that checks for the existence of profitable
deviations”.

The rest of the paper is structured as follows. Section 2 outlines the
model. Section 3 derives the direct optimisation approach to finding the
optimal censorship policy. Section 4 shows how that approach can be used
to gain new insights about optimal censorship. Section 5 concludes. All
proofs are in the Appendix.

2 Model

A sender (she) is facing a receiver (he). The receiver has a type t € [0,1].
The type is drawn from a distribution G with a continuously differentiable
density g. There is a state of the world w € [0, 1], drawn by Nature from a
smooth distribution F' with a strictly positive density f.

The receiver can choose action a € {0,1}. I will say that the receiver
“acts” if he chooses action 1. The sender’s payoff equals a — thus, the sender

6See Taneva (2018). In addition, Alonso and Camara (2016a), Wang (2013), Bardhi
and Guo (2018), and Chan et al. (2018) study Bayesian persuasion of a heterogeneous
group of voters.

"In contrast, Kolotilin (2018) as well as Dworczak and Martini (forthcoming) use du-
ality approach, while Gentzkow and Kamenica (2016), Alonso and Camara (2016b), and
Kolotilin et al. (2017) use concavification.



aims to maximise the probability that the receiver acts. If the receiver does
not act, his payoff equals 0. If he acts, his payoff equals w — t. Thus, the
receiver wants to act if and only if his type is lower than the state.

At the beginning of the game, Nature draws ¢ from G the receiver is
informed about ¢. Next, the sender selects a set of states S C [0, 1] that are
censored, i.e. not revealed to the receiver. I will refer to S as the sender’s
censorship strategy. For tractability, I will assume that S has a finite number
of boundary points. Furthermore, I will assume that every boundary point
of S is either an upper or a lower boundary point®, but not both — this means

that S does not contain any “unattached” points?. Thus, either S = (), or
n

S = U [pi, @] such that 0 < p; < ¢; < piy1 < 1,Vi = 1,..,n for some integer
i=1

n. After the sender has chosen S, Nature draws the state w from F. Next,

if w ¢ S, the receiver learns it; otherwise, he updates his beliefs. He then

chooses action a € {0,1}. Finally, payoffs are realised.

3 Optimisation Approach

This section will derive the optimisation approach to finding the optimal
censorship strategy.

Suppose the sender has chosen some S. Then if w ¢ S, the receiver learns
the state. He then acts if t < w, and does not act if ¢ > w. The sender’s
expected payoff thus equals G (w). If S is nonempty and w € S, the receiver’s
payoff from acting equals Er [w —t | w € S]. Thus, the receiver acts if and
only if t < tg, where tg = Ep [w | w € S]. The sender’s expected payoff then
equals G (tg).

Given S, let v (S) be the sender’s expected payoff. It then equals

v (S) = /¢S G (w)dF (w) + usG (ts)

8Formally, state w is a lower boundary point of S if there exists some £ > 0 such that
all w € (w — e, w) are outside S and all w € (w,w + €) belong to S. A state w is an upper
boundary point of S if there exists some € > 0 such that all w € (w — ¢, w) belong to S
and all w € (w,w + €) are outside S.

9This assumption is without loss of generality, because if there were such points, their
total mass would be zero (as the number of boundary points of S is assumed to be finite), so
a censorship strategy that contains such points is payoff-equivalent, to another censorship
strategy that does not contain them.



where pg = [ _odF (w) is the probability that the state falls in S.*°

The sender chooses S to maximise v (S). We can consider the following
deviations: first, the sender may deviate to censoring a small interval of states
around some w ¢ S; second, she can deviate to revealing a small interval of
states around some w € S. If S is optimal, the sender must not gain from
such deviations. In particular, the change in her payoff from the deviation
should be negative as the width of the interval converges to zero.

This logic underlies the key result of the paper: a necessary condition
for S to constitute an optimal censorship strategy. It is summarised in the
following proposition:

Proposition 1. Suppose that S mazimises v (-). Then
o 25(w) >0 for any w € S; and
o 25 (w) <0 for any w ¢ 5,

where zg (w) = G (ts) — G (w) + (w — ts) g (ts)-

To see the intuition, consider a state w ¢ S. Suppose the sender deviates
to censoring w (that is, pools it with §). This will have two effects on her
payoff. First, whenever w is drawn, the sender will now receive G (tg) instead
of G (w). Second, pooling w with S will move tg towards w, which will change
the sender’s payoff every time a state is censored. The magnitude of the shift
in tg is proportional to the distance between w and tg, while the marginal
effect of shifting tg on the sender’s payoff equals g (tg), i.e. the slope of G
at tg. Hence, the marginal change in the sender’s payoff from censoring w
instead of revealing it is proportional to

G(ts) = G (W) + (w = ts) g (Ls) = 25 (W)

If the initially chosen S is optimal, this must be weakly negative. By similar
logic, zg (w) must be weakly positive at any w € S.

Since zg (w) is continuous, Proposition 1 implies that at the equilibrium,
any boundary point of S must be a state w at which zg (w) = 0, that is, at

which g (tg) = S@=Cls) 11 Gince g (tg) is the slope of G at tg, any boundary

w—tg

0Technically, tg is only defined when S is nonempty. If S = (), then v (S) =
) G (W) dF (w).

HTechnically, the condition g (tg) =
possible for tg to be at the boundary of S.

Gw)=G(ts)
w—tg

is only defined for w # tg. It is also
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Figure 1: Optimal censorship. Here, S = [0, ¢1] U [p2, ¢2].

point of S must be a point at which a line that is tangent to G at tg intersects
G. At a given state w, if G is below (above) that tangent line, then g (tg) is
greater (smaller) than %g(m, and hence w is censored (revealed). Figure
1 illustrates this result.

Proposition 1 provides a necessary condition for a censorship strategy to
be optimal. The condition links the existence of profitable deviations from
S to the shape of G. Note that this condition is not sufficient — it may still
be optimal for the sender to deviate at a positive-measure subset of states.
Nevertheless, this result can be used to analyse optimal censorship strategies.
This is shown in the next section.

4 Optimal Censorship Strategies

This section will show how the optimisation approach derived previously can
be used to derive optimal censorship strategies for various distributions of
the receiver’s type. I will start by showing how Proposition 1 can be used to
restrict the set of optimal censorship strategies for a generic G. Then I will
show how it can be applied to characterising optimal censorship strategies
when G is unimodal or bimodal.
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For the subsequent analysis, the following result'® will be useful:

Lemma 1. S = ) is optimal if and only if G is convez.

Hence, full revelation is optimal if and only if ¢ is increasing on [0, 1].

4.1 General distributions

Consider any distribution G. What can we say about the optimal censorship

strategy? As described in the model, the set S of censored states is either
n

S =10,or S = J|[pi,q| Hence, S can include any finite number n of

disjoint intervals. ZTlhat n can be large — that is, the censorship strategy can
be “complex”. The next result will show, however, that the complexity of S
is bounded by the complexity of the density of the receiver’s type.

Referring to Figure 1, Proposition 1 implies that G must be flatter than
g (ts) at each interior p;, and steeper than g (ts) at each interior ¢;. Hence,
for all interior boundary points p; and ¢;, G needs to be convex on some
interval within [p;, ¢;], and concave on some interval within [g;, p;+1]. Thus,
for optimal S to include many disjoint intervals [p;,¢;], G must contain a
sufficiently large number of alternating convex and concave sections. A point
at which G changes from being convex to being concave is a local maximum
of g. Hence, for n to be large, ¢ must have a large number of local maxima.
This intuition underlies the following result:

Proposition 2. If g has m < oo local weak mazima, then S = |J [p:, ¢]
i=1

with n < m + 1.

Hence, the optimal S cannot consist of more disjoint intervals than the
number of peaks of g plus 1. Relatively “simple” distributions of the receiver’s
types induce relatively “simple” censorship strategies.

Note that S is fully characterised by a vector of its n upper boundary
points and n lower boundary points. Proposition 2 then implies that the
optimal censorship strategy is a result of a 2 (m + 1)-variable optimisation
problem. This result can be compared to Theorem 2 in Kolotilin et al. (2017),
which (in the case when the sender is not restricted to censorship strategies)

12Kolotilin (2018) shows a similar result when the sender is not restricted to censorship
strategies.



shows that the sender’s choice of an optimal receiver’s interim utility is (in
the case when the sender is only interested in the receiver’s action) a result
of an m-variable optimisation problem.

4.2 Unimodal distributions

Suppose that g has a unique peak k. In that case, Kolotilin et al. (2017)
and Kolotilin (2018) show that censorship is the optimal persuasion strategy
when the sender is not restricted to censorship strategies. Specifically, the
sender chooses upper-censorship (pooling together all states above a certain
cutoff, and perfectly revealing all other states). Of course, upper-censorship
is also optimal in my setup; the following lemma derives the result from
Kolotilin et al. (2017) and Kolotilin (2018) using the approach developed in
Section 3:

Lemma 2. Suppose G is convex on (0,k) and concave on (k,1) for some
k € (0,1). Then there exists a unique optimal censorship strategy S = [p, 1],
such that 0 <p <k, and k < tpq < 1.

The lower boundary of S is a point p at which zp, 3 (p) = 0. If p > 0,
then Proposition 1 implies that p is given by the condition zj,;) (p) = 0.
Graphically, p it is the point at which the line that is tangent to G at tg
intersects G. It is also possible for the tangent line never to intersect G.
This happens when z(g 1) (0) > 0. In that case, we have a corner solution in
which p =0, and S = [0, 1].

Since Proposition 1 describes the necessary condition for S to be optimal
based on the curvature of G, Lemma 2 ensures that at the optimum, p <
k < ts. Hence, the optimisation approach of this paper implies that a change
in G that shifts k, or a change in F' that shifts tg, induce a change of the
optimal censorship strategy if the shift is sufficiently large.

In particular, if £ moves far enough that it ends up below p or above tg,
the optimal S has to change as well, as the following result shows:

Proposition 3. Toke a unimodal distribution G with mode k that induces
a censorship policy S = [p,1]. Take another distribution G with mode k. If
k> ts, then G induces a censorship policy S such that S C S. ]fl% < p, then
G induces a censorship policy S such that S C S.

Hence, the sender censors more (less) states if the modal receiver becomes
more (less) willing to act.



Similarly, suppose that F'is replaced by another distribution F that puts
a larger mass of states to the left. If the shift in F' is sufficiently strong, it
affects the optimal censorship strategy, as the following result shows.

Proposition 4. Take a unimodal distribution G with mode k. Consider a
distribution of states F, which induces a censorship policy S = [p,1]. Take
another distribution . If Eplw|w>p| <k, then F induces a censorship
policy S C S.

Hence, when the state tends to be worse (better) from the sender’s point
of view, the optimal censorship strategy is less (more) restrictive.

4.3 Bimodal distributions

Suppose that G is bimodal. We can look at two classes of bimodal distribu-
tions.

First, suppose that for some k, k such that k < k, ¢ is increasing on (0, k),
decreasing on (k, E), and increasing on (E, 1). Then we have the following
result:

Proposition 5. Suppose G is convez on (0, k), concave on (E, E), and convex
on (E, 1) for some k., k such that 0 < k < k < 1. Then the optimal censorship
strategy is S = [p,q], where 0 <p < q<1and k < tpg <k.

In words, the sender censors states over some intermediate interval [p, ¢] C
[0,1]. This is illustrated in Figure 2.

Intuitively, if tg < k, then for all w < tg, G (w) lies above the line
that is tangent to it at tg. Then by Proposition 1 all of these states have
to be revealed, which is impossible, since tg = Ep [w | w € S]. By similar
reasoning, we cannot have tg > k. Hence, at the optimum, tg € (E, E) The
boundaries p and ¢ of S are then the points at which the tangent line crosses
G. Depending on the shapes of ' and G, it is possible that the tangent line
only crosses G once, or never — in that case, p = 0 and/or ¢ = 1.

Next, consider a different class of bimodal distributions. Suppose that
for some k, k such that k < k, ¢ is decreasing on (0, k), increasing on (@, E),
and decreasing on (E, 1). For these distributions, Kolotilin (2018) shows that
the optimal persuasion strategy is interval revelation: the sender sends one
message for all states that are sufficiently low, another message for all states
that are sufficiently high, and perfectly reveals all intermediate states.

10
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Figure 2: Optimal censorship under bimodal (convex-concave-convex) G.

That strategy, however, is not a censorship strategy. What if the sender
is restricted to censorship strategies — that is, if she has to send the same
message for all states that are not perfectly revealed? The next result char-
acterises such a constrained optimal persuasion strategy.

Proposition 6. Suppose G is concave on (0, k), convex on (&, E), and con-
cave on (E,l) for some k,k such that 0 < k < k < 1. Then the op-
timal censorship strategy is either (i) S = [0,q|; or (i1) S = [p,1]; or (iii)
S =10,q] U|p,1]; where 0 < ¢ <p< 1.

In words, the optimal censorship strategy includes cutoffs p and ¢ such
that the sender reveals all states in the [g, p| interval, and censors all states
below ¢ and above p. The location of these cutoffs depends on the shapes
of F' and G. In particular, there may be a corner solution in which either
p = 1 or ¢ = 0 (this corresponds to, respectively, cases (i) and (ii) in the
proposition)!3. Tt is also possible to have p = ¢ — this implies that S = [0, 1],
and thus no states are revealed.

Figure 3 illustrates Proposition 6. Intuitively, depending on the shapes
of F and G, there are three possibilities. First, it is possible that tg < k.

I3But note that Lemma 1 ensures that we cannot have both ¢ =0 and p = 1.

11
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Figure 3: Optimal censorship under bimodal (concave-convex-concave) G.



Then all w € [0, k] lie below the line that is tangent to G at tg; hence, by
Proposition 1 these states are censored. The tangent line can then intersect
G at most twice. If it does intersect G twice, at states ¢ and p, then all states
w € (q,p) are revealed, and the rest are censored (this is shown in Figure
3a). If the tangent line intersects G once, at some point ¢, then S = [0, ¢
Finally, if it never intersects G, then S = [0, 1].

It is also possible to have tg > k. Then all w € [E, 1] belong to S. For
the rest of the state space, the tangent line can intersect G' at most twice. If
it does intersect G twice, at some states ¢ and p, then all states w € (¢, p)
are revealed, and the rest are censored (this is shown in Figure 3b). If the
tangent line intersects G once, then S = [p, 1] for some p; and if it never
intersects G, then S = [0, 1].

Finally, if tg € [@, E}, then the tangent line can intersect G at most once
on [0, k], and at most once on [E, 1}. If the tangent line intersects GG on one
of these intervals only, then tg ¢ S, which is impossible. If the tangent line
does not intersect G, then S = (), which for bimodal G is ruled out by Lemma
1. Hence, the tangent line must intersect G at some point ¢ € [0, k], and at
some point p € [k, 1]. Then S = [0,¢] U [p, 1] (this is shown in Figure 3c).

5 Conclusions

In many persuasion settings, the sender is restricted to censorship strategies:
she can either reveal a state of the world perfectly, or hide it. This paper has
examined optimal censorship in a linear setting with a privately informed
receiver. Its main contribution was in developing a simple optimisation ap-
proach, described in Proposition 1, to analysing optimal censorship.

The optimisation approach produces a condition for a censorship strategy
to be optimal. While this condition is only a necessary and not a sufficient
condition, the paper shows how it can be used to gain insights about optimal
censorship strategies in a number of situations.
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6 Appendix

Proof of Proposition 1. To prove the first part, take a set S. Now take
a state w belonging to the interior of S and suppose that zg(w) < 0.4

1Tf w is on the boundary of S, take instead another state w’ in the neighbourhood of w
that lies in the interior of S such that zg (w’) < 0. Such a state must exist because zg (+)
is continuous.
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Consider a deviation from S to S = S\ [w, 7] for some r > w. Let L (w,r) =
v (8)=v(S). Then L (w,r) = G (tsuan) f1s\uri =+, Gw)dF () =G (ts) pis.

If r = w, then L (w,r) = 0. For S to be optimal, L (w,r) must be weakly
decreasing in r at » = w. Differentiating yields:

OL (w,r) Ot s\ [uwr] LS\ [w,r]
Y, =Y (ts\fw.r]) oy Hs\wal T G (ts\[ws) 5 T G(r)f(r)
Hence,
oL (wa T’) o atS\[w,r] a,uS\[w,r]
o | g (ts) 5 T:w,us + G (ts) “or | + G (w) f (w)
Note that
T waS wdF (w) — fui wdF (w) _ waS wdF (w) — fuf wdF (w)
T [LesdF (W) = [1dF (w) 115\ ]
and thus
Ot s\ [w,r] _ i\ 7S (1) + E\ oyl S (7) _ [ (w) (ts — w)
or r=w u%\[w,r} r=w Hs
Also,
5\ ] = / JF () — / dF ()
weSs w
and thus 5
S\ [w,r
Gintor
Therefore,
oL (w,r
PN g (15) 1 () (15— w)=G (1) f () +Gw) f(w) = —F () 5 (w)

Since f is strictly positive everywhere, the derivative is strictly positive
when zg (w) < 0, so S is not optimal.

The second part is proved analogously. Suppose that zg (w) > 0 for
some w ¢ S. Now take some interval [w,r] such that [w,r] NS = (), and
consider a deviation from S to S = SU[w,r]. If S is optimal, then L (w,r) =

v (S’) — v (S) must be weakly decreasing at r = w. Differentiating yields

%r:wzf(w)zs(wpo

so again S is not optimal. 0

15



Proof of Lemma 1. To show that full revelation is optimal when ¢ is
increasing, suppose that S is nonempty. Then zg (w) > 0 for all w, so S is
not optimal. To prove the second part of the lemma, suppose that S = (),
and that G is not convex. Then G must be concave on some interval [p, q].
Consider a deviation to to S = [p, q]. The change in the sender’s payoff from
such deviation equals

v(lp,dl) —v(0) = ppg [G (Er[w|w € [p d]) = Er (G (w) |w € [p,q])]

This is positive by Jensen’s inequality, and hence S = () is not optimal. [

Proof of Proposition 2. Proposition 1 implies that at every p; for ¢ €
{2,..,n}, G crosses the line is tangent to G at tg from above. Furthermore,
at every ¢; for i € {1,..,n— 1}, G crosses the line is tangent to G at tg
from below (note that we exclude p; and ¢, because there may be a corner
solution with p; = 0 or ¢, = 1). Hence, g (p;) < g (ts) for all i € {2,..,n};
and g (¢;) > g (ts) forall i € {1,..,n — 1}. Hence, for all i € {2,..,n — 1}, we
have g (pi) < g(q:) and g (piy1) < g(q), with p; < ¢; < piy1. Thus, g must
have a peak between p; and p;y; for all i € {2,..,n — 1}, which gives us n — 2
peaks. In addition, since g (¢1) > ¢ (ts) > g (p2), there must be another peak
of g between 0 and py. Hence, g must have at least n — 1 peaks. O

Proof of Lemma 2. Since the optimal S is nonempty by Lemma 1, tg is
well-defined. Suppose that tg < k. Then, as ¢ is increasing on [0, ts], we have
zg (W) = f:s lg(z) — g (ts)]dx < 0 for all w < tg. Then if S is optimal, all
w < tg do not belong to S. This cannot hold, as ts = E[w | w € S]. Hence,
at the optimum, tg > k.

Then zg (w) > 0 for all w > k, so [k, 1] C S. Note that % =g (ts) —
g (w). This is negative at w = k, and since g is monotone increasing on [0, k],
dzj—u()“’) changes sign at most once on that interval. Hence, on that interval
there is at most one state at which zg crosses zero. If such a state p exists,
it is the lower boundary of S. Otherwise, zg (w) > 0 for all w € [0,k], so
S =10,1].

To show uniqueness, suppose on the contrary that there exist p and p
such that p < p, and both [p, 1] and [p, 1] are optimal censorship strategies.

Then 231 (p) > 0, and 2,q) (p) = 0, the latter because p > 0. Thus,

G (tp) — G (p)
tpa) — P

9 (tpy) =

16



The derivative of the left-hand side of this equation with respect to p
equals ¢ (¢, ]) [’; L. This is negative, since g is decreasing at t,;;. The
derivative of the right-hand side equals

[ty = 2] |9 (t) “22 = 9 )] = [G (t) = G )] | “52 1]

[ty —p]”
g (tpa) T~ g (p) Tl -1
N lp1] — D — Y (t[p’l]) tp1] — P
9 (tpay) —9 (@)
tpa) — P

>0

where the inequality follows from the fact that t, ;) > p and g (t[m]) > g(p)
(the latter is because the line that is tangent to G at t, 1) crosses G from

below at p). Hence decreasing p increases the left-hand side while decreasing
the right-hand side. Thus,

G (tpa) — G (D)
L) — P
)

9 (twy) >

which implies that z; (p) =G (t[ﬁjl]) -G (p) — (t[ﬁyl} —]3) g (t[ﬁ’l]) < 0, so
[D, 1] cannot be an optimal strategy. O

Proof of Proposition 3. By Lemma 2, G must induce a censorship policy

S = [D, 1] such that tg > kand p < k. If k> ts, this implies that tg > ts.
Hence, p > p, so S C S. On the other hand, if k < p, then p < k< P, SO
ScSs. O

Proof of Proposition 4. By Lemma 2, G and F must induce a censorship
policy S = [p, 1] such that Ez[w |w > p|] > k. Since Ez[w | w > p] < k, it
must be that p > p,s0 S=[p, 1] C S. O

Proof of Proposition 5. Since the optimal S is nonempty by Lemma 1,
ts is well-defined. If tg < k, then, as ¢ is increasing on [0, k|, we have

zs<w>:/s[g<x)—g<ts>]dx<o
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for all w < tg. Then for S to be optimal, all w < tg must not belong to S,
which cannot hold. Similarly, if tg > k, then, as ¢ is increasing on [E 1}, we
have zg (w) < 0 for all w > tg, which implies that S is not optimal. Hence,
ts € (E, E). Then zg (w) > 0 for all w € (E, E), hence (@, E) CS.

Then dzj—u(}w) = ¢ (ts) — g (w) is negative at w = k. Since g is monotone
increasing on [0, k], % changes sign at most once on that interval. Hence,
on that interval there is at most one state at which zg crosses zero. If such
a state p exists, it is the lower boundary of S. Otherwise, zg (w) > 0 for all
w € [0,k], so p=0.

Similarly, dzs—o(j") = g (ts) — g (w) is positive at w = k. Since g is monotone
increasing on E, 1}, dzjo(f) changes sign at most once on that interval. Hence,

on that interval there is at most one state at which zg crosses zero. If such
a state ¢ exists, it is the upper boundary of S. Otherwise, zg (w) > 0 for all
we[%,l},soq:l. ]

Proof of Proposition 6. Since the optimal S is nonempty by Lemma 1,
ts is well-defined. Take some S, and suppose it is optimal. There are three
possibilities: tg < k; tg > k; and tg € [@,ﬂ.

If ts < k, then, as g is decreasing on [0, k], we have

5@ = [ o) - glts)dr>0

for all w < k. Hence, [0,k] C S. Note that dzj—u()w) = g (ts) — g (w) is positive
at w = k, hence zg (w) is increasing at k. Since g is increasing on [E,ﬂ and

decreasing on [E, 1], dzfl—f)”) changes sign at most twice on [k, 1]. Hence, on

that interval there are at most two states at which zg (w) crosses zero. If
there are two such states, call them ¢ and p, and then S = [0,q] U [p,1]. If
there is one such state, call it ¢, and then S = [0, ¢]. Finally, if there are no
such states, then S = [0, q] U [p, 1] with ¢ = p.

If tg > k, then, as ¢ is decreasing on [E, 1], we have zg (w) > 0 for all
w > k. Hence, [k,1] C S. Note that dzj—o(f") = ¢(ts) — g (w) is negative at
w = k, hence zg (w) is decreasing at k. Since g is decreasing on [0, k] and
increasing on [E,ﬂ, dzj—u(dw) changes sign at most twice on [O,E]. Hence, on
that interval there are at most two states at which zg (w) crosses zero. If

there are two such states, call them ¢ and p, and then S = [0,¢] U [p,1]. If
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there is one such state, call it p, and then S = [p, 1]. Finally, if there are no
such states, then S = [0, q] U [p, 1] with ¢ = p.

If tg € [@,ﬂ, then, as ¢ is increasing on [k,ﬂ, we have zg (w) < 0 for
all w € (k, E). Hence, the interval (E, E) does not belong to S. Note that

dzj—u()“’) = g (ts) — g (w) is positive at w :_E, and increasing on [0, k]. Also,
dzj—o(f) = g (ts) — g (w) is negative at w = k, and increasing on [k, 1]. Hence,

zg (w) crosses zero at most once on the [0, k| interval, and at most once on
the [E, 1} interval. If zg (w) does not cross zero anywhere, then S = (), which
cannot be the case by Lemma 1. If zg (w) crosses zero on [0, k] but not on
[E, 1], then S = [0, ¢ for some ¢ € [0, k] — but in this case tg < k, which is
a contradiction. Similarly, if zg (w) crosses zero on [k, 1] but not on [0, k],
then S = [p, 1] for some p € [E, 1} — but in this case tg > k, which is a
contradiction. Hence, zg (w) crosses zero exactly once on [0, k], and exactly
once on [E, 1}. Hence, S = [0, ¢|U|[p, 1] for some ¢ € (0,k) and p € (E, 1). ]
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