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Abstract

A number of candidates are competing for a prize. Each candidate
is privately informed about his type. The decision-maker who allocates
the prize wants to give it to the candidate with the highest type. Each
candidate can take a test that reveals his type at a cost. I show that
if competition increases, candidates reveal more information when the
cost is high, and less information when it is low. Nevertheless, the
decision-maker always benefits from greater competition. If competi-
tion is large, mandatory disclosure is Pareto-dominated by voluntary
disclosure. When the test is noisier, candidates are more likely to take
it.

Keywords: information disclosure, testing, competition

JEL codes: D82, D83

1 Introduction

Consider a university that is looking for a new faculty member on the aca-
demic job market. The university would like to hire the candidate with the
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highest ability, but the ability of each candidate is her private information.
Each candidate, however, can choose to present a paper at a conference.
Doing so is costly, but it reveals the candidate’s ability to the employer.

More formally, suppose that a number of candidates are competing for
a prize of fixed value. Each candidate is privately informed about his type,
which is drawn from the unit interval. The prize is allocated by a decision-
maker, who would like to give it to the candidate with the highest type.
Each candidate has access to an exogenous test which, if taken, reveals the
candidate’s type. The test is costly, and candidates simultaneously decide
whether to take it.

Competition for jobs, as suggested above, is one setting to which this
framework applies. Another is political competition: voters would like to
select the most competent candidate, and candidates can invest in a media
campaign to communicate their competence. Firms competing for a fixed-
price procurement contract can reveal the quality of their products by asking
an independent agency to certify it. Students applying to a university or
competing for a scholarship can take an optional test that would demonstrate
their ability, at some cost.

Since the test is costly, not all candidates take it. Instead, there is a
unique symmetric equilibrium, in which a candidate takes the test if and
only if his type is above some threshold. In that case, he wins the prize
if the test shows him to have a higher type than any other candidate who
takes the test. On the other hand, if a candidate does not take the test,
the decision-maker learns that his type is below the threshold. Then the
candidate can only get the prize if nobody else takes the test, in which case
the decision-maker allocates the prize at random.

The first result of the paper shows that competition affects information
revelation in a non-monotone way. When the cost of the test is high, increas-
ing the number of candidates makes them weakly more likely to take the
test. But when the cost is low, an increase in the number of candidates res-
ults in less information revelation. Thus, greater competition can make the
decision-maker less informed. At the same time, even when the number of
candidates goes to infinity, the probability that some information is revealed
remains distinct from zero and from one.

To see the intuition, consider a candidate ¢ whose type is at the threshold.
Increasing competition reduces ¢’s chance to receive the prize after taking the
test, since it becomes increasingly likely that some competitor has a higher
type, takes the test, and wins over 7. It also reduces ¢’s chance of getting



the prize without taking the test, because the decision-maker will randomise
over a larger number of candidates. But if the cost of the test is low, the
threshold is low as well. Then increasing the number of candidates has a
large effect on the probability that some other candidate has a type above
the threshold. Hence, the first effect dominates the second, and ¢ becomes
less willing to take the test.

Second, I show that even though competition can result in less informa-
tion revelation, the decision-maker always benefits from an increase in com-
petition. On the other hand, an increase in the cost of the test hurts the
decision-maker but can make candidates better off by reducing inefficient
testing.

Third, the paper examines the effect of the decision-maker committing
not to give the prize to any candidate who does not take the test. There is
a substantial literature focusing on mandatory disclosure as a way of mak-
ing decision-makers better off!. But does the decision-maker benefit from
making disclosure mandatory when disclosure is costly and informed parties
compete? On the one hand, such a move reduces the payoff of a candid-
ate who does not take the test to zero. Hence, candidates become more
willing to take it, and the decision-maker receives more information. On
the other hand, if no candidate takes the test, such a commitment leaves
the decision-maker unable to allocate the prize, reducing her utility. But
if the number of candidates is very large, then, even without commitment,
a candidate who does not take the test is very unlikely to win the prize.
Thus, the first effect disappears, while the second effect remains. Hence,
when competition is high, making the test mandatory strictly reduces the
decision-maker’s utility. Since mandatory disclosure makes candidates worse
off as well, this implies that under strong competition, mandatory disclosure
is strictly Pareto-dominated by voluntary disclosure. For example, when can-
didates’ types are uniformly distributed, making the test voluntary is better
whenever the number of candidates is larger than two.

Fourth, I consider what happens when the test sends a noisy signal about
a candidate’s type. The paper shows that candidates are more likely to take
the test when it is noisy than when it is not. More generally, making the test
noisier increases the probability that candidates take it. Intuitively, without
noise, if a candidate whose type is at the threshold takes the test, he can
only win if no other candidate has a higher type. With noise, he can also

1See an overview in Dranove and Jin (2010).



win if some candidate has a higher type but does worse on the test. Hence,
the incentive to take the test increases.

To see the implications of these results, consider a market in which several
firms compete by offering products of uncertain quality. Each firm can choose
to credibly reveal the quality of its product by asking an independent body
to certify it at some cost. If more firms enter the market, do buyers become
more informed? The paper suggests that an increase in competition will
reduce information revelation when certification is cheap relative to profit
margins in the market, but not when it is costly.

Alternatively, consider an election contested by several candidates. Each
candidate take a costly action to communicate her competence — for example,
to take part in a public discussion that will be covered by media. The media,
however, transmits information to voters with some noise. That noise is
larger when the quality of journalism is lower, when voters have less trust in
media, or when media penetration is low (so voters tend to learn the content
of media reports through their friends, rather than directly). The paper
suggests that in such situations, candidates will be more likely to invest in
campaigning.

Furthermore, consider university applicants that can reveal their ability
through a standardised test such as SAT or GRE. Should universities make
submission of test scores optional rather than mandatory? While negative
effects of highly competitive university admission tests on applicants have
been noted before?, this paper suggests that not only candidates, but also
universities can be better off if submission of test scores is made optional.

Finally, consider the problem of a firm running a standardised test. The
firm wants to maximise its profit, and can choose the noise level of the test.
The results imply that increasing noise increases the expected number of
test takers, and hence the firm’s expected revenue. While it is possible that
a more precise test is more costly to run, the paper suggests that the firm
can intentionally make the test imprecise even in the absence of this factor?.

The rest of this section discusses the related literature. Section 2 de-
scribes the baseline model. Section 3 examines the effect of competition on
disclosure. Section 4 discusses how players’ utilities are affected by compet-
ition and cost of the test. Section 5 analyses the effect of making the test

2See a discussion in Olszewski and Siegel (2016).
3Standardised tests are in fact often observed to be noisy. See, for example, The
Atlantic, “The GRE Fails at Predicting Who Will Succeed”, March 1, 2016.



compulsory for receiving the prize. Section 6 extends the model to the case
when the test is noisy, as well as to the case when a candidate’s cost of taking
it depends on his type. Finally, Section 7 concludes. All proofs, except for
very short ones, are in the Appendix.

Related literature. A number of papers, starting with Spence (1973),
look at senders who signal their types by taking costly actions. Signalling
is different from testing modelled in this paper, because a test directly re-
veals the type to the decision-maker. Hence, in my paper a candidate with
a low type cannot mimic a candidate with a high type, and the incentive
compatibility constraint becomes redundant. Thus, taking the test imposes
separation, and only candidates who do not take the test can pool. This
ensures the existence of a unique and tractable symmetric equilibrium in a
setting with a rich set of types and competing senders. Within the signalling
literature, Feltovich et al. (2002), Alés-Ferrer and Prat (2012), and Daley
and Green (2014) examine settings in which a Spence-type signal is comple-
mented by an additional exogenous signal that, like test score in my paper,
is correlated with the sender’s type. In these papers, however, the additional
signal is costless to the sender and is transmitted regardless of the sender’s
action — only the Spence-type signal is chosen by the sender. On the other
hand, in my setup candidates choose whether to send a test score, at a cost.
This allows me to examine the effect of competition and noise on their choice,
as well as the welfare effects of making disclosure mandatory.

In models of auctions with costly participation*, buyers choose whether to
enter an auction. Those who enter pay the entry cost and choose their bids.
The buyer with the highest bid wins. Those who do not enter receive a fixed
outside option. The setup of this paper is related: candidates who decide
to take the test pay the cost, their types are revealed, and the candidate
with the highest type receives a common-value prize. However, types, unlike
bids, are exogenous, rather than chosen by candidates®. Furthermore, unlike
bids, types can be revealed with exogenous noise which, as Section 6.1 shows,
affects the equilibrium. Finally, in this paper the outside option is not fixed:

4See McAfee and McMillan (1987), Levin and Smith (1994), Stegeman (1996), Menezes
and Monteiro (2000), Lu (2009), Celik and Yilankaya (2009), Cao and Tian (2010), Moreno
and Wooders (2011).

5In private-value auctions, buyers have heterogeneous valuations, which determine their
bids. Here, in contrast, candidates differ in their chance of winning the prize after taking
the test, but not in the valuation of the prize.



a candidate who does not take the test can still win the prize. His probability
of winning depends on the number of competitors. Payoffs from taking the
test and from not taking the test change at different rates as competition
increases — hence, the effect of competition on the probability of taking the
test is non-monotone. In contrast, in an equivalent common-value auction
with costly entry, an increase in the number of potential bidders would have a
monotone effect on entry®. This also implies that the decision-maker always
gains from an increase in competition, whereas in a common-value auction
with costly participation the seller wants to restrict entry (Levin and Smith,
1994).

The paper is also related to the literature on all-pay auctions or contests
(see Konrad, 2009, for an overview). In this literature, contestants choose
their bids or effort levels, and the contestant with the highest bid wins. In
my paper, candidates are restricted to two “effort levels”: taking or not tak-
ing the test. At the same time, candidates have a rich set of types, and a
decision to take the test reveals the type. The type determines a candid-
ate’s chance of winning if he takes the test (but not if he does not)”. This
structure implies very different results: for example, there is a unique pure-
strategy equilibrium, whereas in a standard all-pay auction a pure strategy
equilibrium typically does not exist. It also means that candidates can win
the prize without taking the test (whereas in an all-pay auction, a bid of
zero wins with probability zero). This underlines the non-monotone effect of
competition on test participation. Furthermore, since winning depends on
an exogenous type, the paper can analyse the effect of noisy type revelation.
Finally, in the contest literature, the principal’s aim is to maximise candid-
ates’ effort®. In this paper, by contrast, the decision-maker’s payoff does not

6This happens in my paper when the decision-maker commits to give zero payoff to
candidates who do not take the test (see Section 5). In fact, Proposition 6 shows that this
“auction-like” setup is Pareto-dominated by the baseline setup of the paper.

"Some authors examine contests in which there is exogenous heterogeneity among par-
ticipants (e.g. Moldovanu and Sela, 2001; Liu et al., 2018). In these papers, contestants’
types represent the cost of exerting effort that increases a candidate’s chance of winning.
In contrast, in my setup, the test has the same cost for all candidates, and a candidate’s
type directly determines the chance of winning the prize if the candidate takes the test.
In some other all-pay auction models, e.g. Siegel (2009, 2014), contestants can have asym-
metric head starts. These are quite different from types in this model, however: first, they
are commonly known, and second, a head start affects a contestant’s’ chance of winning
the prize regardless of their effort level.

8Typically aggregate effort, although in some all-pay contest models (e.g. Denter and



directly depend on candidates taking the test — she is only interested in cor-
rectly selecting the candidate with the highest type®. Hence, as Proposition 6
shows, the decision-maker strictly prefers not to make the test mandatory for
receiving the prize, even though such a rule maximises the expected number
of candidates who take the test (and hence would be optimal in an analogous
all-pay auction model).

Another literature has looked at information disclosure by senders who
cannot lie, but can choose how much information to reveal. When disclosure
is costless and there is no competition, full revelation is the typical benchmark
result (see Dranove and Jin, 2010, for an overview)!’. On the other hand,
when disclosure has a cost, Jovanovic (1982) shows (in a setting without com-
petition) that full revelation is not an equilibrium. Subsequent research on
costly disclosure in competitive settings has looked at the interplay between
firms’ decision to reveal product quality and their price-setting behaviour.
In particular, Cheong and Kim (2004) and Guo and Zhao (2009) look at the
effect of an increase in the number of firms'!. In that setup, disclosure is
noiseless, and the payoff of a firm that reveals information depends on endo-
genously determined prices. At the same time, a firm that does not reveal
information receives zero profit. Since the profit of a firm that does reveal
information depends negatively on competition, increasing competition has
a monotone effect on disclosure. In this paper, on the other hand, the prize
of the winning candidate is exogenously fixed, while a candidate who does
not reveal information receives a positive expected payoff that depends on
competition. This implies very different results — in particular, the effect of
increasing competition on information disclosure is non-monotone and de-
pends on the cost of the test and the number of candidates. Furthermore,

Sisak, 2016) the contest designer wants to maximise the effort of the winning candidate.
9In Moldovanu et al. (2007), contestants care about their relative positions, but the
contest designer is still interested in maximising aggregate effort.

10Full revelation can fail if there is uncertainty over how much information senders
have. Carlin et al. (2012) look at a setup in which competing senders are informed about
their types with some probability, and those who are informed can disclose their types at
no cost and without noise. In this setting, they show that competition has a monotone
negative effect on disclosure, unlike this paper, which shows that the effect can be positive
or negative for different costs and levels of competition.

"Tn addition, Janssen and Roy (2015), Levin et al. (2009), Board (2009) and Forand
(2013) examine information disclosure in a two-firm setting, but do not focus on the effect
of increasing the number of firms. Stivers (2004) and Ivanov (2013) examine a competitive
market with no disclosure costs.



the exogenous nature of the test enables me to analyse the effect of test noise
on information disclosure.

The result that making the test less informative increases the expected
number of candidates who take it echoes some of the results in Alonso (2017).
In that paper, workers sort between two firms. Each worker has a pair of
types, which measures his productivity in each firm. The value of having
a job is endogenously determined through bargaining. To select workers,
a firm administers an interview that provides an imperfect signal about a
worker’s type. Participating in an interview is necessary to get the job. A key
difference is that in Alonso (2017), workers are imperfectly informed about
their types, but have perfect information about the realised distribution of
types (since there is a continuum of workers and a continuum of vacancies).
In my paper, on the other hand, each candidate 7 is fully informed about his
type, but the realised distribution of types (and, in particular, the number
of candidates who have a higher type than ¢ does) is random (because the
number of candidates is finite). With this different setup, Alonso (2017)
shows that a more informative interview can, depending on the workers’
information structure, encourage or discourage applications. In my paper,
on the other hand, making the test more informative has a monotone negative
effect on the probability that a candidate applies.

Less closely related are models of Bayesian persuasion by competing
senders'?. In these papers disclosure is costless, senders commit to a disclos-
ure strategy before learning the state, and senders can design an information
disclosure scheme rather than having to use an exogenous test with fixed
parameters such as noise.

2 Model

There are n > 1 candidates (male) that are competing for a prize allocated
by a decision-maker (female). The value of the prize to each candidate is
1. Each candidate ¢ has a type z; € [0, 1], which is his private information.
Types are drawn independently from a distribution F' with an associated
density f. Each candidate can decide to take a test at a cost ¢ € (0,1). The

12Kamenica and Gentzkow (2015, 2017), Boleslavsky and Cotton (2014), Au and Kawai
(2017).



test, if taken, perfectly reveals his type to the decision-maker!3.

The decision-maker receives a payoff x; if she allocates the prize to candid-
ate ¢ — thus, the decision-maker would like to allocate the prize to a candidate
with the highest type. If the decision-maker’s posterior belief is such that
several candidates have the highest expected type, she randomises between
them uniformly.

The timing is as follows. First, nature draws x; for every candidate
1. Each candidate learns his type. Candidates then simultaneously decide
whether to take the test. The decision-maker learns the types of candidates
who took it. She then chooses a candidate that receives the prize. The paper
focuses on symmetric equilibria.

3 Effect of Competition

3.1 Equilibrium

At a symmetric equilibrium, the strategy of every candidate 7 is a function
h:[0,1] — [0, 1] which maps the candidate’s type to the probability of taking
the test.

The decision-maker will allocate the prize to a candidate whose ex post
expected type is the highest. At the equilibrium, then, if a candidate’s type
is close to zero, it is very likely that somebody has a higher type. Thus, a
candidate with a very low type who takes the test is very unlikely to win. He
then prefers not to take it and avoid paying the cost c. If the type is higher,
the probability of winning is (weakly) larger. Then there should exist some
cutoff such that a candidate takes the test if and only if his type is above it.
This intuition implies the following lemma:

Lemma 1. At every symmetric equilibrium, there exists a threshold b € [0, 1]
such that h (z) =1 for all x > b, and Pr[h(x) > 0|z <b] = 0.

In words, any symmetric equilibrium is characterised by a threshold b
such that candidates whose types are above b always take the test, while
candidates whose types are below b never take the test — except for, possibly,

13Gection 6 considers the case when the test is noisy, and the case when the cost is a
function of a candidate’s type.



some set of types whose mass is zero'*. This last possibility is irrelevant,

because the paper examines what happens in expectation. I will thus focus
on the pure-strategy equilibrium in which each candidate takes the test if
and only if his type is above some b > 0.

The decision-maker’s expected payoff equals the expected type of the
candidate whom she gives the prize. At a Bayesian equilibrium, if candidate
i has a type above b (and thus takes the test), the decision-maker learns
his type. Hence, if at least one candidate takes the test, the decision-maker
is able to allocate the prize to the best candidate with certainty. In these
situations, I will say that the decision-maker makes an informed decision.

If candidate ¢ does not take the test, the decision-maker’s expectation of
i's type equals Ep (z | < b), where Ep () denotes expectation taken over F'.
This expression is well-defined whenever b > 0. Note that since ¢ > 0, b =0
cannot be an equilibrium — if it were, there would be some £ > 0 such that
a candidate with type below € would have such a low probability of winning
the prize that he would prefer to deviate and not take the test.

Since b > Ep (z | z < b), a candidate who does not take the test has a
lower ex-post expected type than any candidate who does. He can thus only
win the prize if nobody else takes the test, which happens with probability
F (b)"_l. In that case, the decision-maker gives him the prize with probability

%. Thus, if a candidate does not take the test, his overall probability of

winning the prize is F (b)" ' 1 On the other hand, a candidate with type
x; > b takes the test and wins the prize with certainty if every other candidate
has a lower type — which happens with probability F’ (3:1)"71.

Suppose that ¢ < =L, At z; = b, candidate i must be indifferent between
taking and not taking the test, which yields the equation

1
Foy ™ —e= Py L 1)
n
On the other hand, if ¢ > "=, then the left-hand side of (1) is smaller

than the right-hand side for all b > 0. Hence, the equilibrium strategy of
every candidate is to never reveal the type, so b = 1. Hence, the equilibrium
threshold b is characterised as follows:

_1
Lemma 2. The unique symmetric equilibrium is given by F' (b) = min {(%) n-t 1}.

14The reason for the latter possibility is that, for types between E (z | x < b) and b, the
probability of winning the prize after taking the test is constant — but only as long as the
mass of candidates with these types who take the test is zero.

10



N[ =

5

2

Figure 1: Effect of competition on F'(b).

Proof. T ¢ < "=1 then (1) implies that F(b) = (=2)7™7 < 1. If ¢ > ==L,

then b = 1 implies that F' (b) = 1. Uniqueness follows from the fact that the
expression in the lemma is in closed form. O]

3.2 Competition and Disclosure

There are two natural ways of measuring the degree to which information is
disclosed. One such indicator is F'(b), the probability that a candidate does
not reveal his type. Another indicator is F' (b)". This is the probability that
there is no disclosure — i.e. that even the candidate with the highest type
does not take the test. Thus, 1 — F (b)" is the probability that the decision-
maker makes an informed decision — that is, knows with certainty that the
candidate who receives the prize has the highest type.

Unsurprisingly, both F' (b) and F (b)" weakly increase if ¢ goes up — when
the test is more costly, candidates are less likely to take it. A more interesting
question is what happens if n increases. This is described in the following
two propositions:

Proposition 1. F' (b) increases with n if ¢ € (O, ”T’le_%), decreases with n

if c € [”T_le’%, "T_l] , and stays constant as n changes if ¢ € ("T_l, 1).

11
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Figure 2: Effect of competition on F (b)

This characterises the effect of increasing competition on F' (b) for dif-
ferent pairs of (c¢,n). Figure 1 illustrates this result. As the figure shows,
increasing the number of candidates does not change the probability that a
candidate takes the test when n is low (relative to a boundary that depends
on c¢), increases that probability when n is moderate, and reduces that prob-
ability when n is high. In particular, if ¢ < 2—16, an increase in n always
reduces the probability that a candidate takes the test.

%c, decreases

Proposition 2. F (b)" stays constant as n changes if n < <

1
1—ce”

with n if 1%@ <n< ﬁ, and increases with n if n >

Figure 2 illustrates this result'®. As we can see from Figure 2, if ¢ > 1,
increasing competition weakly increases the probability that the decision-
maker makes an informed decision. Specifically, if ¢ € E, %}, an increase in
n strictly reduces F (b)"; while if ¢ > 3, increasing n has no effect until n
reaches %_C, after which any further increase in n makes the decision-maker
more informed.

On the other hand, if ¢ € (%, 2—18), increasin% n increases the probability

of an informed decision only until n reaches ;=. After that, increasing n

15 Alternatively, the result can be expressed in terms of the values of c. An increase in n
reduces the probability that the best candidate reveals his type if ¢ € (O7 "n’el), increases
it if c € [2=1, 2=1] "and has no effect if ¢ € (%21,1).

ne’ n
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reduces that probability.

Finally, if ¢ < 2%, an increase in competition always makes the decision-
maker less informed.

To summarise, increasing competition raises the amount of information
available to the decision-maker when the cost of the test is high, and lowers
it when the cost of the test is low.

To see the intuition behind this result, consider the marginal candidate,
whose type equals b. For him, increasing n has two effects. First, the expected
payoff from taking the test falls, because F (b)”_l, the probability that no
other candidate has a higher type, decreases. Second, the expected payoff
from not taking the test falls as well, because %, the probability of being
randomly selected to receive the prize when nobody takes the test, becomes
smaller. But if ¢ is low, then b is low as well. In that case, the impact of
increasing the number of candidates on F (b)”_1 is relatively large. Thus, the
first effect dominates the second, and the marginal candidate becomes less
willing to take the test. On the other hand, if ¢ is high (but not so high that
nobody takes the test), then F'(b) is close to 1. Then increasing n does not
change F (b)"_1 much, and so the second effect dominates the first. Finally,
if ¢ is very large, then no candidate takes the test, and a further increase in

n has no impact on information disclosure.

3.3 The Case of Large Competition

We can also check what happens in the limit when n goes to infinity. Since
1

lim (-2)" ' = lim ( c1> "= 1,wehave lim F(b) = lim mm{( o
n——4oo ‘-1 n—+o0o n—-+o0o n—+o0o n—1
1. Hence, the probability that a given candidate takes the test goes to zero.
Intuitively, when n — 400, a cutoff b < 1 cannot be an equilibrium — if it
were, then for any type = € (b, 1), there would almost surely be a candidate
with a type above x. Hence, a candidate with type x would almost surely
not win the prize, and hence would strictly prefer not taking the test.
Nevertheless, the probability that the decision-maker makes an informed

decision does not go to zero, as the following result shows:

Proposition 3. When n approaches infinity, the probability that no candid-
ate takes the test approaches c.

1

>1f% = c. Since F (b)" = mm{(ncfn)ﬁ ; 1}’

Proof. lim (ﬂ)ﬁ = lim (1'3

— T
n—oo M 1 n—o0 n

13



lim F' (b)" = c. O
n—oo

Hence, when n — +o00, the probability that at least the best candidate
takes the test approaches 1 —c¢. Thus, even when competition is very strong,
the probability that the decision-maker makes an informed decision remains
distinct from zero (and also from one).

Intuitively, suppose that F' (b)" approached 1 as n became large. Then in
the limit the expected type of a candidate who does not take the test would
equal Ep (z). But then any candidate with a type above Ep () would win
the prize with probability 1 if he took the test. Hence, he would deviate,
contradicting the initial assumption.

4 Utilities and Welfare

4.1 Effect of Competition

Does the decision-maker gain from an increase in competition? Increasing n
has two effects on her payoff. On the one hand, since the type of each candid-
ate is an independent draw from the distribution F', increasing the number of
draws increases the expected type of the best candidate. In a perfect inform-
ation setting, this would make the decision-maker better off. However, when
c is small, greater competition can also increase the probability that even the
best candidate does not take the test. If that happens, the decision-maker
will have to allocate the prize at random, which means that the prize will not
necessarily go to the best candidate. The reduction of information available
to the decision-maker creates a negative effect of competition on her payoff.
Nevertheless, the following will show that the first effect will always dominate
the second, and greater competition is always better for the decision-maker.

To check this, we need to determine her expected payoff. With probability
1—F (b)", at least one candidate has a type above b, and takes the test. Then
the decision-maker allocates the prize to the candidate with the highest type.
In that case, the decision-maker’s expected payoff equals

E (max {z} | max{z} > b) = = F )"

where the above expression uses the fact that the cdf of max {z} is F (x)".
On the other hand, with probability F (b)", no candidate takes the test.

14



Then the decision-maker allocates the prize to a random candidate, and her
expected payoff equals

Jo wd[F (2)]

E(x|z<b) = F )

Overall, the decision-maker’s expected utility equals

v /b ©d[F (2)"] + F (b)"" /0 2d[F (2)] 2)

When n < ﬁ (or, equivalently, when ¢ > =), we have b = 1 and
thus v = fol xd [F (z)], which does not depend on n. Intuitively, when no
candidate takes the test, the decision-maker has to allocate the prize at
random regardless of n. If n > 1%6, then b < 1, and we have the following
result:

1
1—c’

Proposition 4. When n > an increase in n strictly increases v.

Hence, an increase in competition makes the decision-maker strictly bet-
ter off, unless no candidates take the test (in which case the decision-maker’s
payoff is not affected by n). This contrasts with the standard result in the
literature on auctions with endogenous entry, in which the seller typically
benefits from restricting the number of potential bidders (see e.g. Levin and
Smith, 1994).

Intuitively, while greater competition can reduce the probability that the
decision-maker makes an informed decision, this can only occur when the
cost of the test is low, as Proposition 2 states. But if ¢ is low, then so is
F (b). Hence, each new candidate is likely to take the test, so the positive
effect of an increase in the number of draws from F is large, outweighing the
negative effect. On the other hand, in an equivalent auction with endogenous
entry, a bidder who does not enter would be unable to win the good — thus,
the payoff from not entering would be zero. Because of this, an increase in
the number of potential bidders would always reduce entry, regardless of the
cost'®, and hence greater competition can hurt the seller.

16This also happens if the decision-maker commits to give a payoff of zero to any can-
didate who does not take the test (see Section 5).
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4.2 Effect of Cost

The cost ¢ of the test can affect the decision-maker’s utility by affecting b,
and hence the amount of information that is revealed. If ¢ > ”T’l, then b =1,
and a further increase in ¢ does not change it. If ¢ < ”;1, then an increase in
¢ increases b, making candidates less likely to reveal their types, and hence
reducing the decision-maker’s expected payoff.

What about candidates? Since candidates are symmetric, a randomly
selected candidate wins the prize with an ex ante probability of % With
probability 1 — F' (b) he also takes the test and pays the cost ¢. Thus, his

overall expected utility equals

u—%—c[l—F(b)] 3)

This yields the following result:

n—1

= )n, increases u if

Proposition 5. An increase in ¢ decreases u if ¢ < (
ce ((ﬂ)n , %), and does not affect u if ¢ > ”Tfl

n

Intuitively, for candidates the test is a deadweight loss — it only serves to
reallocate the prize between candidates at a cost to those who take the test.
If c < ”T_l, an increase in ¢ has two opposite effects. On the one hand, by
raising the threshold b, it reduces the expected number of candidates who
take the test, thus increasing candidates’ utility. On the other hand, those
candidates who do take the test have to pay a higher cost. If ¢ is sufficiently
small, then the effect of increasing ¢ on b is small as well, so the second effect
dominates the first. The opposite is true when c is moderately large. Finally,
if ¢ > ”T_l, then no candidate takes the test, and increasing its cost has no
effect.

Since the decision-maker always prefers a lower cost unless ¢ > "T_l, this
implies that lowering the cost increases welfare if ¢ < (”T_l)n, and has no
effect on welfare if ¢ > ”7_1 When ¢ € ((”T_l)n7”—_1), lowering the cost

n

makes candidates worse off and the decision-maker better off.

5 Mandatory Disclosure

Can the decision-maker change the rules of the game to increase her welfare?
This paper does not focus on finding a generic optimal mechanism for the
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decision-maker'”. Instead, it will look at one particular avenue that the
decision-maker can pursue: committing to never give the prize to a candidate
who does not take the test. For example, universities often require every
applicant to take the test for his or her application to be considered. Is such
a commitment optimal?

By an argument similar to the one in Lemma 1, when testing is mandatory
for receiving the prize, the equilibrium has a similar threshold form to the
one described earlier:

Lemma 3. Under mandatory disclosure, al every symmetric equilibrium,
there exists a threshold b € [0,1] such that h(x) = 1 for all x > b, and

Pr h(:c)>0]x<l;]:0.

Proof. Identical to the proof of Lemma 1 with m and 7 (m) replaced by
Zero. O
A\ n—1
At the threshold, a candidate receives a payoff of F (b) — ¢ if he
takes the test. A candidate who does not take it receives a payoff of zero.
Indifference condition gives us
F (3) = ci1

~ A\ T n
It is easy to see that F' (b) and F (b) = cn»—1 are strictly increasing in n
for any ¢ € (0,1). Thus, in contrast to the case without commitment, under
mandatory disclosure an increase in competition has a monotone effect on
the amount of information that is disclosed.
At the same time, we can see that F <b> < F (b). Hence, a given candid-

ate is more likely to take the test when disclosure is mandatory than when
it is compulsory. Intuitively, this happens because under mandatory testing,
the expected payoff of a candidate who does not take the test becomes zero,
while under voluntary disclosure he is still able to win the prize.

Under voluntary testing, the expected payoff of a randomly selected can-

didate is given by (3). Under mandatory testing, it equals £ —c [1 - F (ZA))}

ITIf the decision-maker has full commitment power, and if communication between her
and candidates is costless, then one such possible mechanism would be to ask all candidates
to report their types, and then ask the candidate with the highest reported type to take
the test, promising to give him the prize if and only if the test confirms the type. In
practice, costless and noiseless communication is often unavailable.
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Since F <(3) < F(b), mandatory testing reduces the expected payoff of a

random candidate. The intuition is the same as in Section 4.2: the cost of
the test is a deadweight loss, and making candidates more likely to take it
reduces their utility.

What about the decision-maker’s payoff? Without commitment, it is
given by (2). On the other hand, when the test is mandatory, the decision-
maker’s payoff equals the type of the best candidate if the best candidate

takes the test, which happens with probability 1 — F <l;>n If the best can-

didate does not take the test, the decision-maker’s payoff is zero. Then the
expected payoff of the decision-maker equals

0= [1 —F (I;)n] E (max {z} | max{z} > 6) = /Bl xd[F (™)  (4)

Let D(n) = © — v be the decision-maker’s expected gain from making
the test mandatory. When n is sufficiently large, we can show that D (n) is
negative, and hence the decision-maker is better off when the test is voluntary.
Since voluntary testing is also better for candidates, we have the following
result:

Proposition 6. For all ¢ > 0, and any F, there exists n such that voluntary
testing strictly Pareto-dominates mandatory testing for all n > n.

Intuitively, a commitment to only select the winner from candidates who
took the test has two effects. On the one hand, since candidates become
more likely to take the test, mandatory testing increases the probability that
the best candidate reveals his type. Hence, the decision-maker is more likely
to make an informed decision, which increases her expected payoff. On the
other hand, if nobody takes the test, this commitment leaves the decision-
maker unable to allocate the prize. Since by assumption, the decision-maker
always prefers to give the prize to some candidate, this reduces her payoff.

However, as n becomes large, a candidate who does not take take the test
becomes increasingly less likely to win the prize even without commitment.
Thus, his payoff F (b)"_1 % = %% converges to zero. Then in the limit, a
candidate’s incentive to take the test under voluntary disclosure becomes the
same as under mandatory disclosure. Hence, the first effect of commitment
disappears. On the other hand, the second, negative effect of commitment
remains: as n — oo, the probability that no candidate takes the test stays
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strictly positive, as Proposition 3 has established. Thus, the overall gain
from the commitment is negative when n is sufficiently large.

Whether mandatory testing is better than voluntary testing for small
values of n depends on the shape of F'. In the simple case in which types are
distributed uniformly, n does not need to be very large for a voluntary test
to be optimal, as the next result shows:

Corollary 1. If F (z) is uniform, then voluntary testing strictly Pareto-
dominates mandatory testing if and only if n > 2.

Recall that by assumption, n > 2. Hence, when the distribution of types
is uniform, keeping the test voluntary is better whenever the number of
candidates is larger than the minimum that is necessary for the competitive
testing model to be meaningful.

6 Extensions

6.1 Noisy Test

So far we have assumed that the test perfectly reveals the candidate’s type.
Suppose, however, that the test is imperfect. For example, a candidate on
the academic job market may invest effort into writing an additional research
paper, but the paper may be a noisy signal of his quality. Similarly, an
election candidate may invest in campaigning to inform voters about his
competence, but the media may present her message imperfectly.

Suppose that rather than revealing the candidate i’s type x;, the test
reveals a test score s; = x; + 2;, where z; is noise. When a candidate decides
to take the test, he knows his type x;, but not the realisation of the noise.
After candidate i takes the test, nature draws z; from some distribution
G with smooth logconcave density g that has full support on R. Different
candidates’ noise realisations are drawn independently.

We can show that the decision-maker prefers a candidate with a higher
test score. Specifically, the following lemma proves that when noise is ad-
ditive, logconcave g is equivalent to the monotone likelihood ratio condition,
which, as Milgrom (1981) shows, implies that a higher score is a more fa-
vourable signal about the candidate’s type:
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Lemma 4. If candidates i and j take the test, and s; > s;, then the decision-
maker has a higher expected utility from giving the prize to candidate i then
to candidate j.

Then we can show that, as in the baseline model, the equilibrium sym-
metric strategy is of a threshold form:

Lemma 5. At every symmetric equilibrium, for any G, there exists a threshold
b€ [0,1] such that h(z) =1 for all x > b, and h(x) =0 for all x < b.

If b = 1, nobody takes the test, and a small increase in noise has no effect.
Consider instead the case when b < 1. If a candidate does not take the test,
the decision-maker knows that his type is below b; while if he takes the test,
the decision-maker knows that his type is above b. Thus, a candidate who
does not take the test can never win over a candidate who takes it. If two
or more candidates take the test, Lemma 4 ensures that the decision-maker
will give the prize to the candidate with the highest test score.

Take a candidate i whose type equals b. That candidate must be indif-
ferent between taking and not taking the test. If he does not take the test,
he can only win the prize if nobody else takes the test. This happens with
probability ' (b)"~'. His expected payoff is then F (b)" ™" 1.

Now suppose candidate i takes the test. If the test produces noise z,
the decision-maker learns i’s score b + z. Then ¢ wins the prize if each of
his competitors either (i) does not take the test, or (ii) takes the test and
receives a score below b + z. For a given competitor, the probability of the
former event is Pr(z < b). The latter event happens if the competitor has
a type x > b and, after taking the test, receives a score v + 2 < b + z.
The probability of this is Pr(x > bA Z < b+ z — x). Since there are n — 1
competitors, the probability that ¢ wins the prize equals

n—1

[Pr(z<b)+Pr(z>bA2<b4+z—a)" " = [F(b)—l—/blf(x)G(b—i-z—m)dx

Then ex ante, before ¢’s test noise z is realised, his probability of winning
the prize after taking the test equals
o0

[0 {F(b)+/blf(a:)G(b+z—x)dxr_ldz
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Thus, when b < 1, the equilibrium is determined by the indifference
condition

n—1

/+°°g(z) [F(b)+/blf(x)G(b+z—x)da; dz—c=F(b)""

o0

S|

By varying the G, we can vary how noisy the test is. In particular,
consider a family of distributions of the form G, (z) = G (\z) for different
values of A € (0, +00). Increasing (decreasing) A makes the noise more (less)
concentrated around zero, and hence makes the test less (more) noisy'®. How
does a change in A\ affect the equilibrium?

It turns out that a candidate is more likely to take the test when the test
is noisier. This is summarised in the following proposition:

Proposition 7. For any F' and G, and any values of n and c, decreasing A
decreases b.

To see the intuition behind this result, take the case when there is no
noise, and consider candidate ¢ whose type equals b. If ¢ takes the test, he
wins the prize if and only if all other candidates have types below b, and
don’t take the test. Now make the test noisy, and suppose that b were held
constant. If the 7 takes the test, he still wins over anyone who does not take
it, since not taking the test reveals that one’s type is below b. But now ¢ can
also win over a competitor who has a higher type, if that competitor takes
the test and receives a lower score than ¢. Hence, ¢’s chance of winning the
prize after taking the test increases. Thus, ¢ becomes more willing to take
the test, and the threshold b decreases.

Thus, candidates are more likely to take the test when the test is less
informative. This may seem surprising: one could think that as A — 0
(i.e. as the test becomes “infinitely noisy”), the test ceases to carry any
information, and candidates should be unwilling to take it. Note, however,
that as A — 0, the test is only uninformative in the limit — for any positive A,
a higher test score still indicates that the candidate has a higher type. Hence,
the test remains informative, and candidates with high types still prefer to
take it.

Since each candidate is more likely to take the test when it is noisier,
greater noise increases aggregate expenditure on the test, as the following
result states:

8For example, if G is a normal distribution, then X is proportional to the inverse of its
variance.
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Corollary 2. FEzxpected total spending on the test increases if X decreases.

Proof. A candidate takes the test with probability 1 — F (b). Hence, the
expected spending on the test is en [1 — F'(b)], which increases as A falls. [

Thus, if the test is run by a monopolist (as is, for example, the GRE),
the monopolist has an incentive to make the test less precise.

6.2 Heterogeneous Costs

The basic model assumed that the cost of taking the test is the same for
all candidates. This section will show that the basic results of the paper
also hold when the cost is allowed to depend on candidate’s type. For a
specific application, suppose that a number of students are competing for
a scholarship. The decision-maker would like to give the scholarship to the
best applicant. Each applicant can take a test, and the effort required to
take it is higher when the applicant’s ability is lower.

Formally, suppose that for a candidate with type x, the cost of taking
the test is ¢(x) € [c,¢], where 0 < ¢ < € < 1. Let ¢(x) be continuously
differentiable and strictly decreasing in type. Thus, a more qualified applicant
will find it easier to take the test.

In this setup, as before, we can show that the strategy of each candidate
is of threshold form:

Lemma 6. At every symmetric equilibrium, there exists a threshold b € [0, 1]
such that h (z) =1 for all x > b, and h(x) =0 for all x < b.

If the test is not mandatory, a candidate with type b receives an expected
payoff of F(b)"™" — ¢ (b) if he takes the test, and F (b)"" L if he does not.
If b < 1, the equilibrium is given by the indifference condition

F ) - {C“’)”} a )

n—1

This is an equilibrium whenever ¢(1) = ¢ < ”T’l If ¢ > "771, then
F)" —c(b) < F()" "L for all b, and hence the equilibrium is given
by b = 1. Note that the left-hand side of (5) is increasing in b, and the
right-hand side is decreasing in b — hence, the equilibrium is unique.

The effect of increasing the number of candidates on information revela-
tion is then captured by the following result:
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Proposition 8. Suppose that ¢ < ”T_l At the equilibrium, % > 0 if and

dn
only if ¢ (b) < "T’le’%.

To interpret this result, consider the case when ¢ is low, and hence the test
is cheap (relative to the value of the prize) even for candidates with low type.
In particular, suppose that ¢ < ”T_le_le. Since ¢ (b) < ¢, the condition in the
proposition is satisfied. Then % > 0, and hence an increase in competition
reduces the probability that a given candidate takes the test. On the other
hand, suppose that c is high, and hence the test is costly for all candidates.
If ¢ > ”T’le_% then, since ¢ (b) > ¢, we have % < 0, and thus an increase in
competition increases the probability that a given candidate takes the test.

Hence, the basic logic of the results from Section 3 — that competition in-
creases (reduces) information disclosure when the cost of the test is relatively
high (low) holds when the cost of the test is heterogeneous.

What if the decision-maker commits not to give the prize to anyone who
does not take the test? As before, the expected payoff of a candidate who

does not take it equals zero, and the equilibrium threshold b is given by

_1
F () = (3)™
We can verify that, as before, b > b. To see that, define z (x) = P!

c(x)

Then z(b) = >1=z <l;> Since z (+) is an increasing function, this

n—

> =

implies that b > b.
Given this, we can show that the decision-maker’s expected gain from
making the test mandatory is negative when competition is sufficiently strong.

Proposition 9. For all ¢(-), and any F, lim D (n) < 0.
n—oo

Hence, the result from Section 5 holds in a more general setting in which
the cost of the test depends on the candidate’s type.

7 Conclusions

This paper developed a model of costly information disclosure by candid-
ates competing for a prize. Disclosure was modelled as a costly test that a
candidate can take to reveal his type.
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Several results were derived. First, greater competition reduces informa-
tion disclosure if the cost of disclosure is low, increases it if the cost is mod-
erately high, and has no effect if the cost is very high. Second, when compet-
ition is sufficiently high, mandatory disclosure is strictly Pareto-dominated
by voluntary disclosure. Third, greater test noise makes candidates more
likely to take the test.

An important feature of the model was the fact that the candidates are
competing for a single prize. In some settings — such as competition for
political office, a company seeking to fill a single vacancy, or a university
that needs to allocate a single scholarship — this assumption is naturally
satisfied. In other settings, the number of prizes can be greater than one.
Future work can extend the analysis to account for this possibility.
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Appendix

Proof of Lemma 1.

Let m be the expected type of a candidate who does not take the test. Denote
by 7 () the probability that a candidate with type x wins the prize. Then a
candidate with type = weakly prefers to take the test whenever 7 (z) — ¢ >
7 (m), and weakly prefers not taking it whenever 7 (z) — ¢ < 7 (m).

Note that 7 (-) is nondecreasing. Then whenever x < m, we have 7 (z) —
¢ < m(m), so any candidate whose type is below m strictly prefers not to
take the test. Thus, h(z) = 0 for all x < m. For a candidate with type
x > m, m(x) is the probability that every other candidate either does not
take the test, or takes it and has a type below x. Hence, for all x > m,

n—1

W(x):(/01[1—h(u)]dF(u)%—/jh(u)dF(u)) (6)

Let b = sup{z |h(x) <1}. Then we must have 7 (b) — ¢ < m(m).
Now take some & < b, and suppose that h(z) > 0. Then we must have
7 (&) — ¢ > m(m). This implies that 7 (b) < 7 (Z). But 7 (-) is nondecreas-
ing, so m(b) = 7 (). Substituting the expressions for 7 (b) and 7 (&) from
(6) and simplifying, we get fobh(u) dF (u) = foih(u) dF (u). Therefore,
fxbh(u) dF (u) = 0. This should hold for all £ < b such that h(z) > 0.
Hence, there exists a b such that the candidate takes the test with certainty
for all types above b, and with probability zero for all types below b. O
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Proof of Proposition 1.

If ¢ > "T’l, then F'(b) = 1, which does not depend on n. If ¢ < "T’l, then
1

F(b) = ()1 = et AT Approximating n by a continuous variable

and differentiating yields

d
—F (b) = F (b) [—

1 cn N 1 n—-1 -—c
(n—1)2 n—1 n—-—1 cn (n—1)2

cn

. 1 1
) < —1 je. whenever ¢ < “en, O
n n n

which is positive whenever In ( :

Proof of Proposition 2.

Ifc> "T_l, and hence n < 1%6, then F (b)" = 1, which does not depend on

n. If ¢ < ”T_l, then F (b)" = (%)ﬁ — 15T Approximating n by a
continuous variable and differentiating yields
d 1 cn n n—1 —c
—FD)"=F ()" |- 1
dn (b) () [ (n—1)2 nn—1+n—1 n (n—1)2

cn
n—1

L O

1—ce

which is positive whenever In ( ) < —1, i.e. whenever n >

Proof of Proposition 4.

Integrating by parts, we can transform (2) as

v = xF(x)";—/blF(x)"dHF(b)”—l [mF(x)|g—/0bF(x)dx]
:1—bF(b)”—/blF(:c)”d:chbF(b)”—F(b)”_l/ObF(:c)dx

- _/blF(x)”dx—F(b)”‘l/obF(w)dw
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Substituting F (b)" " = - and differentiating with respect to n (treat-

ing n as a continuous variable) yields:

db

dv db ’
" — F(x)dx — F(b)" —
| F@ac-ror g

W pay® /bF(x)”ln[F(x)]d:er

(n—1)°
F(x)dx >0

e

Proof of Proposition 5.
If ¢ > =1 then F (b) = 1, and a further increase in ¢ does not affect w.
Suppose that ¢ < "T_l Substituting the expression for F'(b) from Lemma 2

into (3) yields

1 cn = 1 n n n—1
u=——c|l— = —¢cH4cn1
n n—1 n n—1

Differentiating with respect to ¢, we obtain

du . n - n AT m 1 n e
_— = — Cnf = — Cnf
de n—1 n—1 n—1

which is positvie if and only if ¢ > (”—_1)n m

n

Proof of Proposition 6.

Subtracting (2) from (4) and integrating by parts yields:

D(n) = ffad[F ()] = F ()" [Jad[F (x)

_bF ()" — bF <b>” — [P F(2)" dx — F (b)" [bF ) — [

o I () dx]
= b () = P @) de+ F Y L F (@) da

1

Note that lim F(b) = lim (-2 )ﬁ = lim ( < )ﬁ = 1, and

n—400 n—+4o00

lim F(B) = lim ci1 = 1. Hence, lim b = lim b = 1, and thus

n—-+4o0o n—-+o0o n—-+4o0o n—-+4o0o
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. b n o . . n—1 . . cn
n1_1>r+nOo [ F(x)"dx = 0. At the same time, nl_l}rilooF (b)) = nl_lgloo"—l c.

~

Also, lim F (b)n — lim ¢»1 = ¢. Thus,

n—-4o00 n—-4o0o

n—-4o0o n—+4o0o

lim D (n) = lim [c—c/obF(x)dx] :c{l—/olF(x)dm} <0

which implies that voluntary testing is strictly better for the decision-maker
when n is large enough. Together with the fact that candidates strictly prefer
voluntary testing, this implies strict Pareto-dominance. O]

Proof of Corollary 1.

If F'(z) = z, then, using the transformation of D (n) done in the previous
proof, we have

b b
D (n) = —b"tt — / x"dx + b”_l/ xdx
b 0

_ _l;n-i-l _ 1 prtl 1 l;n—i-l + lbn-&-l
n+1 n+1 2
_ n—1 nt1 T l;n+1
2(n+1) n+1

Substituting b = F (b) = (ﬂ)ﬁ and b= F <l;> = ¢7-1 into the above

expression yields
n—1 n -l
2 n—1

n+1

D( ) n—1 cn n—1 no_onil ntl 1
n) = —_ cn— —= Cn—
2(n+1) \n—1 n+1 n+1

nt1l 2
which has the same sign as "T_l (ﬁ) =1 —n, or as % <n711) n=t — 1. This
is negative for all n > 3, and positive for n = 2. n

Proof of Lemma 4.

To prove the lemma, it is sufficient to show that s; > s; implies that the
conditional distribution of z | s; first-order stochastically dominates the con-
ditional distribution of x | s;. Milgrom (1981) shows that this holds if and

only if the likelihood ratio =12

——= is increasing in s for any z, T such that
k(slz) ’
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x > T, where k(s | x) is a conditional distribution of s given z. Given the
additive structure of noise, k(s |z) = g (s —z), and the above monotone

likelihood ratio property is equivalent to the statement that d% (%) > 0,
which is equivalent to £ <ln [%D = Lng(s—z)—Ilng(s—1z)] > 0.

This holds if and only if & [Ing (s — z)] > % [Ing (s — Z)], Vz > Z, i.e. if and
only if £ 1n g (-) is decreasing, and hence if and only if g (-) is logconcave. [

Proof of Lemma 5.

Let 7 be the probability that a candidate wins the prize after deciding not
to take the test. Let 7 (z) be the ex ante probability that a candidate whose
type is x wins the prize. Then a candidate with type = takes the test if
7 (x) — ¢ > 7, and does not take the test if 7 (x) — ¢ < 7. Note that T does
not depend on x. Thus, to show that h is of a threshold form as stated in
the lemma, it is sufficient to demonstrate that 7 (x) is strictly increasing in
x.

At the equilibrium, let § be the score such that the expected type con-
ditional on having score § equals the expected type of a candidate who did
not take the test. Lemma 4 implies that s is unique.

Suppose that a candidate whose type x takes the test and receives a score
s = x+z. Now take a competitor with type Z. If s < § (and hence z < §—x),
the candidate has a higher expected type than this competitor if and only if
the latter takes the test and receives a score 2+ 2 that is less than x+z. Given
the competitor’s type z, this happens with probability h (2) G (z + z — Z).
Thus, the probability of winning over that competitor equals

and the overall probability of winning the prize equals L (z,2)"”'. On the
other hand, if s > § (and hence z > § — x), the candidate has a higher
expected type than his competitor if an only if the latter either (i) takes
the test and receives a score & + 2 that is less than = + z, or (ii) does not
take the test. Given the competitor’s type , the former event happens with
probability h(Z) G (x + z — Z), while the latter event happens with prob-
ability 1 — h(Z). Thus, the probability of winning over that competitor
equals fol f@[1—=h(z)+h(2)G(x+ z— )| de, and the overall probabil-
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ity of winning the prize equals

(/Olf(ﬁ)[l—h(a@)+h(a§)G(z+z—§:)]da:~>n_l:[K+L($’Z)]n1

where K = [ f (&) [1 — h(#)]d# > 0. Then we have

5—x +oo
7 (x) = / g(2)[L(z,2)]" " dz + / g(2)[K+ L(z,2)]" " dz

oo S—T

Differentiating it with respect to x yields

dz(xx) = —gG—a)[L(z,5—x)"" + /_:Ig (2) dix (1L (z,2)]" 1) "
vo e Lo s [ (s ) i

In the above, the first inequality is due to the fact that L (x, z) is increas-
ing in « while K does not change with x, which implies that < ([L (z, z)]"_l) >
0 and £ ([K + L(z, z)]"fl) > 0. The last inequality holds because K > 0.
Note that unless h (-) is zero everywhere or almost everywhere, L (x,z) is
strictly increasing in x, which implies that the first inequality is strict, and
hence

dm (x)
dz

>g(5—a)([K+L(z,5— o))" = [L(x,5— x)]”_l) >0

On the other hand, if h (-) is zero everywhere or almost everywhere, then
K= fol f(&)dz > 0, and we have

drm (x)
dz

>g(3—a)([K+L(z,5—2)" ' —[L(x,5-2)]"") >0

Hence, in every symmetric equilibrium we must have dZ—Ef) > (. Therefore,
any symmetric equilibrium must be of a threshold form. O]
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Proof of Proposition 7.

When b = 1, no candidate takes the test, and a marginal change in the level

of noise does not change b. Thus, % = 0. Now consider the case when b < 1.

Take a distribution G, (z) = G (Az), and note that its pdf equals \g (Az).
The equilibrium is then given by the condition

n—1

/_+Oo)\g()\z) [F(b)+/b f(x)GA[b+ 2z —z])dx dz—c=F(b)"!

[ee]

S|

This can be written as:

(7)

where M (2) = F (b)+ [, f (z) G (A[b+ z — 2]) dz. Since (7) should hold
for any A, we can differentiate it with respect to A to obtain

S|

/; i >\g ()\Z) [M (Z)]n_l dz—c=F <b>n—1

o0

/_ Tg ) M () d+ / T g 09 M ()" ds (8)

[e.9] —0o0

+ /_ T g ) (n— 1) [M (22 (2) 4,

d\

- n—1 db

R0

Note that we can write

| xg 0a s = g 00 P - [ g0 {aﬁ (= [M (2)]")| d2

[e.9] o0

_ /_ o) {% (=[M (z)]"l)] dz

o

0z

+o0 +00 >
—— [ soamrerte- | g(A2) 2 (n— 1)1 ()2 2B g,

—00 —0o0

where the first equality is a result of differentiating by parts; the second comes
from the fact that for a logconcave ¢ (-), lim zg(\z) = 1131 zg(Az) =0,
Z—>—00 Z—r+00

while M (z) is bounded between zero and one; and the third comes from

19To see why this is the case, note that fjooj Ag (\z) dz = 1. Together with the fact that
g (A2) is logconcave, and hence decreasing for sufficiently high z, this means that Ve > 0
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straightforward differentiation. We can substitute this into (8), which then
becomes

+00 +0o0 z
_/ g(A2) 2 (n— 1) [M (2)]"2 a]\gz( ) 4 +/ Ag (Az) (n— 1) [M (2)]"2 %;)dz
n—1 db

e OO

This simplifies to

J A e P S R DR (CE O

o0

Now note that

a]\gz(Z) :)\/blf(m)g()\[b+z—x])dx>0

and

d]gA(Z):f()__f( AZ_JF/f b+z—x])<b+z—x+/\db>d

d\
db z20M (z) dboM (z)

=1 G Az ﬂﬁ—}_A() A 0z d\ 0z

OM (z)\ db 2z OM (z)
( A+ 0z )5+A(2)+X 0z

where A (z fb Ab+z—x]) (b—2)dr <0. Then we have:

dM (z) OM (z)

N e :)\(f(b)[l—G()\z)]+

oM (z)) db

5 ) o T4k (10)

there exists ¢ such that (i) y > ¢ implies f g(Az)dz < 55, and (ii) g (A\z) is decreasing
for z > 26. Then for any z > 2§ we have zg()\z) =2(z-%2)g(\z) = 2f g(Az)dt <

2f g(At)dt < 2f+°° (M) dt < 2 [7°° g (Xt)dt < £, where the first inequality comes

from the fact that g (\z) is decreasing. Hence, zg (A\z) converges to zero. The statement
that lim zg(Az) = 0 can be proven analogously.
Z——00
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We can now substitute (10) into (9) to obtain:

+o0 Z
o MO (f (b)[1 -G ()] + ‘9]‘;_20) .
+o0
- / Ag (A\z) [M (Z)]TFQ A(z)dz = %F (b)nﬂ £ %

Then we can express % as

db [7290g (A2) [M ()] A(2) dz

D LP 0 - [ M () )2 (£ () 1 — G )] + B2

Since A(z) < 0 and M (z) > 0, the numerator is negative. At the same
time, we can show that the denominator is strictly negative too. This is
because:

aj\g <Z)) dz

z

[ e0a e (f ()1 -G (h)] +

—00

> / T g () M ()2 F (81— G (A2)] d

> /_ - Ag(A2) FE(D)" 2 f(b)[1 — G (\2)]dz

o] .
U ICY RVICOIERCI ST
-
=F (b)" % f (b) {1— / Mg (\2) G (\2) dz

— PO ()

>—F (b)"" [ (b)

S| N

In the above, the first inequality is due to the fact that Mg—(z) > 0. The

second inequality holds because M (z) = F (b)—f—fbl f@)GA[b+ z—x])de >
F (b). The first equality uses a simple rearrangement of terms, while the

second uses the fact that f_Jr;o Ag(\2)dz = f_Jr;o dGy (z) = 1. The third
+o0

equality is due to the fact that [">"\g(A\2) G (\2)dz = [G(A\2)°| . —
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2|+o0

(G| =

[T Ag (A\2) G (\2) dz, and hence [T27 g (\2) G (\2)dz = 1
%. Finally, the last weak inequality uses the fact that n > 2.

Since both the numerator and the denominator are negative, we conclude
that £ > 0. O

Proof of Lemma 6.

As in the proof of Lemma 1, let 7 (x) be the probability that a candidate with
type x wins the prize after taking the test, and let = (m) be the probability
of winning the prize without taking the test. Then a candidate with type
x is indifferent between taking and not taking the test when 7 (x) — ¢ (x) =
7 (m). Since 7 (-) is nondecreasing and ¢ (+) is strictly decreasing, this equality
holds for at most one type. If such a type exists, call it b. Otherwise, if
7 (1) — ¢ (1) < w(m), then b = 1. Note that b = 0 cannot be an equilibrium,
because 7 (0) — ¢ (0) = —¢ < 0 < 7 (m). O

Proof of Proposition 8.

We can write (5) as F (b)" " = ~=c(b). Approximating n by a continuous
variable and differentiating with respect to it yields

n—1 db B 1 n bdb

F (5" |[InF(b) + F@f(b)% = s 1)20(6)+ — ()
Hence,

b — e (0) = F ()" ' InF (b)

dn (n=1)F ()" f(b) = ;%5 (b)

The denominator of the above is positive, since ¢ (b) < 0. Hence, % >0

whenever F (b)" 'InF (b) < —(njl)zc(b). Substituting F' (b) from (5), we

find that © > 0 if and only if ——¢ (b)In ([M]) < — L (D), te,

n—1

c(b)n
n—1

whenever In ] < —21. This is true if and only if ¢ (b) < %6_%. O

Proof of Proposition 9.

Since the expressions for v and ¥ are unchanged, using the same steps as in
the proof of Proposition 6, we can write D (n) = —bF (I;) — fgb F(z)"dz+
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F ()" be(:v) dr. We have lim F' (b) = lim [M}”ll = lim [c(b)]*T =

0 n— 00 n— 00 n—1

_1
1, and lim F (E) = limc (l;) = 1, where the last equality in each case

n—oo n—oo

uses the fact that c(b),c <l;> € [¢,¢] C (0,1) at all values of n. Hence,

limb= limb=1,and lim fBbF (x)" dz = 0. At the same time, lim F’ <Z;>n =
n—00 n—o0 n—00 n—00

. A\ n—1 . . . n—-1 _ 1. M _ _
nll_{loloc (b) =c(1) —1g, and nh_)IIOlOF (b)) = nh_)lgo = =c(1) = c. Thus,
HEIJPOOD (n) =—c+c/f, F(zx)dr <O0. O
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