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ABSTRACT: The legitimacy of virtual currencies as an alternative form of monetary exchange 

has been the centre of an ongoing heated debated since the catastrophic global financial 

meltdown of 2007-2008. We contribute to the relative fresh body of empirical research on the 

informational market efficiency of cryptomarkets by investigating the weak-form efficiency of 

the top-five cryptocurrencies. In differing from previous studies, we implement random walk 

testing procedures which are robust to asymmetries and unobserved smooth structural breaks. 

Moreover, our study employs two frequencies of cryptocurrency returns, one corresponding to 

daily returns and the other to weekly returns. Our findings validate the random walk hypothesis 

for daily series hence validating the weak-form efficiency for daily returns. On the other hand, 

weekly returns are observed to be stationary processes which is evidence against weak-form 

efficiency for weekly returns. Overall, our study has important implications for market 

participants within cryptocurrency markets.   
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1 INTRODUCTION 

 

The evolution of money as a medium of exchange was widely accepted initially because 

it was backed by real assets such as gold. However, following the disassembling of the Bretton 

Woods agreement in the 1970’s, the value of global currencies is predominantly related to the 

‘confidence’ or ‘wellbeing’ of the economy in which the currency is based (Bariviera et al., 

2017). The role of cryptocurrencies as an alternative decentralized monetary system has gained 

a lot of traction following the disastrous sub-prime financial crisis of 2007-2008 which retarded 

the global financial system at levels not experienced since the infamous ‘Great Recession’ 

period of the 1930’s. The digital currency market, though relatively new, is gaining increasing 

popularity as a ‘decentralized’ monetary system which could replace traditional centralized 

monetary systems and is attracting capital in lieu of the innovative technology underpinning 

cryptocurrencies. Proponents of digital currencies argue that the development of virtual 

currency markets will result in more inclusive financial markets for the future whereas 

opponents propose that the cryptocurrency market can only be characterised as a speculative 

bubble (Sovbetov, 2018). Nevertheless, the economic background of competitive private 

currencies such as digital currencies, though theoretically compelling, is still limited in its 

practical implementation. The widespread minting of virtual currencies has caused a substantial 

debate concerning the need for their existence, where their value is derived and if adopted, how 

sustainable a decentralised monetary system would look like. In any case, the sustainability of 

either centralised or decentralised monetary regimes, would depend on the efficiency of these 

monetary systems in directing the currency in circulation to its most productive uses. Owing to 

the fact that the technical feasibility studies of decentralised monetary systems are still at 

nascent stages of development, the primary focus of our study is centred on the informational 

efficiency of digital currency asset markets. 

 

The role of blockchain technology in reshaping traditional financial markets as well as 

the innovative potential of this technology in solving some of the recurrent socio-economic 

problems, particularly in developing countries characterized by unstable monetary and fiscal 



policies, financial exclusion, extreme poverty and high corruption levels, cannot be understated 

(Weber, 2016). However, this innovation can only be enhanced by mitigating the risks that 

come with it since digital currency markets are rife with speculation. Despite the volatile nature 

of the cryptocurrency market as well as the risks involved in the digital currency trade, the 

market is growing at a rapid rate and investors as well as digital currency miners are making 

huge profits. It is due to these abnormally high profits, particularly those experienced in 2017, 

that market efficiency became a vital point of investigation. The efficiency of capital markets, 

of which virtual currencies have been adopted into as speculative investments, pre-empts the 

allocation of national resources to their most productive uses as perceived by investors. At the 

outset of this study, the credence of analysing the efficiency of this relatively unfettered sub-

set capital markets is put forward not only because efficiency affects investment policies 

adopted by firms but also because it affects investing decisions taken by individual market 

participants. Our main concern is that speculative asset prices tend to exhibit bubble-like 

dynamics that eventually lead to catastrophic crashes. Therefore, evidence of market 

inefficiency in cryptocurrency markets would create a need for regulatory intervention in these 

markets and would discredit it’s immediate acceptance as an alternative monetary system.  

 

Our analytical approach is centred on informational efficiency, particularly, the weak 

form of the efficient markets theory in finance which is grounded in the random walk 

hypothesis of Nobel laureates Paul Samuelson and Eugene Fama. Our study contributes to the 

existing literature (Kristoufek (2015), Urquhart (2016), Bariviera et al. (2017), Kurihara and 

Fukushima (2017), Nadarajah and Chu (2017), Latif et al. (2017), Tiwari et al. (2018), 

Caporale and Plastun (2018), Caporale et al. (2018), Aggarwal (2019), Hu et al. (2019)), 

however brief it is, in three ways. Firstly, unlike previous studies which tend to focus on 

singular cryptocurrencies such as Bitcoin (see Bouri et al. (2016), Bouoiyour and Selmi (2016), 

Bariviera et al. (2017), Nadarajah and Chu (2017), Tiwari et al. (2018), Caporale and Plastun 

(2018), Aggarwal (2019)), our study examines market efficiency in 5 cryptocurrency markets 

(i.e. Bitcoin (BTC), Ethereum (ETH), Litecoin, Bitcoin Cash (BTCC) and Ripple (RIP)). 

Secondly, instead of focusing on one frequency of time series, for instance on daily series as is 

the case in an overwhelming majority of existing empirical works (see Bouoiyour and Selmi 



(2016), Nadarajah and Chu (2017), Latif et al. (2017), Caporale et al. (2018), Hu et al. (2019) 

and Aggarwal (2019)), our study employs both weekly and daily series to increase the 

robustness of our empirical analysis. As earlier argued by Martikainen et al. (1994) and Huang 

and Jo (1995), if the underlying statistical properties for alternative return intervals for asset 

prices significantly differs from each other, then the efficiency of stock markets is contingent 

on the frequency (of) trading strategies employed by market participants. Secondly, in differing 

from previous studies, our study employs a random walk testing procedure which is robust to 

both asymmetries and smooth structural breaks which are likely to exist in high frequency 

financial series such cryptocurrency prices and returns. In particular, our study adopts two unit 

root testing models, the first being the Kapetanois et al. (2003) exponential smooth transition 

autoregressive (ESTAR) based unit root testing procedure (hereafter KSS test) which is robust 

to asymmetries, and second the flexible Fourier form (FFF) testing procedure described in 

Enders and Lee (2012) which is robust to asymmetries and unobserved structural breaks. The 

results from conventional unit root tests are also provided in our study from comparison sake.   

 

The remainder of our study is organized as follows. The following section of the paper 

provides an overview of cryptocurrencies as a decentralized monetary system. The third section 

presents a review of the associated literature. The fourth section outlines the methodology of 

the study, starting with the underlying random walk model of asset returns and building onto 

our specific nonlinear and Fourier based unit root testing procedures. The empirical results are 

presented in the fifth section of the paper whilst the study is concluded in the sixth section.  

 

2 CRYPTOCURRENCIES AS A DECENTRALIZED MONETARY SYSTEM 

 

The legitimacy of centralized monetary systems has been long called into question and 

the most recent financial crisis of 2007-2009 has further weakened the public’s trust in the 

ability of Central Banks to manage fiat currency particularly under fractional reserve systems 

(Weber, 2016). The rise of Blockchain technology is envisioned as a libertarian response to the 

global centralized monetary systems and blockchain-based currencies employ crypto-

technology to directly eliminate the need for an intermediary, such as a Central Bank, in 



transferring value amongst market participants. These blockchain networks facilitate 

inexpensive and expedient cross-border value exchanges that virtually eliminates arbitrage 

costs in international transactions. Digital currencies particularly offer an alternative way of 

managing payments in economies where Central Banks have either dismal or insufficient 

capital controls. And even beyond their role of currency creation, an important facet of 

cryptocurrencies is their decentralised public ledger network which offers more utility to 

market participants and is a driving factor for virtual currency valuation (Wang and Vergne, 

2017). 

 

Despite their purported benefits, the adoption of synthetic currencies as money is not 

without its concerns. The problems associated with the practical use of cryptocurrencies within 

monetary economies can be described as three-fold. Firstly, high levels of volatility in prices 

and returns of cryptocurrencies creates much uncertainty in valuing cryptomarkets and causes 

cash flow problems for businesses transactions based on digital currencies, which altogether 

renders cryptocurrencies ill-suited as a store of value and a unit of account (Weber, 2016). 

Secondly, the risks surrounding virtual currencies such as tax evasion, fraud and other security 

risks posit as reasonable grounds for opposing the adoption of virtual currencies as a more 

formal form of money (Bjerg, 2015). Take for instance, the Japan-based Mt. Gox Bitocin 

exchange which applied for Bankruptcy protection after the exchange crashed due to a two-

year hacking attack resulting in loss of Bitcoins valued at approximately $350 million (de la 

Horra et al., (2019)). Another case can be drawn for ‘Silk Road 2’ which had approximately 

$3 million worth of Bitcoin stolen from its escrow accounts. Notably, most digital ‘attacks’ on 

cryptomarkets include, but are not limited to, ‘dust-attacks’, double-spending’ and ‘code-

based’ attacks (Bohme et al., 2015). Thirdly, the regulation of cryptomarkets is difficult 

because of the unresolved money versus speculative asset debate surrounding cryptocurrencies 

(Kubat, 2015). Regulatory policies required to sustain cryptocurrency technologies need to be 

put into place to cater for future anticipated shifts attributable to the mass adoption of novel 

technologies (Tasca, 2016). Consequentially, if regulation structures in decentralized currency 

systems are able to secure price stability and market efficiency, then the direct intervention of 

central authorities or private monopolies in financial markets can be kept at a minimal. 



However, it should be cautioned that the adoption of cryptocurrencies would limit the 

effectiveness of interest rate based monetary policy and ultimately jeopardise the Central 

Bank’s function as ‘the lender of last resort’. 

 

3 REVIEW OF THE ASSOCIATED LITERATURE 

 

Notably the empirical literature on cryptocurrencies is still in its embryonic stages of 

development which is not surprising when considering that virtual currencies only came into 

existence as a post-global financial crisis phenomenon. A bulk majority of existing studies 

evaluating the efficiency of cryptocurrencies are centred on examining certain statistical 

attributes of virtual currencies. On a broad level, the available literature can be crudely 

generalized into two strands of empirical works. The first strand focuses on the volatility of 

cryptocurrency returns, whereas the second strand of studies focuses on the market efficiency 

of cryptocurrencies. More distinct categorizations of these studies can be made based on the 

differing econometric models employed in these studies. For instance, volatility in 

cryptomarkets has been typically examined by testing a wide range from the family of 

generalized autoregressive conditional heteroscedasticity (GARCH) models to determine the 

most optimal GARCH-type model fit. The findings from this set of empirical studies are 

diverse. Nevertheless, very little evidence has been provided for the traditional GARCH model, 

with a majority of empirical studies leaning towards nonlinear GARCH type models such as 

the asymmetric GARCH (Dyhberg, 2016), the asymmetric component GARCH (Katsiampa, 

2017), asymmetric power GARCH (Bouoiyour and Selmi, 2015), Markov-Switching GARCH 

(Ardia, 2018; and Caporale and Zekokh, 2019), integrated GARCH (Chu et al., 2017), 

fractional integrated GARCH with structural breaks (Mensi, 2018), heavy-tailed GARCH 

(Troster, 2018) and the GARCH model with machine learning approach (Peng et al (2017). 

The general consensus derived from this cluster of studies is that the standard linear group 

approach to modelling volatility in cryptocurrencies may yield incorrect value-at-risk (VaR) 

and expected shortfall (ES) estimates thus resulting in misleading inferences for Bitcoin 

returns. Moreover, these studies insinuate that cryptocurrencies do not serve as a safe haven 

for investors since cryptomarkets are ‘immature’ and most likely informationally inefficient.  



 

On the other end of the spectrum, there exists a separate branch of literature concerned 

with various forms of the market efficiency for cryptocurrencies. For instance, Urquhart (2016) 

initially employed the Hurst component to measure the long-term memory of Bitcoin and lent 

support to the inefficiency of the Bitcoin market. Bariviera et al. (2017) extended upon 

Urquhart (2016) and found similar long-term memory for different time frequencies in Bitcoin 

returns. Conversely, Nadarajah and Chu (2017) test the weak-form efficient market hypothesis 

using an odd integer power of the Bitcoin returns and find evidence in favour of weak-form 

market efficiency. Tiwari et al. (2018) test for market efficiency by constructing a market 

efficiency index based on time-varying Hurst exponent and find that Bitcoin has been 

informationally efficient since its inception with of the mid-2013 and late-2016 periods. On the 

other hand, Caporale et al. (2018) investigates long-memory behaviour in 4 cryptocurrencies 

returns (Bitocin, Litecoin, Ripple and Dash) and find strong evidence of market inefficiency in 

these crypto markets. Besides the use of the Hurst exponent in determining the informational 

efficiency for cryptocurrencies, there exists an even smaller scope of studies, which have more 

recently investigated weak-form efficiency in cryptomarkets using unit root testing procedures. 

For example, Latif et al. (2017) employ traditional ADF, PP and KPSS as well as the de-trend 

based DF-GLS and Ng-Perron tests to investigate the weak-form efficiency of Bitcoin and 

Litecoin returns and find that both cryptocurrency returns are stationary hence providing 

evidence against weak-form market efficiency. Similarly, Aggarwal (2019) applies traditional 

linear ADF, PP, KPSS tests as well as the structural break point tests of Perron (1989) and 

Zivot and Andrews (1992) and find Bitcoin returns to violate the random walk hypothesis as 

the series are found to be significantly stationary. More recently, Hu et al. (2019) adopt a panel 

approach to testing for unit roots is a panel of 31 of the top market-cap cryptocurrencies using 

the cross-sectional dependency tests of Chang (2002), Moon and Perron (2004), Breitung and 

Das (2005) and Costantini and Lupi (2013). The authors find strong evidence against weak-

form market efficiency for the cryptocurrencies. Nonetheless, it is well known that unit root 

tests can be misleading if one does not account for possible nonlinearities and structural breaks 

in the data. Moreover, the proper modelling of structural breaks poses as a serious problem for 

econometricians since the number, duration, location and form of structural breaks are not 



known aprior (Pascalau, 2010). Our study circumvents these issues and contributes to the 

empirical literature by employing Fourier-based unit root testing procedures which are robust 

to both nonlinearities and unobserved structural breaks existing in the data. 

 

4 METHODOLOGY 

 

4.1 The random walk model of asset returns 

 

Samuelson (1965) and Fama (1965) initially proposed the random walk theory as a 

means of testing for weak-form efficiency within a series of asset returns. The authors describe 

the statistical independence of asset returns (Rt) using a general stochastic probability function 

defined as:  

 

Prob {Rt = R Rt-1, Rt-2, ….} = P (Rt = R)      (1) 

 

Where the first half represents the conditional probability that changes in price will take 

the value of R conditional on the knowledge that previous price changes took the values Rt-1, 

Rt-2 and so on whereas the second half is the unconditional probability that the price changes 

during time t will take on the value R (Fama, 1965). Malkiel and Fama (1970) re-specified the 

random walk model using one period percentage returns Rj,t+1 i.e. 

 

f (Rj,t+1  t) = f(Rj,t+1)         (2) 

 

Where  t is the full historical information set from which the price at time t is derived 

and f is the density function for all t. In making use of the expected returns theory outlined in 

Mandelbrot (1966), Malkiel and Fama (1970) obtained the following statistical representation 

of weak form efficiency: 

 

E (Rj,t+1  t) = E (Rj,t+1)        (3) 

 



Where E is an expectations operator. Equation (3) illustrates that the expected return 

does not vary over time nor is it dependent on the historical information set, therefore analysing 

past information on asset values would not result in above-market profits. An alternative way 

of expressing equation (3), would be to define it as the following autoregressive (AR) random 

walk model of stock returns:  

 

Rt = Rt-1 + et ,    t = 1,2,…,T and et ~ N(0, 2)   (4) 

 

From equation (4), the stock returns series, Rt, is consider a random walk which 

confirms to the weak-form EMH only if  < 1 whereas if  =1, then the series evolves as a 

stationary, predictable process which violates the weak-form EMH. Conventional random walk 

testing procedure such as the ADF, PP and KPSS tests commonly used amongst 

econometricians suffer from low power properties in distinguishing between nonlinear 

stationarity and unit root process as well as between random walk processes with breaks and 

unit root processes. To circumvent such issues, our study employs two ‘non-conventional’ unit 

root testing procedures, the first being the Kapetanois et al. (2003) ESTAR unit root testing 

procedure which is robust to asymmetries, and second the flexible Fourier form (FFF) testing 

procedure described in Enders and Lee (2012) which is robust to asymmetries and smooth 

structural breaks.  

 

4.2 Testing the random walk using the KSS nonlinear unit root  

 

In applying the KSS test to our returns series, we specify following globally stationary 

STAR regression: 

 

Rt = Rt-1 + R t-1(; Rt-d) + et       (5)   

 

Where et ~ iid N(0, 2),  is a smoothing parameter, c is the location parameter, d is the 

delay parameter and the transition function, (; Rt-d), used is of exponential form such that: 

 



(; Rt-d) = 1 – exp (- 𝑅𝑡−12 )        (6) 

 

 Where (; Rt-d):[0,1] and is symmetrically U-shaped around zero. KSS (2003) 

consider the random walk null hypothesis a special case where  =0 and  = 0 in equation (5) 

whereas under the alternative hypothesis Rt follows an asymmetric, globally stationary process. 

By substitution equation (6) into (5) and setting =0 and d=1 results in the empirically 

exponential smooth transition autoregressive (ESTAR) model: 

 

Rt = R t-1{1 – exp (- 𝑅𝑡−12 )} + et       (7)   

  

Since  is unidentified in equation (7), KSS (2003) propose the application of a first-

order Taylor expansion to equation (7) around  = 0 and obtain the following nonlinear random 

walk testing model: 

 

Rt = 𝑅𝑡−13  + error         (8) 

 

In considering a more generalized form of regression (8) where the errors are serially 

correlated, the equation (9) can be extended to included lags on the differenced time series as 

follows: 

 

Rt = 𝑅𝑡−𝑖3  +σ 𝑖𝑅𝑡−𝑖𝑝𝑗=1  + et       (9) 

 

From equations (8) and (9), the null hypothesis of a random walk is tested as: 

 

H0:  = 0          (10)  

 

Against the alternative of a stationary process i.e. 

 

H1:  < 0          (11) 



 

And the test statistic evaluating these hypotheses is defined as: 

 𝑡𝐾𝑆𝑆 = 𝛿෡𝑠𝑒(𝛿෡)                                                                                                                 (12) 

 

Where 𝛿መ is the OLS estimator of δ and 𝑠𝑒(𝛿መ) is the standard error of 𝛿መ. Since the tKSS 

statistic does not follow an asymptotic standard normal distribution, Kapetanios et al. (2003) 

derive critical values for the test statistics for the test performed on raw time series, de-meaned 

data (i.e. zt = xt – 𝑥ҧ𝑡) and de-trended data (i.e. zt = xt – ෝ – ෠𝑡) where 𝑥ҧ𝑡 is the sample mean and 

ෝ and ෠𝑡 are the OLS estimates of  and , respectively. 

 

4.3 Testing the random walk via flexible Fourier functions  

 

Enders and Lee (2012) consider a simple modification of the Dickey-Fuller test in 

which a time-dependent deterministic term, d(t), is added to the test regression i.e.    

 

Rt = d(t) + Rt-1 + et      et~N(0, 2)  (13) 

 

Assuming that the functional form of d(t) is known, the unit root null hypothesis of p = 

1 can be tested by approximating d(t) with the following single frequency Fourier 

function/equation: 

 

d(t) = 0 + sin sin(2kt/T) + cos cos(2kt/T)     (14) 

  

Where k is the single frequency component and measure the amplitude and 

displacement of the sinusoidal component of d(t). Using our cryptocurrency return series (Rt), 

we model the underlying data generating process as the following FFF function: 

 

Rt = 0 + sin sin(2kt/T) + cos cos(2kt/T) + t; k  T/2    (15) 



 

et = et-1 + ut          (16) 

 

To test the random walk null hypothesis of  = 1 against the stationary alternative  < 

1, we follow Enders and Lee (2012) by employing a langrage Multiplier (LM) procedure to the 

following first differences econometric regression i.e.  

 

Rt = 0 + 1 sin(2kt/T) + 2 cos(2kt/T) + t     (17) 

 

 And by using the estimated coefficients ෨0, ෨1 and ෨2 from equation (17) we construct a 

de-trended series as follows: 

 𝑆ሚt = Rt - ෥ - ෨0t - ෨1sin(2kt/T) - ෨2cos(2kt/T), t=2,…, T   (18) 

 

 Where ෥ = R1 - ෨1 - ෨1sin(2kt/T) - ෨2cos(2kt/T). In subtracting ෥ from Rt we then 

obtain 𝑆ሚ1 = 0. Using the de-trended series, 𝑆ሚt, we formulate our econometric random walk test 

regression as: 

 

Rt = 𝑆ሚt-1 + d0 + d1sin(2kt/T) – d2cos(2kt/T) + t                                             (19) 

 

And in adding lags to the first differences of 𝑆ሚt regression (19) to remove possible serial 

correlation, produces the following augment FFF-based unit testing regression: 

 

Rt = 𝑆ሚt-1 + d0 + σ 𝑗𝑆ሚ𝑡−𝑗𝑝𝑗=1  + d1sin(2kt/T) – d2cos(2kt/T) + t                    (20) 

 

From equations (19) and (20) the random walk null hypothesis is tested as the t-statistic 

(DF_t) for the following null hypothesis, H0:  = 0 and the empirical procedure is then 

practically carried out in the following four-steps: 

 



Step 1: Perform a two-dimensional grid search for combinations of all integers of k bounded 

between 1  k  5 and lags lengths bounded between 0 < j < 20. The optimal values of [k*, j*] 

are those associated with the regression that yields the lowest sum of squared residuals (SSR). 

Step 2:  Perform a test of linearity using the F-statistics to test the null hypothesis of d1 = d2 = 

0. Since the distribution of the F-statistic is non-standard, we rely on the critical values 

tabulated in Enders and Lee (2012). 

Step 3: Evaluate the estimated regression for serial correlation using the traditional Durbin 

Watson (DW) statistic. 

Step 4: Compare the LM statistic against the critical values of reported in Enders and Lee 

(2012) for different sample sizes.  

   

5 DATA AND RESULTS 

 

5.1 Empirical data and descriptive statistics  

 

The sample data was sourced from Coingecko (https://www.coingecko.com/en), a 

cryptocurrency exchange platform, and we specifically collect daily and weekly trading values 

for the five cryptocurrencies, namely Bitcoin (BTC), Ethereum (ETH), Litecoin, Bitcoin Cash 

(BTCC) and Ripple (RIP). Table 1 provides a summary of these cryptocurrencies in terms of 

founder, date found, market capitalization in US dollars in 2018, our data source as well as the 

sampled time period collected for each cryptocurrency examined in our empirical analysis:  

 

  



Table 1: Data sources and cryptocurrency overview 

Cryptocurrency Year 

founded 

Developer Market 

capitalization 

(US$) 

(2018) 

Data source Sample data 

period  

 

Bitcoin 2009 Satoshi 

Nakamoto 

108,955,587,484 Coingecko 09/01/2009 

– 

31/10/2018 

Ethereum 2015 Vitalik 

Buterin 

17,627,290,682 Coingecko 30/06/2015 

– 

31/10/2018 

Bitcoin cash 2017 Amaury 

Sechet 

7,324,564,447 Coingecko 01/08/2017 

– 

31/10/2018 

Litecoin 2011 Charles 

Lee 

2,867,248,642 Coingecko 13/10/2011 

– 

31/10/2018 

Ripple 2016 Ripple 

Labs 

10,466,673,095 Coingecko 03/06/2016 

– 

31/10/2018 

 

The daily and weekly returns, Rt, are computed using the following continuously 

compounded returns formula: 

 

Rt= 100  ln 𝑃𝑡𝑃𝑡−1         (21) 

 

Figure 1 below presents the time series plots of the log-returns form of our 

cryptocurrencies for daily and weekly frequencies. Table 2 presents summary statistics for the 

returns series which are difficult to dissect solely through visual appreciation of the time series 

plots. In terms of financial performance of the individual asset returns, ETH outperforms BTC 

attracting higher risk investors as its high yields are commensurate with the highly volatile 

nature of its returns. LTC and RIP are moderate-return assets with lower risk than BTC and 

ETH but higher returns than BTX. The relatively new BTX, which joined the cryptocurrency 

market in 2017, has more strides to make to establish itself in the virtual currency market as it 



attracts a lot of risk which is associated with suboptimal returns compared to the more 

established digital currencies. A noteworthy statistic which was manually computed for the 

purpose of making comparisons across the different series was the coefficient of variation 

(CV), which is indicative of the risk-return trade-off that an investor is offered when evaluating 

an asset for their portfolio. The computed CV supports this analysis as it shows the most 

profitable cryptocurrencies with higher units of risk being commensurate with the anticipated 

return.  

 

Besides the initial moments of mean and standard deviation (St.Dev), it is essential to 

also describe the higher moments of skewness and kurtosis. The former describes lack of 

symmetry about the mean akin to the normal distribution whereas the latter focuses on fatness 

of the tails and peakedness at the mean, a significant characteristic of financial asset returns. 

All observed time series appear to be positively skewed exhibiting longer upper tails than lower 

tails pointing to the result a substantial portion of the returns tend to be more positive. The 

kurtosis of the of the asset returns generally appears to be in excess of 3, meaning their 

distribution is mostly characterised as leptokurtic which is to be expected with financial time 

series. The reported Jarque-Bera (JB) statistics for all the daily and weekly cryptocurrencies 

returns series reject normality at all levels of significance with sole exception of the BTX 

weekly series which only rejects the normality hypothesis at a 10% critical level. Nonetheless, 

the absence of normality in the observed cryptocurrencies returns series is not atypical to 

characteristics of finical time series and strengthens our case for possible existing asymmetries 

and structural breaks existing within the series.  

  



Figure 1: Daily and weekly returns for all cryptocurrencies 

 

 

 

  



Table 1: Summary statistics 

 Skew Kurt Jarque-Bera p-value Mean St. dev Average CV Max R Min R 

BTC-D -0.42 15.33 17715.35 0,00*** 0.41 5.89 14.38 42.46 -49.15 

ETH-D -1.19 19.09 10766.34 0,00*** 0.50 7.89 15.56 43.98 -75.51 

BTX-D 0.79 16.93 2055.64 0,00*** -0.07 12.39 -169.45 87.47 -65.49 

LTC-D 1.26 20.57 23726.89 0,00*** 0.18 6.73 37.05 65.88 -54.72 

RIP-D -0.02 35.28 73959.24 0,00*** 0.25 9.04 34.77 88.13 -114.51 

BTC-W 0.83 7.61 398.50 0,00*** 2.97 15.89 5.35 86.57 -54.09 

ETH-W 1.16 5.57 69.98 0,00*** 3.54 19.94 5.65 82.75 -43.85 

BTX-W 0.85 4.07 5.92 0,05* 2.90 25.40 8.75 78.23 -42.43 

LTC-W 2.59 17.29 2476.74 0,00*** 1.46 18.03 12.34 132.81 -51.47 

RIP-W 1.90 9.47 568.64 0,00*** 0.019 0.23 11.62 1.22 -0.70 

Notes: “***”, ‘**’, ‘*’ denote 1%, 5%, 10% critical levels, respectively. 

 

5.2 Preliminary unit root tests  

 

For comparison sake, we begin our empirical analysis by providing estimates from the 

first generation unit root tests, that is, unit root testing procedures which neither take into 

consideration asymmetries or structural breaks in the data generating process. Table 2 presents 

the results from the conventional ADF, PP and KPSS integration tests performed on the 

cryptocurrency returns. The results obtained from both ADF and PP unit root tests reject the 

random walk null hypothesis at critical levels of at least 5 percent for all cryptocurrencies 

regardless of whether the tests are performed with a drift only or inclusive of a trend, or whether 

the tests are performed on daily or weekly series. Note that this evidence against weak form 

market efficiency in the cryptomarkets has been previously established in the works of Latif et 

al. (2017) and Aggarwal (2019) who use similar ADF and PP unit root testing procedures albeit 

on weekly series. Moreover, these results are also consistent with findings obtained from the 

cross-sectional dependent, panel unit root tests employed by Hu et al. (2019). Conversely, the 

outcomes from the KPSS test, which examines the null hypothesis of a stationary returns 

process, were not significantly different from those of the ADF and PP tests, with the exception 



of ETH and BTX daily (D) returns, which rejected the null of stationarity, at critical values of 

10 percent and 5 percent respectively, in favour of a random walk in the cryptocurrency returns. 

 

However, it is well-known that conventional unit root tests suffer from low power 

properties and size distortions problems in distinguishing between unit root and close-to-unit 

root processes. Therefore, we further supplement our preliminary unit root tests by estimating 

the modified Dickey-Fuller generalised least squares (DF-GLS) statistic of Elliot, Rothenberg 

and Stock (1996) and Ng and Perron (2001) which are considered more powerful in the 

estimation of parameters in a deterministic autoregressive process. Findings from these tests 

are presented in Table 3, and as can be easily observed, the findings are mixed. For the DF-

GLS tests, BTC, ETH and BTX daily (D) returns series favoured non-stationarity whereas the 

LTC and RIP series rejected non-stationarity. For the weekly (W) series, BTC, BTX and RIP 

rejected the null of a unit root whereas ETH and LTC failed to reject the unit root null 

hypothesis. The Ng-Perron results also comprised mixed results with most findings coinciding 

with the DF-GLS test results. For the Ng-Perron tests, RIP daily returns series as well as BTX 

weekly returns series both failed to reject the null when the inclusion of a trend. Notably the 

inconclusiveness of our DF-GLS and Ng-Perron tests in evaluating random walk behaviour for 

the Bitcoin returns has been previously reported in an earlier study by Latif et al. (2017) albeit 

strictly for daily Bitcoin returns.  

 

  



Table 2: ADF, PP and KPSS test results 

 Lag(ADF) ADF PP KPSS 

BTC-D-I 26 -6.54274*** -52.1545*** 0.281793 

BTC-D-TI 26 -6.7734*** -52.1322*** 0.106746 

ETH-D-I 21 -4.61274*** -32.5997*** 0.164461 

ETH-D-TI 21 -4.61499*** -32.5951*** 0.152466** 

BTX-D-I 15 -3.42499** -14.813*** 0.151124 

BTX-D-TI 15 -3.41896* -14.984*** 0.122985* 

LTC-D-I 24 -7.18248*** -40.1168*** 0.227335 

LTC-D-TI 24 -7.21897*** -40.1062*** 0.069515 

RIP-D-I 8 -11.1363*** -37.8853*** 0.130309 

RIP-D-TI 8 -11.1642*** -37.8813*** 0.050239 

BTC-W-I 13 -3.7382*** -18.3494*** 0.221428 

BTC-W-TI 5 -6.02975*** -18.3725*** 0.079318 

ETH-W-I 2 -4.9616*** -10.7566*** 0.104396 

ETH-W-TI 2 -4.92133*** -10.718*** 0.096987 

BTX-W-I 1 -3.83214*** -4.14457*** 0.279491 

BTX-W-TI 1 -3.71515** -4.39042*** 0.072638 

LTC-W-I 4 -5.87585*** -14.0398*** 0.186594 

LTC-W-TI 4 -5.90551*** -14.0396*** 0.080387 

RIP-W-I 5 -5.47356*** -12.2411*** 0.141466 

RIP-W-TI 5 -5.57857*** -12.1808*** 0.056625 

Notes: The modified SC criterion is used to determine optimal lag length of the ADF tests. 

W – Weekly series, D – Daily series, I – intercept, IT – trend and intercept 

 “***”, ‘**’, ‘*’ denote 1%, 5%, 10% critical levels, respectively. 

 

  



Table 5: DF-GLS and Ng-Perron test results 

 
DF-GLS Ng-Perron 

t-statistic Lag 𝑀𝑍𝑎 Lag 𝑀𝑍𝑡 Lag 𝑀𝑆𝐵 Lag 𝑀𝑃𝑇 Lag 

BTC-D-I -1.01879 21 -1.04267 21 -0.61058 21 0.58559 21 18.7965 21 

BTC-D-TI -0.22046 21 -1.00575 21 -0.47471 21 0.472 21 48.602 21 

ETH-D-I -0.16293 18 0.45739 18 1.71939 18 3.75912 18 789.805 18 

ETH-D-TI -2.07776 10 -0.25683 10 -0.24115 10 0.93893 10 168.597 10 

BTX-D-I -0.33326 7 0.14644 7 0.19034 7 1.29977 7 93.2028 7 

BTX-D-TI -1.61475 6 -0.93585 6 -0.59586 6 0.63671 6 77.3669 6 

LTC-D-I -5.8587*** 24 -21.4325*** 24 -3.26723*** 24 0.15244*** 24 1.16577*** 24 

LTC-D-TI -6.56342*** 24 -34.9695*** 24 -4.18102*** 24 0.11956*** 24 2.60847*** 24 

RIP-D-I -2.95345*** 24 -7.72658* 24 -1.96056* 24 0.25374* 24 3.19016* 24 

RIP-D-TI -4.16467*** 24 -12.6136 24 -2.51115 24 0.19908 24 7.22542 24 

BTC-W-I -3.56791*** 13 -32.4704*** 13 -3.98954*** 13 0.12311*** 13 0.86637*** 13 

BTC-W-TI -3.24091** 13 -20.7892** 13 -3.20671** 13 0.15425** 13 4.49151** 13 

ETH-W-I -1.54738 2 -4.35397 2 -1.42857 2 0.32811 2 5.70978 2 

ETH-W-TI -1.40319 6 -4.15202 6 -1.40266 6 0.33782 6 21.5522 6 

BTX-W-I -2.95838*** 1 -8.39868** 1 -2.01092** 1 0.23943* 1 3.06096** 1 

BTX-W-TI -3.47647** 1 -10.8567 1 -2.32878 1 0.2145 1 8.39882 1 

LTC-W-I -1.70072* 8 -4.52673 8 -1.4767 8 0.32622 8 5.46934 8 

LTC-W-TI -2.21926 15 -4.04674 15 -1.40779 15 0.34788 15 22.3526 15 

RIP-W-I -1.84764* 5 -5.35983 5 -1.602 5 0.29889 5 4.6727 5 

RIP-W-TI -3.70443*** 8 -9.11106 8 -2.10697 8 0.23125 8 10.1148 8 

Notes: The modified SC criterion is used to determine optimal lag length of the tests.  

W – Weekly series, D – Daily series, I – intercept, IT – trend and intercept 

 “***”, ‘**’, ‘*’ denote 1%, 5%, 10% critical levels, respectively. 

 

5.3 Second generation unit root tests 

 

The next phase in our empirical process is to determine whether accounting for 

nonlinearities would change the outlook on the inefficiency of cryptocurrencies generally 

assumed by the results of our conventional unit root tests. As argued by Kapetanois et al. 

(2003), transaction costs and other frictions in financial assets markets are likely to lead to 

nonlinear equilibrium adjustments which linear unit root tests would exert low power in 



differentiating from unit root processes. Table 4 presents the empirical results for the KSS 

nonlinear test performed on our cryptocurrency returns. Note that these tests have been 

performed on raw, de-meaned and de-trended transformations of the returns series for daily 

and weekly data. The KSS tests statistics obtained from the raw data manage to reject the 

random walk hypothesis at all critical levels for 9 out of 15 cases with the random walk 

hypothesis failing to be rejected for the raw, de-meaned and de-trended BTC daily series as 

well as for the raw, de-meaned and de-trended RIP weekly series. Note that these findings are 

comparable to the findings obtained from the conventional ADF, PP and KPSS testing 

procedures but are in stark contrast to the outcomes of the DF-GLS and Ng-Perron tests. 

 

                   Table 4: KSS test results 

Daily Data Lag t statistic Weekly Data Lag t statistic 

BTC-R 13 -9.24792*** BTC-R 3 -6.38122*** 

ETH-R 11 -5.61394*** ETH-R 2 -3.85103*** 

BTX-R 15 -0.96025 BTX-R 1 -3.67979*** 

LTC-R 14 -3.1336*** LTC-R 4 -4.71456*** 

RIP-R 14 -7.11717*** RIP-R 8 -1.41891 

BTC-DM 13 -9.19059*** BTC-DM 3 -6.72606*** 

ETH-DM 11 -5.77731*** ETH-DM 2 -3.8225*** 

BTX-DM 15 -0.95672 BTX-DM 1 -3.75798*** 

LTC-DM 14 -3.15943** LTC-DM 4 -4.72947*** 

RIP-DM 14 -7.07004*** RIP-DM 8 -1.43298 

BTC-DT 13 -9.13999*** BTC-DT 3 -6.90533*** 

ETH-DT 11 -5.78869*** ETH-DT 2 -3.85155** 

BTX-DT 15 -0.95699 BTX-DT 1 -3.78479** 

LTC-DT 14 -3.14054* LTC-DT 4 -4.59533*** 

RIP-DT 14 -7.05642*** RIP-DT 8 -1.43348 

          Notes: The modified SC criterion is used to determine optimal lag length of the tests 

R – Raw series, DM – De-meaned series, DT – De-tended series 

 “***”, ‘**’, ‘*’ denote 1%, 5%, 10% critical levels, respectively. 

 



5.4 FFF-unit root test results 

 

In the final stage of our empirical analysis, we carry out the LM-type Fourier unit root 

testing procedure described in Enders and Lee (2012) on the cryptocurrency returns series and 

record our findings in Table 5. Note that we carry out this testing procedure in four phases. 

Firstly, we performed a two-dimensional grid search for the optimal combinations of the length 

of Fourier function frequencies, k*, and the lag length of the first series of the ‘FFF de-trended 

series, j*. The optimal combinations of k* and j* are obtained as those which simultaneously 

minimizes the RSS and these estimates are reported in columns (1) and (2) of Table 5, 

respectively. Note that the optimal frequencies, k*, were found to be either one or two, which 

is in line with the findings of other authors including the Enders and Lee (2004), Becker et al. 

(2006), Pascalau (2010) and Rodrigues and Taylor (2012). Secondly, to ensure that the optimal 

lag length, j*, removes all possible serial correlation we estimate the DW statistic and obtained 

statistics reported in column (3) of Table 5 indicate that our FFF-based unit root regression 

estimates are devoid of an autocorrelation. Note that for the BTX, LTC and RIP weekly series, 

we did not include lags as there was no evidence of serial correlation present (indicated by the 

Durbin Watson statistic). In fact, including lags resulted in a less than optimal Durbin Watson 

(DW) statistic, therefore the test regression that was estimated for the BTX, LTC and RIP 

weekly series was estimated with no lags.  

 

Thirdly, we test our regressions for linearity using the LM test described in Enders and 

Lee (2012) and report the obtained F-statistics in column (4) of Table 5. Critical values reported 

in Enders and Lee (2012) were adopted at T=500 for all daily returns with the exception of 

BTX which had fewer observations hence utilising critical values at T=100. Similarly, with 

respect to the weekly data, the critical values utilised were at T=500 with the exception of BTX 

which we relied on utilising critical values at T=100. In performing our linearity tests, we find 

all cryptocurrencies rejected the null hypothesis in favour of nonlinearity, regardless of whether 

daily or weekly series are used. Lastly, we provide estimates of our LM statistic for all 



cryptocurrency series with the results reported in column (5) of Table 5. Interestingly enough, 

before adding lags to the regressions we found that all currencies rejected the null in favour of 

stationarity and yet the test statistics are significant reduced in absolute value for most of the 

daily series subsequent to the addition of lags except for the LTC daily series as shown in Table 

5. Note that most cryptocurrencies in the daily series failed to reject the null of a unit root 

except for the LTC returns series. This notwithstanding, all cryptocurrency returns in the 

weekly series rejected the null of non-stationarity in favour of stationarity. These latter findings 

bear close similarity to those obtained from the conventional linear unit root test results as well 

as the outcomes of the KSS test where most series failed to provide formal evidence of weak-

form market efficiency. 

             

Table 5: LM test results with the flexible Fourier form  

 frequency Lag F statistic t statistic DW T 

BTC-D 1 13 123.5927*** -0.65617 2.007 2826 

ETH-D 1 10 61.1041*** -1.7428 2.014 976 

BTX-D 1 15 15.34289*** -2.37522 1.973 251 

LTC-D 1 5 201.7307*** -13.7081*** 2.01 1806 

RIP-D 1 14 72.8367*** -1.84738 2.01 1706 

BTC-W 1 3 43.39032*** -4.15214** 2.03 403 

ETH-W 2 1 24.73095*** -5.00412*** 2.11 139 

BTX-W 2 no lag 9.70371*** -5.26262*** 1.905 35 

LTC-W 1 no lag 63.52684*** -13.8044*** 2.006 257 

RIP-W 1 no lag 24.82248*** -8.62497*** 2.04 243 

          Notes: The modified SC criterion is used to determine optimal lag length of the tests 

W – Weekly series, D – Daily series,  

“***”, ‘**’, ‘*’ denote 1%, 5%, 10% critical levels, respectively. 

 

6 CONCLUSIONS 

 



The exponential growth of the peer-to-peer digital currency trading in the aftermath of 

2007-2008 sub-prime crisis has attracted increasing interest over whether these cryptocurrency 

markets are informational market efficient. In our study, we rely on the random walk model of 

stock returns to investigate the weak-form market efficiency hypothesis for five of the most 

dominant cryptocurrencies (Bitcoin, Ethereum, Litecoin, Bitcoin Cash and Ripple) by 

employing a battery of random walk tests ranging from conventional unit root tests to 

integration tests which account for nonlinearities and unobserved structural breaks. Moreover, 

we examine the impact of return frequency intervals on the market efficiency for the case of 

daily and weekly return series. The outcomes from our empirical endeavours can be 

summarized in two main findings.  

 

Firstly, in applying traditional unit root tests such as the ADF, PP and KPSS tests as 

well as the KSS nonlinear test provided strong evidence against weak-form informational 

efficiency for all observed cryptocurrencies regardless of whether daily or weekly returns are 

employed. Secondly, in relying on the more powerful FFF-based unit root testing procedure 

which is robust to both asymmetries and unobserved structural breaks, our findings show 

discrepancies with respect to the frequency intervals of the cryptocurrency returns. In 

particular, we find that, with the exception of Litecoin, daily series are generally market 

efficient whilst all weekly returns are informationally inefficient. In other words, ‘less-noisy’ 

weekly trading systems, as opposed to daily trading systems, can be used to generate abnormal 

profits in cryptocurrency markets. Therefore, high frequency traders who use algorithmic 

trading programmes to make multiple high-speed trades on an intra-day basis are unlikely to 

beat the market. In building upon our empirical research, future studies can focus on comparing 

different frequency intervals such as hourly intervals investigating informational efficiency 

within cryptocurrency markets.    
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