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Abstract 

This study examines the energy efficiency transitions in China using provincial data covering 

the period 2003–2015. Sustainable progress in energy efficiency achievements is beneficial to 

energy insecurity and the achievement of the Paris Agreement. This article combines the 

stochastic frontier method with the panel Markov-switching regression to model energy 

efficiency transitions. Estimated energy efficiency scores showed significant regional and 

provincial heterogeneity. Also, while human capital development, urbanization, and foreign 

direct investment promote energy efficiency, price and income per capita reduce it. The 

transition probabilities indicate that the high energy-efficient state is less sustainable, and the 

movement towards the frontier seems less persistent than movement from the frontier. Thus, it 

appears that China is not making sustainable progress in energy efficiency. The unsustainable 

nature of the high energy-efficient state suggests that in China, there are weak energy efficiency 

efforts and energy efficiency policies lack robustness.  
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1. Introduction 

China has made significant economic progress since 1950, and this has raised energy 

consumption and carbon dioxide emissions. For example, in 2014, China’s total energy 

consumption (i.e. 2.97 billion tons) accounted for 23% of the global total (Zhang and Lin, 

2018). In 2017, global energy demand increased by 2.1% (caused by weaker energy efficiency 

efforts, lower fossil fuel prices, and global economic growth of 3.7%), with fossil fuels 

contributing 72% of the increase (International Energy Agency [IEA], 2018). China and India 

contributed more than 40% to the global increase in energy demand, and China was the major 

contributor to the growth in oil demand (IEA, 2018). As a result, China is now a global leader 

in carbon dioxide emissions (Liu, 2015). Despite the fall in 2015, which was driven mainly by 

the fall in coal energy consumption, carbon dioxide emissions in China reached 9.1 Gt in 2017, 

which is 1% higher than the level achieved in 2014. Consequently, global energy-related 

carbon emissions increased by 1.4% in 2017 (IEA, 2018).  

Achieving sustainable improvement in energy efficiency in China is thus critical to reducing 

national and global carbon dioxide emissions (Duan et al., 2017). Energy efficiency 

improvements reduce the energy expenditure burden on consumers, reduce energy demand and 

the associated carbon emissions, improve energy security, and prevent investment in additional 

generation capacity (Duan et al., 2017). For example, between 2000 and 2015, energy 

efficiency improvements in IEA countries resulted in energy savings of 450 million tonnes of 

oil equivalent (Mtoe) and decreased the total energy expenditure by US$540 billion (IEA, 

2016). Since 2006, China has taken aggressive measures to enhance energy efficiency. During 

the 11th Five-Year Plan (FYP)(2006–2010), the government set a binding national energy 

intensity reduction target of 20%. This was revised downwards by 4 percentage points in the 

12th FYP (2011–2015) and was subsequently set at 15% in the 13th FYP (2016–2020). Other 

complementary programs such as the Ten Key Projects Program, the Ten-Thousand 
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Enterprises Program, and the Obsolete Capacity Retirement Program have also been rolled out 

to improve energy efficiency in China. Between 2006 and 2014, the government invested a 

total of US$370 billion in energy efficiency (IEA, 2016). 

The result is that energy efficiency improved at an average annual rate of 4% during the 11th 

and 12th FYP. Across China’s energy-consuming sectors, energy efficiency improved by 19%, 

which is higher than the efficiency improvements in IEA countries (IEA, 2016). Meng et al. 

(2016) conducted a review of 46 studies on the evaluation of energy and carbon emission 

efficiency in China. The survey shows that energy efficiency remained stable during 1996–

2000, decreased during 2000–2005 and increased during 2006–2010. The transition towards 

an energy-efficient state has caused significant reductions in China’s energy intensity. Between 

2000 and 2015, energy intensity in China improved by 30%. The level achieved in 2015 (i.e. 

5.6%) was 2.5 percentage points higher than the average per year for the previous decade. 

Consequently, global energy intensity improved by 1.8% in 2015 (IEA, 2016). Without energy 

efficiency in China, the global improvement would have been 1.4% (IEA, 2016).  

In China, the transition towards a clean energy state via energy efficiency has generated 

sizeable benefits to consumers, the economy, and the environment. The enhancement in energy 

efficiency over 2000 levels had saved about 1.2 Gt CO2 annually by 2014. In fact, without 

energy efficiency improvement, energy-related emissions in China would have been 13% 

higher in 2014 (IEA, 2016). Energy efficiency in China had two positive financial outcomes: 

(1) it prevented an additional cost of US$6.9–US$10.9 billion in thermal power generation in 

the manufacturing sector, representing 48% of total investment in energy conservation during 

the first four years of the 12th FYP, and (2) it reduced China’s spending on imports by US$10 

billion in 2015 and decreased energy expenditure for selected large industry sectors by US$18 

billion in 2014 (IEA, 2016).  
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However, the slowdown in global energy efficiency in 2017 1  (IEA, 2018) questions the 

sustainability or persistent nature of energy efficiency achievements. Achieving persistency in 

energy efficiency improvements is beneficial in the following ways: (1) it helps to achieve 

sustainable progress in energy security, (2) it puts China and the global economy on a 

sustainable pathway towards a decarbonised energy system, and (3) in terms of policy, it shows 

the extent of the commitment made and the robust/stringent nature of government energy 

efficiency policies. Nonetheless, in the case of China, there are no empirical studies that seek 

to ascertain the degree of persistence in energy efficiency achievements. 

Motivated by the above, this study models the persistent nature of the movements of provinces 

in China towards and away from the frontier, where the frontier denotes the most energy-

efficient state. To do this, first, we apply the stochastic frontier model to separate persistent 

energy efficiency from transient energy efficiency and then estimate the overall energy 

efficiency scores. Second, based on the estimated transient energy efficiency scores, we define 

different energy efficiency states based on how close a province is to the frontier or how far 

away from the frontier it is and then apply the panel Markov-switching technique to model the 

transitions both within and among the different energy efficiency states. The estimated 

transition probabilities give indications of the degree of persistence of the different states 

identified and the transition to/from the frontier.  

In China, the problem of energy efficiency has been approached in several ways. Some studies 

apply the decomposition-based technique to decompose energy intensity into different effects 

(Su and Ang, 2017, inter alia), while others apply econometric-based techniques to understand 

the underlying causes of energy intensity (as a measure of energy efficiency) in China (Pang 

                                                           
1 Global energy intensity in 2017 slowed down to 1.7%, driven mainly by the weaker improvement in energy 

efficiency coverage and stringency and lower energy prices, compared with the previous three-year average of 

2.3%. The rate is half what is required to remain on track with the Paris Agreement (IEA, 2018). 
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and Su, 2017; Ma and Yu, 2017, inter alia). While the former is criticized as being descriptive 

in nature and unable to capture cause and effect, the latter is criticized on the grounds of using 

an inappropriate measure of energy efficiency – energy intensity (Filippini and Hunt, 2011, 

2012). While energy intensity is a much broader measure that is affected by economic structure, 

the environment, and other factors, energy efficiency in an economic sense relates more to the 

technical characteristics that affect energy intensity (Zhang and Broadstock, 2016).  

In evaluating energy efficiency, two methodologies have been proposed: non-parametric (Data 

Envelopment Analytic – DEA) and parametric (Stochastic Frontier Analysis – SFA) 

techniques. The approach in this study is based on the latter. The DEA provides a deterministic 

measurement of energy efficiency performance. Wang et al. (2017) applied the DEA to 

measure energy efficiency in China during 2006–2010, taking into account sectoral 

heterogeneity. The results generally showed a consistent improvement in energy efficiency 

during 2006–2009 but dropped in 2010 with evidence of sectoral heterogeneity. The major 

driver was technical efficiency improvement. Several other studies such as He et al. (2018), Li 

and Zheng (2017), and Wu et al. (2017) employed the DEA to measure energy efficiency in 

China. However, these studies assumed a homogeneous production technology. This problem 

has been dealt with by other studies that have applied the meta-frontier DEA by taking into 

account heterogeneity in production technologies (Liu and Lin, 2018; Lin and Zhang, 2017; 

Fei and Lin, 2016, inter alia). For example, Liu and Lin (2018) applied the meta-frontier DEA 

to estimate energy efficiency in the transportation sector and investigate its drivers, finding that 

energy efficiency is generally low and ladder-like in distribution with obvious regional 

differences, and also that price of energy, industry structure, income, and transportation sector 

output have positive effects on energy efficiency. Apart from the fact that these DEA methods 

are deterministic in nature and vulnerable to the problems of omission variable bias and 
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measurement errors, none of the above studies emphasised the importance of determining the 

persistent nature of energy efficiency states.  

The parametric-based SFA imposes functional forms and distributional assumptions on the 

error component. This makes the SFA superior to the DEA in terms of dealing with 

measurement errors and omission variable bias problems, which could affect energy efficiency 

estimates.  

Several studies have used SFA to evaluate energy efficiency. Lin and Wang (2014) applied the 

SFA to evaluate the energy efficiency of the Chinese iron and steel industry. They found that 

generally, energy efficiency performance increased during 2005–2011, with an average energy 

efficiency score of 0.699. Lin and Long (2015) evaluated the energy efficiency performance of 

the Chinese chemical industry in China during 2005–2011 and estimated average energy 

efficiency to be 0.6897 for the period, with the Eastern Region emerging as the best performer. 

They determined that the price of energy and enterprise scale enhanced energy efficiency, and 

the effect of ownership structure was negative. Shen and Lin (2017) extended their analysis to 

include all Chinese industries in the 30 administrative regions using input-output data for the 

period 2002–2014. Energy efficiency in the industrial sector was found to grow at an annual 

average rate of 3.63%. Also, while technical change, technical efficiency, and input mix 

contributed positively to energy efficiency, the effect of scale efficiency was negative. Zou et 

al. (2013) compared DEA and SFA in an evaluation of energy efficiency in the 30 

administrative regions during 1998–2009. Though the estimated efficiency values differed 

between the methods, they provided a similar ranking. The Eastern Region of China emerged 

as the best performer.  

Other studies have separated transient (i.e. short-run) efficiency from persistent (i.e. long-run 

efficiency). This distinction is considered important as short-run and long-run efficiency have 
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different policy implications (Alberini and Filippini, 2018; Adom et al., 2018). Filippini and 

Zhang (2016) applied the SFA to separate persistent efficiency from transient efficiency using 

provincial data from China. Average persistent and transient energy efficiency was found to be 

0.81 and 0.97, respectively, with the average overall energy efficiency at 0.78. They revealed 

that by increasing energy efficiency to the 100% level in the long-run, China will save a total 

of 1000 Mtoe in energy consumption, representing 25% of the total in 2012. Zhang (2017) also 

applied the SFA to separate persistent efficiency from transient efficiency in Chinese 

provinces. Based on the estimated efficiency values, the study proposed an energy efficiency-

based allocation principle, in contrast to the energy intensity-based allocation principle. The 

author concluded that an efficiency-based allocation provides a smooth distribution reduction 

burden among regions compared to the intensity-based allocation. 

The above SFA studies assume that provinces have similar production technologies. Lin and 

Du (2014) applied the latent class SFA to Chinese data to deal with the problems of unobserved 

heterogeneity in production technologies and found that estimated energy efficiency was not 

high, with an average of 0.632 during 1997–2010. Further, the estimated average energy 

efficiency scores changed with different production technologies, which emphasises the 

importance of unobserved heterogeneity in production technologies across regions. Elsewhere, 

Llorca et al. (2017) also applied the latent SFA to estimate energy efficiency in the 

transportation sector of Latin America and the Caribbean. 

The foregoing studies provide information about the energy efficiency status of provinces or 

firms for each time period but do not determine the persistent nature of energy efficiency 

achievements or the persistent nature of the movements to/from the frontier, albeit it is 

considered an important policy issue (Adom and Adams, 2018; IEA, 2018; Adom, 2016). The 

main contribution of the current article is that it provides the first empirical evidence on the 

persistent nature of the energy efficiency state using the case of China, which is a global leader 
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in energy consumption and carbon dioxide emissions. This study is different to the time-series 

approach adopted in Adom and Adams (2018) and Adom (2016). The use of the panel-based 

Markov-switching model in this study provides several advantages: (1) it has larger degrees of 

freedom to improve the efficiency of the estimates, (2) it captures much more complex human 

behaviour, (3) It provides information on intertemporal dynamics and individuality of entities, 

which helps to control for the effects of missing or unobserved variables, (4) it provides 

information on the inter-individual differences that help reduce any possible collinearity that 

may exist between a variable and its lag, (5) it provides a micro foundation for macro data 

analysis, and (6) it provides better prediction of individual outcomes based on observed 

behaviour of others, especially in the case of a homogeneous sample. Further, this study uses 

the frontier-based definition of efficiency in contrast to the time-based approach adopted in 

Adom (2016) and Adom and Adams (2018). 

The study is organised as follows. Section 2 describes the method and data, Section 3 and 4 

discuss the results from SFA and the Markov-switching model, and Section 5 concludes the 

paper with policy recommendations. 

2. Methodology 

2.1 Stochastic frontier model (SFA) 

The methodology is based on the energy demand frontier by Filippini and Hunt (2011).  

itit uv

itititit eeXYPfED );,,(                                         (1) 

Equation 1 is the energy demand frontier, where ED is minimum energy use to produce an 

energy service, );,,( ititit XYPf  denotes the deterministic part of the energy demand frontier, 

P is the real price of energy index, Y is the real GDP, X is a vector of other explanatory variables 

that might explain energy consumption, ‘i’ denotes province, ‘t’ is the time period,   is a 
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vector of parameters that is associated with the deterministic part of the production function, 

itV
e  denotes the stochastic component of the energy demand frontier, and itV

ititit eXYPf );,,(   

is the optimal minimum amount of energy required to produce the energy service output. 

Deviations from this optimal minimum denote production inefficiency due to inefficiency in 

energy input; which is captured in Equation 1 by itU
e . The noise term is two-sided non-negative 

with a normal distribution while the inefficiency term is one-sided non-negative with a half-

normal distribution. This study follows the linear functional specification (see Equation 2) and 

includes similar controls with some modifications as used in Filippini and Zhang (2016) and 

Zhang (2017). We control for population, industry, service sector output, and average 

household size as in Filippini and Zhang (2016) and Zhang (2017). Household density is 

excluded in this study as it captures size and correlates with household size. This paper includes 

the total number of passenger vehicles, which is the sum of commercial and public, to capture 

the effects of transportation. This is in contrast to Filippini and Zhang (2016) and Zhang (2017), 

who all used the number of cars and the number of buses.  

itititititit UVXYPfED  );,,(lnln                      (2) 

This article follows the approach of Jondraw et al. (1982) to estimate energy efficiency. 

Equation 3 shows the estimate of energy efficiency, where 𝐸𝑖𝑡
𝐹  is the minimum energy demand 

of the ith province at time t and 𝐸𝑖𝑡  is the observed energy consumption. Overall energy 

efficiency is the product of persistent and transient energy efficiency. 

𝐸𝐹𝑖𝑡 =
𝐸𝑖𝑡
𝐹

𝐸𝑖𝑡
= exp(−𝑈𝑖𝑡)̂                             (3) 

It is crucial to take into account the presence of time-invariant inefficiency, time-invariant 

unobserved heterogeneity variables, and time-varying energy efficiency when estimating the 

energy demand frontier (Filippini and Zhang, 2016; Zhang, 2017). As noted by Filippini and 
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Zhang (2016), in the case of China, these issues are prevalent due to the relatively large size 

and heterogeneity of the morphology and socioeconomic organizations of provinces. There are 

presently no well-proven techniques that, for example, estimate persistent and transient energy 

inefficiency simultaneously2. In this study, we estimate the fixed effect versions of the SFA.3 

First, the fixed effect model (hereafter FEM) by Cornwell et al. (1990) is used to estimate 

persistent energy efficiency. Second, the true fixed effect model (hereafter TFEM) by Greene 

(2005a) is used to estimate transient energy efficiency. In this paper, the issue of endogeneity 

is treated with the instrumental variables approach following Filippini and Zhang (2016), even 

though there is still no approved way to effectively handle endogeneity within the SFA.  

FEM is distribution free and assumes linearity as the only assumption. However, it assumes 

that the efficiency term is time-invariant and varies across cross-section only, which rules out 

the possibility of learning-by-doing. Therefore, the persistent efficiency may be under-

estimated in this model. TFEM separates unobserved province-specific heterogeneity from 

time-varying efficiency. In the presence of persistent efficiency, TFEM estimates only transient 

efficiency. Chen et al. (2014) and Belloti and IIardi (2018) reveal that Greene’s maximum 

likelihood dummy variable estimator suffers from the incidental parameters problem, which 

leads to an inconsistent estimate of the variance parameter. This article also estimates the 

consistent true fixed effect model by Chen et al. (2014), but the high correlation (0.9482) 

between the efficiency estimates from Chen and Greene’s TFEM seems to downplay this 

                                                           
2 Recently developed approaches are either complex (Colombi et al., 2014; Kumbhakar et al., 2014; Tsionas and 

Kumbhakar, 2014) or yet to be proven (Filippini and Greene, 2016). 
3 As there is no statistical test for choosing the variations of SFA models, we estimate a regular fixed and random 

effects model and use the Hausman test to decide the model choices. The Hausman test favours the fixed effect 

model. Though the current study uses a somewhat similar data to that used in Filippini and Zhang (2016), there 

are differences in terms of the model set-up (see the method section for further clarification) and the sample size 

used. The current study has a larger sample size (covering 30 provinces over the period 2003–2015) than that used 

in Filippini and Zhang (which covered 29 provinces over the period 2003–2012). As revealed by Clark and Linzer 

(2015), in the very small datasets, the random-effects estimator outperforms the fixed effect estimator even when 

there are extreme violations of the assumption of zero correlation. However, there is less support for the random-

effect estimator as the size of the dataset increases. This could possibly explain the results in this paper. 
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problem. Although TFEM separates unobserved province-specific heterogeneity from time-

varying efficiency, it does not capture persistent efficiency. Therefore, our estimate of transient 

efficiency is likely to suffer from being over-estimated.  

We then regress the overall energy efficiency scores on a vector of explanatory variables to 

identify the drives for the efficiency changes. In the empirical literature, the effects of several 

factors on energy efficiency have been examined. Since energy efficiency in the economic 

sense relates to the technical characteristics, we examine the factors that can affect energy 

efficiency in the technical sense. It should be stated that an improvement in energy efficiency 

could affect energy consumption (i.e. rebound effect). Therefore, the factors we examine here 

are expected to have effects on consumption via energy efficiency, but we do not examine this 

complex channel directly. Specifically, we control for the effects of foreign direct investment 

(FDI), human capital development (measured here using the years of education), real GDP per 

capita, the rate of urbanization, size of green parkland to capture the green nature of the 

province, real price energy index, and regional dummies.  

FDI stimulates technological spillover and knowledge transfer, which can enhance the 

technical processes of production and promote energy efficiency. However, the materialization 

of technological spillover and knowledge transfer depends on the technological absorptive 

capacity of the host country. Thus, the effect of FDI can be positive or negative. Urbanization 

(UR) can worsen the technical processes of production by increasing the demand for energy-

intensive goods such as cement and steel. Likewise, the concentration of people in one place 

can promote economies of scale in the use of energy services. Thus, urbanization can promote 

or worsen energy efficiency. Following Lv et al. (2017) and Wang et al. (2017), this study 

includes the effects of FDI and urbanization. The development of human capital (EDU) can 

promote the environmental awareness of end-users, and this could impact positively on energy 

efficiency. Following Liu et al. (2017), this study includes the effects of human capital 
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development, and following Liu and Lin (2018), it includes the effects of income per capita 

(YPC) and price of energy. Higher income could induce investment in energy-efficient 

equipment or the use of energy-intensive products. Thus, higher income could have positive 

and negative effects on energy efficiency. Increasing the price of energy can induce investment 

in energy-efficient equipment in a free market economy, all things being equal, and promote 

energy efficiency. However, where there is a heavy government presence in the regulation of 

energy price, the investment-induced effect of price might be distorted and hence compromise 

energy efficiency in the process. The green nature (GPL) of a province might indicate the 

importance the province attaches to a clean economy. Hence, in such a province, we expect 

that energy efficiency should improve. However, this may depend on whether GPL is an 

initiative of the locals or the government to achieve a political agenda. Equation 4 is the 

equation we estimate, where RD is the regional dummy that caters for regional specific effects 

such as policies, institutions, and technical progress. Variables in (4) are stationary in levels 

(see Appendix A). 

𝐸𝐹𝑖𝑡 = 𝛼 + 𝛽𝐹𝐷𝐼𝑙𝐹𝐷𝐼𝑖𝑡 + 𝛽𝐸𝐷𝑈𝑙𝐸𝐷𝑈𝑖𝑡 + 𝛽𝑌𝑃𝐶𝑙𝑌𝑃𝐶𝑖𝑡 + 𝛽𝑈𝑅𝑈𝑅𝑖𝑡 + 𝛽𝐺𝑃𝐿𝑙𝐺𝑃𝐿𝑖𝑡 + 𝛽𝑃𝑃𝑖𝑡 +

𝛽𝑅𝐷𝑅𝐷𝑖 + 𝜀𝑖𝑡                      (4) 

This study estimates overall energy efficiency exogenously as the product of persistent and 

transient energy efficiency and then regresses this variable on a set of factors.4 A limitation of 

the two-stage analysis is that we do not consider the trade-offs among the various factors that 

affect energy efficiency and the potential rebound effects. 

2.2 Panel Markov-switching model 

                                                           
4 This two-stage approach is not satisfactory as mentioned in Wang and Schmidt (2002) and therefore considered 

as a limitation in this study. However, in the present literature, we are not aware methodologically of how to 

endogenize overall energy efficiency as calculated in this study within the SFA framework (see Adom et al., 

2018).   
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Figure 1 shows the plot of different energy efficiency states based on transient energy 

efficiency. For the moment, we assume a two-state model – energy-efficient state (point A) 

and less energy-efficient state (point B) – for exposition. At any point in time, provinces 

provide information about their current states (either A or B). We are interested in predicting 

(in probability terms) the future states, given knowledge of the current state. For example, 

suppose a province reveals information of energy efficiency at time t1A; we attempt to model 

what the likely future state would be, given information about the previous state of the 

province. As revealed in the figure, such future outcomes are uncertain and therefore governed 

by some probability rule. The province can either remain in the same state or transition into 

another state at time t2A. The same mechanism applies if a province reveals the initial energy 

utilization status as energy inefficient. 

In both cases, a probability distribution can be built to describe these various movements 

between the different states. Such a probability distribution in the Markovian chain distribution 

is referred to as the transition probabilities. In the absence of any absorbing state, these 

probability matrices will show how persistent the movements to or from the frontier are. 

The idea of applying the Markov-switching model to panel data was first introduced and 

applied by Kalbfleisch and Lawless (1985) and Kay (1986). In this application, the efficiency 

scores obtained from the stochastic frontier model are categorised into different states. 

Therefore, we estimate an n-state Markov model. Denote the process of energy use 

performance by Xt. It is observed at N discrete time intervals, t1,…,tn. At each time tn, a province 

within the panel records a state
ob

ntn SX  , where  n

ob

n SSSS ,...,1 . The random process 

among/between states is described by a conditional probability expressed in Equation 5, which 

states that the likelihood of, say, province k to be in state 
ob

nS  at time nt  depends on the 

previous state 
ob

nS 1  at time 𝑡𝑛−1. 
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1 , 1 , , 1 1( , ) Pr( | )
n n

ob ob

s s n n t n n t n nP t t X S X S
                                (5) 

 

Figure 1: Transition between different energy-efficient states 

Further, if we assume a time-homogenous case (i.e. the elements in the transition intensity 

matrix remain constant) and that all of the provinces within the panel are observed at the same 

N time periods, the likelihood function for the whole sample can be derived as the product of 

the conditional probabilities (see Equation 6), where nijD ,  is the total number of provinces 

observed in state iS  at time 1nt  and state jS  at time nt . The corresponding log-likelihood is 

derived as in Equation 7, where w denotes a vector of explanatory variables. 

 
1 , 1

,( )
1,

M K

n i j
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ij n nP t t

 

 
 

  


  
                         (6) 

,

1 , 1

log ( ) log ( )
M K

ij n ij n

N i j

L D P w
 

                               (7) 

The assumption of time-homogeneity implies that the differences in time, 1 nnn ttT , 

determine the transition probabilities. The corresponding log-likelihood function can be 

derived as in Equation 8. Following the quasi-Newton procedure proposed by Kalbfleisch and 
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Lawless (1985), Equation 8 can be maximized using the maximum likelihood of obtaining the 

associated parameters. 

,

1 1 1

log log ( )
N M M

ij n ij n

n i j

L D P T
  

                            (8) 

2.3 Data 

This study collects balanced panel data for 30 provinces in mainland China covering the period 

2003–2015 on all the selected variables. Other regions are excluded due to missing information 

for some of the variables used in the study. Macro-level data areobtained from the China 

National Bureau of Statistics reports “China Statistical Yearbook”, energy data are obtained 

from the “China Energy Statistical Yearbook”, and the price index is obtained from the “China 

Urban Life and Price Yearbook”. Table 1 shows the description of the variables and descriptive 

statistics. 

3. Empirical Results  

3.1 Frontier determinants 

Table 2 provides the frontier estimates based on the FEM and TFEM. The effect of the price 

of energy is negative, which confirms the claim that increasing the price of energy reduces the 

scale of energy usage. However, the effect is very small. Filippini and Zhang (2016) obtained 

a negative price effect but it was statistically insignificant. Income has a positive effect on 

energy demand, thus economic growth drives the scale of energy use up, which confirms the 

findings of Liu et al. (2017), Zhang (2017), Wang and Li (2016), and Filippini and Zhang 

(2016). The negative effect of average household size suggests that a large concentration of 

people in a small place reduces the scale of energy use due to the benefits of economies of 

scale. This confirms the results of Zhang (2017) and Filippini and Zhang (2016). Population 

exerts a positive effect on energy consumption, which suggests that a higher population raises 
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the scale of energy usage, which confirms the findings of Wang and Li (2016) and Filippini 

and Zhang (2016).  

The number of vehicles exerts a positive effect on energy consumption, which confirms the 

scale effect of the number of vehicles (Filippini and Zhang, 2016). While industry value-added 

as a share of GDP shows a positive effect, the effect of service sector output as a share of GDP 

is generally negative but statistically insignificant. Thus, shifts to the more energy-intensive 

sectors in the economy drive the scale of energy consumption upwards, which confirms Zhang 

et al. (2017), Zhang (2017), and Filippini and Zhang (2016). The total number of heating and 

cooling days reveal a positive but insignificant effect on energy consumption. The time trend 

has a significant concave effect on energy consumption. Thus, technological progress 

significantly reduces energy consumption in China, which confirms Filippini and Zhang (2016) 

and Wang and Li (2016). 
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Table 1: Descriptive statistics 

Variables  Description Observation Mean  Standard 

deviation 

Minimum Maximum  

LEC  Log of energy consumption in tce 390 9.1320   0.7418 6.5280 10.5687 

P  Real energy price index (2003=100) 390 164.4035 28.2678 100 252.1535 

LY  Log of real GDP (billion 2003CNY) 390 8.0508   0.85714 5.6298 9.5586 

LAHS  Log of average household size per person 390 1.1440   0.1104 0.8459 1.4255 

LHCD  Log of heating and cooling degree days 390 5.6945   1.7248 0 7.9394 

LPOP  Log of population (10,000 persons) 390 8.1595   0.7538 6.2804 9.2918 

LPCV  Log of total vehicles (sum of private and civil) 390 5.5913   1.0802 2.6790 7.9595 

ISH  Share of industrial sector in % of GDP 390 47.3390   7.8131 19.7 61.5 

SSH  Share of service sector in % of GDP 390 40.7551   8.3937 28.6 79.7 

LFDI  Log of foreign direct investment 390 23.3946   1.6802 18.6597 26.1438 

LEDU  Log of education 390 2.2453   0.1019 1.9428 2.5190 

LYPC  Log of real GDP per capita 390 6.7990   0.4486 5.6430 7.9331 

UR  Rate of urbanization 390 49.0602 15.7035 15.58 89.6 

LGPL  Log of size of green parkland 390 10.6499   0.9405 7.5547 12.9908 
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Table 2: Estimation results 

Independent variables FEM TFEM TFEM_robust 

price  -0.0007** 

(0.00031) 

-0.0004 

(0.00027) 

-0.0006** 

(0.0003) 

log( )GDP  0.2633*** 

(0.09256) 

0.2581*** 

(0.08375) 

0.2590*** 

(0.0902) 

log( )Average household size   -0.30595** 

(0.12450) 

-0.2992*** 

(0.10557) 

-0.3058** 

(0.1182) 

log( & )HDD CDD  0.0047 

(0.00527) 

0.0072 

(0.00436) 

0.0006 

(0.0050) 

log( )Population  0.3515*** 

(0.106244) 

0.1588 

(0.11706) 

0.2872*** 

(0.1092) 

log( )ehiclesV  0.2573*** 

(0.042062) 

0.2109*** 

(0.037077) 

0.2405*** 

(0.0404) 

Industrial share  0.00296* 

(0.042062) 

0.0038** 

(0.00146) 

0.0036** 

(0.0016) 

Service share  -0.0015 

(0.001798) 

0.0003 

(0.00165) 

-0.0006 

(0.0018) 

t  0.07076*** 

(0.010625) 

0.0891*** 

(0.0097) 

0.0801*** 

(0.0107) 

2t  -0.0042*** 

(0.00039) 

-0.005*** 

(0.00037) 

-0.0047*** 

(0.0004) 

𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 2.8352** 

(1.15177) 

-5.9043*** 

(0.23583) 

---------- 

Note: Standard errors in parentheses. ***,**,* denote 1%, 5% and 10% significance levels.  

 

3.2 Estimation of energy efficiency scores 

Table 3 contains the descriptive statistics of energy efficiency. The italicized figures in the 

parentheses are Chen’s consistent TFEM estimates. Generally, the results are robust. The mean 

transient energy efficiency is 0.95, while the mean persistent energy efficiency is 0.563.5 The 

relatively higher persistent inefficiency suggests that, in China, the problem of energy 

inefficiency is structural in nature. Therefore, energy security and environmental sustainability 

will benefit more from policies aimed at the long term than the short term (Adom et al., 2018). 

We also assess the regional distribution of energy efficiency in China (see Table 4). There is 

evidence of regional heterogeneity, and Eastern China emerges as the best performing region, 

                                                           
5 Though Zhang (2017) and Filippini and Zhang (2016) applied different methods, their estimate of transient 

energy efficiency (i.e. 0.962 and 0.967, respectively) is very consistent with what is obtained in this study. In 

terms of persistent efficiency, however, the current study’s estimate is lower than that obtained in Zhang (i.e. 

0.630–0.751) and Filippini and Zhang (i.e. 0.682–0.808). The possible reason for this discrepancy could stem 

from the differences in methodology, sample size, and model set-up. 
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followed by Central China. This confirms the conclusions of Lin and Zhang (2017) and Lin 

and Du (2013).   

Table 3: Average energy efficiency scores by type 

Type  Mean Std. dv Min  Max  Obs 

Transient efficiency 0.9502 (0.9361) 0.0421 (0.0325) 0.6206 (0.7222) 0.9925 (0.9899) 390 

Persistent efficiency 0.5633 0.1584 0.3060 1 390 

Overall efficiency 0.5358 (0.5275) 0.1531 (0.1498) 0.2480 (0.2678) 0.9829 (0.9727) 390 

Note: Values in parentheses are the estimated efficiency scores based on Chen et al. (2014). 

 

Table 4: Average energy efficiency scores by region 

Province  Transient energy 

efficiency 

Persistent energy 

efficiency 

Overall energy efficiency  

Eastern China 0.9536 (0.9373) 0.6071 0.5778 (0.5687) 

Western China 0.9436 (0.9343) 0.5029 0.4762 (0.4704) 

Central China 0.9545 (0.9370) 0.5863 0.5600 (0.5495) 

Note: Values in parentheses are the estimated efficiency scores based on Chen et al. (2014). 

At the provincial level, there is also evidence of provincial heterogeneity. For transient energy 

efficiency, all provinces except Xinjian have average scores of more than 0.9, which confirms 

Zhang (2017). In the case of persistent energy efficiency, provinces like Guangxi, Jiangxi, 

Anhui, Beijing, and Hainan record mean values of above 0.7, while provinces such as Inner 

Mongolia, Shanxi, Hebei, Liaoning, Shanghai, Shandong, Guizhou, Gansu, Qinghai, Ningxia, 

and Xinjiang score below 0.7, on average. The mean overall efficiency performances for the 

provinces of Guangxi, Jiangxi, Anhui, Beijing, and Hainan are 0.7 or greater. A significant 

number of provinces recorded between 0.5 and 0.65 (e.g. Shanghai, Jilin, Zhejian, and 

Guangdong) and below 0.5 (e.g. Guizhou, Gansu, Shanxi, Qinghai, and Ningxia).  

There may be several reasons for the observed heterogeneity. Energy efficiency policies differ 

among the provinces. For example, the government energy intensity reduction targets differ 

across the provinces. Also, differences in the institutional environment can affect rates of 

compliance with energy efficiency policies. Differences in human capital, FDI, urban 

concentration, etcetera might also account for the provincial heterogeneity in energy efficiency 
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across China. The next section explores this question by investigating the drivers of overall 

energy efficiency in China. 

3.3 Endogeneity in efficiency score estimation 

We are also aware of the existence of endogeneity issues in the energy demand frontier model. 

Following a similar strategy to Filippini and Zhang (2016), a two-step approach is adopted in 

this section to address the potential effects of the endogenous regressor (GDP) on the estimated 

efficiency scores.  

First, we identify appropriate instrumental variables for GDP. The instruments considered in 

this empirical study include life expectancy, the size of green parkland, and real investment in 

forestry. The Cragg-Donald Wald F test statistic is used to test for weak instruments. The value 

of this statistic is 12.3, which is higher than the critical value at the 10% level of significance 

suggested by Stock and Yogo (2003). Therefore, we reject the hypothesis that the instruments 

are weak. The Hansen J statistic for over-identification is 4.1 (with p-value 0.13), indicating 

that our choices are valid instruments. All the results confirm that the instruments used in this 

study are appropriate. The residual estimated from the first step is then included in the second 

step for frontier estimation.6   

To compute the persistent and transient efficiency scores, we re-estimate FEM and TFEM 

using the two-step approach, and label the re-estimations FEM-2 and TFEM-2,. The Spearman 

rank correlation coefficients between FEM and FEM-2 are 0.9933 for persistent efficiency and 

0.9989 for transient efficiency. Therefore, we confirm that the potential endogeneity does not 

affect our estimated energy scores and we will use the results from Section 3.2 for analysis in 

the following sections.   

 

                                                           
6 As acknowledged in Filippini and Zhang (2016), this procedure is not completely satisfactory for SFA. The 

regression results are available upon request from the authors. 



20 
 

3.4 Drivers of energy efficiency 

Table 5 shows the drivers of energy efficiency. FDI has a significant positive effect on energy 

efficiency, which implies that FDI via technological spillover and knowledge transfer enhances 

the technical processes of production, resulting in an improvement in energy efficiency. Liu et 

al. (2017) and Wang et al. (2017) find a similar result. Education and urbanization also 

stimulate energy efficiency improvements in China, which confirms Du et al. (2016) and Liu 

et al. (2017). While human capital development promotes environmental awareness and hence 

causes investment in green technology, the concentration of the population in one place 

generates economies of scale and shifts demand from unclean energy sources to clean energy 

sources.  

The effect of price is significantly negative, which implies that, in China, the price of energy 

does not promote energy efficiency. Du et al. (2016), Liu and Lin (2018), and Liu et al. (2017) 

found a similar result for China. The possible explanation for this is that the energy price is 

highly regulated in China, which results in a lower and consistent decline in price that 

subsequently discourages investment in energy-efficient equipment to promote energy 

efficiency. Thus, in order for the price of energy to induce energy efficiency investment in 

China, it has to be deregulated.  

Further, higher income per capita compromises energy efficiency improvements. Du et al. 

(2016) and Liu and Lin (2018) found a similar result for China. As mentioned earlier, in China, 

the price of energy is highly regulated, which makes it not worthwhile to invest in energy-

efficient technologies with their required higher capital outlay. Consequently, higher incomes 

only intensify the use of the already existing equipment or appliances that may have lower 

efficiency standards, possibly due to depreciation. Lastly, the regional dummies are statistically 

significant.  



21 
 

Table 5: Estimation results 

 Overall efficiency Overall efficiency_robust 

log FDI（ ） 0.0368*** 

(0.00792) 

0.0339*** 

(0.0078) 

log( )EDU  0.4712*** 

(0.1519) 

0.5132*** 

(0.1491) 

log( )per capita GDP   -0.3230*** 

(0.0465) 

-0.3183*** 

(0.0457) 

Urbanization rate  0.0033*** 

(0.0012) 

0.0032*** 

(0.0012) 

log( )Green land  -0.0107 

(0.0112) 

-0.0115 

(0.0110) 

price  -0.0013*** 

(0.0002) 

-0.0013*** 

(0.0002) 

regional dummy central   -0.1136*** 

(0.0256) 

-0.1150*** 

(0.0251) 

regional dummy west   -0.1363*** 

(0.0287) 

-0.1353*** 

(0.0281) 

const  -1.1641*** 

(0.3235) 

1.0148*** 

(0.3431) 

statsF   16.46*** 16.01*** 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

The positive effect of education and FDI on energy efficiency implies that differences in the 

performance of these variables might account for the provincial heterogeneity in energy 

efficiency. Figures 2 and 3 plot the deviation of provincial means from the national average for 

education and FDI. Generally, the poorest provinces of Guizhou, Gansu, Qinghai, Ningxia, 

Anhui, Sichuan, and Yunnan perform poorly in these indicators. Thus, to bridge the gap in 

energy efficiency, government policies in the areas of education and FDI should target these 

poor provinces. 
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Figure 2: Plot of deviation of provincial means from national mean – Education 

 

Figure 3: Plot of deviation of provincial means from national mean – FDI 

 

4. Results from Markov-switching Model 

4.1 Definition of energy-efficient states 

Since the transient energy efficiency measurement captures the efficiency dynamics over time, 

we define different thresholds to categorize provinces into different states. Table 6 contains the 

definition of states and the classification of provinces into different states according to their 

mean values. Of the total sample, no province, on average, fell into the first category during 
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2003–2015 (Note: this is an average for the period, which suggests that some provinces did 

indeed reach this state in the process of time). Thus, on average, energy efficiency levels in 

China can either be described as moderately or less energy-efficient during 2003–2015. As 

shown in the table, 60% of the sample falls within the moderately energy-efficient state while 

the remaining 40% falls within the less energy-efficient state, on average. 

Table 6: Classification of provinces according to efficiency scores  

(based on the mean values of transient energy efficiency) 

Classification  States  Cluster of provinces 

1>= 75 percentile (0.973) Highly energy efficient 

(HEE) 

NULL(*) 

>= mean (0.950) but < 75 

percentile  

Moderately energy 

efficient 

(MEE) 

Hebei, Liaoning, Heilongjiang, Shanghai, 

Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, 

Shandong, Henan, Hubei, Guangdong, Guangxi, 

Sichuan, Yunnan, Shaanxi(**), Hunan 

<mean (0.950) 

 

Less energy efficient 

(LEE) 

Beijing, Tianjin, Shanxi(**), Inner Mongolia, 

Jilin, Hainan, Chongqing, Guizhou, Gansu, 

Qinghai, Ningxia, Xinjiang 

* As the efficiency scores used for the classification in this table are based on the mean values of transient energy 

efficiency, the category for HEE is empty. However, some provinces move into and away from HEE over time as 

the transient efficiency scores change.  

** Shanxi is a province of North China, capital Taiyuan, while Shaanxi is a northwestern Chinese province, capital 

Xi’an. 

 

4.2 Energy efficiency transition  

4.2.1 Assuming exogeneous transition intensities 

To estimate the transition probabilities, first, we test our data against whether it satisfies a time-

homogeneous Markov model or time-inhomogeneous Markov model, assuming for the 

moment there are no covariates. The test reveals no significant time-inhomogeneity in the 

transition probabilities (see Appendix B). Table 7 contains information about the state table 

(the number of counts a state is followed by another state), transition intensities, probability of 

each state being next (state table in probability terms. Note: This is not the same as the transition 

probabilities), and transition probabilities.   

Assuming a one-year time interval, there is a 67% chance of a province remaining in either the 

HEE or LEE state. The probability of remaining in the MEE state is 53%, suggesting that, 
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comparatively, the HEE and LEE states are more persistent. The same column reveals that 

energy efficiency transition is very systematic or ladder-like in nature. Given that the current 

state is HEE, the most likely location out of this state is MEE. Also, the most likely state out 

of MEE and LEE is LEE and MEE, respectively. The transition probabilities  characterize the 

following paths MEEHEE  , LEEMEE  , and LEEHEE   are relatively higher than 

those that characterize the paths HEEMEE  , MEELEE  , and HEELEE  . This 

suggests that movements away from the frontier are more persistent than those towards the 

frontier. The persistent nature of HEE and LEE implies these states are more sustainable. The 

former could be due to the fact that technologies take time to depreciate and energy efficiency 

policies are more robust in the first year. In the latter case, the benefits of technological 

diffusion take time and depend on learning experiences, adaptation processes, and absorptive 

capacity. 

Next, we increase the time intervals to two, three, and four and then estimate the transition 

probabilities (see Table 7). Generally, states become less persistent as we increase the time of 

transition. For a four-year time interval, the degree of persistency reduces by 45.2%, 34.5%, 

and 38.8% for the HEE, MEE, and LEE states, respectively. In the case of LEE, the reduction 

indicates that enough time provides the opportunities for learning, adaptation, and development 

of absorptive capacity, and this increases the probability of transitioning from this state. In the 

case of HEE and MEE, the decline suggests that technology depreciates with time, and the 

efficacy of energy efficiency policies also reduce with time, which compromises the standards. 

For HEE and LEE, the result shows that the former is less sustainable, which implies that the 

benefits of energy efficiency improvements are likely to be short-lived in China. Further, the 

nature of transitions out of the states is ladder-like, and the movements towards the frontier are 

less persistent than from the frontier. The bottom part of Table 7 shows the average duration 

of states in years over the sample period.



25 
 

Table 7 Transition probabilities from time-homogeneous Markov model 

State switch State table Prob. being next Transition intensities Transition probabilities 

     Time interval in years 

One  Two  Three  Four  

HEEHEE   

 

86 0 -0.4655 

(-.6488, -.3340) 

0.6721 

(.4729, .7372) 

0.5072 

(.3082, .5910) 

0.4182 

(.2075, .5118) 

0.3682 

(.1748, .4648) 

MEEHEE   

 

31 0.9151 

(.4400, .9950) 

.4260 

(.2763, .6567) 

0.2433 

(.1812, .3234) 

0.3134 

(.2462, .3942) 

0.3338 

(.2707, .4067) 

0.3399 

(.2784, .4066) 

LEEHEE   

 

11 0.0849 

(.0050, .5600) 

0.0395 

(.0030, .5279) 

0.0846 

(.0611, .2966) 

0.1794 

(.1336, .3913) 

0.2480 

(.1816, .4489) 

0.2919 

(.2199, .4762) 

HEEMEE   

 

25 0.4116 

(.2708, .5845) 

0.3393 

(.2098, .5487) 

0.1988 

(.1377, .2697) 

0.2617 

(.1774, .3432) 

0.2834 

(.1763, .3809) 

0.2917 

(.1633, .3926) 

MEEMEE   

 

67 0 -0.8244 

(-1.1365, -.5980) 

0.5303 

(.4330, .6088) 

0.3963 

(.3285, .4741) 

.3581 

(.2951, .4319) 

0.3472 

(.2861, .4175) 

LEEMEE   

 

34 0.5884 

(.4155, .7292) 

0.4851 

(.3207, .7338) 

0.2709 

(.2064, .3628) 

0.3419 

(.2607, .4370) 

0.3585 

(.2674, .4702) 

0.3611 

(.2684, .4830) 

HEELEE   

 

9 0.1293 

(.0219, .4653) 

0.0064 

(.0132, .3148) 

0.0839 

(.0492, .2008) 

0.1615 

(.1097, .3073) 

0.2151 

(.1397, .3474) 

0.2490 

(.1526, .3685) 

MEELEE   

 

26 0.8707 

(.5347, .9781) 

0.4332 

(.2695, .6963) 

0.2463 

(.1715, .3345) 

0.3160 

(.2459, .3978) 

0.3356 

(.2651, .4070) 

0.3410 

(.2785, .4136) 

LEELEE   

 

71 0 -0.4976 

(-.7249, -.3415) 

0.6698 

(.5360, .7519) 

0.5225 

(.3865, .6141) 

0.4493 

(.3184, .5556) 

0.4100 

(.2899, .5246) 

-2loglikelihood   639.2728     

 

Duration of States 

 

HEE 

5.0672 

(3.0729, 6.2639) 

MEE 

4.1766 

(3.4468, 5.0105) 

LEE 

3.7559 

(2.7381, 5.7945) 

    

Note: HEE (Highly energy efficient), MEE (Moderately energy efficient), and LEE (Less energy efficient). Figures in parentheses are the lower and upper 

confidence intervals at 97.5%. 
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4.2.2 Endogenizing the transition intensities 

In the foregoing section, we ignored the effect of explanatory variables on the transition 

intensities. Where such effects are significant, failing to account for them could bias the 

estimate of the transition intensities and the transition probabilities. In this section, we control 

for the effects of human capital development, FDI, real income per capita, and GPL. To verify 

this, we test the time-homogeneous model with covariates against the time-homogeneous 

model with no covariates, using the log-likelihood ratio test. The result supports the former 

(see Appendix C). This means that the time-homogeneous model with covariates provides a 

better fit. 

Table 8 contains the results. A comparison of the results in Tables 7 and 8 reveals changes in 

the values of the transition probabilities, but the conclusion is similar. For the one-year time 

interval, the HEE state seems more persistent, with a transition probability of 68%. This is 

followed by the LEE and MEE states, with transition probabilities of 66% and 51%, 

respectively. The transitions are systematic in nature, and the movements towards the frontier 

seem less persistent than the movements away from the frontier. The latter suggests that energy 

efficiency progress in China has not been sustainable. 

By increasing the time interval, we also witness a consistent decline in the degree of persistence 

of the HEE, MEE, and LEE states. The degree of persistence decreases by 51%, 14.8%, and 

30.3% for HEE, MEE, and LEE, respectively, for the four-year time interval. Over the four-

year period, HEE becomes the least persistent state compared to the LEE state. Thus, in 

comparison, it is relatively more difficult for China to escape the LEE state than the HEE state. 

Adom and Adams (2018) and Adom (2016) found a similar result in Nigeria and Cameroon. 

However, observing the probabilities over time, some progress is made with time. As revealed 

in the table, there is a consistent improvement in the transition from the LEE to other states as 

well as from the MEE to HEE state, albeit the movement towards the frontier seems less 
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persistent than the movements away from the frontier. In the case of China, the desire to get 

out of the LEE state to either the MEE or HEE state could be due to international pressure to 

mitigate greenhouse gas emission or domestic pressure to improve the local environment and 

remain competitive internationally. The bottom part of the table contains information about the 

average duration of states in years over the sample period.   

4.2.3 Three-state versus two-state 

From the outset, we imposed a three-state model. In this section, we redefine a two-state model 

– above mean level (HEE) and below mean level (LEE) – and then test this model against a 

three-state model, assuming for now a time-homogeneous model with no covariates. The 

likelihood ratio test favours the two-state model, which implies one of the three states is 

redundant (see Appendix D for the results). Also, we test the two-state time-homogeneous 

model against the two-state time-inhomogeneous model, and the test supports the latter (see 

Appendix E for the results). Finally, we test this model with no covariates against the model 

with covariates, and the test favours the former (see Appendix F for the results). 

Based on the above, we proceed to estimate transition intensities and transition probabilities. 

Table 9 shows information on the state table, transition intensities, and transition probabilities. 

For the one-year time interval, the LEE state is more persistent than the HEE state, with 

transition probabilities of 86% and 66%, respectively. Again, the movements away from the 

frontier seem more persistent than the movements towards the frontier, with transition 

probabilities of 34.5% and 14.4%, respectively. By changing the time interval, the results seem 

very consistent. The degree of persistency of the HEE and LEE states declines, and the extent 

of decline over the four-year time interval is higher for the former (i.e. 47.6%) than the latter 

(i.e. 15.3%). This supports the result that the HEE state is less sustainable than the LEE state. 

As shown in the table, the transition probability of remaining in the HEE state is lower than 

that of remaining in the LEE state. Thus, it is relatively more difficult to get out of the LEE 
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state than the HEE state. Also, the movement away from the frontier is more persistent than 

the movement towards the frontier. The lower part of the table shows the average duration of 

both states over the sample period.  

4.3 Reasons for the unsustainable nature of the HEE state 

In the case of China, there are several reasons that might account for the unsustainable nature 

of the HEE state or the sustainable nature of the LEE state. First, the less persistent nature of 

HEE suggests that there are still gaps in terms of the stringency or robustness nature of energy 

efficiency policies in China. These gaps cut across the different array of policies implemented, 

and they reflect in areas such as implementation, monitoring, evaluation, compliance, 

flexibility, scope, and sustainability. Expectations and standards do change with time. 

Therefore, the definition of standards for energy efficiency should be flexible to accommodate 

behavioural changes that might affect consumption and production patterns over time. 

However, presently, there are fixed definitions of standards for energy efficiency that are 

adjusted after a certain period of time. For example, the definition of energy conservation 

targets is for a fixed five-year period, after which an adjustment is made. This could be 

problematic, as expectations and standards can change within this period, which could work 

against the progress of energy efficiency. Moreover, these binding targets do not provide 

opportunities for local governments to go beyond the limit set. Another possible problem with 

the energy conservation targets that might affect the sustainability of the HEE state is the use 

of energy intensity as the sole indicator of achieving energy efficiency enhancements. This 

makes it possible for local governments to still increase their consumption of energy and meet 

the target as long as the gross domestic product does not increase at a slower rate. In terms of 

scope, great attention has been focused on selected sectors and products that are deemed to be 

energy-intensive, but other household energy-use services have been overlooked. It was not 

until 2016 that the government expanded the energy efficiency labelling standards to cover 



29 
 

most public energy-use services. Therefore, untapped efficiency potentials in major sectors 

such as buildings, transportation, and industry still remain. For example, in the transportation 

sector, energy efficiency is lagging with regard to inland waterways, air transportation, and 

trucks.  

The second possible reason could be due to the low energy price regime in China, which 

discourages energy efficiency investment. Third, energy efficiency policies could be part of 

the problem itself as a result of Jevons paradox, where improvement in energy efficiency will 

lower the energy price but facilitate a rise in energy consumption, which is referred to as the 

rebound effect. In China, Zhang and Lin Lawell (2017) found evidence of a significant 

macroeconomic price rebound effect for each province in China. Other factors such as the low 

level of energy technology and lack of capacity building for energy saving might account for 

the unsustainable nature of the HEE state. 
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Table 8 Transition probabilities from time-homogeneous Markov (with covariates) 

State switch Transition intensities Prob. being next Transition probabilities 

   Time interval in years 

One Two Three Four 

HEEHEE   

 

-0.4466 

(-.6286, -.3173) 

0 0.6842 

(.5758, .7768) 

0.5061 

(.3663, .6306) 

0.3991 

(.2661, .5445) 

0.3329 

(.2137, .4907) 

MEEHEE   

 

.4093 

(.2668, .6279) 

1 

(.9957, .1) 

0.2375 

(.1704, .3177) 

0.3070 

(.2348, .3934) 

0.3323 

(.2555, .4124) 

0.3439 

(.2671, .4167) 

LEEHEE   

 

0.0373 

(.0027, .5231) 

1.405e-07 

(2.914e-12, .00433) 

0.0783 

(.0466, .1230) 

0.1868 

(.1228, .2746) 

0.2686 

(.1785, .3626) 

0.3232 

(.2200, .4356) 

HEEMEE   

 

0.2852 

(.1667, .4881) 

0.2844 

(.1526, .4675) 

0.1466 

(.0755, .2510) 

0.1894 

(.1009, .3109) 

0.2050 

(.1071, .3549) 

0.2122 

(.1161, .3632) 

MEEMEE   

 

-0.7817 

(-1.0810, -.5652) 

0 0.5112 

(.4235, .5906) 

0.3971 

(.3214, .4809) 

.3700 

(.2892, .4474) 

0.3632 

(.2866, .4411) 

LEEMEE   

 

0.4965 

(.3315, .7436) 

0.7156 

(.5325, .8474) 

0.3422 

(.2553, .4350) 

0.4134 

(.3071, .5157) 

0.4250 

(.3050, .5299) 

0.4246 

(.2946, .5385) 

HEELEE   

 

0.0606 

(.0113, .3243) 

1.366e-04 

(2.499e-07, .0685) 

0.0417 

(.0195, .0987) 

0.0994 

(.0495, .1847) 

0.1429 

(.0723, .2674) 

0.1719 

(.0906, .3132) 

MEELEE   

 

0.4236 

(.2628, .6827) 

0.9999 

(.9315, 1) 

0.2950 

(.2126, .3818) 

0.3564 

(.2726, .4425) 

0.3663 

(.2762, .4442) 

0.3660 

(.2853, .4428) 

LEELEE   

 

-0.4842 

(-.7401, -.3168) 

0 0.6633 

(.5494, .7562) 

0.5442 

(.4226, .6503) 

0.4907 

(.3617, .6052) 

0.4621 

(.3348, .5761) 

-2*log-likelihood 601.9066      

 

Duration of States 

HEE 

4.4586 

(3.06010, 6.4530) 

MEE 

4.2904 

(3.3532, 5.2436) 

LEE 

4.2514 

(2.8862, 5.5970) 

   

Figures in parentheses are the lower and upper confidence intervals at 97.5%. 
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Table 9 Transition probabilities from time-homogeneous Markov (with covariates) 

 State table  Transition intensities Time interval in years 

State switch   One Two Three Four 

HEEHEE   

 

150 -0.3851 

(-.5176, -.2865) 

0.655 

(.4802, .8011) 

0.4793 

(.2912, .6817) 

0.3892 

(.2180, .6064) 

0.3431 

(.1846, .5672) 

LEEHEE   

 

54 0.3851 

(.2865, .5176) 

0.3445 

(.1989, .5198) 

0.5207 

(.3183, .7088) 

0.6108 

(.3936, .7820) 

0.6569 

(.4328, .8154) 

HEELEE   

 

45 0.4199 

(.3047, .5788) 

0.1441 

(.0572, .3364) 

0.2178 

(.0849, .4542) 

0.2554 

(.1061, .4976) 

0.2747 

(.1127, .5247) 

LEELEE   

 

111 

 

-0.4199 

(-.5788, .3047) 

0.8559 

(.6636, .9428) 

0.7822 

(.5458, .9151) 

0.7446 

(.5024, .8936) 

0.7253 

(.4753, .8873) 

 

Duration of States 

HEE 

7.31 

(6.3183, 4.7087) 

LEE 

5.69 

(8.2913, 6.6817) 

    

Figures in parentheses are the lower and upper confidence intervals at 97.5% 
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5. Conclusion 

This study examines energy efficiency transitions in China using data from 30 provinces that 

cover 2003–2015. The study combines the stochastic frontier model with the panel Markov-

switching regression. The following results emerged from the study. 

Persistent energy inefficiency is higher than transient energy inefficiency. This is an indication 

that, in China, environmental sustainability and energy security will benefit more from policies 

aimed at the long term, such as energy efficiency regulation, upgrade of technology, and 

promotion of technical and managerial competencies. Also, overall energy efficiency estimates 

reveal significant regional and provincial heterogeneities, and most of the current energy 

efficiency programs are developed and directed towards specific sectors. For example, the Top-

1000 Energy-consuming Enterprise Program is dedicated to the industrial sector, while the 

National Energy Efficiency Design Standard for Public Buildings is aimed at the building 

sector. Policies dedicated to provincial level seem rare. In the national five-year plans, the 

provincial targets for energy intensity and emission intensity reduction are specified; however, 

as discussed in Filippini and Zhang (2016) and Zhang (2017), energy intensity is different to 

energy efficiency. Therefore, the policy makers need to design provincial-level efficiency 

measures to close the regional gap.     

Our second-stage analysis shows that human capital development, FDI, and urbanization 

promote energy efficiency, but income and price reduce it. This suggests the need for several 

indirect complementary policies for efficiency improvement. Although education level relies 

on talents, factors of environment, infrastructural gaps, and financial constraints can impact 

negatively on acquiring the necessary skills and knowledge that are beneficial for energy 

efficiency enhancement and environmental sustainability. Therefore, policies aimed at 

removing infrastructural gaps and financial constraints in China may prove useful for 

enhancing education levels and, hence, improving energy efficiency. For instance, the central 
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government should broaden access to education to poor households in the less developed 

provinces of Guizhou, Gansu, Qinghai, Ningxia, Anhui, Sichuan, and Yunnan by increasing 

government financial aid to the poor in these provinces above the current level and expanding 

the scheme to cover senior high school and other non-fee costs (i.e. travelling and learning 

materials). Similarly, business opportunities may attract FDI to a location (as mentioned by 

this reviewer), but this may be conditional on the economic and political risks as well as the 

level of infrastructure development in these areas. Minimizing these risks and enhancing 

infrastructure development, complemented with tight environmental regulation, should attract 

FDIs that will enhance energy efficiency. Also, these provinces need an economic facelift to 

become preferred FDI destinations. Therefore, prioritizing these areas in the national 

development agenda is crucial not only for economic growth but also for energy efficiency 

improvement. Deregulating the price of energy could equally help to stimulate investment in 

energy efficiency. 

Further, the results show that the high energy-efficient state is less sustainable than the lower 

energy-efficient state; that is, the movement away from the frontier is more persistent than 

movement towards the frontier, indicating that energy efficiency policies or programs in China 

lack robustness. In order to increase the persistence of the high energy-efficient state, the 

government couldconsider the following strategies: (1) national energy efficiency policies 

should consider the entire economic system instead of focusing on some key sectors or 

products. In this way, the economy can harness the full benefits of energy efficiency; (2) the 

set-up of energy efficiency policies should be made flexible, for example by implementing a 

three-year regular update to accommodate behavioural changes that affect consumption and 

production patterns. This can provide opportunities for regular review of policies and 

technological upgrade and repair; (3) beyond the minimum binding target set for energy 

conservation, the central government should provide incentives such as one that is tied to local 



34 
 

budget allocation for provinces that are willing to go beyond the set target; (4) the government 

should also set energy consumption reduction targets; (5) the government should complement 

the current energy efficiency policies with energy sufficiency policies that aim at limiting the 

growth in energy services. This can be achieved either by travelling less, using less light, 

encouraging lower speeds and building smaller houses, or substituting energy services such as 

bicycles for cars and thermal underclothing for central heating, etc.   
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Appendix 

A. Levin-Lin-Chu unit root test 

 EF lfdi ledu lypc ur lgpl P 

LLC 

stats 

-9.787*** -7.481*** -10.662*** -7.180*** -14.579*** -9.686*** -7.796*** 

 

B. Choice of Markov model 

 Time-

homogeneous 

Markov 

Time-

inhomogeneous 

Markov 

Null hypothesis Log-likelihood 

ratio statistics 

-2*log-likelihood 639.2728 632.8176 There is no 

significant time-

inhomogeneity 

6.4552 (df=6) 

[0.3742] 

 

 

C. Choice of Markov model 

 Time-

homogeneous 

Markov (no 

covariates) 

Time-

homogeneous 

Markov (with 

covariates) 

Null hypothesis Log-likelihood 

ratio statistics 

-2*log-likelihood 639.2728 601.9066 Model with no 

covariates fit better 

than model with 

covariates 

37.3663 (df=24) 

[0.0402] 

 

 

D. Choice of Markov model 

 AIC -2*log-likelihood Log-likelihood ratio 

statistics 

2-state model 
 

3-state model 

427.2319 

 

651.2728 

423.2319 

 

639.2728 

-216.0409 (df=4) 

[1.000] 

 

 

 

E. Choice of Markov model 

 Time-

homogeneous 

Markov 

Time-

inhomogeneous 

Markov 

Null hypothesis Log-likelihood 

ratio statistics 

-2*log-likelihood 423.2319 418.1325 There is no 

significant time-

inhomogeneity 

5.0994 (df=2) 

[0.0781] 

 

 

F. Choice of Markov model 

 Time-

inhomogeneous 

Markov (no 

covariates) 

Time-

inhomogeneous 

Markov (with 

covariates) 

Null hypothesis Log-likelihood 

ratio statistics 

-2*log-likelihood 418.1325 409.2736 Model with no 

covariates fit better 

than model with 

covariates 

8.8589 (df=8) 

[0.3543] 

 

 


