
Munich Personal RePEc Archive

Cholesky-ANN models for predicting

multivariate realized volatility

Bucci, Andrea

Università Politecnica delle Marche

July 2019

Online at https://mpra.ub.uni-muenchen.de/95137/

MPRA Paper No. 95137, posted 16 Jul 2019 15:45 UTC

Cholesky-ANN models for predicting multivariate realized volatility

Andrea Bucci*

July 9, 2019

Abstract

Accurately forecasting multivariate volatility plays a crucial role for the finan-

cial industry. The Cholesky-Artificial Neural Networks specification here pre-

sented provides a twofold advantage for this topic. On the one hand, the use

of the Cholesky decomposition ensures positive definite forecasts. On the other

hand, the implementation of artificial neural networks allows to specify nonlin-

ear relations without any particular distributional assumption. Out-of-sample

comparisons reveal that Artificial neural networks are not able to strongly out-

perform the competing models. However, long-memory detecting networks, like

Nonlinear Autoregressive model process with eXogenous input and long short-

term memory, show improved forecast accuracy respect to existing econometric

models.

Keywords: Neural Networks, Machine Learning, Stock market volatility, Realized Volatility

JEL classification: C22, C45, C53, G17

*Department of Economics and Social Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy.

email: a.bucci@univpm.it

1 Introduction

Forecasting the volatility of a portfolio has assumed a crucial role in the financial markets,

holding the attention of a stream of econometric literature.

This paper draws closely on the contributions made on volatility models and artificial

neural networks. Particularly, a strand of literature, e.g. Maheu and McCurdy (2002) and

Anderson, Nam, and Vahid (1999), has demonstrated that volatility asymmetrically re-

sponds to unexpected news, and that linear methods may not be adequate to model it. A

first attempt to model nonlinearities in multivariate conditional volatility has been pro-

vided by Kwan, Li, and Ng (2005), which relies on a multivariate threshold GARCH model.

Recently, the introduction of a non-parametric measure, like realized volatility, has allowed

the implementation of different multivariate models, like the vector smooth transition au-

toregressive model (Bucci, Palomba, and Rossi (2019)) and the artificial neural networks

(ANN) with multiple target variables.

The attention of this paper is focused on the use of neural networks in finance. ANNs

have been widely applied in economics and finance, since they are capable of detecting non-

linear dependencies and long-term persistence without any assumption on the distribution

of the target variables. However, despite the large amount of papers that refer to the appli-

cation of ANNs for financial time series forecasting (e.g. White (1988), Khan (2011)), only

few works focus specifically on their application on forecasting conditional volatility. The

majority of these studies foresees the combination of a GARCH model with a NN architec-

ture, see for example Donaldson and Kamstra (1997) and Hu and Tsoukalas (1999), with

few exceptions, e.g. Fernandes, Medeiros, and Scharth (2014), Vortelinos (2017) and Bucci

(2019). None of these works is designed for the multivariate context.

Extending the above-mentioned literature, this study seeks to understand whether

ANNs provide more accurate forecasts than existing models in a multivariate framework.

In doing so, the analysis relies on both feed-forward and recurrent neural networks. Specif-

ically, recurrent neural networks (RNN), which are able to detect long-term dependencies

through an architecture replicating the internal feedback of biological neural networks, are

analysed. The target variables are modeled through a set of neural networks, including the

feed-forward neural network (FNN), the Elman neural network (ENN), the Jordan neural

network (JNN), the Nonlinear Autoregressive model process with eXogenous input (NARX)

neural network and a long short-term memory (LSTM) neural network.

The approach developed in this paper involves the decomposition of covariance matrices

1

into Cholesky factors. The idea of modelling Cholesky factors follows the works of Halbleib-

Chiriac and Voev (2011) and Becker, Clements, and O’Neill (2010). The use of the Cholesky

factors ensures positive definite forecast matrices without the imposition of parameter re-

strictions.

Moreover, in this paper realized covariance matrices assume a crucial role in the imple-

mentation of the Cholesky-ANN procedure. As proposed by Barndorff-Nielsen and Shep-

hard (2004) and Andersen, Bollerslev, Diebold, and Labys (2001), high-frequency data may

be used to non-parametrically estimate the latent conditional volatility of a portfolio, mak-

ing the multivariate volatility effectively observable and moldable with existing time series

models and neural networks. The realized covariance matrices, computed from the vector

of daily returns, have been employed to study the evolution of realized volatility over a

monthly horizon, making it possible to analyze the relationship with economic factors that

are likely to influence the dynamic behavior of volatility at lower frequencies.

The rest of this paper is structured as follows: Section 2 illustrates Cholesky-ANN

procedure; Section 3 discusses the neural network specification selection, while Section

4 provides the empirical results of the out-of-sample forecasting accuracy; finally, Section 5

presents the conclusions.

2 Cholesky-ANN

The estimation of realized covariance matrices is usually not straightforward, since the es-

timated matrices should be ensured positive semi-definite. Two approaches are commonly

used to guarantee positive semidefiniteness: constrained optimization and unconstrained

optimization through matrix parametrization, like Cholesky decomposition or matrix log-

arithmic transformation. Here, according to similar studies (Halbleib-Chiriac and Voev

(2011); Becker, Clements, and O’Neill (2010); Bauer and Vorkink (2011)), an unconstrained

approach is applied. Specifically, realized covariance matrices are parametrized through

Cholesky decomposition, which represents a parsimonious way for obtaining positive defi-

nite estimated matrices without special constraints.

The model here presented is used to forecast the stock returns volatility of n stocks.

Assuming that r i,t is the n×1 vector of daily log-returns, the realized covariance matrix

can be computed as follows

RCt =

Nt
∑

i=1

r i,tr
′
i,t (1)

2

where RCt has been proven to be a consistent estimator for the monthly conditional co-

variance matrix of log returns by Barndorff-Nielsen and Shephard (2002) and Andersen,

Bollerslev, Diebold, and Labys (2003), and Nt is the number of trading days in the month t.

The realized covariance matrix is then decomposed applying the Cholesky decomposition,

such that

RCt = CtC
′
t (2)

where Ct is a unique n×n lower triangular matrix. The Cholesky factors are obtained by

yt = vech(Ct) (3)

where yt is a vector of m = n(n+1)/2 elements. Once obtained the vector of m Cholesky

factors, they can be modelled accordingly.

Econometric literature has proved that financial volatility and its underlying processes

are often nonlinear in nature, see Martens, De Pooter, and Van Dijk (2004). Some authors,

Halbleib-Chiriac and Voev (2011) and Heiden (2015) for example, have shown that covari-

ance matrices, and their Cholesky factors as well, exhibit long-term dependencies. As a

result, linear models may not be suited to study the behavior of this phenomena. Extending

in the multivariate context a previous paper (see Bucci (2019)), I decided to approximate

the relationship between the elements of the Cholesky decomposition and a set of macroe-

conomic and financial variables through a universal approximator such as artificial neural

networks (ANN) with multiple outputs.

Neural networks (NN) have attracted much attention as new method for estimating and

forecasting time series in many fields of study, including economics and finance. They can

be seen as a non-parametric statistical method which replicates the architecture of the hu-

man brain by grouping artificial neurons (or nodes) in connected layers. By modifying the

number of layers or nodes in each layer, a wide range of econometric models can be approx-

imated. In particular, empirical research demonstrated that ANNs are capable of detecting

nonlinearities without a priori information about the relations between the dependent vari-

able(s) and its(their) determinants and without any distribution assumption.

Typically, an ANN consists of three layers: an input layer, which contains the input vari-

ables (the equivalent of biological sensors), one or more hidden layers, and an output layer,

with one or more output variables. The nodes of a layer connect with nodes of the succeed-

ing layer through weights (parameters) and an activation function. The use of an activation

function, like a logistic or hyperbolic tangent function, allows to introduce nonlinearity in

the model and to replicate the way biological neurons are activated.

3

The weights are trained from the data by minimizing the mean squared error, usually

through a backpropagation algorithm (BP). Once the input and the output vectors are read

by the BP algorithm, the training starts with random weights. After calculating the mean

squared error between the observed and the predicted output, the network adjusts the pa-

rameters in the direction reducing the error, and so on until there is no improvement.

In econometrics, a significant part of the model specification consists in identifying the

explanatory variables and the number of lags leading the most accurate forecasts. When

constructing a neural network, the overall task could be much longer, since the process does

not only involve the choice of inputs, but also the identification of the network architecture.

Firstly, a neural network researcher should choose the type of neural network to be

implemented: feed-forward or recurrent. In feed-forward neural network (FNN), the in-

formation moves forward from a layer to the next one. Assuming a single hidden layer

architecture, a FNN with multiple outputs can be depicted as in Figure 1.

Figure 1: FNN with two target variables, a single hidden layer with two hidden nodes and

three input variables (including the bias)

The output function of the k-th target variable, with k = 1, . . . , l (where l is the number of

target variables, e.g. l = 2 in Figure 1), for FNN with a single hidden layer can be specified

as follows:

ŷk,t = F
(

β0,k +

q
∑

j=1

G
(

xtγ
′
j

)

β j,k

)

, (4)

where G is the hidden layer activation function, β j,k is the weight from the j-th hidden unit

to the output unit, xt =

{

1, x1,t, . . . , xs,t

}

is the 1×m vector of input variables at time t (with

4

m = s+1), β0,k is the bias of the k-th output unit, γ j =

{

γ1, j, . . . ,γm, j

}

is the vector of weights

of dimension 1×m connecting the input variables and the j-th hidden neuron and q is the

number of hidden units.

Generally, F is an identity activation function, such that F(a) = a. Equation (4) takes

then the following form:

ŷk,t =β0,k +

q
∑

j=1

G
(

xtγ
′
j

)

β j,k. (5)

In order to replicate the activation state of a biological neuron, all neural networks use non-

linear activation functions at some point, usually through G. An ideal activation function

should be continuous and differentiable to implement the backpropagation algorithm. The

most common choices are a logistic and a hyperbolic tangent function.

The logistic cumulative function is bounded between 0 and 1, where a value closer to 0

(1) equals to a low (high) activation level, and can be specified as

G(x)=
1

1+ e−x
.

The hyperbolic tangent function is better suited for variables that assume negative values

and is bounded between -1 and 1. It can be written as

G(x)=
ex − e−x

ex + e−x
.

Both the functions have been used in the present work.

An interesting feature of biological neural networks is the presence of internal feedback.

Such feedback has been implemented in recurrent neural networks (RNN), where the infor-

mation is propagated from a layer to the succeeding layer but also back to earlier layers. In

this way, RNNs allow to preserve long-memory of time series and capture long-term depen-

dence with a restrained number of parameters. Therefore, in practical applications RNNs

are more appropriate than FNN to forecast nonlinear time series.

This analysis relies on four different types of recurrent neural networks: Elman, Jordan,

long short-term memory (LSTM) network and nonlinear autoregressive exogenous (NARX)

neural network.

In an Elman neural network, introduced by Elman (1990), the hidden nodes with a time

delay are used as additional input neurons. Assuming an identity output function and a

single lag for the hidden nodes, the output of the Elman network with multiple outputs can

be represented as in Figure 2 and can be written as follows

ŷk,t =β0,k +

q
∑

j=1

ht jβ j,k (6)

5

ht j =G
(

xtγ
′
j +ht−1δ

′
j

)

j = 1, . . . , q

where ht−1 is the vector of lagged hidden units and δ j is the vector of connection weights

between the j-th hidden node and the lagged hidden nodes.

Figure 2: ENN with a single hidden layer

An alternative way to implement internal feedback is specifying a Jordan neural net-

work (JNN), proposed by Jordan (1986). As shown in Figure 3, a JNN exhibits a feedback

from the output to the input layer. The lagged output units are then used as additional

neurons. The way the output units are fed back has similarities with GARCH models, mak-

ing JNN an appetible way to forecast conditional volatility. Accordingly, the output of the

Jordan neural network (JNN) with multiple target variables can be computed as

ŷk,t =β0,k +

q
∑

j=1

G
(

xtγ
′
j +

l
∑

k=1

ŷk,t−1ψ j,k

)

β j,k (7)

where ψ j,k is the weight between the lagged output and the j-th hidden unit for the target

variable k.

6

Figure 3: JNN with a single hidden layer

Elman and Jordan neural networks, because of the presence of internal feedbacks, are

capable of detecting long-range relations. For this reason, such models have many potential

applications in economics and finance, see Kuan and Liu (1995) and Tino, Schittenkopf, and

Dorffner (2001).

Although traditional RNNs are able to model and forecast nonlinear time series with

great accuracy, they present several pitfalls. On one side, time lags of internal feedbacks

should be pre-determined by the researcher. On the other side, RNNs still suffer from the

presence of the vanishing gradient problem1. To overcome these issues, two further ways

to define nonlinear and persistent relationships through neural networks can be specified,

namely the NARX neural network and the long short-term memory (LSTM) neural network.

NARX neural network can be seen as an augmented version of FNN or JNN. In fact, it

allows to directly include lagged observed target variables or predicted output in the input

layer. In doing so, direct connections from the past mitigate the vanishing gradient problem

and capture long-term dependence.

There exist two ways to specify a NARX network:

• NARX-P, through a parallel (P) specification the predicted output units at time t are

used as additional inputs in a FNN architecture at time t+1, similarly to a JNN;

1The vanishing gradient problem occurs when neural networks are trained through a gradient based algo-

rithm. When backpropagation is applied, the gradient tends to get smaller and smaller, almost vanishing, as

the iteration process goes forward. As a consequence, the learning process may be particularly slow and a local

minimum may be reached.

7

• NARX-SP, through a semi-parallel (SP) specification d lags of the real target variables

are included in the set of explanatory variables in the input layer. This architecture

behaves like a FNN where the input units are enriched by lagged observed outputs.

Throughout this paper, I will consider only a NARX-SP architecture with zero input or-

der and a multi-dimensional output, as depicted as in Figure 4. The output of this network

can be specified as follows:

yk,t =β0,k +

q
∑

j=1

G
(

xtγ
′
j +

l
∑

k

nd
∑

d

yk,t−dψk,d, j

)

β j,k (8)

where ψk,d, j is the connection weight of the d-th delay of output unit k.

Figure 4: Architecture of a NARX network

The aforementioned recurrent neural networks are not the only architectures able to

replicate the way biological neurons remember through the internal feedback. In fact, the

most successful RNN to capture long-term dependencies is the long short-term memory net-

work (LSTM), proposed by Hochreiter and Schmidhuber (1997). The structure of a LSTM

is similar to other RNNs with an input layer, a recurrent hidden layer and an output layer.

However, in order to retain relevant information and to discard unnecessary parts, the hid-

den nodes are replaced by a memory block (see Figure 5), where a mechanism of gating

allows to control the information flow in the block.

8

Figure 5: LSTM neural network

As depicted in Figure 6, each memory block is a self-connected system of three gates:

input, forget and output. Compared to traditional RNNs, a forget gate is added to the

memory block to prevent the gradient from vanishing or exploding, see also Hsu (2017). The

gating mechanism allows the network to learn which information should be maintained

and which not. The structure of a LSTM network with multiple target variables can be

formalized as below:

fk,t =G
(

Wk, f hk,t−1 +Uk, f xt +bk, f

)

(9)

ik,t =G
(

Wk,ihk,t−1 +Uk,ixt +bk,i

)

(10)

c̃k,t = C
(

Wk,chk,t−1 +Uk,cxt +bk,c

)

(11)

ck,t = fk,t ⊙ ck,t−1 + ik,t ⊙ c̃k,t (12)

ok,t =G
(

Wk,ohk,t−1 +Uk,oxt +Vk,ock,t +bk,o

)

(13)

hk,t = ok,t ⊙C
(

ck,t

)

(14)

ŷk,t = hk,t (15)

where Wi, Wf , Wc, Wo, Ui, U f , Uc and Uo are the weight matrices of input, forget, memory

cell state, and output gates respectively, Vc is the cell state weight matrix, ŷk,t is the k-th

output of the neural network, bi, b f , bc and bo are the biases of each gate, G is a sigmoid

or logistic function and C is a hyperbolic tangent function.

9

Figure 6: Basic LSTM memory block

LSTM is particularly useful, among others, in situations where the time series exhibits

a highly persistent behavior. For such reasons, it has been broadly applied in financial

studies, like Xiong, Nichols, and Shen (2016), Bao, Yue, and Rao (2017) and Kim and Won

(2018).

All the aforementioned types of neural networks are used to produce forecasts of the

Cholesky elements of Ct. Once the forecast of the lower triangular matrix, Ĉt+k, has been

obtained, the forecast realized covariance matrix can be re-constructed as

RCt+k = Ĉt+kĈ′
t+k,

ensuring a positive definite forecast of the covariance matrix, for n < Nt.

3 Neural Networks Architecture

When specifying a neural network architecture, the researcher should identify the set of

explanatory variables used as inputs, define the number of hidden layers and hidden nodes,

and choose the activation function and the training algorithm for the definition of the con-

nection weights.

The set of determinants is usually gathered from the related literature. From an em-

pirical perspective, several studies studies found that return volatility is countercyclical,

10

see Schwert (1989), Mele (2007), Paye (2012) and Christiansen, Schmeling, and Schrimpf

(2012). Here, the most part of the candidates as explanatory variables is based on excess

return predictability determinants. Following Mele (2007) and Welch and Goyal (2008), I

include in the analysis the dividend-price (DP) and the price-earnings ratio (EP), the equity

market return (MKT) and the Fama and French (1993) factors (HML, SMB and STR), which

typically influence risk premium. Since the set of independent variables include the returns

of two bond Futures, also the 1-month T-Bill rate (TB) and the term spread difference (TS)

between long-term and short-term bond yields are used as additional inputs. As in Schw-

ert (1989) and Engle, Ghysels, and Sohn (2009), the set of predictors is also enriched by

macroeconomic variables, as inflation rate (INF) and industrial production growth (IP). Fi-

nally, the default spread has been included as a proxy for the credit risk. All the exogenous

variables have been lagged one time to alleviate the endogeneity problem.

The definition of the number of hidden nodes and layers is more complicated. In fact,

there is no theoretical basis to determine the appropriate number of hidden layers or neu-

rons in a network. According to other studies and to the guidelines provided by Xiang, Ding,

and Lee (2005), a single-hidden layer architecture is sufficient to approximate a wide range

of nonlinear functions. Thus, in this paper a single hidden layer has been implemented.

Conversely, a poor number of hidden units does not allow to detect complex nonlinear pat-

terns in the data. However, when too many hidden units are included in the architecture,

the network may lead to overfitted out-of-sample forecasts and the number of connection

weights may significantly increase. In order to select the optimum number of weights, I

compare the sum of the RMSE for different architecture where the number of hidden nodes

varies from 1 to 8, as suggested by Tang and Fishwick (1993). Similarly to nonlinear esti-

mation techniques, the risk of a local minimum is high also for neural networks. In fact, the

training procedure is sensitive to the initial values of the weights randomly selected. To as-

sess the performance of the network, the parameters have been trained with 300 different

starting values. Since the architecture of a LSTM is significantly different from the rest of

the neural networks, a number of 100 memory blocks is chosen in line with similar works.

As shown in Table 1, a different number of hidden nodes provides very different results

in terms of cumulated RMSE. For FNN, the measure of performance is lower for a number

of hidden neurons equal to 5. ENN, ENN with lagged target variables and NARX network

exhibit the best performance when 3 hidden nodes are used, while JNN and JNN with lags

seem to forecast better with 6 and 2 hidden nodes, respectively.

When implementing a neural network with multiple target variables, the risk of a lo-

11

cal minimum could be significant. Accordingly, the connection weights have been trained

with a gradient descent with momentum and adaptive learning rate (gdx) algorithm for

all the networks, except for the NARX neural network. In fact, the NARX network has

been trained with a Bayesian Regularization (BR) algorithm, which allows to obtain robust

forecasts with a NARX network, as suggested by Guzman, Paz, and Tagert (2017).

Finally, all the activation functions, G, in Equation (4), (6), (7) and (8), are logistic

functions.

Table 1: RMSE for increasing number of hidden nodes

The number of hidden neurons, the cumulated RMSE of the m series, the number of connection weights and the delays of the

dependent variables used as inputs are included in the table. The maximum number of iterations is equal to 1000. ENNlags

and JNNlags are ENN and JNN with lagged target variables as additional inputs. The training sample is approximately equal

to the 70% of the whole sample (from May 2007 to December 2017), while the testing sample is equal to 128 observations.

Model N. Hidden Performance N. weights Lags Model N. Hidden Performance N. weights Lags

FNN

1 0.0762 24 -

NARX

1 0.0640 30 1

2 0.0771 42 - 2 0.0564 54 1

3 0.0732 60 - 3 0.0521* 78 1

4 0.0727 78 - 4 0.0561 102 1

5 0.0674* 96 - 5 0.0560 126 1

6 0.0686 114 - 6 0.0550 150 1

7 0.0698 132 - 7 0.0575 174 1

8 0.0709 150 - 8 0.0574 198 1

ENN

1 0.0743 25 -

ENNlags

1 0.0739 31 1

2 0.0706 46 - 2 0.0729 58 1

3 0.0652* 69 - 3 0.0666* 87 1

4 0.0708 94 - 4 0.0718 118 1

5 0.0743 121 - 5 0.0776 151 1

6 0.0751 150 - 6 0.0866 186 1

7 0.0759 181 - 7 0.0845 223 1

8 0.0911 214 - 8 0.0865 262 1

JNN

1 0.0763 30 -

JNNlags

1 0.0735 36 1

2 0.0769 54 - 2 0.0648* 66 1

3 0.0720 78 - 3 0.0667 96 1

4 0.0665 102 - 4 0.0657 126 1

5 0.0690 126 - 5 0.0668 156 1

6 0.0646* 150 - 6 0.0693 186 1

7 0.0682 174 - 7 0.0672 216 1

8 0.0696 198 - 8 0.0725 246 1

* denotes the lowest MSE

12

4 Empirical Results

The realized covariance matrices are computed according to Equation (1) and are based on

the daily returns on the S&P 500, on the 10-year Treasury note future and on the 1-month

Treasury bond future, both traded on the Chicago Board of Trade (CBOT)2. Thus, there are

T = 428 monthly realized covariance matrices.

Table 2 shows summary statistics for the realized volatility and co-volatility series, and

for the Cholesky factors of the covariance matrices. The volatility of stock market is much

larger than average volatility of treasury futures. As is well known, realized variances

and covariances are highly persistent for stock market, as shown by the autocorrelation

coefficients.

The series of the Cholesky factors preserve the persistence exhibited by the original

covariance series, as suggested by Andersen and Bollerslev (1997) and Andersen, Bollerslev,

Diebold, and Ebens (2001), while unit root tests provide mixed results on the hypothesis of

stationary series. As proved by the skewness and the excess kurtosis of the time series, the

distribution of the Cholesky factors is far from being normal, for this reason a method free

from distribution assumptions, such as neural networks, could provide improved forecasts.

2Future contracts provide two major advantages: they are highly liquid and they permits to define bond

returns without approximating them by yields.

13

Table 2: Descriptive statistics Realized Covariance and Cholesky factors series

The table includes the mean, the standard deviation, skewness, excess kurtosis and the sample autocorrelation. The last

three columns report the p-value of the Dickey-Fuller (ADF) with constant (c) and with constant and trend (c-t) and the KPSS

test statistics.

Realized Variances

ADF

Symbol Mean St.Dev Skew. Ex. Kurt. ρ1 ρ2 c c-t KPSS

SP 25.526 50.284 8.54 95.36 0.44 0.31 0.0000 0.0000 0.1099

10Y 4.135 6.927 13.46 229.6 0.11 0.10 0.0000 0.0000 0.5813∗∗

1m 10.190 17.739 14.16 242.9 0.09 0.07 0.0000 0.0000 0.1201

Realized Covariances

ADF

Symbol Mean St.Dev. Skew. Ex. Kurt. ρ1 ρ2 c c-t KPSS

SP-10Y -0.090 5.616 -1.164 12.22 0.55 0.41 <0.001 <0.001 1.9393∗∗∗

SP-1m -0.284 9.218 -0.829 8.500 0.57 0.42 <0.001 <0.001 2.0829∗∗∗

10Y-1m 6.023 10.667 15.22 275.9 0.08 0.08 <0.001 <0.001 0.4254∗

Cholesky Factors

ADF

Symbol Mean St.Dev. Skew. Ex. Kurt. ρ1 ρ2 c c-t KPSS

Cholesky 1 4.338 2.592 3.46 19.68 0.63 0.52 <0.001 <0.001 0.1433

Cholesky 2 0.124 0.899 0.13 0.246 0.70 0.67 0.075 <0.001 2.5495∗∗∗

Cholesky 3 1.633 0.805 4.81 48.06 0.38 0.24 0.031 <0.001 0.8056∗∗∗

Cholesky 4 0.149 1.457 -0.03 -0.09 0.72 0.71 0.206 <0.001 2.6791∗∗∗

Cholesky 5 2.380 1.149 6.48 81.03 0.31 0.27 <0.001 <0.001 0.3891∗

Cholesky 6 0.823 0.626 9.87 149.5 0.26 0.24 <0.001 <0.001 0.5334∗∗

Where: *** - p-value < 1% , ** - p-value < 5%, * - p-value < 10%

KPSS critical values: 0.348 (10%), 0.462 (5%) and 0.742 (1%)

14

The aim of the paper is to produce more accurate forecasts than existing econometric

models in a multivariate context. To this end, time series were first divided in an in-sample

set, from May 1982 to April 2007, and an out-of-sample set, from May 2007 to December

2017 (128 monthly observations), which equals to one-third of the whole sample. The one-

step-ahead out-of-sample forecasts from the neural networks model are compared with the

forecasts from a Cholesky-VAR (Vector Autoregressive) model with and without predictors,

a VAR on the original realized covariance matrices, and a DCC model.

The evaluation of the out-of-sample forecasts is a crucial aspect for the choice of the

model best fitting the data. Common problems arising in the comparison of volatility fore-

casts concern the latent nature of the target variable and the choice of an adequate loss

function. The former issue has been addressed by using a volatility proxy, such as realized

volatility. Thus, throughout the paper volatility is assumed as observable. In regard to

the latter, Patton (2011) provided the necessary and sufficient conditions for a loss func-

tion. Based on these conditions, the loss function here used are the MSE loss function for

univariate comparison, and Frobenius distance between matrices and Euclidean distance

between vectors for multivariate comparison, such that

LMSE = (σ̂t −ht)
2

LF (Σ̂t,Ht)=∥ Σ̂t −Ht ∥
2
F

LE(σ̂t,ht)= vech(Σ̂t −Ht)
′vech(Σ̂t −Ht)

where σ̂t is the single element of the volatility matrix proxy, Σ̂t, while ht is the single

element of the variance matrix forecast, Ht.

The performance is evaluated for each element of the covariance matrices through Mean

Absolute Error (MAE), the Root Mean Squared Error (RMSE) and through the equal pre-

dictive accuracy test by Diebold and Mariano (1995) (DM). The DM test is also performed

in the multivariate framework through the multivariate loss functions above mentioned.

In Table 3, the accuracy measures are computed for each covariance series. For several

realized covariances, MAE and RMSE are minimum for the NARX and the LSTM neural

networks. Not surprisingly, neural networks provide overall better results than linear mod-

els for the majority of the series. Moreover, the use of the Cholesky decomposition seems to

improve the out-of-sample forecasting accuracy.

The DM tests for the single elements of the covariance matrices have been computed

using the forecasts from the VAR model without exogenous variables as benchmark model.

It should be remembered that a positive and significant test implies that the benchmark

15

model performs worse than the compared model. In the most of the pairwise comparison

in Table 4, the loss difference is positive but almost never significant. Recurrent neural

networks are able to outperform VAR model only in forecasting the realized variance of S&P

500, while the test provides not significant loss differences for all the other time series.

Additionally, DM test has been conducted on multivariate loss function differences, as

shown in Table 5, together with the error measured with Frobenius and Euclidean dis-

tances. VAR, VARExo and DCC exhibit the highest error among the compared models.

The best performance is shown by the JNN with lagged target variables and NARX mod-

els, underlying the relevance of detecting long-term persistence with an adequate archi-

tecture. When considering the DM on multivariate loss functions, the test statistics is

positively significant only when Euclidean norm is applied and only for three models: VAR

on Cholesky factors with exogenous variables, JNN with lagged realized covariances as in-

puts and LSTM. In the multivariate context, NARX is able to outperform all the competing

models, except for the DM-Euclidean statistics.

When looking at each single element of the covariance matrices,only minor gains are

found from using neural networks in forecasting realized covariances. In a multivariate

context, the choice of the forecasting method seems to slightly affect the forecasting ac-

curacy if a single target variable is considered. Conversely, there is evidence that the re-

current neural networks, especially LSTM and NARX networks, provide the best realized

covariance forecasts when the whole set of forecasts is evaluated. Interestingly, neural net-

works are shown to be particularly useful to forecast highly persistent series, once again

underlying the relevance of an approach suited for detecting long-term dependencies.

A reason why neural networks cannot outperform competing models in this context can

be found in the presence of unit roots in several Cholesky factor series, such as Cholesky 2,

Cholesky 3 and Cholesky 4, on which the networks are trained. Furthermore, the lack of a

significant difference in the forecasting accuracy with econometric models can be dictated

by the large number of parameters respect to the number of observations, which may lead

to poor forecasting performance.

16

Table 3: Out-of-sample Forecasts Evaluation

MAE

SP SP-10Y SP-1m 10Y 10Y-1m 1m

VAR 0.2860 0.0361 0.0717 0.0405 0.0558 0.0977

VARExo 0.3119 0.0352 0.0727 0.0393 0.0515 0.0901

CholVAR 0.2136 0.0401 0.1694 0.0235 0.0794 0.0635

CholVARExo 0.1765 0.0323 0.1480 0.0264 0.0740 0.0636

DCC 0.3292 0.0410 0.0734 0.0332 0.0521 0.1068

FNN 0.1924 0.0385 0.1528 0.0276 0.0619 0.0508

ENN 0.2077 0.0306 0.1491 0.0238 0.0966 0.0501

ENNlags 0.2653 0.0321 0.1546 0.0214 0.0784 0.0501

JNN 0.1877 0.0425 0.1632 0.0268 0.0634 0.0517

JNNlags 0.1611 0.0300 0.1682 0.0280 0.0670 0.0556

LSTM 0.1488 0.0385 0.1613 0.0215 0.0513 0.0406

NARX 0.1485 0.0280 0.1529 0.0243 0.0867 0.0456

RMSE

SP SP-10Y SP-1m 10Y 10Y-1m 1m

VAR 0.6073 0.0621 0.1241 0.1126 0.1653 0.3190

VARExo 0.6822 0.0770 0.1675 0.0722 0.0729 0.1505

CholVAR 0.4794 0.0633 0.2192 0.0365 0.0997 0.1935

CholVARExo 0.3886 0.0682 0.2105 0.0403 0.0103 0.1773

DCC 0.6896 0.0684 0.1173 0.0467 0.0656 0.1588

FNN 0.4327 0.0604 0.2070 0.0403 0.0845 0.1190

ENN 0.3383 0.0636 0.1834 0.0401 0.1229 0.1099

ENNlags 0.4442 0.0528 0.1962 0.0384 0.0912 0.1182

JNN 0.4017 0.0736 0.2557 0.0366 0.0831 0.1196

JNNlags 0.3291 0.0621 0.2151 0.0400 0.0879 0.1111

LSTM 0.4220 0.0600 0.2192 0.0385 0.0727 0.0909

NARX 0.3089 0.0568 0.2243 0.0375 0.1038 0.1136

Values have been multiplied by 102.

17

Table 4: Diebold-Mariano test - MSE Loss Function

SP SP-10Y SP-1m 10Y 10Y-1m 1m

VARExo -0.6309 -0.8942 -1.0472 0.6589 0.8982 0.9178

CholVAR 1.4217 -0.3653 -4.8336∗∗∗ 1.0301 0.7108 1.0532

CholVARExo 1.7873∗ -0.8061 -3.3350∗∗∗ 1.0123 0.7099 1.0283

DCC -0.8045 -1.1784 0.3256 0.9517 0.9403 0.8879

FNN 1.3850 0.3362 -3.4702∗∗∗ 1.0028 0.8234 1.0168

ENN 1.6905∗ -0.1670 -3.0251∗∗∗ 1.0039 0.4957 1.0410

ENNlags 1.4462 1.9721∗ -3.3147∗∗∗ 1.0167 0.7759 1.0230

JNN 1.6830 -1.0598 -3.2517∗∗∗ 1.0288 0.8332 1.0149

JNNlags 1.9081∗ 0.0013 -3.6584∗∗∗ 1.0052 0.7994 1.0382

LSTM 1.8202∗ 0.4082 -3.5759∗∗∗ 1.0158 0.8995 1.0853

NARX 1.8647∗ 1.1590 -3.2338∗∗∗ 1.0239 0.6771 1.0326

Table 5: Statistical Evaluation with Multivariate Loss Functions

Distance Diebold-Mariano

Frobenius Euclidean Frobenius Euclidean

VAR 0.00298 0.0825 - -

VARExo 0.00297 0.0823 -1.5988 -1.6168

CholVAR 0.00235 0.0651 -1.0629 0.3177

CholVARExo 0.00201 0.0558 0.7739 1.7458∗

DCC 0.00296 0.0820 -0.5772 -0.6924

FNN 0.00207 0.0573 0.0154 0.7305

ENN 0.00174 0.0481 -0.7226 -0.1151

ENNlags 0.00209 0.0579 0.3222 1.1033

JNN 0.00206 0.0571 0.5635 1.4634

JNNlags 0.00173 0.0480 0.8781 1.7483∗

LSTM 0.00202 0.0559 0.8230 1.8269∗

NARX 0.00170 0.0472 1.4543 1.5659

18

5 Conclusions

This study represents the first attempt to model multivariate volatility through artificial

neural networks, in order to detect nonlinear dynamics and long-term dependencies in the

realized covariance series. The use of such models allows to detect possible nonlinear re-

lationships without the a priori knowledge of the distribution of the variables at a signif-

icantly reduced computational effort. However, this approach is not costless, since with

an increasing number of hidden layers and hidden nodes the number of parameters to be

trained and the risk of a local minimum increase rapidly.

The main purpose of the paper is to understand whether the use of the Cholesky de-

composition combined with the implementation of neural networks, specifically recurrent

neural networks, is able to outperform traditional econometric method in forecasting re-

alized covariance matrices. At this end, the out-of-sample forecasting accuracy of a set of

neural networks is compared with existing econometric methods.

Several conclusions emerge from the statistical evaluation of the out-of-sample fore-

casts. First, contrary to the literature on univariate models, NNs show a modest gain in

forecasting accuracy when applied to multivariate persistent time series. Second, long-term

dependence detecting models, like NARX and LSTM, seem to provide the best forecasting

performance, as underlined by the comparison through multivariate loss functions.

Moreover, the use of the Cholesky decomposition seems to improve the forecasting accu-

racy respect to models which are not based on a parametrization, like the VAR, the VARExo

and the DCC model.

Future works could implement different parametrizations of the realized covariance

matrices, like the logarithmic transformation used by Bauer and Vorkink (2011). A further

analysis could rely on different input variables and different target variables, like the ex-

change rate volatility or the crude oil volatility. Another interesting application would be

using such models with realized covariance matrices sampled at higher frequencies.

19

References

ANDERSEN, T. G., AND T. BOLLERSLEV (1997): “Heterogeneous information arrivals and

return volatility dynamics: Uncovering the long-run in high frequency returns,” Journal

of Finance, 52, 975–1005.

ANDERSEN, T. G., T. BOLLERSLEV, F. X. DIEBOLD, AND H. EBENS (2001): “The distribu-

tion of realized stock return volatility,” Journal of Financial Economics, 61, 43–76.

ANDERSEN, T. G., T. BOLLERSLEV, F. X. DIEBOLD, AND P. LABYS (2001): “The distribution

of exchange rate volatility,” Journal of American Statistical Association, 96, 42–55.

(2003): “Modeling and Forecasting Realized Volatility,” Econometrica, 71, 579–625.

ANDERSON, H. M., K. NAM, AND F. VAHID (1999): Asymmetric Nonlinear Smooth Transi-

tion Garch Modelspp. 191–207. Springer US.

BAO, W., H. YUE, AND Y. RAO (2017): “A deep learning framework for financial time series

using stacked autoencoders and long-short term memory,” PLoS One, 12(7).

BARNDORFF-NIELSEN, O. E., AND N. SHEPHARD (2002): “Estimating Quadratic Variation

Using Realised Variance,” Journal of Applied Econometrics, 17, 457–477.

(2004): “Power and Bipower Variation with Stochastic Volatility and Jumps,” Jour-

nal of Financial Econometrics, 2, 1–37.

BAUER, G. H., AND K. VORKINK (2011): “Forecasting multivariate realized stock market

volatility,” Journal of Econometrics, 160, 93–101.

BECKER, R., A. CLEMENTS, AND R. O’NEILL (2010): “A Cholesky-MIDAS model for pre-

dicting stock portfolio volatility,” Working paper, Centre for Growth and Business Cycle

Research Discussion Paper Series.

BUCCI, A. (2019): “Realized Volatility Forecasting with Neural Networks,” Working paper.

BUCCI, A., G. PALOMBA, AND E. ROSSI (2019): “Does macroeconomics help in predicting

stock market volatility comovements? A nonlinear approach,” Working paper.

CHRISTIANSEN, C., M. SCHMELING, AND A. SCHRIMPF (2012): “A comprehensive look at

financial volatility prediction by economic variables,” Journal of Applied Econometrics,

27, 956–977.

20

DIEBOLD, F. X., AND R. S. MARIANO (1995): “Comparing predictive accuracy,” Journal of

Business and Economic Statistics, 13, 253–263.

DONALDSON, G. R., AND M. KAMSTRA (1997): “An artificial neural network-GARCH model

for international stock return volatility,” Journal of Empirical Finance, 4, 17–46.

ELMAN, J. L. (1990): “Finding structure in time,” Cognitive Science, 14(2), 179–211.

ENGLE, R. F., E. GHYSELS, AND B. SOHN (2009): “On the Economic Sources of Stock

Market Volatility,” Working paper.

FAMA, E., AND K. FRENCH (1993): “Common Risk Factors in the Returns on Stocks and

Bonds,” Journal of Financial Economics, 33, 3–56.

FERNANDES, M., M. C. MEDEIROS, AND M. SCHARTH (2014): “Modeling and predicting

the CBOE market volatility index,” Journal of Banking & Finance, 40, 1–10.

GUZMAN, S. M., J. O. PAZ, AND M. L. M. TAGERT (2017): “The Use of NARX Neural

Networks to Forecast Daily Groundwater Levels,” Water Resour Manage, 31, 1591–1603.

HALBLEIB-CHIRIAC, R., AND V. VOEV (2011): “Modelling and Forecasting Multivariate

Realized Volatility,” Journal of Applied Econometrics, 26, 922–947.

HEIDEN, M. D. (2015): “Pitfalls of the Cholesky decomposition for forecasting multivariate

volatility,” Working paper.

HOCHREITER, S., AND J. SCHMIDHUBER (1997): “Long short-term memory,” Neural Com-

putation, 9(8), 1735–1780.

HSU, D. (2017): “Time Series Forecasting Based on Augmented Long Short-Term Memory,”

Working paper.

HU, Y. M., AND C. TSOUKALAS (1999): “Combining conditional volatility forecasts using

neural networks: an application to the EMS exchange rates,” Journal of International

Financial Markets, Institutions & Money, 9, 407–422.

JORDAN, M. I. (1986): “Serial Order: A Parallel Distributed Processing Approach,” Discus-

sion paper, Institute for Cognitive Science Report 8604, UC San Diego.

21

KHAN, A. I. (2011): “Financial Volatility Forecasting by Nonlinear Support Vector Machine

Heterogeneous Autoregressive Model: Evidence from Nikkei 225 Stock Index,” Interna-

tional Journal of Economics and Finance, 3(4), 138–150.

KIM, H. Y., AND C. H. WON (2018): “Forecasting the volatility of stock price index: A hy-

brid model integrating LSTM with multiple GARCH-type models,” Expert Systems with

Applications, 103, 25–37.

KUAN, C., AND T. LIU (1995): “Forecasting exchange rates using feedforward and recurrent

neural networks,” Journal of Applied Econometrics, 10(4), 347–364.

KWAN, C., W. LI, AND K. NG (2005): “A Multivariate Threshold GARCH Model with Time-

varying Correlations,” Working Paper.

MAHEU, J. M., AND T. H. MCCURDY (2002): “Nonlinear features of realized volatility,”

Review of Economics and Statistics, 84, 668–681.

MARTENS, M., M. DE POOTER, AND D. J. VAN DIJK (2004): “Modeling and Forecasting

S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity,” Tinbergen Insti-

tute Discussion Paper No. 04-067/4.

MELE, A. (2007): “Asymmetric stock market volatility and the cyclical behavior of expected

returns,” Journal of Financial Economics, 86, 446–478.

PATTON, A. J. (2011): “Volatility forecast comparison using imperfect volatility proxies,”

Journal of Econometrics, 160(1), 246 – 256.

PAYE, B. S. (2012): “Dèjà vol: Predictive regressions for aggregate stock market volatility

using macroeconomic variables,” Journal of Financial Economics, 106, 527–546.

SCHWERT, W. G. (1989): “Why does stock market volatility change over time,” Journal of

Finance, 44, 1115–1153.

TANG, Z., AND P. A. FISHWICK (1993): “Feed-forward Neural Nets as Models for Time

Series Forecasting,” ORSA Journal on Computing, 5, 374–385.

TINO, P., C. SCHITTENKOPF, AND G. DORFFNER (2001): “Financial volatility trading using

recurrent neural networks,” IEEE Transactions on Neural Networks, 12(4), 865–874.

22

VORTELINOS, D. I. (2017): “Forecasting realized volatility: HAR against Principal Compo-

nents Combining, neural networks and GARCH,” Research in International Business and

Finance, 39, 824–839.

WELCH, I., AND A. GOYAL (2008): “A comprehensive look at the empirical performance of

equity premium prediction,” Review of Financial Studies, 21(4), 1455–1508.

WHITE, H. (1988): Economic prediction using neural networks: the case of IBM daily stock

returns. IEEE 1988 International Conference on Neural Networks.

XIANG, C., S. DING, AND T. H. LEE (2005): “Geometrical interpretation and architecture

selection of MLP,” IEEE Transactions on Neural Networks, 16(1), 84–96.

XIONG, R., E. P. NICHOLS, AND Y. SHEN (2016): “Deep Learning Stock Volatility with

Google Domestic Trends,” CoRR, abs/1512.04916.

23

	Introduction
	Cholesky-ANN
	Neural Networks Architecture
	Empirical Results
	Conclusions
	Bibliography

