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Abstract

A broad class of implicit or partially implicit time discretizations for the Langevin diffu-

sion are considered and used as proposals for the Metropolis-Hastings algorithm. Ergodic

properties of our proposed schemes are studied. We show that introducing implicitness in

the discretization leads to a process that often inherits the convergence rate of the con-

tinuous time process. These contrast with the behavior of the naive or Euler-Maruyama

discretization, which can behave badly even in simple cases. We also show that our pro-

posed chains, when used as proposals for the Metropolis-Hastings algorithm, preserve ge-

ometric ergodicity of their implicit Langevin schemes and thus behave better than the

local linearization of the Langevin diffusion. We illustrate the behavior of our proposed

schemes with examples. Our results are described in detail in one dimension only, although

extensions to higher dimensions are also described and illustrated.

Key Words: Langevin diffusions; ergodicity; implicit Euler schemes: discrete approxi-

mation
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1 Introduction

This paper concerns the use of implicit discretisation methods to improve the performances

of the Langevin sampling. As generic Markov chain Monte Carlo (MCMC) simulation tools,

Langevin algorithms were originally proposed by Doll et al. (1978). Our interest is motivated

by applications in Bayesian statistics when we need to simulate from a posterior distribution

whose normalising constant cannot be computed exactly. In this context, Langevin methods

were popularised by Besag (1994) and Roberts and Tweedie (1996a). These methods have

proved successful in many areas of statistical application such as in spatial statisics (see for

example Christensen et al., 2006), typically giving rise to much more rapid mixing than vanilla

methods such as the Metropolis-Hastings Random Walk (RWM) algorithm. However, Langevin

methods are often less stable than their simpler competitors. For instance Roberts and Tweedie

(1996a) demonstrate that the basic Langevin algorithm fails to be geometrically ergodic on

light tailed target densities.

Within the context of ordinary differential equations, implicit methods have been shown to

be more stable than traditional methods (see for example Stuart and Humphries, 1996). Our

purpose here is to demonstrate similar results in the stochastic setting. We study the stability

of partially implicit Langevin algorithms, as well as stability of their Metropolis-Hastings

algorithms.

1.1 The problem

Suppose we want to simulate from a continuous density function π on Rm which we know only

up to a constant factor k, that is we know the unnormalised function πu = k π. Our schemes

are based on Langevin diffusions which are constructed so that in continuous time it converges

to π. The Langevin m-dimensional diffusion process l = {lt : t ≥ 0} is defined as a solution to

the stochastic differential equation (SDE):

dlt =
1

2
∇ log π (lt) dt + dWt; l0 = a (1)

where ∇ denotes the usual gradient differential operator, and W = {Wt : t ≥ 0} is an m-

dimensional standard Brownian motion. Under appropriate non-explosivity conditions, π is

the unique ergodic measure of the process l = {lt}t≥0. Therefore, a natural way to simulate
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from π is to reproduce the long time behavior of l. Unfortunately, direct simulation from

(1) is usually infeasible since we don’t have an explicit expression for the transition law of the

Langevin diffusion (though see Beskos et al., 2008a, for relatively small dimensional problems).

We therefore consider a discrete-time approximation L := {Ln : n ∈ IN}, where IN =

{0, 1, 2, . . .}, of the Langevin diffusion process l with step-size δ. In many situations, the

discretisation scheme L inherits desirable stability properties from its parent diffusion, at least

for sufficiently small discretisation intervals δ. In this case, its invariant measure will typically

be close to, but not exactly given by, the target density π. To address this issue, a natural

strategy is to supplement the discretisation scheme with a Metropolis-Hastings rejection step

which enforces the correct invariant distribution.

We use the following terminology. We call the unadjusted Langevin scheme L, and the

Metropolis adjusted or Metropolis-Hastings Langevin scheme M = {Mn : n ∈ IN}. M is

generated by a Metropolis-Hastings algorithm employing the Langevin scheme L as a proposal.

Otherwise we will refer to both generically as Langevin schemes.

1.2 The motivating example

In its standard form, the Langevin algorithm used by Roberts and Tweedie (1996a) proposes

to approximate l by the δ-step Euler discretisation. This assumes that the drift function

1
2∇ log π(·) is constant on small time intervals of length δ > 0 and leads to the discrete time

chain

Ln+1 = Ln +
1

2
∇ log π(Ln)δ +

√
δξn+1, ξn+1

i.i.d∼ N (0, I); n ∈ IN (2)

where N (0, I), I is the identity matrix, denotes the law of the m-dimensional standard normal

random vector. As in Roberts and Tweedie (1996a), we term the Unadjusted Langevin Algo-

rithm L (2) as ULA and its Metropolis-Hastings version M as MALA (Metropolis-Adjusted

Langevin Algorithm). Under some regularity conditions, ULA inherits the ergodic behavior of

the diffusion l when the tail of the target distribution is approximately Gaussian but looses

this nice property for lighter tails.

This happens for example when π belongs to the following class of one-dimensional densities:

Ad =
{

π : π (x) ∝ e−γ|x|d+2

; x ∈ ℜ, γ > 0
}

, d ≥ 0 (3)

As proved in Roberts and Tweedie (1996a), the Langevin diffusion (1) is always π-geometrically

ergodic, in contrast to ULA that is transient for d > 0 or d = 0 with time interval δ > 1/γ.

Moreover, the transience of ULA leads to unstable behavior of MALA. Figures 1 and 2, provide
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simple graphical illustration of these behaviors. We consider the model d lt = −2 l3t dt + dWt

corresponding to the target density π(x) ∝ exp
(

−x 4
)

. Figure 1 displays an exact trajectory

of the diffusion l with a starting point l0 = 5. The trajectory was produced by implementing

the recent Exact Algorithm 3 (Beskos et al., 2008a) on a very fine discrete grid (δ = 0.01).

[Figure 1 about here.]

The diffusion trajectory returns rapidly to the mode 0 when in the tails and tends to stay

around 0. Figure 2 displays ULA, MALA, and Metropolis-Hastings Random Walk (RWM)

schemes.

[Figure 2 about here.]

It is clear that, unlike the Langevin trajectory, ULA becomes explosive as we move from

the center (L0 = 0) to the tails (L0 = 5). Notice that this transient behavior can be reproduced

for any δ > 0: i.e. for any δ > 0, we can find a value L∗ such that, for any |L0| > |L∗| the

chain will explode with high probability. In this context the Metropolis-Hastings mechanism

(designed to guarantee π-stationarity) is likely to reject the proposed moves and therefore,

typically the MALA chain gets “stuck” (Figure 2, plot C). Notice that the RWM (Figure 2,

plot D) performs much better: remarkably the use of a more “naive” proposal would allow

us to avoid the stability problems arising from the Euler discretisation. In fact for d > 0,

the RWM algorithm is geometrically ergodic (Mengersen and Tweedie, 1996, Theorem 3.2) in

contrast to the MALA scheme that is not geometrically ergodic (Roberts and Tweedie, 1996a,

Theorem 4.3).

1.3 Scope of the paper

The loss of ergodicity under the Euler discretisation occurs for essentially the same reason that

the standard Euler method is unstable for stiff dissipative ODEs. In the deterministic context,

the problem is cured by introducing implicitness in the discretisation. In this paper we show

that the same remedy works in the context of Langevin sampling.

We study the theoretical properties of different versions of the partially implicit scheme.

We show that for π ∈ Ad, d ≥ 0, unlike ULA and MALA, our proposed schemes have robust

stability properties. We shall demonstrate this by concentrating on the derivation of a geo-

metric Foster-Lyapunov drift inequality. These inequalities control the stability of excursions

to the tails of the target distribution. Together with appropriate non-pathological properties
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in the “center” of the space, the drift condition implies geometric convergence to stationarity,

and we shall generally couch our results in this way. We give results for both the unadjusted

and Metropolis-adjusted cases. Whilst we work initially within the family Ad, d ≥ 0, we show

in Section 5.1 that our approach can be used to handle all target densities with the same tail

behavior as in Ad, d ≥ 0. Moreover, in Section 5.2, we briefly propose new partially implicit

Langevin scheme, that are based on the local linear approximation to diffusion processes, intro-

duced in Shoji and Ozaki (1998). The new schemes can be applied to the higher-dimensional

case. Some study in Section 5.2 indicates that the partially implicit local linearization algo-

rithms have better ergodic properties than the partially implicit Euler Schemes and the explicit

local linearization scheme.

The paper is organised as follows. In Section 2 we introduce different implicit Langevin

algorithms. In Section 3 after introducing the basic notation, we state the results on the ergodic

properties of partially implicit Langevin schemes for π ∈ Ad, d ≥ 0. In Section 4 we firstly

introduce the general Metropolis-Hastings algorithms and then study the ergodic properties

of the Metropolis Adjusted Implicit Langevin Algorithm. We then prove that we can avoid

pathological behavior of these algorithms by adjusting the Langevin schemes. In Section 5 we

describe how to construct flexible geometrically ergodic Langevin algorithms to deal with more

general target densities. We finish in Section 6 with some concluding remarks and directions

for future research.

2 Partially Implicit Langevin Algorithms

We consider target densities π ∈ Ad, d ≥ 0 as defined in (3). Within this setting, we can write

explicitly the SDE of the Langevin diffusion (1):

dlt =
1

2
kd sign (lt) |lt| d+1 dt + dWt; kd := −γ(d + 2), d ≥ 0. (4)

We defined our first Unadjusted Partially Implicit Langevin Algorithm (UPILA1) as the par-

tially implicit Euler discretization scheme for the diffusion in (4):

UPILA1: Ln+1 = Ln +
1

2
kd

(

θ sign(Ln+1) |Ln+1|d+1 + θ̂ sign(Ln) |Ln|d+1
)

δ

+
√

δ ξn+1, (5)

where θ̂ = 1−θ and {ξn+1, n ∈ IN} are i.i.d random variables with zero mean, unit variance and

positive, continuous density. Implicit Euler schemes for a multidimensional diffusion are defined
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in Section 15.4 of Kloeden and Platen (1992). The crucial feature of (5) is the introduction of a

parameter θ which controls the relative weight of the implicit component in the discretisation

of the drift and can be interpreted as a measure of the “degree of implicitness“. Schemes of

this type are also called stochastic θ-schemes. In fact (5) is the stochastic analogous of the

well known θ-method used in the deterministic context. The special cases θ = 0, θ = 0.5,

and θ = 1 give respectively the explicit Euler scheme, the stochastic generalization of the

trapezoidal method and the backward Euler method. Stability properties of the stochastic

system (5) have been investigated in Saito and Mitsui (1996) and Higham (2000) in the linear

case (d = 0). Note that for d 	= 0 and θ 	= 0, simulation from (5) implies the inversion of the

non-linear function

F (u) = u − 1

2
θ kd δ sign(u) |u|d+1 (6)

at each iteration of the Markov chain. This can be easily done for the one-dimensional case but

can be a substantial limiting factor in view of high-dimensional applications of UPILA1. In this

perspective it is more realistic to resort to linearly partially implicit discretisation schemes. The

main idea is to decompose the drift function ∇ log π(u) in a linear and a non-linear component:

∇ log π(u) = kdsign (u) |u| d+1 = kd |u|d u

and then to treat explicitly the non-linear component and partially implicitly the linear one.

The idea of incorporating the implicitness parameter θ only in the linear part of the drift for

Langevin diffusions is in Beskos et al. (2008b). We consider the following Unadjusted Partially

Implicit Langevin Algorithms:

UPILA2: Ln+1 = Ln +
1

2
kd |Ln|d

(

θLn+1 + θ̂Ln

)

δ +
√

δξn+1.

We note that Ln+1|Ln = x with θ = 0, is the Euler approximation to the SDE (1) with

∇ log π(u) = kd |x|d u, 0 ≤ t ≤ δ and l0 = x. It is not the exact solution. UPILA2 in-

troduces implicitness in the discretisation and preserves an explicit characterisation of the

chain’s dynamics with obvious computational advantages. UPILA2 is exponentially ergodic

(see Section 3) under some conditions on the implicit parameter θ. However, since the vari-

ance of UPILA2, provided in (9), tends to 0 when d > 0 as |x| → +∞, it tends to propose a

deterministic-like move toward the center when in the tails and thus its Metropolis adjusted

chain may loose this nice geometric rate of convergence for target distributions with Gaussian

or lighter tails. The use of the two-steps discretisation strategy (sometimes called the split-step

method) is a way to overcome this difficulty when d > 0. We refer to this scheme as UPILA3.
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It splits the discretisation problem into two stages as follows.

UPILA3 (d > 0): L∗ = Ln +
1

2
kd |Ln|d

(

θL∗ + θ̂Ln

)

δ

Ln+1 = L∗ +
√

δξn+1

In the first stage a linear implicit discretisation to the drift component of (1) is employed.

At this stage the numerical problem is equivalent to the approximation of an ODE since no

randomness is involved. In the second stage, the resulting dynamic system is perturbed by a

Gaussian noise which accounts for the effects of the Wiener component in (1). An example of

a discretisation scheme using the split-step technique can be found in Mattingly et al. (2002),

where the drift is approximated by an Euler implicit scheme. The dynamics of UPILA2 and

UPILA3 can be represented as follows:

Ln+1 = μ(Ln) + σh(Ln)ξn+1, h = 1, 2 (7)

where

μ(x) =

(

1 + θ̂ 1
2 kd |x|d δ

1 − θ 1
2 kd |x|d δ

)

x, (8)

σ1(x) =

√
δ

1 − θ 1
2 kd |x|d δ

, σ2(x) =
√

δ, (9)

and σh(x), h = 1, 2 stands for UPILA2/3 respectively.

Remark 1. Notice that the ULA chain arises as a particular case of UPILA1, UPILA2, and

UPILA3 with θ = 0 and ξn+1 ∼ N (0, 1) . Ergodic results for ULA chains are in Roberts and

Tweedie (1996a).

3 Ergodic Properties of Unadjusted Implicit Schemes

3.1 Notation and basic definitions

Let us consider a generic scalar Markov chain X := {Xn : n ∈ IN} on a state space (ℜ,B (ℜ))

where B(ℜ) is the Borel σ−algebra on ℜ. For any x ∈ ℜ, let Pn(x, ·) : B(ℜ) → [0, 1] be its

n-step transition kernel:

Pn(x,A) = Pr (Xn ∈ A | X0 = x) ; A ∈ B(ℜ), n ∈ IN+

with the convention that P(x, ·) ≡ P1(x, ·). Given a non-trivial probability measure p on

(ℜ,B(ℜ)) we say that Pn converges to p or that the chain X is p-ergodic if, for p-a.e. x:

‖Pn(x, ·) − p(·)‖ n→+∞−→ 0 (10)

7



where for any signed measure M on (ℜ,B(ℜ)) the symbol ‖M‖ denotes its total variation

norm:

‖M‖ = sup
A∈B(ℜ)

M(A)

Analogously, we say that Pn converges exponentially to p or that the chain X is p-geometrically

ergodic if, for p-a.e. x there exists a constant r < 1 and a function m(·) such that, for any

n ∈ IN+:

‖Pn(x, ·) − p(·)‖ ≤ m(x) rn

3.2 Convergence properties

Our treatment of geometric ergodicity follows the classic approach of Meyn and Tweedie (1993).

The first step is to establish communication properties of the chain (i.e. μLeb-irreducibility and

aperiodicity) and minorisation condition for small sets. We set Q to represent the transition

kernel of the unadjusted Langevin discretisation L with discretisation interval δ and by q its

Lebesgue transition density.

Lemma 1. Let us assume that π ∈ Ad, d ≥ 0. For any θ ∈ [0, 1], UPILA1, UPILA2 and

UPILA3 are μLeb-irreducible, aperiodic and all compact sets are small.

Proof: We denote the density function of ξn+1 by ϕ. We consider UPILA1 first. L is

defined as a solution to (5) or equivalently as a solution to,

F (Ln+1) = μF (Ln) +
√

δξn+1, (11)

where μF (x) = F (x) + 1
2 kd sign (x) |x|d+1 δ, and F is defined in (6). It is now easy to check

that the transition density of UPILA1 is,

UPILA1: q(x, y) = ϕ

(

F (y) − μF (x)√
δ

)

1√
δ
F ′(y),

where

F ′(y) = 1 − 1

2
kd θ (sign (y))d+1 yd+1δ.

We next consider the chains UPILA2 and UPILA3. From (7), the transition densities of

UPILA2 and UPILA3 are given by:

UPILA2/3 : q(x, y) = ϕ

(

y − μ(x)

σ(x)

)

1

σh(x)
, h = 1, 2

The results now follow from Proposition 6.2.8 of Meyn and Tweedie (1993).

8



�

Thus, from Theorem 15.0.1 of Meyn and Tweedie (1993), for geometric ergodicity to hold it is

sufficient to find a function V : ℜ → [1,+∞] such that for some λ < 1,

lim sup
|x|→+∞

PV (x)

V (x)
≤ λ, (12)

where PV (x) =
∫

q(x, y)V (y)dy. In Theorem 1 we consider the case d > 0 (light tails) and in

Theorem 2 we consider the case d = 0 (Gaussian case). We note that UPILA1 is the same as

UPILA2 for the case d = 0 and UPILA3 is defined for d > 0 only. Thus, for d = 0 we need to

consider UPILA2 only. For the rest of the results in this Section we assume that

ξn+1
i.i.d∼ N (0, 1) n ∈ IN (13)

We consider heavier tail distributions for the noise in Section 4.

Theorem 1. Let us consider target densities π ∈ Ad, d > 0.

• UPILA1 is geometrically ergodic if θ ≥ 1
2 .

• UPILA2 and UPILA3 are geometrically ergodic if θ ≥ 1
2 for d ∈ (0, 1] and if θ > 1

2 for

d > 1.

Proof: We propose the following drift functions: V (u) = es |F (u)|, s > 0 for UPILA1

(where F (·) is defined in (6)) and V (u) = es |u|, s > 0 for UPILA2 and UPILA3. We consider

the limit (12) when x → +∞; the negative case follows by symmetry.

Let us consider UPILA1 first. Since the function F (·) is continuous and monotone increas-

ing there exists x+ > 0 such that for any x > x+, F (x) > 0. In this context for any δ, s > 0,

θ ∈ [0, 1] and x > x+:

PV (x)

V (x)
= e−s |F (x)| E

[

es |F (Ln+1)| | Ln = x
]

≤ e−s F (x)
(

E

[

es F (Ln+1) | Ln = x
]

+ E

[

e−s F (Ln+1) | Ln = x
])

L1
def
= lim

x→+∞

PV (x)

V (x)
≤ c lim

x→+∞

(

es 1

2
kd xd+1δ + es( 1

2
kd xd+1(θ− 1

2
)δ−2 x)

)

,

where c is a positive constant. Thus, L1 is equal to 0 for θ ≥ 1
2 . An analogous argument leads

to the following inequality for UPILA2 and UPILA3:

PV (x)

V (x)
≤ e−s x+ s

2

2
D

(

e−s μ(x) + e+s μ(x)
)
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for some positive constant D > 0. It is easy to check that

L2
def
= lim

x→+∞

PV (x)

V (x)
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if θ > 1
2 or θ = 1

2 and d < 1

< 1 if θ = 1
2 and d = 1 for small s

∞ otherwise

The proof follows from the drift condition (12).

�

Theorem 2. Let us consider target densities π ∈ Ad, d = 0. UPILA2 is geometrically ergodic

for θ ≥ 1
2 or θ < 1

2 with δ < 2
k0(2θ − 1) .

Proof: We apply the same framework as in the proof of Theorem 1. Thus choosing the

drift function V (u) = es |u|, s > 0, we obtain that the drift condition holds when θ ≥ 1
2 , or

when θ < 1
2 and δ < 2

k0(2θ−1) .

�

Theorem 3 provides a characterisation of the behavior of UPILA1, UPILA2 and UPILA3

when they are not geometrically ergodic.

Theorem 3. Let us consider the class of target densities π ∈ Ad, d ≥ 0.

1. For any θ < 1/2,

(a) If d > 0, UPILA1, UPILA2 and UPILA3 are transient.

(b) If d = 0, UPILA1 (=UPILA2) is transient for δ > 2
k0(2θ−1) .

2. For θ = 1/2 and d > 1,

(a) UPILA1, UPILA2 and UPILA3 are not geometrically ergodic.

(b) UPILA1 is ergodic.

Proof: In the Appendix.

Table 1 provides a summary of the convergence results for UPILA1, UPILA2, and UPILA3.

Notice that the results for UPILA1 are identical to UPILA2/3 with the only exception of the

case d > 1, θ = 1
2 where UPILA1 is geometrically ergodic.
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[Table 1 about here.]

Generally speaking, when the implicit component dominates the explicit component (θ >

1
2), the Langevin scheme preserves the drift condition and geometrically ergodicity follows.

Figure 3 illustrates the superior performance of partially implicit schemes with θ > 1
2 with re-

spect to the standard Euler discretisation (θ = 0) in Figure 2. It represents typical trajectories

of UPILA1 and UPILA2 with θ = 0.7 and δ = 0.1 for the model d lt = −2 l3t + dWt with a

starting point 5.

[Figure 3 about here.]

4 Metropolis Adjusted Implicit Langevin Algorithms

4.1 Introduction

A generic recipe for construction of a Markov chain with desired stationary density π is the

Metropolis-Hastings construction. Given the current state x, we propose a move to y according

to the transition density q(x, y) and accept the proposed move with probability α(x, y):

α(x, y) =

⎧

⎪

⎨

⎪

⎩

1 ∧ π(y)q(y,x)
π(x)q(x,y) if π(x)q(x, y) > 0

1 if π(x)q(x, y) = 0

The resulting Metropolis-Hastings kernel P is given by:

P(x,A) =

∫

A

p(x, y)dy + r(x) I{A}(x), A ∈ B(ℜ)

where the function r(x) is the Metropolis Hastings rejection probability from the state x and

p(x, y) is the Metropolis-Hastings off-diagonal transition density:

r(x) = 1 −
∫

ℜ
p(x, y) dy; p(x, y) =

⎧

⎪

⎨

⎪

⎩

q(x, y)α(x, y) if x 	= y

0 if x = y

The Metropolis-Hastings correction guarantees π-stationarity of the Metropolis-Hastings Langevin

algorithm through the invariance equation: i.e. for any A ∈ B(ℜ),

π(x)p(x, y) = π(y)p(y, x) ⇒
∫

R

π(x)P(x,A)dx =

∫

A

π(y)dy
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Irreducibility and aperiodicity of the Metropolis adjusted chain follows from irreducibility and

aperiodicity of the unadjusted chain under a positivity assumption on the target density π.

From Lemma 1, the Metropolis adjusted Lengevin chain is μLeb-irreducible and aperiodic and

therefore π−ergodic. However, in general the adjusted Metropolis-Hastings algorithm does not

necessarily inherit the geometric ergodicity of the unadjusted algorithm. In fact if

lim
|x|→+∞

r(x) = lim
|x|→+∞

P (x, {x}) = 1 (14)

then, from Theorem 5.1 of Roberts and Tweedie (1996b), the Metropolis-Hastings algorithm

is not geometrically ergodic. Good examples of this phenomenon can be found in Stramer and

Tweedie (1999) and Hansen (2003). On the other hand, if

lim sup
|x|→+∞

r(x) = lim sup
|x|→+∞

P (x, {x}) = 0 (15)

then, from Theorem 3.1 of Stramer and Tweedie (1999), the Metropolis-Hastings algorithm is

geometrically ergodic.

The latter result suggests a simple way to construct a geometrically ergodic Metropolis-

Hastings chain by selecting a geometrically ergodic unadjusted Langevin scheme and ensuring

that the Metropolis-Hastings rejection probability tends to 0 as we move further in the tails.

Unfortunately, condition (15) is often not satisfied.

In Section 4.2 we employ UPILA1, UPILA2, and UPILA3 schemes as proposals for the

Metropolis-Hastings algorithms when π ∈ {Ad, d ≥ 0}. We call these algorithms MAPILA1,

MAPILA2, and MAPILA3 respectively (Metropolis Adjusted Partially Implicit Langevin Al-

gorithm). We choose the distribution of the noise term ξn+1 in such a way that the unadjusted

scheme is geometrically ergodic and that condition (15) is satisfied.

4.2 Convergence properties

We firstly consider the light tails case (d > 0).

Theorem 4. Let us assume that π ∈ Ad, d > 0. Under assumption (13),

(a) MAPILA3 is geometrically ergodic for all θ > 1
2 .

(b) MAPILA1 and MAPILA2 are not geometrically ergodic for all 0 ≤ θ ≤ 1.

12



Proof: The proof follows by showing that condition (15) holds for MAPILA3 while con-

dition (14) holds for MAPILA1 and MAPILA2. Part (a) follows from Theorem 5.1 of Roberts

and Tweedie (1996b) and Part (b) follows from Theorem 3.1 of Stramer and Tweedie (1999).

We omit the details as they require simple tedious algebra calculations.

�

UPILA2 is geometrically ergodic and has the desired property that the variance of the transition

density is state dependent. However, as mentioned before, when d > 0, the variance tends

to 0 as |x| → +∞. Therefore, while UPILA2 is geometrically ergodic, MAPILA2 is not

geometrically ergodic. Using UPILA3 as the proposal chain guarantees geometric ergodicity

of its Metropolis adjusted scheme, MAPILA3. Yet, it looses the nice property of UPILA2,

that the variance of the transition density is state dependent. One way to obtain geometric

ergodicity of MAPILA1 and MAPILA2 is to choose, as in Stramer and Tweedie (1999),

ξn+1
√

ν/(ν − 2)

i.i.d∼ t(ν) (16)

where t(ν) denotes the law of the t distribution with ν > 2 degrees of freedom so that the

variance is finite. This proposal has thicker tails than the normal distribution to help prevent

the sampler from getting stuck in the tails. Our simulation results were robust to the choice of

ν. We show that this variation guarantees the geometric ergodicity of UPILA1 and UPILA2.

Theorem 5. Let us assume that π ∈ Ad, d > 0 and consider MAPILA1 and MAPILA2

schemes under the assumption (16). MAPILA1 and MAPILA2 are geometrically ergodic for

all θ > 1
2 .

Proof: We firstly note that for θ > 1
2 , UPILA1 and UPILA2 are geometric ergodic under

the heavier tails assumption (16). This follows as in Section 3.2 by choosing the drift functions:

V (u) = |F (u)| + 1 for UPILA1 (where F (·) is defined in (6)) and the drift functions: V (u) =

u2 + 1 for UPILA2. The proof that (15) holds for both schemes requires simple algebra and is

omitted.

�

We next consider Gaussian tails (d = 0). We show that there is no need to adjust the

distribution of the noise to obtain geometric ergodicity. Recall that for d = 0 we have one

algorithm, MAPILA2. Again, the proof is simple and is omitted.
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Theorem 6. Let us assume that π ∈ Ad, d = 0. MAPILA2 is geometrically ergodic for

θ = 1
2 and for all θ < 1

2 with δ < 2
k0(2θ−1) . In particular for θ = 1

2 the Metropolis-Hastings

rejection probability r(x) is equal to 0 for any x ∈ ℜ.

Remark 2. The behavior of MAPILA2 for d = 0 and θ = 1
2 is somewhat surprising as the

Metropolis step is always accepted. This implies that UPILA2 and MAPILA2 coincide or,

equivalently, that the Metropolis-Hastings correction is not really needed since UPILA2 is able

to reproduce exactly the ergodic behavior of the Langevin diffusion.

We illustrate the ergodic behavior of MAPILA1, MAPILA2, MAPILA3, and RWM schemes

with starting point 200 for π(x) ∝ exp
(

−x 4
)

. We simulate MAPILA1, MAPILA2 (each with

noise assumption (16) with ν = 30) and MAPILA3 (with a Gaussian noise (13)) with δ = 0.1,

and implicit parameter θ = 0.7. We also simulate RWM with N (0, 0.1) noise. The trace

plots of the steps taken by the four algorithms appear in Figure 4. It is clear that all three

Metropolis adjusted partially implicit Langevin algorithms with θ = 0.7 hit neighborhood of 0

more rapidly than the RWM scheme.

[Figure 4 about here.]

5 Extensions of Partially Implicit schemes

5.1 More general class of partially implicit schemes

The investigation of ergodic properties of partially implicit schemes within the class Ad, d ≥
0 shows how to preserve the drift condition by reinforcing the implicit component in the

discretization of the Langevin diffusion. The same effect applies to all those target densities

whose tail behavior is analogous to the tail behavior of π ∈ Ad, d ≥ 0. Thus we consider

a more general class of target densities of the form {A′
d, d ≥ 0} where, for any d ≥ 0, A′

d

includes all those target densities π characterized by the following limits:

lim
u→+∞

∇ log π(u)

u ud
= k+

d ∈ (−∞, 0)

lim
u→−∞

∇ log π(u)

u |u|d
= k−

d ∈ (−∞, 0)

Note that Ad ⊂ A′
d. We can write the dynamics of UPILA2 for Ad in the following way:

UPILA2: Ln+1 =

(

1 + θ̂A (Ln) δ

1 − θA (Ln) δ

)

Ln +

( √
δ

1 − θA (Ln) δ

)

ξn+1,

14



where A(u) = 1
2
∇ log π(u)

u
, u 	= 0. Clearly, UPILA2 scheme for A′

d satisfies the same drift

condition as for Ad and thus, under regularity conditions is able to recover geometric ergodicity

behavior from the Langevin diffusion.

We illustrate the ergodic behavior of MAPILA2 (δ = 0.1, θ = 0.7) and RWM schemes

for π(x) ∝ exp
(

−x 4 + x2
)

. We note that communication properties for MAPILA2 hold.

To obtain geometric ergodicity we use MAPILA2 with a tail noise (16) with ν = 30. Figure

5 displays a trace plot of the algorithm with starting point 5. Clearly MAPILA2 hits a

neighborhood of 0 quite rapidly. We assess the behavior of a single long series for MAPILA2

and RWM with 100, 000 steps; we start from 0 and discard 10, 000 steps to eliminate the effect

of the initial point. Figure 6 depicts the estimated histograms. Clearly, MAPILA2 scheme

describes each mode better than the RWM scheme.

[Figure 5 about here.]

[Figure 6 about here.]

5.2 Using partially implicit local linearization

Based on Shoji and Ozaki (1998) we now define the partially implicit local linear approximation

for a Langevin diffusion (1). We firstly review the explicit scheme. Over the time interval

[nδ, (n + 1)δ], we use a first order Taylor expansion for the drift 1
2∇ log π(lt). The Langevin

process lt is then approximated by the linear process l̃t, defined as a solution to

dl̃t =
(1

2
∇ log π(x) +

1

2
∇2 log π(x)(l̃t − x)

)

dt + dWt, nδ ≤ t ≤ (n + 1)δ (17)

where l̃nδ = x and ∇2 is the second-order partial derivative. The explicit local linearization

scheme Ln+1 given Ln is defined as a solution to the linear stochastic differential equation (17)

at time (n + 1)δ.

Ergodic properties of the explicit local linearization scheme are derived in Stramer and

Tweedie (1999) for the one-dimensional case and in Hansen (2003) for the multi-dimensional

case. It is shown that for a large class of light tail distributions, the local linearization scheme

is geometrically ergodic. Yet, it does not inherit geometric ergodicity in complete generality

and furthermore, it does not in general lead to geometric ergodicity of the Metropolis Hastings

algorithm.

15



We propose the following partially implicit scheme based on the explicit local linearization

scheme (17):

Ln+1 = Ln +
(1

2
∇ log π(Ln) − 1

2
∇2 log π(Ln)Ln

)

δ

+
1

2
∇2 log π(Ln)(θLn+1 + θ̂Ln)δ +

√
δ ξn+1 (18)

The dynamics of (18) can be represented as follows:

Ln+1 = μ(Ln) + Σ
1

2 (Ln)ξn+1,

where

μ(x) = x +
(

I − 1

2
∇2 log π(x)θδ

)−1(1

2
∇ log π(x)δ

)

Σ(x) = δ
(

I − 1

2
∇2 log π(x)θδ

)−2

The ergodic behavior of the partially implicit local linear approximations are only illustrated

here, but they do indicate that the partially implicit approach can be expected to work well

in higher-dimension.

We firstly illustrate this algorithm with Theorem 7.

Theorem 7. Let us consider the target density π(x) ∝ exp
(

−x 4
)

. The partially implicit

local linearization scheme is π-geometrically ergodic for all θ > 1
3 .

Proof: For this example, d lt = −2 l3t dt + dWt and

μ(x) = x − 2x3δ

1 + 6x2θδ
Σ(x) =

δ

(1 + 6x2θδ)2

We propose the drift function V (u) = |u| for “big” |u|, and consider the limit (12) when

|x| → +∞;

lim
|x|→∞

PV (x)

V (x)
≤ lim

|x|→∞

|μ(x)| +
√

ΣE|ξn|
|x| = 1 − 1

3θ
< 1

when θ > 1
3 . �

We now assess the behavior of a single long series for the partially implicit local linearization

algorithm with θ = 0.4, δ = 0.1 and compare it to UPILA2 with θ = 0.7, δ = 0.1. We have used

the two algorithms with 100, 000 steps; we start from 0 and discard 10, 000 steps to eliminate

the effect of the initial point. Figure 7 demonstrates the estimated histograms for π using the

partially implicit local linearization scheme (red lines), UPILA2 scheme (green lines) and the

true density function π (black lines).
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[Figure 7 about here.]

We next illustrate the advantage of using the partially implicit local linearization scheme

over the explicit local linearization and the Euler schemes with the bivariate Langevin diffusion

model (1) corresponding to the target density π(x) ∝ exp(−2(x4
1 + x4

2 − x2
1x

2
2)), x = (x1, x2) ∈

ℜ2. For this example,

1

2
∇ log(π(x)) =

⎡

⎣

−4x3
1 + 2x1x

2
2

−4x3
2 + 2x2x

2
1

⎤

 ,
1

2
∇2 log(π(x)) =

⎡

⎣

−12x2
1 + 2x2

2 4x1x2

4x1x2 −12x2
2 + 2x2

1

⎤

 .

From Hansen (2003), the Langevin diffusion process is geometric ergodic while the explicit

local linearization chain is transient. It is also easy to check that the explicit Euler scheme

is transient. It can be shown that the partially implicit local linearization scheme L for this

example is exponentially ergodic for implicit parameter θ that is bigger than a certain threshold.

We omit the details and illustrate our results in the following two Figures. Figure 8 is a trace

plot of the steps taken by the partially implicit local linearization scheme L with θ = 0.5,

δ = 0.1 and different starting points. The arrows indicate the end of each step, showing rapid

convergence. Figure 9 is a trace plot of the steps taken by L for 5, 000 iterations with a starting

point (0, 0)′. It is clear from Figures 8 and 9 that the process L hits a neighborhood of (0, 0)′

(the mode of π) quite rapidly, and then proceeds to move around this mode. Figure 9 provides

an approximation for the shape of π.

[Figure 8 about here.]

[Figure 9 about here.]

6 Conclusion

We have defined different partially implicit Langevin algorithms with implicitness parameter

0 ≤ θ ≤ 1. We have shown that by introducing implicitness in the discretization, our pro-

posed chains have better ergodic properties than the explicit Euler scheme (where θ = 0).

Furthermore, ergodic properties of a partially implicit scheme can be preserved when used as

a proposal for the Metropolis-Hastings algorithm by choosing a heavier tail distribution than

the Gaussian distribution for the noise.

All of our results are described in detail and illustrated in one dimension. We also outline

possible extension of our results to the multi-dimensional case that is based on the local
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linearization scheme. The study of ergodic properties of the multi-dimensional case is left

as a future research.

Appendix: proof of Theorem 3

Proof of statement 1

Case (a) follows the same steps as in Theorem 3.2(b) of Roberts and Tweedie (1996a). We

assume that L0 = x, where x is a large positive value. For UPILA1, the next position F (L1)

is less then −F (x), and then the next oscillation is to a positive but more extreme value than

F (x), and so on; while for UPILA2 and UPILA3 the same pattern repeats but more strongly.

The formal verification follows the proof of transience for SETAR model (see Section 9.5.2

Meyn and Tweedie, 1993).

For case (b), when d = 0, UPILA1(=UPILA2) schemes behave as AR(1) models. It is

therefore transient when |μ(Ln)| > 1, where μ(·) is defined as in (8). This is true for θ < 1
2

and δ > 2
k0 (2θ−1) .

Proof of statement 2

We assume that L0 = x, where x is a large positive value. To prove that UPILA1 (UPILA2/3)

are not geometrically ergodic we note that, the expected increment of |F (L1)| (|L1|) converges

to zero when |x| → ∞. The rest of the proof follows using the same steps as in Theorem 3.2(a)

of Roberts and Tweedie (1996a).

In order to prove ergodicity (10) of UPILA1 it suffices (Meyn and Tweedie, 1993, Theorem

13.0.1) to find a positive function V , such that, there exist b < +∞ and a small set C satisfying

the following condition:

∆V (x)
def
= PV (x) − V (x) < −1 + b I{C}(x) (19)

where PV (x) is defined in (12). Condition (19) ensures the return to regenerative sets and

thus the convergence of the Markov chain but, unlike (12), it does not guarantee geometric

rate of convergence. We take V (x) = es|x| as the drift criterion so that limx→+∞ ∆V (x) = −∞
as |x| → ∞ for d > 1. Therefore, UPILA1 is ergodic by (19).

�
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Figure 1: Exact trajectory of the Langevin diffusion: d lt = −2 l3t dt + dWt with l0 = 5
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Figure 2: ULA schemes with discretisation interval δ = 0.1 with starting point 0 (Plot A) and
starting point 5 (Plot B), MALA scheme for Plot B (Plot C), and RWM with variance 0.1 and
starting point 5 (plot D).
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Figure 3: UPILA1 and UPILA2 scheme with discretisation interval δ = 0.1, implicit parameter
θ = 0.7 and starting point 5.
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Figure 4: Trace plots for MAPILA1, MAPILA2, and MAPILA3 with δ = 0.1 and θ = 0.7, and
RWM scheme with variance 0.1. The starting point for all schemes is 200.
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Figure 5: Trace plot for MAPILA2 with π(x) ∝ exp
(

−x 4 + x2
)

, δ = 0.1, θ = 0.7 and starting
point 5.
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Figure 6: Histograms for MAPILA2 (red) with δ = 0.1 and θ = 0.7, RWM (blue) with variance
0.1, and the true density function π(x) ∝ exp

(

−x 4 + x2
)

(black lines). The histograms are
based on 100, 000 iterations after a burn-in period of 10, 000 iterations.
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Figure 7: Histograms for the partially implicit local linearization with δ = 0.1 and θ = 0.4
(red line), MAPILA2 with δ = 0.1 and θ = 0.7 (green line), and the true density function π
(black lines). The histograms are based on 100, 000 iterations after a burn-in period of 10, 000
iterations.
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Figure 8: Partially implicit local linearization schemes with δ = 0.1, θ = 0.5, and different
starting points.
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Figure 9: Partially implicit local linearization schemes with δ = 0.1, θ = 0.5 and a starting
point (0, 0) based on 5, 000 iterations .
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Summary of the results for UPILA1, UPILA2/3

θ < 1/2 θ = 1/2 θ > 1/2

d = 0 (UPILA1) G.E. (δ < δ∗) G.E. G.E.
d = 0 (UPILA1) T (δ > δ∗) G.E. G.E.

d ∈ (0, 1] (UPILA1, UPILA2/3) T G.E. G.E.

d > 1 (UPILA1) T G.E. G.E.

d > 1 (UPILA2) T E. G.E.

Table 1: T = transient, G.E. = Geometrically Ergodic, E. = Ergodic (but not geometrically
ergodic), δ∗ = 2

k0(2θ−1) .
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