Liu, Weiwei and Egan, Kevin J (2019): A Semiparametric Smooth Coefficient Estimator for Recreation Demand. Forthcoming in: Environmental and Resource Economics
PDF
MPRA_paper_95294.pdf Download (601kB) |
Abstract
We introduce a semiparametric smooth coefficient estimator for recreation demand data that allows more flexible modeling of preference heterogeneity. We show that our sample of visitors each has an individual statistically significant price coefficient estimate leading to clearly nonparametric consumer surplus and willingness to pay (WTP) distributions. We also show mean WTP estimates that are different in economically meaningful ways for every demographic variable we have for our sample of beach visitors. This flexibility is valuable for future researchers who can include any variables of interest beyond the standard demographic variables we have included here. And the richer results, price elasticities, consumer surplus and WTP estimates, are valuable to planners and policymakers who can easily see how all these estimates vary with characteristics of the population of interest.
Item Type: | MPRA Paper |
---|---|
Original Title: | A Semiparametric Smooth Coefficient Estimator for Recreation Demand |
Language: | English |
Keywords: | Consumer surplus, recreation demand, semiparametric model, travel cost, willingess to pay |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q51 - Valuation of Environmental Effects |
Item ID: | 95294 |
Depositing User: | Dr. Kevin J. Egan |
Date Deposited: | 30 Jul 2019 03:26 |
Last Modified: | 29 Sep 2019 09:58 |
References: | Allenby, G. M., Arora, N., & Ginter, J. L. (1998). On the Heterogeneity of Demand. Journal of Marketing Research, 35 (3), 384-389. doi: 10.2307/3152035. Allenby, G. M., & Rossi, P. E. (1999). Marketing Models of Consumer Heterogeneity. Journal of Econometrics, 89 (1-2), 57-78. doi: 10.1016/S0304-4076(98)00055-4. Andrews, T. (2001, 01). A Contingent Valuation Survey of Improved Water Quality in the Brandywine River: An Example of Applied Economics in the Classroom. Pennsylvania Economic Review, 10 , 1-13. Awondo, S. N., Egan, K. J., & Dwyer, D. F. (2011). Increasing Beach Recreation Benefits by Using Wetlands to Reduce Contamination. Marine Resource Economics, 26 (1), 1-15. doi: 10.5950/0738-1360-26.1.1 Bach, P., Farbmacher, H., & Spindle, M. (2017). Semiparametric Count Data Modeling with an Application to Health Service Demand. Econometrics and Statistics. doi: https://doi.org/10.1016/j.ecosta.2017.08.004 Baerenklau, K. A. (2010). A Latent Class Approach to Modeling Endogenous Spatial Sorting in Zonal Recreation Demand Models. Land Economics, 86 (4), 800816. doi: 10.3368/le.86.4.800 Boardman, A., Greenberg, D., Vining, A., & Weimer, D. (2017). Cost-Benefit Analysis: Concepts and Practice (4th ed.). Cambridge University Press. Bockstael, N. E., & Strand Jr., I. E. (1987). The Effect of Common Sources of Regression Error on Benefit Estimates. Land Economics, 63 (1), 11-20. doi: 10.2307/3146652 Boxall, P., & Adamowicz, W. (2002). Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach. Environmental and Resource Economics, 23 (4), 421-442. doi: 10.1023/A:1021351721619 Bujosa, A., Riera, A., & Hicks, R. L. (2010). Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach. Environmental and Resource Economics, 47 (4), 477493. doi: 10.1007/s10640-010-9389-y Cameron, A. C., & Trivedi, P. K. (2003). Essentials of Count Data Regression. In B. H. Baltagi (Ed.), A Companion to Theoretical Econometrics (p. 331-348). Blackwell Publishing Ltd. doi: 10.1002/9780470996249.ch16 Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: Methods and Applications. Cambridge,UK: Cambridge University Press. Cameron, A. C., & Trivedi, P. K. (2013). Regression Analysis of Count Data. Cambridge: Cambridge University Press. Cooper, J. (2000, 05). Nonparametric and Semi-Nonparametric Recreational Demand Analysis. American Journal of Agricultural Economics, 82 , 451-462. doi: 10.1111/0002-9092.0003829 Corrigan, J. R., Kling, C. L., & Zhao, J. (2008). Willingness to Pay and the Cost of Commitment: An Empirical Specification and Test. Environmental and Resource Economics, 40 (2), 285-298. doi: 10.1007/s10640-007-9153-0 Creel, M., & Loomis, J. (1997). Semi-nonparametric Distribution-Free Dichotomous Choice Contingent Valuation. Journal of Environmental Economics and Management, 32 (3), 341 - 358. doi: https://doi.org/10.1006/jeem.1997.0972 Dillman, D. (2007). Mail and Internet Surveys, the Tailored Design Method (2nd ed.). John Wiley and Sons, Inc. Egan, K., Corrigan, J. R., & Dwyer, D. F. (2015). Three Reasons to Use Annual Payments in Contingent Valuation Surveys: Convergent Validity, Discount Rates, and Mental Accounting. Journal of Environmental Economics and Management, 72 , 123-136. doi: 10.1016/j.jeem.2015.05.002 Egan, K., & Herriges, J. (2006). Multivariate Count Data Regression Models with Individual Panel Data from an On-site Sample. Journal of Environmental Economics and Management, 52 (2), 567-581. doi: 10.5950/0738-1360-26.1.1 Englin, J., & Shonkwiler, J. S. (1995). Modeling Recreation Demand in the Presence of Unobservable Travel Costs: Toward a Travel Price Model. Journal of Environmental Economics and Management, 29 (3), 368-377. doi: 10.1006/jeem.1995.1053 Frolich, M. F. (2006). Non-parametric Regression for Binary Dependent Variables. The Econometrics Journal, 9 (3), 511-540. doi: 10.1111/j.1368-423X.2006.00196.x Gurmu, S., Rilstone, P., & Stern, S. (1999). Semiparametric Estimation of Count Regression Models. Journal of Econometrics, 88 (1), 123-150. doi: https://doi.org/10.1016/S0304-4076(98)00026-8 Haab, T. C., & McConnell, K. E. (1996). Count Data Models and the Problem of Zeros in Recreation Demand Analysis. American Journal of Agricultural Economics, 78 (1), 89-102. doi: 10.2307/1243781 Hall, P., Li, Q., & Racine, J. S. (2007). Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors. The Review of Economics and Statistics, 89 (4), 784-789. doi: 10.1162/rest.89.4.784 Henderson, D. J., Kumbhakar, S. C., & Parameter, C. F. (2012). A Simple Method to Visualize Results in Nonlinear Regression Models. Economics Letters, 117 (3), 578-581. doi: https://doi.org/ 10.1016/j.econlet.2012.07.040 Horowitz, J. L. (1997). Bootstrap Methods in Econometrics: Theory and Numerical Performance. In D. M. Kreps & K. F. Wallis (Eds.), Advances in economics and econometrics: Theory and applications: Seventh world congress (Vol. 3, p. 188222). Cambridge University Press. doi: 10.1017/CBO9781139051996.007 Horowitz, J. L. (2001). The Bootstrap. In J. J. Heckman & E. Leamer (Eds.), (Vol. 5, p. 3159 - 3228). 30 Elsevier. doi: https://doi.org/10.1016/S1573-4412(01)05005-X Hynes, S., & Greene, W. (2013). A Panel Travel Cost Model Accounting for Endogenous Stratification and Truncation: A Latent Class Approach. Land Economics, 89 (1), 177-192. doi: 10.3368/le.89.1.177 Jaime, M. M., & Tudela, A. M. (2011). Valuing a Water Recreation Facility Using Semi Parametric Estimators in the Travel Cost Method. Cuadernos de Economia, 30 , 217 - 233. Landry, C. E., & Liu, H. (2009). A Semi-parametric Estimator for Revealed and Stated Preference Data - An Application to Recreational Beach Visitation. Journal of Environmental Economics and Management, 57 (2), 205-218. doi: 10.1016/j.jeem.2008.05.002 Li, Q., Huang, C. J., Li, D., & Fu, T.-T. (2002). Semiparametric Smooth Coefficient Models. Journal of Business and Economic Statistics, 20 (3), 412-422. doi: 10.1198/073500102288618531 Li, Q., Maasoumi, E., & Racine, J. S. (2009). A Nonparametric Test for Equality of Distributions with Mixed Categorical and Continuous Data. Journal of Econometrics, 148 (2), 186 - 200. doi: https://doi.org/10.1016/j.jeconom.2008.10.007 Li, Q., Ouyang, D., & Racine, J. S. (2013). Categorical Semiparametric Varying-Coefficient Models. Journal of Applied Econometrics, 28 (4), 551-579. doi: 10.1002/jae.1261 Li, Q., & Racine, J. S. (2007). Nonparametric Econometrics: Theory and Practice. Princeton: Princeton University Press. Li, Q., & Racine, J. S. (2010). Smooth Varying-Coefficient Estimation and Inference for Qualitative and Quantitative Data. Econometric Theory, 26 (06), 1607-1637. doi: 10.1017/S0266466609990739 Liu, W. (2014). Modeling Gasoline Demand in the United States: A Flexible Semiparametric Approach. Energy Economics, 45 , 244 - 253. doi: 10.1016/j.eneco.2014.07.004 Liu, W. (2015). Gasoline Taxes or Efficiency Standards? A Heterogeneous Household Demand Analysis. Energy Policy, 80 , 54 - 64. doi: 10.1016/j.enpol.2015.01.029 McLeod, L. (2011). A Nonparametric vs. Latent Class Model of General Practitioner Utilization: Evidence from Canada. Journal of Health Economics, 30 (6), 1261 - 1279. doi: https://doi.org/ 10.1016/j.jhealeco.2011.08.005 Misra, S. K., Huang, C. L., & Ott, S. L. (1991). Consumer Willingness to Pay for Pesticide-Free Fresh Produce. Western Journal of Agricultural Economics, 16 (2), 218 - 227. Morey, E., Thacher, J., & Breffle, W. (2006). Using Angler Characteristics and Attitudinal Data to Indentify Environmental Preference Classes: A Latent-Class Model. Environmental and Resource Economics, 34 (1), 91-115. doi: 10.1007/s10640-005-3794-7 Poe, G. L., Giraud, K. L., & Loomis, J. B. (2005). Computational methods for measuring the difference of empirical distributions. American Journal of Agricultural Economics, 87 (2), 353{365. Poe, G. L., Severance-Lossin, E. K., & Welsh, M. P. (1994). Measuring the Difference (X - Y) of Simulated Distributions: A Convolutions Approach. American Journal of Agricultural Economics, 76 (4), 904-915. doi: 10.2307/1243750 Poe, G. L., Welsh, M. P., & Champ, P. A. (1997). Measuring the difference in mean willingness to pay when dichotomous choice contingent valuation responses are not independent. Land Economics, 73 (2), 255{267. Provencher, B., Baerenklau, K. A., & Bishop, R. C. (2002). A Finite Mixture Logit Model of Recreational Angling with Serially Correlated Random Utility. American Journal of Agricultural Economics, 84 (4), 1066-1075. doi: 10.1111/1467-8276.00054 Racine, J. S. (2008). Nonparametric Econometrics: A Primer. Foundations and Trends in Econometrics, 3 (1), 1-88. doi: 10.1561/0800000009 Robinson, P. M. (1988). Root-N-Consistent Semiparametric Regression. Econometrica, 56 (4), 931-954. doi: 10.2307/1912705 Scarpa, R., Thiene, M., & Tempesta, T. (2007). Latent Class Count Models of Total Visitation Demand: Days Out Hiking in the Eastern Alps. Environmental and Resource Economics, 38 (4), 447-460. doi: doi.org/10.1007/s10640-007-9087-6 Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman & Hall. Thompson, E., Berger, M., Blomquist, G., & Allen, S. (2002). Valuing the Arts: A Contingent Valuation Approach. Journal of Cultural Economics, 26 (2), 87 - 113. doi: 10.1023/A:1014426202110 Train, K. E. (1998). Recreation Demand Models with Taste Differences over People. Land Economics, 74 (2), 230-2394. doi: 10.2307/3147053 Wedel, M., Kamakura, W., Arora, N., Bemmaor, A., Chiang, J., Elrod, T., . . . Poulsen, C. S. (1999). Discrete and Continuous Representations of Unobserved Heterogeneity in Choice Modeling. Marketing Letters, 10 (3), 219-232. doi: 10.1023/A:100805431 Whitehead, J. C., Dumas, C. F., Herstine, J., Hill, J., & Buerger, B. (2008). Valuing Beach Access and Width with Revealed and Stated Preference Data. Marine Resource Economics, 23 (2), 119-135. doi: doi:10.1086/mre.23.2.42629607 Winkelmann, R. (2000). Econometric Analysis of Count Data. Berlin: Springer. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/95294 |