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Abstract

We show that a minimum wage can have large effects throughout the earnings distribu-

tion, using a combination of theory and empirical evidence. To this end, we develop an equi-

librium search model featuring empirically relevant worker and firm heterogeneity. We use

the estimated model to evaluate a 119 percent increase in the real minimum wage in Brazil

from 1996 to 2012. Direct and indirect effects of the policy account for a substantial decline in

earnings inequality, with modest negative employment consequences. Using administrative

linked employer-employee data and two household surveys, we find reduced-form evidence

supporting the model predictions.
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1 Introduction

To what extent do minimum wage policies shape earnings inequality? In light of historically high

levels of income inequality in many countries, understanding the effects of such policies on labor

market outcomes is increasingly important. Several OECD nations have recently implemented

higher wage floors in an attempt to reverse a decades-old trend of rising inequality and falling

real wages. In the US, for example, an active debate remains over the connection between the

decline in the real minimum wage and a well-documented rise in income inequality since the

1970s. Maybe less known, several countries in Latin America—among them Brazil—have seen

falling income inequality since the 1990s and a concurrent rise of legal minimum wages. Yet a

quantitative assessment of the effects of the minimum wage has been challenging due to sparse

policy variation, data limitations, and methodological disagreements.

In this paper, we attempt to unify theory and measurement to analyze the distributional con-

sequences of the minimum wage. Our main contribution is to quantify the effects on earnings

inequality of a large, 119 percent increase in the real minimum wage in Brazil from 1996 to 2012.

The apparent size of the minimum wage change and the availability of rich administrative linked

employer-employee data together with detailed household surveys make Brazil a natural testing

ground for studying the effects of this policy. To this end, we develop and estimate an equilibrium

search model of the Brazilian labor market and confront it with reduced-form evidence on the im-

pact of the observed minimum wage increase. Our main result is that the policy induces a notable

inequality decline, reducing the variance of earnings by 11 log points and leading to “spillover

effects” up to the 80th percentile of the earnings distribution, with little disemployment.

Our analysis proceeds in three steps. In the first step, we build an equilibrium model of the

labor market in the spirit of Burdett and Mortensen (1998) featuring worker and firm heterogene-

ity and endogenous job creation. Workers who differ in their ability, off- and on-the-job search

efficiency, and value of leisure engage in undirected job search in markets segmented by worker

type. Firms that differ in productivity choose what wages and how many vacancies to post in

each market. Because of frictions in the labor market, individual firms face an upward-sloping

labor supply curve, which shifts with the wages offered by other firms. Consequently, firms’ equi-

librium choices are interdependent, such that the minimum wage induces all firms to adjust in

markets where it is binding, while participants in markets where it does not bind remain unaf-

fected. As a result, a minimum wage leads to spillovers higher up the wage distribution within,
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but not across, markets. This suggests that in a monopsonistic environment the segmentation of

the market into worker and firm heterogeneity matters for the strengh of spillover effects.

In the second step, we bring the theory to the data in order to quantify the effects of a large

increase in the minimum wage in Brazil on inequality and aggregate economic outcomes. To this

end, we semiparametrically estimate the model via indirect inference using detailed administra-

tive matched employer-employee data on tens of millions of Brazilian workers. We exploit the

fact that the model’s equilibrium wage equation includes as a special case the two-way fixed ef-

fects specification due to Abowd, Kramarz, and Margolis (1999, henceforth AKM), which we use

as an auxiliary framework to inform the relative importance of firm and worker heterogeneity in

the model vis-à-vis the data. We use the estimated model to assess the impact of a 44 log points

increase in the real, productivity-adjusted minimum wage.

The minimum wage hike reduces the variance of earnings by 11 log points, or 55 percent of the

empirical decline in Brazil over this period. Two thirds of the total impact is due to equilibrium

effects. While wage growth is most pronounced at the bottom of the distribution, spillovers reach

up to the 80th percentile of the distribution. The policy leads to a fall in frictional wage dispersion

by reducing the firm productivity pay premium, and it diminishes permanent pay differences be-

tween individuals by lowering the worker skill premium, consistent with facts characterizing the

decline in wage inequality in Brazil over this period (Alvarez et al., 2018). At the same time, we

find a muted negative employment and output response due to two opposing forces. On the one

hand, the minimum wage squeezes firms’ profit margins, leading all firms—particularly those

at low productivity levels—to post fewer vacancies. On the other hand, reduced congestion in

the labor market increases the chance that a given vacancy is filled, leading to a higher rate of

job matches. Overall, these forces largely offset each other, leading to modest disemployment ef-

fects Furthermore, as the profit margin of low productivity firms falls disproportionately, workers

relocate to relatively more productive firms, leading to small efficiency gains.

In the third step, we confront the model predictions with evidence on the impact of the min-

imum wage in Brazil using administrative data and household surveys. Exploiting variation in

the effective bindingness of the federal minimum wage across Brazilian regions over time, we find

that a higher minimum wage has nonlinear effects on wage inequality. Our regression estimates

imply spillovers associated with compression up to the 80th wage percentile of the earnings dis-

tribution, consistent with the results from the estimated model. This is despite the fact that only

around two percent of workers earn the minimum wage. We also show that, in line with our
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model predictions, the minimum wage is only weakly negatively correlated with employment,

formality, and firm dynamics.

Our investigation was motivated by the rich, and at times conflicting, set of results on the

impact of a minimum wage documented in the literature. An advantage of our theory-guided

empirical approach is that it allows us to speak to the sensitivity of our results with respect to

various labor market configurations. One of our contributions is to propose the relative compo-

sition of worker and firm heterogeneity in the labor market as a key determinant of minimum

wage effects. Our estimated model predicts a large decline in inequality and a small decline in

employment due to the minimum wage increase in Brazil. These conclusions are mostly due to

the fact that Brazilian labor markets are far from the perfectly competitive benchmark. For ex-

ample, the Brazilian economy initially shows a low labor share, low job-to-job transition rates,

and large magnitudes of between-firm wage dispersion relative to other developed countries. We

find that productivity dispersion among active firms is among the most important determinants

of our estimated effects. A less dispersed firm productivity distribution would have led us to find

significantly smaller effects on inequality effect and larger disemployment effects than what we

estimated. Thus, our sensitivity analysis can shed new light on the heterogeneous set of results in

the previous literature.

Related literature. Our findings contribute to three strands of the literature. The first provides a

structural assessment of minimum wage effects in frictional labor markets. Eckstein and Wolpin

(1990) estimate a generalization of the Albrecht and Axell (1984) model with a minimum wage and

no within-firm wage differences. Koning et al. (1995) and van den Berg and Ridder (1998) assess

minimum wage effects on unemployment in a wage posting model with on-the-job search and

homogeneous firms competing in segmented labor markets. Burdett and Mortensen (1998) and

Bontemps et al. (1999) formalize the idea that minimum wage spillovers may affect higher wages

in an equilibrium search model. They do so in a framework that features either firm produc-

tivity heterogeneity or worker productivity heterogeneity, but not both. In contrast, our model

features two-sided heterogeneity and highlights that the relative importance of worker versus

firm heterogeneity limits the reach of spillover effects of the minimum wage. Flinn (2006) stresses

the importance of endogenous contact rates for optimal minimum wage levels in a search and

bargaining framework with match-specific productivities. Flinn et al. (2017) study the minimum

wage in a framework with on-the-job search where firms endogenously choose whether or not
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to renegotiate wages as in Postel-Vinay and Robin (2002), Dey and Flinn (2005), and Cahuc et al.

(2006). Doppelt (2018) characterizes welfare implications of the minimum wage in a search model

with both extensive and intensive margins of labor supply. The recent advent of administrative

linked employer-employee data allows for such models to be estimated in a way that disentan-

gles worker and firm heterogeneity, which we argue is crucial for correctly inferring the effects of

the minimum wage. We complement these previous works by highlighting the determinants of

minimum wage effects in an equilibrium search model with two-sided heterogeneity.

The second literature is concerned with reduced-form estimates of the impact of a minimum

wage. A long list of papers has focused on employment effects, with summaries contained in

Card and Krueger (1995) and Neumark and Wascher (2008). Most findings point to small negative

effects on the number of jobs, though less is known for a minimum wage change as large as that in

Brazil. Fewer studies examine the effects on wage inequality, although notable exceptions include

Gramlich (1976), Grossman (1983), DiNardo et al. (1996), Machin et al. (2003), and Brochu et al.

(2018). We further refine their insights by distinguishing between the effects of the minimum wage

on individual versus employer wage components. A seminal paper by Lee (1999) uses survey data

exploiting variation in the effective bindingness of the minimum wage across US states to estimate

spillovers reaching high up in the distribution. In contrast, Autor et al. (2016) argue that spillovers

cannot be distinguished from measurement error due to data limitations in the Current Population

Survey. Rinz and Voorheis (2018) use US Social Security extracts to study minimum wage effects

on annual earnings but lack information on hours worked or hourly wages. Overcoming some

of these hurdles, we use sizable policy variation combined with detailed administrative data to

document widespread spillovers and little displacement due to the minimum wage in Brazil—

striking findings that we reconcile through the lens of our structural model.

Complementing previous empirical work with an equilibrium model also helps to answer the

call by Neumark (2017) to better understand conditions under which the effects of a minimum

wage can be more or less favorable. By studying Brazil, we provide an “existence proof” of a case

in which the minimum wage led to a remarkable decline in wage inequality with relatively little

associated disemployment. By matching the predictions of our structural model to the microdata

surrounding a rise in the minimum wage so large that in many contexts it would be considered

out-of-sample, our results lend reassurance to future research evaluating the effects of unprece-

dented minimum wage increases such as those recently considered in the US.1

1Other mechanisms that could give rise to spillover effects include skill assignments with comparative advantage
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Finally, the third literature studies changes in between-firm pay differences driving inequality

trends, as is the case with a large inequality decline in Brazil documented by Alvarez et al. (2018).2

While the econometric framework due to AKM has been widely used in applied empirical re-

search, structural interpretations have been perceived as problematic (Gautier and Teulings, 2006;

Eeckhout and Kircher, 2011; Lopes de Melo, 2018). Consequently, the fundamental causes behind

observed changes in the wage anatomy remain largely unexplored. A small number of papers

have provided microfoundations for the AKM specification in cross-sectional contexts, including

Barlevy (2008), Bagger et al. (2014), and Burdett et al. (2011, 2016). Relative to these works, we

provide a tractable equilibrium model that nests the AKM wage equation as a special case. The

AKM wage decomposition—although generally misspecified—is useful in estimating key param-

eters of our structural model. To the best of our knowledge, we are the first to evaluate a change in

the minimum wage as a driver of observed dynamics of AKM pay components over time. Bridg-

ing the aforementioned literatures, we conclude that the joint distribution of AKM fixed effects

provides valuable information that helps discipline the model predictions about the effects of a

minimum wage and, conversely, that the minimum wage shapes the dispersion of AKM fixed

effects in a way that helps explain Brazil’s remarkable inequality decline over this period.

Outline. The paper proceeds as follows. Section 2 presents motivating facts related to inequality

and the minimum wage in Brazil. Section 3 develops our equilibrium search model and character-

izes the effects of the minimum wage in this environment. Section 4 estimates the model, which

we use in Section 5 to quantify the equilibrium effects of the minimum wage. Section 6 provides

empirical evidence in support of the model predictions. Finally, Section 7 concludes.

2 Motivating Facts

To examine a decline in earnings inequality in relation to a concurrent rise in the minimum wage

in Brazil from 1996 to 2012, we combine comprehensive administrative linked employer-employee

data (RAIS) with two household surveys (PNAD and PME). The three datasets are described in

(Teulings, 1995, 2000, 2003), hierarchical matching (Lopes de Melo, 2012), fairness considerations (Card et al., 2012),
educational investment (Bárány, 2016), endogenous union formation (Taschereau-Dumouchel, 2017), and hedonic com-
pensation (Phelan, 2018).

2See Davis and Haltiwanger (1991), Dunne et al. (2004), Song et al. (2018), Barth et al. (2016), and Abowd et al.
(2018) for the US; Cardoso (1999) for Portugal; Iranzo et al. (2008) for Italy; Nordström Skans et al. (2009), Akerman et
al. (2013), and Lindqvist et al. (2015) for Sweden; Faggio et al. (2010) for the UK; Eriksson et al. (2013) for the Czech
Republic; Card et al. (2013) and Kantenga and Law (2016) for Germany; and Helpman et al. (2017) for Brazil.
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Appendix A.1. Detailed summary statistics are presented in Appendix A.2. The main conclusion

we draw from examining the raw data is that there was a significant decrease in the dispersion of

monthly earnings—henceforth “wages”3—with little sign of declining employment among formal

sector workers in Brazil between 1996 and 2012.

2.1 Dissecting Brazil’s inequality decline

Our investigation is motivated by a remarkable decline of 20 log points in the standard devia-

tion of wages in Brazil between 1996 and 2012. To understand this inequality decline, we fol-

low Alvarez et al. (2018) in implementing a statistical decomposition of the wage distribution

in Brazil’s formal sector using the RAIS linked employer-employee data. Noting that seemingly

identical workers experience large pay differences across firms, we decompose wage differences

into worker and firm heterogeneity. Specifically, we estimate a two-way fixed effects framework

due to AKM that decomposes log wages wijt of individual i working at firm j in year t within

five-year periods as

wijt = αi + αj + γt + ε ijt, (1)

where αi denotes an individual fixed effect, αj denotes a firm fixed effect, γt is a year dummy, and

ε ijt is a residual satisfying the strict exogeneity condition E
[

ε ijt

∣
∣ i, j, t

]
= 0.4

Table 1 presents a variance decomposition based on equation (1) over repeated time windows.

During 1996–2000, half of the total variance of wages of 68 log points is accounted for by worker

pay heterogeneity and a quarter by firm pay heterogeneity. Between 1996–2000 and 2008–2012, the

total variance dropped by 20 log points, primarily due to a decline in between-firm pay dispersion,

constituting 44 percent of the decline in the variance of log wages over this period.

3We also observe contractual hours, although we find little cross-sectional variation and changes over time along
this margin, plausibly due to Brazil’s rigid labor laws restricting part-time work arrangements. See Section 6.2 for a
more formal regression analysis and Appendix D.4 for further details.

4Equation (1) is identified off workers switching employers across years for the largest set of individuals at firms
connected through worker flows. There has been a fruitful debate around the merits and potential biases of this frame-
work, including recent work by Andrews et al. (2008); Eeckhout and Kircher (2011); Bonhomme et al. (2017); Lopes de
Melo (2018); Card et al. (2018); and Borovičková and Shimer (2018). Alvarez et al. (2018) present a battery of specifica-
tion tests and robustness checks, and conclude that the model describes well the Brazilian data during this period.
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Table 1. AKM variance decomposition, 1996–2000 and 2008–2012

1996–2000 2008–2012 Change

Total variance of log wages, Var(wijt) 0.68 0.48 -0.20

Variance of worker fixed effects, Var(α̂i) 0.33 0.28 -0.06

Variance of firm fixed effects, Var(α̂j) 0.16 0.07 -0.09

2×Covariance b/w workers and firms, 2 × Cov(α̂i, α̂j) 0.13 0.10 -0.03

Residual variance, Var(ε̂ijt) 0.05 0.03 -0.01

Number of worker-year observations 65,645,691 103,188,795

Share in largest connected set 99.86% 99.96%

R2 0.93 0.93

Notes: Predicted variances (shares) due to components in log wage decomposition wijt = αi + αj + γt + εijt for the population of

male workers of age 18–49. Omitted are variance terms involving year dummies γt, which account for a negligible share of the total

variance. Source: RAIS.

2.2 A firm ladder

Given the importance of between-firm pay differences in accounting for observed wage disper-

sion, what economic factors sustain pay differences for identical workers across employers? To

motivate our structural approach in the next section, Table 2 documents that job-to-job mobility

is an important source of wage growth for Brazilian workers, and that growth in firm AKM fixed

effects accounts for a significant share of the overall growth in wages experienced by job-to-job

movers. Overall, adult male workers in Brazil experienced 0.8 log points monthly wage growth

during 1996–2000. However, a small but important number of job-to-job switchers of around 1.4

percent of the workforce each month make significant gains of around 6.5 log points in wages

and 5.7 log points (or 88 percent of the total gain) in AKM firm fixed effects from transitioning

between employers. Thus, job-to-job transitions from low- to high-paying firms—although less

frequent than in the US (Engbom, 2017)—present a powerful engine for individual wage growth.5

Table 2. Changes in wage and AKM firm fixed effect conditional on job transition status

Overall Job-to-job transitions

Monthly rate – 0.014

Mean change in log wage, E
[
∆wijt

]
0.008 0.065

Mean change in AKM firm fixed effect, E
[
∆α̂j

]
0.001 0.057

Notes: Monthly job-to-job transition rate is defined as the mean indicator for switching employers between two consecutive months.

Mean change in log wage and mean change in AKM firm fixed effect are based on the decomposition wijt = αi + αj + γt + εijt for the

population of male workers of age 18–49 during the period 1996-2000. Source: RAIS.

5Corresponding to our findings in the previous section, we find that the mean change in AKM firm fixed effects
from job-to-job transitions declined somewhat from 5.7 log points to 4.1 log points over the 1996–2012 period.
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2.3 The minimum wage in Brazil

Motivated by Brazil’s inequality decline and the link between job-to-job mobility and individual

pay dynamics in the data, we now turn to a salient change in the labor market over this period: the

rise in the minimum wage.6 Brazil’s statutory minimum wage is set at the federal level and stated

in terms of a monthly—not hourly—earnings floor. There are no provisions for legal submini-

mum or differentiated minimum wages across demographics or economic subdivisions (Lemos

et al., 2004). The minimum wage is set for full-time workers with 44-hour contracts and adjusted

proportionately for part-time workers.7

Brazil’s real minimum wage deteriorated under high inflation leading up to 1996 when a

switch in government ignited a gradual ascent of the wage floor by 119 percent in real terms,

reaching 622 BRL or 410 PPP-adjusted USD per month by 2012. Accounting for aggregate produc-

tivity growth, this corresponds to a 44 log points rise in the minimum wage. To put these numbers

into context, the minimum wage as a fraction of the median wage increased from around 34 per-

cent in 1996 to 60 percent in 2012. The negative comovement of the minimum wage and the

variance of log earnings over the preceding 25-year period is shown in Figure 1.8

Figure 1. Evolution of earnings inequality and the real minimum wage in Brazil, 1988–2012
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Notes: Statistics are for males of age 18–49. Real minimum wage is the annual average of the monthly time series. Source: RAIS, IPEA.

6While Brazil enacted other social policies during the mid-2000s, such as the Bolsa Família transfer program for needy
families launched in 2003, the minimum wage predates many of these policies. By exploiting cross-sectional variation
in the data in Section 6.1, we identify effects of the minimum wage net of aggregate trends, so the fact that inequality
declined in Brazil over this period is neither necessary nor sufficient for our conclusions.

7Using information on hours in the RAIS data, we find a small initial share of such workers and no significant
changes related to the minimum wage over time–see also Section 6.2 and Appendix D.4. Special labor contracts allow
for parts of the minimum wage to be paid in-kind in the form of accommodation and food, although in the PNAD data
only 0.8 percent of workers report receiving nonmonetary remuneration in 1996, and 0.3 percent of workers in 2012.

8Matching this time series pattern, in Section 6.1 we show that our empirical estimates and counterfactual model
simulations imply an asymmetric and convex response of wage dispersion to changes in the minimum wage.
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Much of the previous empirical literature has interpreted the mass of workers employed at the

minimum wage as a measure of the bindingness of the wage floor (Flinn, 2006, 2010). Although

there is substantial heterogeneity in the bindingness of the minimum wage across subpopulations

in our administrative data from Brazil, we robustly find a small spike at the wage floor for male

workers of age 18–49. Panel (a) of Figure 2 shows across states an average of approximately

two percent of workers earn exactly the minimum wage in 1996 and 2012 against the relative

bindingness of the minimum wage measured by the Kaitz index, defined as the log minimum-

to-median wage.9 We find a weak positive correlation between the Kaitz index and the share of

workers earning the minimum wage, but the fraction remains at relatively small levels even in

states where the minimum wage is most binding.

We can broaden our definition of “mass point” to three measures whose evolution from 1996

to 2012 is depicted in panel (b) of Figure 2. The share of workers earning exactly the minimum

wage, shown by the blue line, remains flat at two percent. A little more than 1.5 percent of workers

in 1996 and around three percent of workers in 2012 report earning less than the minimum wage,

shown by the red line. These observations are likely due to a mix of legal exceptions, misreporting,

and illegal employment. Our most generous definition includes workers within a 5 percent band

around the minimum wage, shown in green. This most generous measure rises from 3.5 to 7

percent over this period, far from the roughly 30 percent of workers between the old and the new

minimum wage.

Figure 2. Data: Worker shares in relation to the minimum wage, 1996–2012

(a) Heterogeneity across states and over time
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t − log wmedian
st , across states in 1996 and 2012. Area of circles is proportional to population size. In panel (b), the blue line

shows share of workers earning exactly the minimum wage, the red line shows share at or below the minimum wage, and the green

line plots share within 5 percent of the minimum wage. Source: RAIS.

9For comparison, 3.3 percent of hourly paid workers in the US earned the prevailing federal minimum wage or less
in 2015 (U.S. Bureau of Labor Statistics, 2017).
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To what extent can the rise in the minimum wage account for Brazil’s concurrent inequality

decline from 1996 to 2012? Evaluating the effects of the minimum wage in Brazil over this period,

as well as designing such policies in other contexts, requires a model that is consistent with the

cross-section of worker and firm pay heterogeneity, the prevalence of a firm ladder explaining

wage gains from job-to-job transitions, and the absence of a large mass point at the wage floor.

3 Equilibrium Model

This section develops a version of the Burdett and Mortensen (1998) equilibrium model with

worker and firm heterogeneity that we use to assess the effects of a minimum wage increase.

In line with salient empirical facts from Section 2, this framework can generate endogenous wage

dispersion for identical workers across employers. The Burdett-Mortensen model is widely used

to study wage determination, and our exposition closely follows that of Bontemps et al. (1999,

2000), Mortensen (2003), and Jolivet et al. (2006). Our contribution is to allow for both worker and

firm heterogeneity in a tractable manner to use the estimated framework for quantitative analysis.

3.1 Environment

We study a stationary economy cast in continuous time that consists of a unit mass of infinitely-

lived workers and a mass M0 of firms who meet in a frictional labor market.

Workers. Workers differ in ability θ distributed over
[
θ, θ
]

with pdf hθ . We think of θ as capturing

an amalgamate of educational qualifications and skill competencies that are valued in the labor

market. As in Lise and Robin (2017) and Bagger and Lentz (2018), we abstract from human capital

accumulation. Workers can be employed or nonemployed, the latter of which we map to the pool

of unemployed plus informally employed in the data. Workers value a stream of consumption

equal to their wage when employed or bθ when nonemployed, discounted at rate ρ. In both states,

workers search for jobs within markets segmented by ability type, as in van den Berg and Ridder

(1998), which can be thought of as separate Burdett-Mortensen economies indexed by θ.

The assumption that labor markets are perfectly segmented by worker ability type deserves

some discussion. Modeling workers by unobservable ability type, rather than based purely on

observables as in van den Berg and Ridder (1998), allows us to match the empirical regularity that

substantial earnings dispersion remains within narrowly defined demographic groups (Alvarez
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et al., 2018). Segmenting markets across θ-types is a simple, albeit stylized, way to achieve two

objectives: First, it allows us to handle two-sided heterogeneity in a tractable manner. Second, it

helps us to connect our structural model to a rich empirical literature on between- versus within-

firm pay inequality in the spirit of AKM. 10Although it would be very interesting to develop a

model in which workers of different types search in the same market, this is beyond the scope of

this paper. It is worth nothing that by segmenting markets, we effectively shut down spillovers

across markets, thereby limiting the extent of spillover effects of a minimum wage.

Let λu
θ denote the job offer arrival rate for the nonemployed and λe

θ = sθλu
θ , for some param-

eter sθ , the arrival rate for the employed. A job offer entails a wage draw w ∼ Fθ(·) over sup-

port [wθ , wθ ]. Although workers take arrival rates and the wage offer distribution as given, both

are determined endogenously through firms’ equilibrium vacancy and wage posting decisions,

possibly subject to a minimum wage. Matches dissolve exogenously at rate δθ , leading a share

uθ = δθ/
(
δθ + λu

θ

)
of workers to be frictionally nonemployed. As employed workers find higher-

paying jobs through on-the-job search, the realized wage distribution Gθ first-order stochastically

dominates the wage offer distribution Fθ . Indeed, Gθ (w) = Fθ (w) / (1 + κθ (1 − Fθ (w))), where

κθ ≡ λe
θ/δθ governs the effective speed of climbing up the job ladder.

The values of nonemployed workers, Wθ , and of workers employed at wage w, Sθ(w), satisfy11

ρWθ = bθ + λu
θ

ˆ wθ

wθ

max {Sθ(w)− Wθ , 0} dFθ(w)

ρSθ (w) = w + λe
θ

ˆ wθ

w

[
Sθ

(
w′
)
− Sθ (w)

]
dFθ

(
w′
)
+ δθ [Wθ − Sθ (w)] .

The optimal strategy of a nonemployed worker involves a reservation threshold φθ equal to the

flow value of nonemployment plus the forgone option value of remaining nonemployed:

φθ = bθ + (λu
θ − λe

θ)

ˆ wθ

φθ

1 − Fθ (w)

ρ + δθ + λe
θ (1 − Fθ (w))

dw.

In contrast to Albrecht and Axell (1984), our model features heterogeneity in the reservation

10Modeling labor markets as segmented by worker type, rather than pooled across types as in Heise and Porzio
(2018), allows our model to tractably generate both within-firm and between-firm inequality with a positive covariance
between worker and firm types as documented empirically in Section 2.1.

11Following most of the literature, we abstract from an hours margin here. Motivated by the empirical evidence in
Section D.4 that hours are highly concentrated at full-time work in the cross-section of the data, and that hours show
no significant relation with the level of the minimum wage over time, we think this is an innocuous assumption for
our setting. Our framework could be readily extended to include an intensive margin of labor supply, requiring a very
lower elasticity of labor supply to match the invariance in the data.
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threshold across, instead of within, θ-markets.12 We say the minimum wage is binding in mar-

ket θ whenever wmin
> φθ so that workers’ reservation wage is Rθ = max

{
φθ , wmin

}
.

Firms. Firms are characterized by a productivity level p distributed continuously over [p0, p]

with cdf Γ0. They operate a linear production technology combining lθ workers of each ability

type θ to produce flow output

y
(

p, {lθ}θ∈Θ

)
= p

ˆ

θ∈Θ

θlθdθ.

In contrast to the assumption in van den Berg and Ridder (1998) and Bontemps et al. (1999,

2000) but in line with Flinn (2006), we model contact rates as endogenous. Specifically, we as-

sume that firms attract type-θ workers by posting vθ job openings subject to a convex cost cθ(vθ) :

c′θ , c′′θ > 0. The firm commits to a wage wθ for its vacancies in market θ. That firms make equilib-

rium wage posting decisions, rather than bargain with individual workers over the match surplus

with some exogenous bargaining parameter, provides a better description of the Brazilian labor

market given its low skilled labor force and institutional setting.13 We later show that our as-

sumption is consistent with the empirical distribution of wages, in particular the absence of a

pronounced mass point at the minimum wage.

A firm’s wage rank 1 − Fθ (wθ) together with its recruiting intensity vθ jointly determine a

firm’s employment level lθ (wθ , vθ). As production and the recruitment process are independent

across markets, a productivity p firm’s problem coincides with separate profit maximization in

each market:

∀θ : max
wθ≥wmin,vθ

{(pθ − wθ) lθ (wθ , vθ)− cθ(vθ)} .

A firm makes positive profits in market θ only if it posts a wage between workers’ reservation

wage Rθ and its productivity p. Hence, there is an active mass of firms Mθ = M0(1 − Γ0(p
θ
))

distributed Γθ(p) = Γ0( p| p > p
θ
) with lower bound p

θ
= Rθ/θ. Given optimal wage and vacancy

posting policies (wθ (p) , vθ (p)) in market θ, the wage offer distribution for a given aggregate

vacancy mass Vθ = Mθ

´ p
p

θ

vθ (p′) dΓθ (p′) is simply Fθ (wθ (p)) = Mθ

´ p
p

θ

vθ (p′) dΓθ (p′) /Vθ .

12To capture the rich empirical heterogeneity in this and other moments, our implementation allows for flexible
heterogeneity both within and across groups of observable worker characteristics.

13In the literature, variants of the Burdett and Mortensen (1998) model have been popular in studying wage deter-
mination, while bargaining frameworks have been more widely used in the study of labor flows. Furthermore, in the
words of Flinn (2006): “the validity of [fixing the value of the bargaining parameter] is questionable, particularly when
considering large policy (i.e., minimum wage) changes.”
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Matching. Denote by Sθ = hθ

(

uθ + sθ (1 − uθ)
)

the efficiency-weighted number of searching

workers in market θ. The total number of meetings between workers and firms in market θ, mθ ,

can be represented by a Cobb-Douglas function mθ = χθS1−α
θ Vα

θ , where χθ is a matching efficiency

parameter and α governs the elasticity of matches with respect to vacancies.

3.2 Effects of the minimum wage

We define and characterize a search equilibrium with a minimum wage in Appendices B.1–B.2. We

illuminate here the model’s mechanism giving rise to wage dispersion for identical workers across

firms and the effects of the minimum wage in this environment.

We focus first on a single θ-market. Job-to-job mobility renders firms’ wage and vacancy poli-

cies interdependent. In choosing a wage, firms take as given the distribution of competing wage

offers Fθ and weigh two opposing forces. On the one hand, a lower wage increases per-worker

profits. On the other hand, a higher wage rank raises steady-state employment through increased

poaching and decreased voluntary quits. As has been well known since Burdett and Mortensen

(1998), this trade-off leads more productive firms to post higher wages, leading to equilibrium

wage dispersion for identical workers.14 Perturbations to this environment lead to spillovers be-

tween all employers in a θ-market, even if only a subset of firms is directly affected.

Concretely, let us consider the effects of a minimum wage raise between steady states. A set

of firms will adjust their wage offers to comply with the new wage floor. As firm optimization in-

duces the equilibrium wage offer distribution to be continuous and wages to be strictly increasing

in productivity, other firms adjust wages in equilibrium to retain their pay rank. Such competitive

pressure leads the minimum wage to spill over to higher-paying firms. Finally, fewer vacancy

postings due to lower profit margins and firm exit will result in higher frictional unemployment.

We now turn to the economy with a continuum of segmented markets. In markets where

the minimum is binding, the strength of the above mechanism depends on the labor market con-

figuration. Minimum wage bindingness is determined by workers’ reservation wages. Markets

where the minimum wage is nonbinding remain unaffected. In this sense, labor market segmenta-

tion puts a cap on the spillover effects that are omnipresent in the original Burdett and Mortensen

(1998) framework. Evidently then, the mix of worker versus firm heterogeneity will be a crucial

input to our estimated model when considering equilibrium effects of the minimum wage.

14In the empirically relevant case with firm heterogeneity, there exists a unique pure strategy equilibrium in firms’
wage posting game. In contrast, the model with homogeneous firms has a unique mixed strategy equilibrium with an
upward-sloping wage density, different from the heterogeneous firms equilibrium considered here.
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Our framework relates closely to the empirical literature on pay decompositions into worker

and firm heterogeneity due to AKM. To see this, with exogenous contact rates, (λu
θ , λe

θ , δθ) constant

across θ-markets, bθ ∝ θ, and a non-binding minimum wage, equilibrium wages in our model

coincide with the log additive specification (1) that is popular in empirical studies of the wage

distribution and its changes over time (Card et al., 2013; Alvarez et al., 2018; Song et al., 2018):

log wθ (p) = αθ + α (p) , (2)

where the “worker effect” αθ = log θ is an increasing function of ability, while the “firm effect” or

piece rate α (p) = p −
´ p

p [(1 − Γ0(p) + κ(1 − Γ0(p)))/(1 − Γ0(p) + κ(1 − Γ0(x)))]2dx is indepen-

dent of worker ability and strictly increasing in firm productivity. Under more general parameter-

izations, the wage equation (2) is perturbed and the AKM specification in equation (1) no longer

has a structural interpretation. Nevertheless, we argue that it provides valuable information about

the underlying unobserved worker and firm heterogeneity.

How does the minimum wage affect wage inequality in this equilibrium framework? It is

instructive to characterize the spillover effects of the minimum wage for a special case of the

model, which we later numerically show continues to approximately hold under more general

numerical parameterizations.

Proposition. Assume exogenous contact rates, constant (λu
θ , λe

θ , δθ) ∈ R
3
++ for all θ, and bθ ∝ θ. Then

for markets where the minimum wage binds, {θ|wmin ≥ φθ}, a marginal increase in the minimum wage

1. increases wages at all firms: ∂wθ

(
p; wmin

)
/∂wmin

> 0 ∀p;

2. decreases the productivity pay premium across firms: ∂
[
∂wθ

(
p; wmin

)
/δp

]
/∂wmin

< 0; and

3. decreases the returns to worker ability: ∂
[
∂wθ

(
p; wmin

)
/δθ

]
/∂wmin

< 0.

Proof. See Appendix B.3.

We interpret the proposition as follows. Part 1 states that wages increase for all workers with

a reservation wage below the minimum wage. In the presence of search frictions, rent sharing

is an equilibrium outcome, and the minimum wage acts as a transfer from firms to workers in

the markets it affects. Part 2 characterizes the nature of spillovers between firms within a market.

Wage increases at the initially lowest-paying firms are one-for-one with the minimum wage but

gradually decline for higher-paying firms, leading to a flattening of the firm productivity-pay
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gradient. Finally, part 3 shows that among all affected markets, lower ability workers gain more

from the minimum wage, leading to a flattening of the worker ability-pay gradient.

Our model nests two important benchmarks: that of perfectly competitive labor markets with

workers paid their marginal product (λe
θ/δθ → +∞), and the monopsony outcome where all ob-

served wage heterogeneity reflects differences in workers’ outside option (λe
θ/δθ = 0). In both

cases, though for different reasons, there is no “frictional wage dispersion” across firms so that

the minimum wage induces no spillovers. For the intermediate range, the paramterization of the

model determines the strength of equilibrium spillovers. Hence, the model’s predictions for min-

imum wage effects depend crucially on estimates of the heterogeneous labor market parameters.

4 Estimation

This section estimates the model based on Brazil’s RAIS matched employer-employee data from

the “pre-period” 1996–2000. We want to use the estimated model to consider the following policy

experiment: given the structural parameters estimated on a “pre-period,” what are the equilib-

rium effects the subsequent rise in the minimum wage seen in Brazil?

4.1 Methodology

The general model we presented in Section 3 is rich enough to capture many facets of heterogene-

ity among workers, firm attributes, and features of the Brazilian labor market. Consequently, we

want to determine a large set of parameter values when bringing the model to the data.

Pre-set parameters. We start by setting a few parameters based on standard values in the liter-

ature. Without data on vacancies, matching efficiency is not separately identified from the cost

intercept of posting vacancies, so we normalize the fomer to χθ ≡ 1. Following Petrongolo and

Pissarides (2001), we set the elasticity of the aggregate matching function with respect to vacancies

to α = 0.3. We adopt a monthly frequency and set the discount rate to the annual equivalent of a

five percent real interest rate.

Indirect inference. Next, we estimate the remaining parameters via indirect inference (Gourier-

oux et al., 1993) by targeting a set of auxiliary moments that summarize the data in key dimen-

sions, thus informing the underlying structural parameters. Our estimation strategy balances two
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considerations: On the one hand, it is important to capture accurately the distribution of worker

and firm heterogeneity underlying the observed wage distribution. On the other hand, estimat-

ing a model with many parameters requires efficiency. We trade off these competing objectives

by adopting a semiparametric approach: We do not impose a parametric assumption on the dis-

tribution of worker ability (the most important determinant of wage differences), but we take a

parametric approach to estimating log firm productivity by assuming that it follows a Gamma

distribution with shape parameter γ1 and scale parameter γ2. We demonstrate below that this

semiparametric approach provides sufficient flexibility to capture well the distribution of wages

in the data, as well as its decomposition into firm and worker AKM components.

This leaves us with the following parameters to estimate: market-specific separation rates,

{δθ}θ ; relative search efficiencies, {sθ}θ ; flow values of leisure, {bθ}θ ; scalar cost intercepts, {cθ}θ ,

of the assumed isoelastic vacancy cost function, cθ(v) = cθv1+η/ (1 + η); curvature of vacancy

creation, η; mass of potential firms, M0; parameters of the Gamma distribution describing firm

productivity, γ1 and γ2; and the distribution of worker ability as summarized by its median, θ50,

and pth percentiles relative to the median, θ̃p, for p = 5, 10, 25, 75, 90, 95, between which we inter-

polate. We normalize the initial minimum wage to be the numeraire.

We target the following 55 moments in our estimation, with details on their computation rel-

egated to Appendix C.3: the log median-to-minimum wage; the employment-weighted mean

log firm size; the employment-weighted standard deviation of log firm size; the log 5–50, log

10–50, log 25–50, log 75–50, log 90–50 and log 95–50 percentile ratios of AKM worker and firm

fixed effects; and a set of auxiliary labor market moments by worker type. The set of auxil-

iary labor market moments includes the employment-to-nonemployment (EN) hazard rate, the

nonemployment-to-employment (NE) hazard rate, the effective speed at which workers climb the

firm ladder, and workers’ reservation wage, all by decile of AKM worker fixed effects.

To reduce the dimensionality of our indirect inference step, we proceed in two steps. In the

first step, we estimate outside of our main estimation loop 40 labor market parameters, 4 by each

worker ability decile. To this end, we target the EN hazard, NE hazard, the effective speed at which

workers climb the firm ladder, and workers’ reservation wage by decile of worker AKM fixed

effects. Mapping the rank in AKM worker fixed effects into the rank of underlying ability rank

works to the extent that more able workers do not have sufficiently worse labor market mobility

patterns.15 We then compute by empirical AKM worker fixed effect decile the following auxiliary

15We test for the robustness of this identification by simulating the model for different slopes of the labor market
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labor market moments. An estimate of the EN transition rate directly informs the exogenous job

destruction rate, δθ . A reduced-form moment capturing the relative arrival rate of job offers while

employed, ŝθ , directly corresponds to the relative on-the-job search efficiency parameter sθ . The

vacancy costs intercept, cθ , is picked so that the model matches the empirical NE transition hazard.

Finally, it suffices to solve for the reservation wage of workers, φθ , instead of the underlying flow

value of leisure, bθ . We solve the model and later back out the underlying flow value of leisure bθ

that rationalizes our estimate of φθ given the other parameter values.

This leaves us with 11 parameters to estimate in our main estimation via indirect inference:

θ50,
{

θ̃p
}

p=5,10,25,75,90,95
, γ1, γ2, M0, η. Although the remaining structural parameters are jointly

identified, we outline here a brief heuristic identification argument for what moments inform

each of the moments. The median-to-minimum wage informs the median worker ability level,

θ50, while the log percentile ratios of the AKM worker fixed effects distribution particularly in-

form the percentile ratios of the underlying worker ability distribution, θ̃p. The shape and scale

of the distribution of AKM firm fixed effects particularly inform the parameters governing the

firm productivity distribution, γ1 and γ2. Average firm size informs the measure of firms relative

to the mass of workers, M0. Finally, the standard deviation of firm sizes informs the curvature

of vacancy creation, η, because a lower value of this elasticity makes it relatively less costly for

productive firms to grow large relative to unproductive, small firms. We pick as our estimate

the parameter vector that minimizes the sum of equally weighted squared percentage differences

between the remaining 15 moments in the model and the data.16

4.2 Parameter estimates and model fit

Following Appendix C.3, we derive a set of model-consistent auxiliary moments summarizing

workers’ rate of leaving formal employment (δθ), time out of formal employment (informative of

λu
θ ), job transition rate while employed (informative of λe

θ), and lowest starting wage (informative

of φθ). Figure 3 plots the derived auxiliary moments by worker ability decile.

parameters across ability groups, in particular sθ , and find that the joint information contained in the distribution
of measured AKM worker fixed effects and observed mobility patterns is enough to recover the correct ranking of
underlying worker ability types.

16In practice, we solve the model approximately 5 million times under different parameter configuations from a
space of potential values. To make this feasible, for a given parameter configuration we solve for the continuous-time
wage and vacancy policies obtained from the equilibrium system of differential equations described in Section C.1 and
apply the AKM decomposition to the solution. This avoids simulating a large number of individual worker histories,
which speeds up estimation by an order of magnitude. After the model estimation, we simulate a large number of
worker histories at monthly frequency under the estimated parameter values and add orthogonal normal disturbances
to simulated log wages before estimating AKM on the resulting dataset.
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Figure 3. Targeted labor market moments by worker ability decile, 1996–2000
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Notes: Each worker ability decile contains around 9 million observations. Standard errors are all < 10−3 and omitted. Exit hazard rate

in panel (a) and entry hazard rate in panel (b) are monthly rates. Relative on-the-job search intensity in panel (c) is a scalar. Estimated

lowest accepted wage in panel (d) is in log multiples of the current minimum wage. Source: RAIS.

Figure 4 plots the resulting estimates of the separation rate δθ , the scalar cost of posting vacan-

cies cθ , the relative search intensity of employed workers sθ and the flow value of nonemployment

bθ by worker ability. We find substantial heterogeneity in these parameters across worker ability

groups, as a result of significant differences in observed labor market mobility patterns by worker

types in the data. The separation rate of the most able workers is only a quarter of that for the

least able, and they search with twice the efficiency on the job. As we will see, this heterogene-

ity in labor market mobility implies sorting of higher-paid workers to higher-paying firms. The

scalar cost of posting vacancies is non-monotone in worker ability due to two offsetting forces. On

the one hand, it is more attractive for firms to post vacancies in higher ability markets since such

workers produce more, which tends to drive up the estimated cθ . On the other hand, observed

NE flows are higher for more able workers, implying a lower scalar cost cθ .

The estimated flow value of nonemployment is mildly negative and declines in worker ability.

It is well-known that this class of models imply a low flow value of leisure, and our framework

is not too different in this regard (Hornstein et al., 2011). As there are many possible explanations

for this observations—including a large curvature of utility, financial constraints, or a high real

interest rate—and we think of this issue as orthogonal to our objective, we do not pursue it further

in this paper. Note that we cannot estimate the flow value in markets where the minimum wage

binds, since we do not observe workers reservation wage in these cases. This is not a problem,

fortunately, since the policy experiment we consider increases the minimum wage, we do not

require an estimate of the flow value of leisure for those workers who are in markets where the

minimum wage initially binds.17

17In some of the later counterfactual experiments, we simulate a lower minimum wage than what Brazil had initially.
When conducting these experiments, we linearly extrapolate the observed reservation wage by worker type in Figure
3 for workers below the initial minimum wage in Brazil when estimating the flow value of leisure for these workers.
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Figure 4. Estimated values of δθ , cθ , sθ and bθ by worker ability quantiles

0.25 0.5 0.75

Cumulative density

0.01

0.02

0.03

0.25 0.5 0.75

Cumulative density

14

14.5

15

0.25 0.5 0.75

Cumulative density

0.2

0.3

0.4

0.25 0.5 0.75

Cumulative density

-1.5

-1

-0.5

Note: Estimated continuous-time separation rate δθ , flow scalar cost of posting vacancies cθ , cθ(v) = cθv1+η/(1 + η), relative search

intensity of employed workers sθ , and flow value of leisure bθ , by cdf of worker ability. Source: simulations.

Table 3 presents the parameters of the model estimated in the indirect inference step. The

implied variance of firm productivity is seven log points versus nine for worker ability. To preview

our later findings, the estimates imply that the least able workers remain productive at the least

productive firms in response to the empirically relevant 44 log point increase in the minimum

wage. Hence, the employment reponse to the minimum wage hike that we later find is driven

by adjustment on the intensive margin—changes in vacancy creation conditional on remaining

active—not the extensive margin. Finally, we highlight that the estimated cost of hiring is not

particularly convex, implying a relatively elastic employment response to a minimum wage hike.

Table 3. Parameter estimates

Description Parameter Value

Panel A. Worker ability, flexible interpolation points

Median θ50 2.29

5th percentile, relative to median θ̃5 0.80

10th percentile, relative to median θ̃10 0.82

25th percentile, relative to median θ̃25 0.99

75th percentile, relative to median θ̃75 1.07

90th percentile, relative to median θ̃90 1.64

95th percentile, relative to median θ̃95 2.66

Panel B. Firm productivity, log(p) ∼ Γ(γ1, γ2)

Shape γ1 2.19

Scale γ2 0.15

Panel C. Labor market parameters

Mass of firms M0 0.07

Curvature of vacancy cost η 0.45

Note: Estimated parameter values of worker ability distribution, firm productivity distribution, and job creation. Source: simulations.
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Table 4 compares targeted moments used in the indirect inference procedure in the model

and in the data. The model replicates well the empirical distribution of AKM worker and firm

fixed effects, suggesting that our parametric assumption on the firm productivity distribution is

sufficiently flexible to allow us to capture the distribution of AKM firm fixed effects in the data.

4.3 Validation

To validate our proposed theory of wage setting, we first note that our estimated value of the rate

at which workers move up the firm ladder, κθ , indicates that Brazilian workers indeed do climb a

firm ladder through gradual on-the-job mobility. In fact, given that we estimate this parameter by

comparing the distribution of overall firm AKM fixed effects to that among workers who reenter

the labor market and that we target this as an auxiliary moment, by construction the estimated

model matches the extent to which such mobility moves workers up the firm ladder.

Table 4. Data vs. model: Targeted moments, 1996–2000

Moment Data Model

Panel A. Worker fixed effects

P5–50 -0.578 -0.579

P10–50 -0.498 -0.468

P25–50 -0.253 -0.271

P75–50 0.365 0.389

P90–50 0.976 0.874

P95–50 1.203 1.207

Panel B. Firm fixed effects

P5–50 -0.570 -0.637

P10–50 -0.503 -0.503

P25–50 -0.305 -0.263

P75–50 0.309 0.274

P90–50 0.503 0.509

P95–50 0.570 0.655

Panel C. Other moments

Log minimum-to-median wage -1.121 -1.157

Mean log firm size 4.439 4.579

Standard deviation of log firm size 2.340 2.458

Note: Percentile ratios summarizing targeted worker and firm AKM firm fixed effects in the model and the data. Model moments

are based on a simulated, discrete-time monthly approximation of model with 1m individuals over five years, including orthogonal

normal noise added to annual log earnings in order to match the variance of the estimated AKM residual. Both model and data

include individual-years with earnings greater than the minimum wage and at firms with at least 10 employees. Source: RAIS and

simulations.

To further validate the theory, we next illustrate that the estimated model not only captures
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the separately targeted AKM worker and firm effects distributions, but also replicates many fea-

tures of the empirical wage distribution. Specifically, because higher ability workers climb the job

ladder faster, the estimated model replicates the positive assortative matching between workers

and firms evident in the data, matching closely the empirical correlation between AKM worker

and firm fixed effects of 0.28 with associated covariance of 0.07. In spite of matching well large

shares of the AKM fixed effects distributions, a small number of extreme outliers—confined to the

top and bottom few percent of the AKM fixed effects distributions—leads us to underestimate the

overall variance of wages by five log points.18 Figure 5 plots the resulting distribution of wages,

illustrating the model fit with respect to the empirical wage distribution.

Figure 5. Data vs. model: Histogram of wages, 1996–2000
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Note: Model moments are based on a simulated, discrete-time monthly approximation of model with 1m individuals over five years,

including orthogonal normal noise added to annual log earnings in order to match the variance of the estimated AKM residual. Both

model and data include individual-years with earnings greater than the minimum wage and at firms with at least 10 employees.

Source: RAIS and simulations.

A feature of the Burdett and Mortensen (1998) model that carries over to our framework is the

continuity of the wage distribution. This prediction is the direct result of strategic wage posting

by firms, which in equilibrium rules out mass points anywhere, in particular at the minimum

wage. Several authors have noted that this feature of the model is at odds with the data in certain

contexts, such as Manning (2003) for the US, suggesting that the benchmark wage posting model

is not a good description of those labor markets. In contrast, in the case of Brazil a relatively small

share of workers is bunched at the minimum wage. While the model somewhat understates the

density of workers at wages close to the minimum wage, we expect that this will if anything lead

us to find smaller effects of the minimum wage.

Another way to assess the model’s ability to match the overall distribution of wages given our

18While we believe that it is more useful to capture the great majority of the distributions of AKM fixed effects as
summarized by the targeted percentile ratios, we have verified that our results remain robust to inflating the dispersion
of worker ability and firm productivity to match the variances of the AKM fixed effects.
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targeted distribution of worker and firm AKM fixed effects is to evaluate the behavior of the AKM

residual. Comparing panels (a) and (b) of Figure 6 shows that the model reproduces the pattern

of residual variation across worker and firm effects groups found in the data. The minimum wage

induces low-low matches to be associated with a positive residual, indicative of the nonlinear

nature by which the wage floor affects pay schedules across worker and firm types. While the

model slightly overpredicts this pattern in the data, in both cases the systematic deviation from

the AKM two-way fixed effect decomposition is small.

Figure 6. Data vs. model: AKM wage residuals, 1996–2000

(a) Data
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Notes: Figure shows estimated AKM residual ε̂ijt = wijt − α̂i − α̂j − γ̂t by worker and firm effect deciles. Model moments are based on

a simulated, discrete-time monthly approximation of model with 1m individuals over five years, including orthogonal normal noise

added to annual log earnings in order to match the variance of the estimated AKM residual. Both model and data include individual-

years with earnings greater than the minimum wage and at firms with at least 10 employees. Source: RAIS and simulations.

Finally, in order to assess whether the theory matches the nature of wage dynamics in the data,

we confront our model with an AKM diagnostic tool proposed by the empirical literature (Card

et al., 2013). Specifically, Figure 7 plots average wages for moving workers starting in the first and

fourth firm effect quartiles depending on their destination quartile of firm effects. Wage gains and

losses of switchers across the firm effects distribution are largely symmetric, in the sense that the

wage losses experienced by those moving down the firm ladder mirror the wage gains of those

moving up the firm ladder. The empirical literature has interpreted this as suggesting a lack of

assortative matching, an interpretation that our model supports. We conclude from these exercises

that the model matches well key stylized facts on wage dynamics in the data.
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Figure 7. Data vs. model: Event study graph of wage gains from switching firms, 1996–2000
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Notes: Figure plots changes in mean log wage upon switching employers between year 0 and year 1. Different lines show transitions

from first and fourth quartiles of AKM firm fixed effects distribution for the period 1996–2000. Model moments are based on a

simulated, discrete-time monthly approximation of model with 1m individuals over five years, including orthogonal normal noise

added to annual log earnings in order to match the variance of the estimated AKM residual. Both model and data include individual-

years with earnings greater than the minimum wage and at firms with at least 10 employees. Source: RAIS and simulations.

Figure 8 illustrates why, although misspecified, the AKM regression equation (1) provides

valuable information that informs the underlying structural parameters guiding worker and firm

heterogeneity. Panel (a) shows the close to linear structure of log wages in worker and firm types,

with wage profiles shifting approximately in parallel with the notable exception of the bottom firm

productivity decile. Estimated AKM worker effects in panel (b) are strictly increasing in worker

ability θ while estimated AKM firm effects in panel (c) are strictly increasing in firm productivity.

Figure 8. Model: Wages and AKM components across worker and firm types, 1996–2000

(a) Wage structure
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(b) AKM worker effects vs. ability
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(c) AKM firm effects vs. prod.

0
.0

0
.3

0
.6

0
.9

1
.2

1
.5

K
e

rn
e

l 
d

e
n

s
it
y

0
.0

0
.3

0
.6

0
.9

1
.2

1
.5

A
K

M
 f

ir
m

 e
ff

e
c
t

0.6 1.0 1.4 1.8 2.2 2.6
Firm productivity (p)

mean interquartile range (IQR) density

Notes: Worker ability (firm productivity) approximated using an Epanechnikov kernel density with bandwidth 0.53 (0.17). Model

moments are based on a simulated, discrete-time monthly approximation of model with 1m individuals over five years, including

orthogonal normal noise added to annual log earnings in order to match the variance of the estimated AKM residual. Both model

and data include individual-years with earnings greater than the minimum wage and at firms with at least 10 employees. Source:

simulations.

5 Effects of a Higher Minimum Wage

We use the estimated model to simulate the following policy experiment: what are the steady-

state effects of a 44 log points increase in the real productivity-adjusted minimum wage between
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1996–2000 and 2008–2012 on the wage distribution and aggregate economics outcomes, holding

fixed all structural parameters?

5.1 Effect on the distribution of wages

The 44 log point rise in the minimum wage generates a significant decline in earnings inequality,

as summarized in Table 5. The variance of log earnings declines by 11 log points, compared to

an overall decline of 20 log points in Brazil over this period. Hence, the minimum wage accounts

for 55 percent of the overall compression in inequality experienced by Brazil between 1996 and

2012. Both the variance of worker and firm AKM fixed effects decline markedly, with the former

falling by 0.04 and the latter by 0.03. For comparison, the corresponding declines in the data are

0.06 and 0.09, respectively. The minimum wage accounts for most of the empirical decline in the

covariance, driven primarily by the fall in the variance of the worker and firm AKM fixed effects.

Finally, the model predicts no decline in the residual, whereas this falls by 0.02 in the data.19

As in the data, the compression in inequality in response to the minimum wage hike is concen-

trated at the bottom of the earnings distribution. The log 50-10 percentile ratio of earnings falls by

13 log points, while the log 90-50 ratio declines by seven log points. Hence in a relative sense, the

minimum wage accounts for a similar fraction of the declines in earnings inequality throughout

the earnings distribution in Brazil. It is worth highlighting that the share of workers employed

at the minimum wage is well below 10 percent throughout this period, suggesting far-reaching

spillover effects of the minimum wage. In line with part 1 of our model proposition, the decline in

inequality is driven by substantially higher wages at the bottom of the ability distribution: Wages

for the lowest-skill group are on average 30 log points higher after the minimum wage hike. On

the other hand, the minimum wage affects wages up to the 80th percentile of worker ability, high-

lighting its far-reaching effects.

19To address this, one could easily extend our estimation procedure to include relative noise, rather than in levels.
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Table 5. Data vs. model: Wage inequality, 1996–2000 and 2008–2012

1996–2000 2008–2012 Change
Data Model Data Model Data Model

Panel A: AKM variance decomposition
Total variance 0.68 0.61 0.48 0.51 -0.20 -0.11
Worker fixed effects 0.33 0.27 0.28 0.23 -0.06 -0.04
Firm fixed effects 0.16 0.15 0.07 0.12 -0.09 -0.03
2 x Covariance 0.13 0.12 0.10 0.09 -0.04 -0.04
Residual 0.05 0.07 0.03 0.07 -0.02 -0.00

Panel B: Wage percentiles
P5–50 -1.03 -0.97 -0.63 -0.80 0.40 0.18
P10–50 -0.85 -0.81 -0.55 -0.68 0.30 0.13
P25–50 -0.46 -0.48 -0.33 -0.41 0.13 0.07
P75–50 0.58 0.60 0.48 0.55 -0.09 -0.05
P90–50 1.22 1.23 1.07 1.17 -0.15 -0.07
P95–50 1.62 1.61 1.47 1.55 -0.14 -0.07

Notes: Predicted worker and firm AKM fixed effects based on wijt = αi + αj + γt + εijt. Omitted are variance terms involving year

dummies γt, which account for a negligible share of the total variance. Source: RAIS and simulations.

To understand the importance of minimum wage spillovers higher up in the income dsitribu-

tion, let us define the “direct effect” as moving workers up to the new wage floor and the “indirect

effect” as the additional adjustment due to workers’ and firms’ equilibrium responses. Panels (a)–

(c) of Figure 9 show this two-step decomposition for the model-simulated data (which matches

well the empirical earnings distribution). The first step of the decomposition, going from panel (a)

to panel (b) of the figure, illustrates the counterfactual wage distribution that would result if all

workers previously employed below the new minimum wage were moved up to the new wage

floor. Clearly, the result is a large spike in the wage distribution exactly at the minimum wage,

which we show in Section 2.3 of the paper is in stark contrast to the empirical wage distribution

at any point in time during this period. The second step of the decomposition, going from panel

(b) to panel (c) of the figure, allows for the equilibrium adjustment of firm wage offers and worker

mobility in the new steady state of the model economy.

Table 6 implements this decomposition of the total decline in the variance of wages in the

model and in the data, both showing that only 25–30 percent of the total decline in the variance

of wages is explained by the direct effect of the minimum wage. The results from our estimated

model suggest that indirect effects or spillovers lead to sizable propagation of the minimum wage.
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Figure 9. Model: Direct and indirect effects on wages, 1996–2000 and 2008–2012
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(c) Direct + indirect effects
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Notes: Counterfactual decomposition of the overall compression due to the minimum wage in the estimated model into a “direct

effect” and “indirect effect.” The grey dashed vertical line shows the initial level of the minimum wage, normalized to 0. The red

dashed vertical line shows the final level of the minimum wage. Panel (a) shows the initial wage distribution in the estimated model.

Panel (b) shows the counterfactual “direct effect” that results when moving all workers between the old and the new minimum to the

new wage floor. Panel (c) shows the final equilibrium wage distribution. Source: simulations.

Table 6. Data vs. model: Decomposition into direct and indirect effects

Data Model

Var (w) ∆ (% total) Var (w) ∆ (% total)

Initial period (1996–2000) 0.68 - 0.61 -

+ “Direct effect “ 0.63 -0.05 (25%) 0.58 -0.03 (30%)

+ “Indirect effect” = final period (2008–2012) 0.48 -0.15 (75%) 0.51 -0.07 (70%)

Notes: Table shows decomposition result into “direct” and “indirect” effects of the minimum wage in the model and in the data. Direct

effect results when moving all workers between the old and the new minimum to the new wage floor implements the decomposition.

Indirect effect is due to remaining shifts in the wage distribution. Source: RAIS and simulations.

5.2 Effect on aggregate economic outcomes

Table 7 summarizes the impact of the minimum wage on macroeconomic outcomes. As in Flinn

(2006), firms respond by creating fewer jobs, leading to a 1.9 log points increase in the aggregate

nonemployment rate. This increase, however, is heterogeneous across the ability distribution,

with the least able workers experiencing a much larger increase. Gross output increases slightly

because the negative employment effect is offset by an increase in labor productivity, as employ-

ment reallocates towards more productive firms as in Eckstein and Wolpin (1990). While not

targeted, the model approximately matches the initial 55 percent labor share, or portion of value

added going to worker pay in the data. In spite of the sizable minimum wage hike, our model

predicts that the aggregate labor share moves by a relatively modest 1.6 log points, due to the re-

allocation of workers toward higher-productivity firms with lower labor shares. For comparison,

Brazil’s labor share rose by approximately 0.9 log points in the data over this period.
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Table 7. Model: Effects on macroeconomic outcomes, 1996–2000 and 2008–2012

1996–2000 2008–2012 Change

Nonemployment 0.278 0.298 0.019
Output 1.973 1.979 0.006
Labor productivity 2.299 2.332 0.033
Net output 1.968 1.975 0.007
Labor share 0.504 0.520 0.016

Notes: Output is the log of total output; labor productivity is the log of total output minus the log of total employment; net output is

the log of total output minus vacancy costs; labor share is total wages divided by total output. Source: simulations.

It is worth highlighting the different forces leading to the relatively modest employment re-

sponse to the minimum wage. To this end, it is useful to decompose the elasticity of nonemploy-

ment to the minimum wage in market θ as

∂ log uθ

∂ log MW
=

∂ log uθ

∂ log λu
θ

︸ ︷︷ ︸

"job finding channel"

×
∂ log λu

θ

∂ log Vθ
︸ ︷︷ ︸

"vacancy conversion channel"

×
∂ log Vθ

∂ log MW
︸ ︷︷ ︸

"profit squeeze channel"

(3)

Equation (3) decomposes the total unemployment response by skill group into three terms. The

first term (or “job finding channel”) reflects the marginal effect of a change in the job finding rate

on the nonemployment rate. This term equals −λu
θ /
(
δθ + λu

θ

)
so that for a given separation rate,

the steady-state unemployment rate is inversely related to the job finding rate from unemploy-

ment. The second term (or “vacancy conversion channel”) equals α/
(

1 − α(1 − sθ)δθλu
θ /
(

(δθ +

sθλu
θ )(δθ + λu

θ )
))

and captures the marginal effect of a change in aggregate vacancies on the job

finding rate. This term is positive and captures two distinct congestion externalities in the labor

market: that a vacancy crowds out other vacancies, and that searching workers crowd out other

searching workers.20 The third term (or “profit squeeze channel”) stands for the change in ag-

gregate recruiting intensity in response to a marginal change in the minimum wage. This term is

negative, because a higher minimum wage cuts into firms’ profit margins and leads them to post

fewer vacancies as an equilibrium response.

This decomposition sheds light on why we find a relatively small response of the nonemploy-

ment rate to the large increase in the minimum wage. It also helps understand what moments of

the data may lead to a larger effect of the minimum wage on nonemployment. First, we estimate

20For instance, if the employed do not search, sθ = 0, the second term reduces to α/(1− αλu
θ /(δθ + λu

θ )), while if they
continue to search with the same efficiency as the nonemployed, sθ = 1, the second term is α. This refects the fact that
if nonemployed workers stop searching as they become employed, a fall in vacancy creation and the assocated increase
in the nonemployment rate crowds out other nonemployed job seekers’ job prospects.
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a relatively low nonemployment-to-employment transition rate, λu
θ , in Brazil (relative to for in-

stance the US), with an associated value of 0.67 on the “job finding channel”. Second, we estimate

that workers continue to search with a nontrivial intensity as employed, which together with a

benchmark estimate in the literature of the elasticity of the matching function results in a “va-

cancy conversion channel” of around 0.38. Third, we find a large, almost one-for-one, reduction

of aggregate vacancies to the minimum wage, implying a “profit squeeze channel” of approxi-

mately 1.00. Together, these estimates imply that nonemployment increases by a factor equal to

0.25, substantially mitigating the aggregate vacancy response by a factor of around one quarter.

5.3 Minimum wage channels

The effect of the minimum wage on wages and nonemployment can be decomposed into an ex-

tensive margin adjustment of firms’ hiring policy—exit—and an intensive margin adjustment of

hiring—changes in the vacancy policy conditional on continuing to hire of firms—as well as in the

case of wages, changes in the pay policy of firms. Table 8 decomposes the effect of the minimum

wage on mean wages, the variance of wages and nonemployment into these separate components.

Specifically, the first column shows the effect of exit only, holding the vacancy policy and the wage

policy fixed. As we noted earlier, our estimates imply that all workers remain productive at all

firms also after the 44 log point increase in the minimum wage. The second column shows the

additional effect of changes in the intensive margin of hiring—the vacancy policy conditional on

hiring. This accounts for over a third of the increase in wages, but less than a quarter of the fall in

inequality. That is, the reallocation of workers to more productive, higher paying firms primarily

boosts average earnings, but has less of an effect on the dispersion of earnings. The final column

shows the additional effect of adjusting the wage policy, illustrating that this is the most important

source of changes in inequality.21

Table 8. Variance decomposition: Allocation versus wage policy

Moment Exit Vacancy policy Wage policy Total effect

Mean wage 0.000 0.048 0.085 0.133
Variance of wage 0.000 -0.034 -0.108 -0.142
Nonemployment 0.000 0.019 0.000 0.019

Notes: Effects on average log wages, the variance of log wages and the nonemployment rate (percentage points) of only changing the

exit policy of firms, holding the vacancy policy and wage policy fixed (column 1), the additional effect of changing also the vacancy

policy (column 2) and the additional effect of changing also the wage policy. Source: model.

21 Although this decomposition is not invariant to the order in which we add the different effects, we reach effectively
the same conclusion regardless of the order.
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Figure 10. Model: Gradient effects of the minimum wage, 1996–2000 and 2008–2012
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(b) Lower returns to worker ability
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Notes: Predicted worker and firm AKM fixed effects are based on wijt = αi + αj + γt + εijt. Panel (a) plots mean AKM firm fixed effect

against log value added per worker, computed from the model simulated data as VAPWjt = ∑i∈{i|J(i,t)=j} θi pj/ ∑i 1 [i ∈ {i|J (i, t) = j}].
Panel (b) plots the mean AKM worker fixed effect against worker ability θ. Source: simulations.

The result that changes in the allocation of workers to firms account for a small share of the

total minimum wage impact matches empirical findings in Alvarez et al. (2018) that composi-

tional changes account for little of the decline in inequality in Brazil over this period. Instead, as

predicted by parts 2 and 3 of our model proposition, the minimum wage reduces the returns to

pay-relevant worker and firm characteristics. Figure 10 illustrates that this mechanism generates

a flattening of AKM firm effects across value added per worker in panel (a) and of AKM worker

effects across ability in panel (b), thereby providing an explanation for the empirical facts describ-

ing Brazil’s decline in inequality over this period (Alvarez et al., 2018). Therefore, it is through a

change in the productivity-pay premium and in skill prices, rather than changes in the underlying

distribution, that the minimum wage reduces wage inequality.

5.4 Out-of-sample predictions

While a complete welfare evaluation of the minimum wage is beyond the scope of this paper, a nat-

ural question to ask in our framework is: What are the distributional and aggregate consequences

of setting a minimum wage outside of the range seen in Brazil? Figure 11 illustrates the impact of

the minimum wage on inequality, nonemployment and net output as the minimum wage varies

over a wider domain, up to 120 log points (70 percent) less than and up to 160 log points (500

percent) higher than its level in 1996–2000. Evidently, Brazil started from a favorable position in

terms of the relative marginal benefits and costs of the subsequent minimum wage hike, in the

sense that for a lower initial minimum wage the subsequent increase would have had little effect
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on either inequality or nonemployment whereas for a higher initial minimum wage the effect on

inequality would have been smaller but the effect on nonemployment larger. Throughout the do-

main, the effect on net output is small and nonmonotone due to the offsetting productivity gains

and fall in resources spent on recruiting counteracting the disemployment effect of the minimum

wage.

Figure 11. Model: Out-of-sample predictions for minimum wage effects

-0.4 0.4 1.2

Log minimum wage

-0
.4

-0
.2

0

R
e
la

ti
v
e
 t
o
 B

ra
z
il 

1
9
9
6
-2

0
0
0

-0.4 0.4 1.2

Log minimum wage

0
0
.2

0
.4

R
e
la

ti
v
e
 t
o
 B

ra
z
il 

1
9
9
6
-2

0
0
0

-0.4 0.4 1.2

Log minimum wage

-0
.4

-0
.2

0

R
e
la

ti
v
e
 t
o
 B

ra
z
il 

1
9
9
6
-2

0
0
0

Notes: Out-of-sample predictions for minimum wage effects on the variance of wages (left), nonemployment rate (center), and net

output in logs (right). All panels are normalized to the initial level in Brazil in 1996–2000, represented by the left most red dot. The

red dot on the right marks the final level of the minimum wage in 2008–2012. Source: model.

A related question is what moments of the data inform the magnitude of the effects of a min-

imum wage increase on inequality and nonemployment. To illustrate this, Figure 12 varies our

targeted moments between 50 percent and 150 percent of those observed in Brazil in 1996–2000.

Specifically, the two left panels vary all the percentile ratios summarizing the worker AKM fixed

effect distribution by the same factor (between 0.5 and 1.5) relative to their empirical values in

Brazil in 1996–2000, reestimates all parameters instead targeting these inflated or deflated mo-

ments, and graphs in the top panel the estimated impact of the 44 log point increase in the mini-

mum wage on the variance of log wages and in the bottom panel the impact on the nonemploy-

ment rate. The middle panels do the same for all percentile ratios summarizing the firm AKM

fixed effect distribution, while the right panels do it varying the median to minimum ratio. Evi-

dently, the impact of the minimum wage remains roughly the same regardless of the dispersion in

worker AKM fixed effects. In contrast, the higher is the dispersion in firm AKM fixed effects, the

more favorable does a minimum wage hike appear in the sense that the impact on inequality is

larger while the effect on nonemployment is smaller. Finally, the higher is the initial median wage

to the minimum wage—the less binding is the initial level of the minimum wage—the lower are

the effects of the increase in the minimum wage on both inequality and nonemployment.
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Figure 12. Model: Inequality and nonemployment effects across moment ranges
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Notes: Effect of 44 log point increase in minimum wage on inequality (top panels) and nonemployment (bottom panels) varying either

all the targeted percentiles characterizing the worker AKM fixed effect distribution by the same factor between 0.5 and 1.5 of the

corresponding empirical moments in Brazil from 1996–2000 (left panels), all the targeted percentiles characterizing the firm AKM

fixed effect distribution (middle panels), or the log median-to-minimum wage ratio (right panels), reestimating the model to fit these

deflated/inflated moments holding all other targeted moments fixed at their targeted levels, and tracing out the impact of a 44 log

point increase in the minimum wage in the reestimated model. Source: model.

5.5 Robustness

To illustrate the sensitivity of our results to variation in the underlying parameter values of the

model, Figures 13–14 plot the predicted impact of the 44 log point rise in the minimum wage on

inequality and nonemployment, respectively, varying one parameter at a time. The estimated im-

pact of the minimum wage on both inequality and nonemployment is primarily sensitive to vari-

ation in two structural parameters: the level of worker ability summarized by its median value,

θ50, and the scale of firm productivity, γ2. In particular, a higher median worker ability implies a

smaller effect of the minimum wage on both inequality and nonemployment, as workers are less

bound by the minimum wage in the first place. A higher scale of firm productivity is associated

with a larger effect of the minimum wage on inequality but a smaller effect on nonemployment,

as firms differ more in underlying productivity. In this sense, the greater is dispersion in firm pro-

ductivity, the more it tilts the balance in favor of a minimum wage. Appendix C discusses further

identification of the key parameters of the model in light of these findings.
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Figure 13. Model: Minimum wage effect on inequality, varying one parameter at a time

Notes: Predicted impact of 44 log point increase in the minimum wage on variance of log earnings varying one parameter at a time.

Each blue dot represents one model simulation, the bold blue line represents the movering average over model simulations, and the

red vertical line represents the estimated parameter value. Source: model.

Figure 14. Model: Minimum wage effect on nonemployment, varying one parameter at a time

Notes: Predicted impact of 44 log point increase in the minimum wage on aggregate nonemployment rate varying one parameter at a

time. Each blue dot represents one model simulation, the bold blue line represents the movering average over model simulations, and

the red vertical line represents the estimated parameter value. Source: model.
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6 Reduced-Form Evidence Using Cross-State Variation

We confront our model with novel empirical facts on the impact of the minimum wage in Brazil.

Our starting observation is that wage inequality, while declining overall in Brazil between 1996

and 2012, fell disproportionately in initally low-income regions for which the minimum wage was

more binding. Figure 15 groups into “low income” and “high income” the three lowest and three

highest among Brazil’s 27 states ranked by mean log wage in 1996, and plots normalized wage

inequality measures between 1996 and 2012. Panel (a) shows that the variance of log wages drops

by more than half in initially low-income states, but by less than one-fifth in initially high-income

states. Panel (b) shows that lower-tail inequality drops especially in initially low-income states,

with the P50–P10 and P50–P25 for this group declining by 50 and 40 percent, respectively, but by

markedly less for initially high-income states. In contrast, upper-tail inequality, measured by the

P75–P50 or the P90–P50, declines only in initially low-income states, as shown in panel (c).

Figure 15. Data: Evolution of wage inequality measures across state groups, 1996–2012
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(c) Upper-tail inequality
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Notes: All panels group into “low income” and “high income” the three lowest and three highest states ranked by mean log wage in

1996, and plot between 1996 and 2012 different wage inequality measures normalized to 1.0 in 1996. Panel (a) shows the variance of

log wages, panel (b) shows lower-tail wage percentile ratios, and panel (c) shows upper-tail wage percentile ratios. Source: RAIS.

6.1 Spillover effects identified off regional variation

These patterns lead us to ask: to what extent can the rise in the minimum wage rationalize the

observed heterogeneity in wage inequality in the cross section and over time? As the policy is

set at the federal level, it is hard to find exogenous variation in its treatment intensity. To iden-

tify minimum wage effects in this environment, we follow Lee (1999) and Autor et al. (2016) in

exploiting heterogeneous exposure across subpopulations that differ in initial bindingness with

respect to the federal minimum wage. We define the “effective minimum wage” or Kaitz index

for subpopulation s at time t, kaitzst ≡ log wmin
t − log wmedian

st , as the log difference between the
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prevailing minimum wage, wmin
t , and the median wage of subpopulation s, wmedian

st .22

Figure 16 plots the relation between different wage percentile ratios and the Kaitz index for

the data compared to the model.23 Panel (a) plots empirical lower-tail inequality, measured by

the P50–P10, against the Kaitz index across Brazilian states over time. The negative 45 degree line

marks states where the minimum wage is binding for the lower 10 percent of workers. Panel (b)

repeats the same exercise on our simulated data. Both plots show a negative relationship between

the P50–P10 and the Kaitz index that grows more pronounced for more binding states in the cross

section and over time. For comparison, panels (c)–(d) show a weaker relationship between top

inequality, measured by the P90–P50, and the Kaitz index.24

Following Lee (1999) and Autor et al. (2016), we regress an outcome variable yst (p) for wage

percentile p of state s in year t on the effective bindingness of the minimum wage and controls:

yst (p) =
N

∑
n=1

βn (p) kaitzn
st + γst (p) + εst (p) (4)

where N is the polynomial order of the Kaitz index, γst (p) denotes either year dummies or linear

state-time trends plus year dummies, and εst (p) is an error term that we assume satisfies the strict

exogeneity assumption E[εst(p)|kaitzst, . . . , kaitzn
st, γst (p)] = 0. After estimating equation (4) sep-

arately by wage percentile p, we compute an estimate of the marginal effect of the minimum wage,

ρ (p) ≡ ∑
N
n=1 nβn (p) kaitzn−1

st , evaluated at the worker-weighted median state-year. Allowing for

polynomials of order N ≥ 2 is important to capture the nonlinear effects of the minimum wage as

it becomes more binding.

We first consider as an outcome variable in equation (4) the log ratio between wage percentile

p and the median wage, yst (p) = log wst (p)− log wmedian
st , for various values of p.25 To the extent

that the minimum wage leads to higher wage growth at lower percentiles, we expect the estimated

marginal effect ρ (p) to be weakly decreasing across wage percentiles p. We interpret positive

22Figure 23 in Appendix D.1 shows that variation in the Kaitz index across Brazilian states is large initially and
declines as the minimum wage increases, while roughly preserving the ranking of states over time.

23We produce data from our model by simulating 27 separate economies with all parameters held at their estimated
values, varying only the level of the minimum wage to match the empirical Kaitz index distribution across Brazil’s
states. This is consistent with the original idea of Lee (1999) of a minimum wage differentially masking the same
underlying latent wage distribution across regions with different average income levels. Our simplifying assumption
that each state is a separate labor market is stark but motivated by the fact that only 3–5 percent of all workers switch
jobs between states in a given year.

24Figure 24–25 in Appendix D.2 show that our conclusions are robust to considering a broader set of earnings per-
centile ratios and to running the analysis at a more granular level for Brazil’s 559 microregions.

25The identifying assumption then becomes that conditional on controls γst (p), the “centrality measure,” or Kaitz
index, is not systematically correlated with “underlying” wage dispersion across states and over time. Appendix D.3
provides evidence in support of this identifying assumption holding in Brazil.
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Figure 16. Data vs. model: Wage percentile ratios across Brazilian states over time, 1996–2012
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(b) Model: P50–P10
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(c) Data: P90–P50
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(d) Model: P90–P50
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Notes: Each marker represents one state-year combination for each of Brazil’s 27 states in the data, and 27 separate model simulations

with estimated mean wages for the model to match the empirical Kaitz index distribution. Source: RAIS and simulations.

(negative) point estimates of ρ (p) for p < 50 (p > 50) as an increase in the minimum wage

leading to compression in the lower (upper) tail of the wage distribution. We interpret as spillovers

the downward-sloping range of ρ (p) estimates.

Table 9 shows results from estimating equation (4) with polynomial order N = 2 in the RAIS

microdata and in our model-simulated data.26 Specification (1) is a variant of that in Lee (1999)

with only year effects estimated across Brazil’s 27 states. We find that the minimum wage has

significant marginal effects up to the 80th percentile of the wage distribution, with spillovers (i.e.,

negative gradient of marginal effect estimates) reaching up to just below the 80th percentile. For

example, a ten percent increrase in the minimum wage increases the tenth wage percentile by five

percent relative to the median. Specification (2) is the preferred OLS specification from Autor et

al. (2016) and adds a set of linear state-time trends, leading to qualitatively similar conclusions

although slightly higher point estimates. As additional robustness checks, we run specification

(1) across Brazil’s 556 microregions and across 54 2-digit industries in specifications (3) and (4),

26We tried polynomials of order N > 2 without obtaining significantly different results to those presented below.
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respectively. The estimated spillover effects under these two specifications reach between the 70th

and the 90th wage percentile, though standard errors make them hard to distinguish from our

modal estimate of spillovers up to the 80th percentile.

Applying the same regression model as in specification (4) to our model-generated state-level

data, the estimated marginal effects for lower-tail wage percentile ratios are strikingly congruent

between the model and the data, suggesting that we can interpret the empirical estimates as due to

minimum wage spillovers. The model also predicts upper-tail elasticities in line with the data up

to the 90th percentile. Above that, the model shows a more negative point estimate relative to the

data, although little evidence of spillovers (i.e., a small gradient of marginal effect estimates). We

interpret this as relative wages in the top decile comoving with the minimum wage bindingness

for reasons outside of our model.

In some specifications, we find estimated marginal effects that are upward sloping in the up-

permost range—usually above the 90th percentile—of the wage distribution in line with the find-

ings by Autor et al. (2016). This could be a sign of transitory shocks affecting the upper tail and

the Kaitz index simultaneously, possibly due to concurrent changes in Brazilian labor markets.

Nevertheless, by cutting the data along different dimensions and at levels of aggregation, as well

as using alternative specifications, we consistently find significant minimum wage effects up to

the 80th percentile of the wage distribution.

Table 9. Data vs. model: Marginal effect on various wage percentile ratios relative to median

Marginal Data Model

effect, ρ (p) (1) (2) (3) (4) (5)

p = 10 0.467*** (0.014) 0.748*** (0.032) 0.466*** (0.024) 0.558*** (0.035) 0.467*** (0.001)

p = 20 0.283*** (0.011) 0.492*** (0.028) 0.313*** (0.022) 0.353*** (0.026) 0.263*** (0.001)

p = 30 0.149*** (0.008) 0.392*** (0.023) 0.182*** (0.016) 0.222*** (0.020) 0.147*** (0.001)

p = 40 0.057*** (0.005) 0.185*** (0.020) 0.070*** (0.007) 0.109*** (0.011) 0.063*** (0.001)

p = 60 -0.063*** (0.006) -0.111*** (0.023) -0.041*** (0.008) -0.110*** (0.014) -0.046*** (0.001)

p = 70 -0.117*** (0.013) -0.143*** (0.038) -0.064*** (0.017) -0.225*** (0.028) -0.079*** (0.002)

p = 80 -0.092*** (0.022) 0.023 (0.047) -0.047* (0.026) -0.356*** (0.046) -0.102*** (0.003)

p = 90 0.006 (0.027) -0.013 (0.051) 0.054 (0.035) -0.483*** (0.065) -0.116*** (0.003)

Notes: Table shows predicted marginal effects evaluated at the worker-weighted mean across years 1992–2012. * = significant at

the 10% level, ** = 5%, *** = 1%. Underlying regressions are variants of equation (4) with polynomial degree N = 2 and with each

observation equally weighted, where dependent variable is the log wage percentile ratio Pp/P50. Specification (1) includes year effects

and is run across 27 states. Specification (2) includes additional linear state-time trends. Specification (3) is the same as specification

(1) run across 556 microregions with standard errors clustered at the microregion level. Specification (4) is the same as specification (1)

run across 54 2-digit industries with standard errors clustered at the industry level. Model specification (5) is the same as specification

(1) run on computer-simulated data across 27 states differing in their distance to the minimum wage. Source: RAIS and simulations.

Our reduced-form estimates of spillover effects of the minimum wage broadly match those
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obtained from our estimated structural model. It is worth highlighting that these two sets of

estimates were informed by very different moments in the data. On the one hand, our reduced-

form effects were estimated off systematic comovement of the wage distribution with the Kaitz

index. On the other hand, our model effects were disciplined by the microstructure of worker

and firm heterogeneity that we estimated from an AKM decomposition. It is reassuring that both

methods yield similar results, lending confidence to our conclusions.

Our finding of spillover effects up to the 80th percentile may appear surprising. For compari-

son, recent results in the literature by Autor et al. (2016) show spillovers up to the 20th percentile

of the wage distribution in the US. Nevertheless, we are confident in our results based on three

grounds. First, the large administrative dataset we base our work on plausibly admits less mea-

surement error than the CPS household survey, alleviating some of the concern of bias in the

estimates of βn (p) in equation (4) above. Second, as highlighted in our structural model, the large

dispersion in firm productivities and degree of search frictions, with associated large employer

pay components in the AKM wage decomposition, explain why the effects of the minimum wage

are large in our setting.

Third, we now provide a model-motivated empirical test of the reach of spillovers that can be

easily implemented in longitudinal worker data. Our proposed test ranks workers by their current

wage and computes for each wage rank the share of individuals who previously, say over the past

five years, earned the minimum wage. Through the lens of our model, we expect spillovers to

reach up to the highest wage rank at which a positive mass of workers have been previously

employed at the minimum wage. Figure 17 shows the results of implementing our test on the

Brazilian data for 1996 and 2012. Confirming our previous results, we find a positive mass of

workers previously earning the minimum wage up to around the 80th percentile of the wage

distribution in 1996 and up to the 90th percentile in 2012.27

27Another validation of our findings comes from inspection of Figure 18 in Appendix A.2, which shows a pronounced
elevation of average wages and a number of pay-relevant worker covariates above the 80th wage percentile. Reassur-
ingly, the minimum wage appears to have had little effect on the highest skill groups including college graduates whose
population shares increase steeply after the 80th wage percentile, as shown in Figure 19 in Appendix A.2.
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Figure 17. Data: Worker share who recently earned the minimum wage, 1996 and 2012
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current wage distribution. Source: RAIS.

6.2 Employment effects identified off regional variation

So far, our analysis has been silent on the issue of informality in Brazil. The distinction between in-

formality and unemployment is important to the extent that each may represent a separate margin

of adjustment. We now extend our regression framework to investigate the effects of the minimum

wage on both formal and informal employment in Brazil between 1996 and 2012. To this end, we

combine administrative data with two household surveys to estimate variants of the specification

in equation (4) with the dependent variable, yst, at the state-year or metropolitan area-year level.

Panel A of Table 10 shows that the minimum wage has precisely estimated zero effects on the

population size, labor force participation rate, employment rate, and formal employment share.

These estimates accord well with our model prediction of muted employment effects due to the

minimum wage.28 Results from the PME data in panel B show statistically significant but moder-

ate negative effects on transition rates from nonformal to formal as well as from formal to nonfor-

mal employment. The mild slowdown of recruitment of workers from outside the formal sector

matches our model prediction of fewer aggregate vacancies.29 Finally, panel C shows that the

estimated effects on mean hours worked, as well as firm entry and exit rates, defined as the em-

ployment share at new firms relative to the previous year and the employment share at firms that

exit in the following year, respectively. Our estimates indicate that the effects of the minimum

wage on these outcome variables are statistically indistinguishable from zero.30

28In the PNAD data, the formal employment share rose by 16 percentage points over this period, largely accounted
for by changes in educational composition of the workforce but little movement in within-group formality rates.

29The reduction in labor market exit, while beyond the confines of our model, could be consistent with less voluntary
exit from the formal sector due to the rise in its average wage level.

30Our results match evidence on minimum wage effects on job flows and employment in the US (Dube et al., 2016;
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Table 10. Data: Employment effects of the minimum wage, 1996–2012

Marginal effect (s.e.)

Panel A. Cross-sectional household survey (PNAD)

Log population size -0.050 (0.041)

Labor force participation rate -0.001 (0.016)

Employment rate -0.003 (0.010)

Formal employment share -0.005 (0.024)

Panel B. Longitudinal household survey (PME)

Transition rate nonformal-formal -0.045* (0.024)

Transition rate formal-nonformal -0.026** (0.012)

Panel C. Linked employer-employee data (RAIS)

Log mean hours worked -0.011 (0.031)

Firm entry rate 0.002 (0.017)

Firm exit rate 0.001 (0.007)

Notes: Table shows predicted marginal effects with standard errors in parentheses evaluated at the worker-weighted mean across

Brazil’s 27 states from 1996 to 2012. Underlying regressions are variants of equation (4) with polynomial degree N = 2 including year

effects and linear state-year trends. * = significant at the 10% level, ** = 5%, *** = 1%. Results for the PNAD and PME data are weighted

by the appropriate sample weights. Source: PNAD, PME, RAIS.

7 Conclusion

What are the effects of the minimum wage on inequality? The answer to this question depends

crucially on the microstructure of the labor market. To make this point, we developed a flexi-

ble equilibrium model in the spirit of Burdett and Mortensen (1998) to quantify the effects of a

minimum wage increase on the distribution of wages, employment, and other macroeconomic

outcomes in Brazil between 1996 and 2012. We showed that the joint distribution of AKM fixed

effects provides valuable information that helps discipline the model predictions about the effects

of a minimum wage and, conversely, that the minimum wage shapes the dispersion of AKM fixed

effects in a way that helps explain Brazil’s remarkable inequality decline over this period.

Applying our theory to the case of Brazil, where the minimum wage increased by 119 per-

cent in real terms between 1996 and 2012, we find that the change in the wage floor had large

effects throughout the distribution. We find that the policy induced a 11 log points decline in the

variance of wages, affecting workers up to the 80th percentile. At the same time, our results im-

ply a muted nonemployment response and small efficiency gains from the policy. The effects of

the minimum wage are mediated by a lower firm productivity pay premium and lower returns

Cengiz et al., 2017) as well as firm dynamics in the UK and Hungary (Draca et al., 2011; Harasztosi and Lindner, 2017).
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to worker ability. We present empirical evidence from administrative linked employer-employee

data and household surveys in support of these findings. While our estimated effects are striking

in many ways, sensitivity analysis of our model shows that the effects of the minimum wage on

inequality could have been much smaller and the effects on employment could have been more

negative under different labor market conditions.

These insights point to fruitful avenues for future research. First, it would be interesting to

quantify spillovers of Brazil’s formal sector minimum wage into the informal economy, which is

not directly constrained by the policy. Second, our finding of large spillovers complements recent

empirical work that identifies minimum wage effects by comparison to a carefully selected control

group. Third, it is worth revisiting the contribution of other labor market policies and institutions,

including unions, unemployment benefits, and non-compete agreements—all of which affect only

a small worker share directly but may lead to sizable equilibrium effects—towards inequality

trends in other countries. Finally, while we have stopped short of optimal policy analysis, our

results will be an important ingredient for any such venture.
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Appendix For Online Publication

We structure the additional materials as follows: Data (Appendix A), Theory (Appendix B), Esti-

mation (Appendix C), and Empirics (Appendix D).

A Data Appendix

This appendix provides details on the datasets used in Section 2 and throughout the paper, in-

cluding subsections on data description (Appendix A.1), summary statistics (Appendix A.2), and

the wage distribution by year (Appendix A.3).

A.1 Dataset description

Administrative linked employer-employee data (RAIS). Our main data source is the Relação

Anual de Informações Sociais (RAIS), a linked employer-employee register by the Brazilian Ministry

of Labor (Ministério do Trabalho, or MTb). We use the RAIS microdata with person and firm iden-

tifiers covering the period 1992–2012 available to us under a confidentiality agreement with MTb.

We also use a version of the same data going back to 1988, which we accessed through Brazil’s

Institute of Applied Economic Research (Instituto de Pesquisa Econômica Aplicada, or IPEA) at the

Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística, or IBGE).

Firms’ survey response is mandatory, and misreporting is deterred through audits and threat

of fines. Collection started in 1986, with coverage becoming near universal from 1994 onward. The

data contain detailed information on job characteristics, with 73 million formal sector employment

spells recorded in 2012. Although reports are annual, we observe for every job spell the date

of accession and separation in addition to average monthly earnings. We keep for each worker

the highest-paid among each year’s longest employment spells. As Brazil’s minimum wage is

set in terms of monthly earnings, henceforth we interchangeably refer to this income concept as

“earnings” or “wages.” Unless otherwise noted, we keep only workers who earn at least the

legal minimum wage to make the data consistent with our model and, following the argument in

Andrews et al. (2008) and much of the follow-up literature, keep firms with ten or more employees

in a given year to mitigate limited-mobility bias in our estimates.31

31We reproduced the estimation and our quantitative results using targets obtained without imposing these restric-
tions and obtained very similar results.
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We devise our own cleaning procedure for these data, starting with the raw text files, benefiting

from guidance by the data team at IPEA. Our cleaning procedure consists of three stages. The first

stage reads in and standardizes the format of the raw data files that were transmitted to us at

the region-year level, saving a set of compatible region-year files. The second stage reads in all

region files within a year and applies a set of cleaning and recoding procedures to the data to make

them consistent within each year, saving a set of yearly files. The third stage reads in all yearly

files and applies a set of cleaning procedures to the data to make them consistent across years.

Whenever possible, we use the official crosswalks provided by IBGE to convert industry (IBGE,

CNAE 1.0, and CNAE 2.0 classifications), occupation (CBO 1994 and CBO 2002), and municipality

codes (IBGE classification).

Cross-sectional household survey data (PNAD). A substantial fraction of Brazil’s working-age

population is not formally employed and hence not covered by the RAIS. To address this gap, we

complement our analysis using data from the Pesquisa Nacional por Amostra de Domicílios (PNAD),

a nationally representative annual household survey. Respondents are asked to produce a formal

work permit (Carteira de Trabalho e Previdência Social assinada). Following Meghir et al. (2015),

we classify as informal all self-employed and those in remunerated employment without a work

permit.

The PNAD data collection consists of a double-stratified sampling scheme by region and mu-

nicipality, interviewing a representative of households in Brazil. The survey asks the house-

hold head to respond on behalf of all family members and report a rich set of demographic and

employment-related questions. In particular, the survey asks a question about whether the re-

spondent holds a legal work permit. We use the answer to this survey question to identify indi-

viduals as working in the formal or in the informal sector. Survey questions regarding income

and demographics of the respondent household members are comparable to the US March Cur-

rent Population Survey (CPS). We keep only observations that satisfy our selection criteria and

have non-missing observations for labor income, whose variable definition we harmonize across

years.

The raw microdata are publicly available for download starting from 1996 at ftp://ftp.

ibge.gov.br/Trabalho_e_Rendimento/. For basic cleaning, starting with the raw data in text

format, we use the standardized cleaning procedures adopted from the Data Zoom suite devel-

oped at PUC-Rio and available for replication online at http://www.econ.puc-rio.br/datazoom/
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english/index.html. From there, we apply a set of procedures to clean and recode key variables

used in our analysis.

Longitudinal household survey data (PME). We also use a second household survey, the Pesquisa

Mensal de Emprego (PME), conducted in Brazil’s six largest metropolitan regions. The advantage

of this dataset is that it features for every respondent two continuous four-month interview spells

separated by eight months. Starting in 2002, this short panel component allows us to compute

transition rates of workers between all employment states. For presentation purposes, we label

formal sector workers as “employed,” and pool informal sector workers and the unemployed

under the label “nonemployed.” We distinguish between the disaggregated categories in our em-

pirical analysis of minimum wage effects later.

The raw microdata are publicly available for download starting from March 2002 at ftp://

ftp.ibge.gov.br/Trabalho_e_Rendimento/. For basic cleaning, starting with the raw data in text

format, we use the standardized cleaning procedures adopted from the Data Zoom suite devel-

oped at PUC-Rio and available for replication online at http://www.econ.puc-rio.br/datazoom/

english/index.html. From there, we apply a set of procedures to clean and recode key variables

used in our analysis, similar to the procedures that we applied to the PNAD data.

A.2 Summary statistics

Overview of the three datasets. While each of the three datasets—RAIS, PNAD, and PME—

is geared at slightly different subpopulations and labor market questions, together they provide

a holistic picture of Brazil’s labor market. We restrict attention to male workers of age 18–49 to

avoid issues related to female labor force participation and retirement. Table 11 presents summary

statistics for this worker group from the three datasets. The RAIS data show that between 1996

and 2012, Brazil experienced an 18 log points increase in mean formal sector wages while the

standard deviation declined by 19 log points—a striking compression visualized in Figure 20 of

Appendix A.3. While the age distribution remained stable, there was a significant increase in

educational attainment over this period. Using the PNAD survey data, we confirm congruent

trends in the formal sector wage distribution. Relative to the formal sector, informal wages are

initially characterized by lower levels but similar dispersion. Throughout 2012, the informal sector

wage distribution saw an increase in its mean accompanied by mild compression. At the same

time, the employment rate remained stable while the formal employment share rose by eight
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percentage points. Consistent with the increase in formality, the longitudinal PME data show a

slight rise in the inflow rate into formal employment and a decline in the outflow rate.

Table 11. Summary statistics from three main datasets, 1996 and 2012

1996 2012

Panel A. Linked employer-employee data (RAIS) Mean St.d. Mean St.d.

Age 31.69 8.37 32.05 8.51

Years of education 7.78 3.92 10.73 3.18

Real wage (log BRL 2012, formal sector) 7.02 0.86 7.20 0.67

Observations 16,308,762 28,578,057

1996 2012

Panel B. Cross-sectional household survey (PNAD) Mean St.d. Mean St.d.

Real wage (log BRL 2012, formal sector) 7.01 0.81 7.13 0.62

Real wage (log BRL 2012, informal sector) 6.26 0.81 6.56 0.78

Employment rate 0.95 0.95

Formal employment share 0.68 0.76

Observations 74,487 86,031

2002 2012

Panel C. Longitudinal household survey (PME) Mean St.d. Mean St.d.

Transition rate nonemployed-employed 0.08 0.10

Transition rate employed-nonemployed 0.05 0.04

Observations 94,280 121,211

Notes: Statistics are for males of age 18–49. Real wage is average (RAIS) or usual (PNAD) monthly earnings. Respondents are classified

as employed if they are a domestic worker, employee, or self-employed. Formal employment is defined as being employed and having

a legal work permit. Transition rates are conditional on initial labor market status, divided into employed (formal) and nonemployed

(unemployed + informal). Source: RAIS, PNAD, PME.

Summary statistics for RAIS data. Figure 18 shows mean values of basic descriptive variables—

monthly earnings in multiples of the minimum wage, years of education, age in years, and job

tenure in years—throughout the earnings distribution for 1996 in panel (a) and for 2012 in panel

(b). Zooming in on educational attainment, which increased significantly over this period, Figure

19 shows the distribution of eduaction degrees grouped into individuals with primary school or

lower levels of education, middle school, high school, and college or higher levels of education

for 1996 in panel (a) and for 2012 in panel (b).
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Figure 18. RAIS cross-sectional summary statistics, 1996 and 2012
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Notes: Figure shows mean monthly earnings (“wages”), years of education, age, and tenure across wage percentiles for 1996 in panel

(a) and for 2012 in panel (b). All statistics are for adult male workers of age 18–49. Source: RAIS.

Figure 19. RAIS education degree shares, 1996 and 2012
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Notes: Figure shows shares of education degrees across wage percentiles for 1996 in panel (a) and for 2012 in panel (b). All statistics

are for adult male workers of age 18–49. Source: RAIS.

Summary statistics for PNAD data. Table 12 presents summary statistics on the PNAD data.
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Table 12. Summary statistics for cross-sectional household survey (PNAD)

Real wage (formal) Real wage (informal) Employment Formal

# Workers Mean Std. dev. Mean Std. dev. rate share

1996 74,487 7.01 0.81 6.26 0.81 0.95 0.68

1997 78,731 7.02 0.79 6.26 0.82 0.94 0.68

1998 79,060 7.03 0.78 6.26 0.81 0.93 0.67

1999 81,230 6.97 0.77 6.21 0.79 0.93 0.66

2000 -- -- -- -- -- -- --

2001 89,102 6.93 0.74 6.20 0.81 0.93 0.66

2002 90,855 6.90 0.73 6.19 0.81 0.93 0.66

2003 91,490 6.84 0.71 6.12 0.77 0.92 0.67

2004 94,526 6.85 0.69 6.15 0.77 0.94 0.68

2005 97,348 6.89 0.67 6.19 0.77 0.93 0.68

2006 97,757 6.94 0.66 6.25 0.76 0.94 0.69

2007 95,598 6.97 0.65 6.30 0.78 0.94 0.71

2008 93,677 7.00 0.65 6.35 0.76 0.95 0.72

2009 95,170 7.02 0.63 6.36 0.76 0.94 0.73

2010 -- -- -- -- -- -- --

2011 84,910 7.07 0.62 6.51 0.75 0.95 0.76

2012 86,031 7.13 0.62 6.56 0.78 0.95 0.76

Notes: Table shows summary statistics on wages, employment rates, and formal employment shares between 1996 and 2012. All

statistics are for adult male workers of age 18–49. Real wages are measured in 2012 BRL and in logs. Surveys are not available for

census years 2000 and 2010. Source: PNAD.

Summary statistics for PME data. Table 13 presents summary statistics on the PME data.

Table 13. Summary statistics for longitudinal household survey (PME)

Transition rate Transition rate

# Workers employed-nonemployed employed-nonemployed

2002 94,280 0.08 0.05
2003 140,734 0.09 0.06
2004 146,847 0.08 0.05
2005 154,159 0.08 0.05
2006 153,646 0.08 0.04
2007 154,338 0.09 0.05
2008 150,104 0.10 0.05
2009 149,762 0.10 0.04
2010 150,443 0.10 0.04
2011 145,012 0.11 0.04
2012 121,211 0.10 0.04

Notes: Table shows summary statistics on transition rates between employment (formal) and nonemployment (nonformal + unem-

ployed) between March 2002 and December 2012. All statistics are for adult male workers of age 18–49. Source: PME.
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A.3 Wage distribution by year

Figure 20. Data: Wage distribution by year, 1996–2012
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Notes: Each panel shows the wage histogram based on 60 equi-spaced bins for population of male workers aged 18–49 for one year

between 1996 and 2012. Source: RAIS.
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B Theory Appendix

This appendix provides details on the model outlined in Section 3, including subsections on the

equilibrium definition (Appendix B.1), equilibrium characterization (Appendix B.2), and proof of

the proposition (Appendix B.3).

B.1 Equilibrium definition

Definition. A search equilibrium with a minimum wage consists of a set of firms’ wage and va-

cancy posting policies (wθ (p) , vθ (p)), wage offer distribution Fθ (w), employment level function

lθ (w, v), unemployment rate uθ , aggregate vacancy mass Vθ , contact rate qθ , reservation wage pol-

icy Rθ , transition rates
(
λu

θ , λe
θ

)
, and flow value of nonemployment bθ subject to a minimum wage

wmin:

1. Worker optimality: Given transition rates, the separation rate, the flow value of nonemploy-

ment, and the offer distribution, the reservation wage policy solves workers’ problem;

2. Firm optimality: Taking as given the employment level function and wage offer distribution,

wage and vacancy policies solve firms’ problem;

3. Enforcement: No worker accepts, or else no firm posts, a wage below the minimum wage;

4. Labor market aggregation: The unemployment rate is consistent with transition rates and the

separation rate, the aggregate vacancy mass is consistent with firms’ vacancy posting poli-

cies, transition rates are determined through the aggregate matching function, and the em-

ployment level function and the wage offer distribution are consistent with wage and va-

cancy posting policies.

B.2 Equilibrium characterization

Given a mass of posted vacancies v and a wage w, the size of a firm in a market θ, lθ(w, v), evolves

according to the Kolmogorov forward equation:

l̇θ (w, v) = −
(

δθ + sθλu
θ (1 − Fθ (w))

)

lθ (w, v) + vqθ

(
uθ

uθ + (1 − uθ) sθ
+

(1 − uθ) sθ

uθ + (1 − uθ) sθ
Gθ (w)

)

(5)

The separate terms are explained as follows. Out of a firm’s current workforce lθ , a fraction δθ

exit to nonemployment and a fraction sθλu
θ (1− Fθ(w)) quit to better-paying employers. At rate qθ ,
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each of the firm’s vacancies contacts a worker, and a share uθ/ (uθ + sθ(1 − uθ)) of those workers

is nonemployed while the remainder are currently employed. Nonemployed workers accept all

wage offers in equilibrium, while a fraction Gθ(w) of employed workers accept an offer of wage

w. In the stationary equilibrium, equation (5) must equal zero such that

lθ (w, v) = vqθ
1

δθ + sθλu
θ (1 − Fθ (w))

(
uθ

uθ + (1 − uθ) sθ
+

(1 − uθ) sθ

uθ + (1 − uθ) sθ
Gθ (w)

)

.

Recall also that uθ = δθ/
(
δθ + λu

θ

)
and Gθ (w) = Fθ (w) / (1 + κθ (1 − Fθ (w))) in the stationary

economy. Substituting and simplifying, for given vacancy and wage policies (w, v), a firm’s sta-

tionary equilibrium size is given by

lθ (w, v) = vqθ

(
1

δθ + sθλu
θ (1 − Fθ (w))

)2 δθ

(
δθ + sθλu

θ

)

δθ + λu
θ

. (6)

Define the piece rate w̃θ such that wθ = θw̃θ . We can write the problem of firm p in market θ as

max
w̃≥Rθ/θ,v

{

θ (p − w̃) × vqθ
δθ

(
δθ + sθλu

θ

)

δθ + λu
θ

(
1

δθ + sθλu
θ (1 − Fθ(w̃))

)2

− cθ(v)

}

.

Imposing our assumed functional form for the cost of vacancy creation, cθ(v) = cθv1+c1 /(1 + c1),

the first-order conditions with respect to vacancies and piece rates are

vθ(p) =

(

(p − w̃θ(p))
qθ

cθ

δθ

(
δθ + sθλu

θ

)

δθ + λu
θ

θ

(
1

δθ + sθλu
θ (1 − Fθ [w̃θ(p)])

)2
) 1

c1

(7)

1 = (p − w̃θ(p))
2sθλu

θ fθ(w̃θ(p))

δθ + sθλu
θ (1 − Fθ (w̃θ(p)))

. (8)

Note that we can write equation (7) as

vθ(p) =

{
qθ

cθ
πθ(p)

} 1
c1

,

where

πθ(p) = max
w̃≥Rθ/θ

{

(p − w̃)
δθ

(
δθ + sθλu

θ

)

δθ + λu
θ

[
1

δθ + sθλu
θ (1 − Fθ(w̃))

]2
}

.

Since πθ(p) is increasing in productivity and cθ , c1 > 0 , it follows that v′θ(p) > 0. That is, more

productive employers create more jobs. As in Burdett and Mortensen (1998), a single-crossing

property of the profit function with respect to productivity and wages for a given vacancy policy

53



implies that the optimal wage policy, w̃θ(p), is strictly increasing in productivity. Similarly, the

equilibrium wage offer distribution has no mass points.

Since the wage policy is strictly monotone in productivity, the distribution of wage offers is

given by

Fθ

(

wθ (p)
)

= Mθ

ˆ p

p
θ

vθ (p′)

Vθ
dΓθ

(
p′
)

, (9)

where total vacancies equal

Vθ = Mθ

ˆ p

p
θ

vθ

(
p′
)

dΓθ

(
p′
)
, (10)

and the job finding rate of workers is implicitly defined by

λu
θ =

(

hθ

(
δθ

δθ + λu
θ

+
sθλu

θ

δθ + λu
θ

))−α

Vα
θ , (11)

while firms’ contact rate is given by qθ =
(
λu

θ

) α−1
α .

B.3 Proof of the proposition

Under the assumption that labor market parameters are the same across worker types and that

the minimum wage is initially low enough to be nonbinding, equilibrium wages can be written as

w(p, θ) = θ

[

p −

ˆ p

p
θ

[
1 + κe

θ (1 − Γ0(p))

1 + κe
θ (1 − Γ0(x))

]2

dx

]

(12)

Part 1. We want to show that an increase in the minimum wage raises all wages in markets where

it becomes binding. Differentiating equation (12) with respect to the minimum wage gives that

∂w(p, θ)

∂wmin
=




1 + κe

θ (1 − Γ0(p))

1 + κe
θ

(

1 − Γ0

(
wmin

θ

))





2

> 0,

which establishes the first part of the proposition.

Part 2. Consider a market where the minimum wage is binding. Differentiating equation (12)

with respect to productivity gives that the productivity-pay gradient is given by

∂w(p, θ)

∂p
= θ2κe

θγ0(p) [1 + κe
θ (1 − Γ0(p))]

ˆ p

p
θ

(
1

1 + κe
θ (1 − Γ0(x))

)2

dx.
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Differentiating this equation with respect to the minimum wage gives that

∂
(

∂w(p,θ)
∂p

)

∂wmin
= θ2κe

θγ0(p) [1 + κe
θ (1 − Γ0(p))]

(

−
1

θ

)



1

1 + κe
θ

(

1 − Γ0

(
wmin

θ

))





2

< 0.

Hence, the firm productivity-pay gradient falls with the minimum wage.

Part 3. Consider markets where the minimum wage is binding. Differentiating equation (12)

with respect to ability gives that the ability-pay gradient is given by

∂w(p, θ)

∂θ
= p −

ˆ p

p
θ

[
1 + κe

θ (1 − Γ0(p))

1 + κe
θ (1 − Γ0(x))

]2

dx −
wmin

θ




1 + κe

θ (1 − Γ0(p))

1 + κe
θ

(

1 − Γ0

(
wmin

θ

))





2

Differentiating this equation with respect to the minimum wage gives that

∂
(

∂w(p,θ)
∂θ

)

∂wmin
=

1

θ




1 + κe

θ (1 − Γ0(p))

1 + κe
θ

(

1 − Γ0

(
wmin

θ

))





2

−
1

θ




1 + κe

θ (1 − Γ0(p))

1 + κe
θ

(

1 − Γ0

(
wmin

θ

))





2

−
wmin

θ
[1 + κe

θ (1 − Γ0(p))]2 (−2)

(

−κe
θγ0

(
wmin

θ

))
1

θ




1

1 + κe
θ

(

1 − Γ0

(
wmin

θ

))





3

=−
2wmin

θ2
[1 + κe

θ (1 − Γ0(p))]2 κe
θγ0

(
wmin

θ

)



1

1 + κe
θ

(

1 − Γ0

(
wmin

θ

))





3

< 0.

Hence, in markets where the minimum wage is binding, the worker ability-pay gradient falls with

the minimum wage. �
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C Estimation Appendix

This appendix provides details on the estimation procedure of Section 4, including subsections on

the algorithm to solve and estimate the model (Appendix C.1), details of the estimation routine

(Appendix C.2), how to compute targeted auxiliary moments (Appendix C.3), as well as additional

results on the model identification (Appendix C.4).

C.1 Solution algorithm

Define Jθ(p) as the vacancy-weighted cdf of hiring firms in market θ. Because of the wage policy

is monotone in productivity, Jθ(p) = Fθ(wθ(p)) so that fθ(wθ(p)) = J′θ(p)/w′
θ(p) and vθ(p) =

Vθ/Mθ × J′θ(p)/γθ(p). Substituting this into the first-order conditions (7)–(8),

J′θ(p) =
Mθγθ(p)

Vθ



 (p − wθ(p))

(
λu

θ

)− 1−α
α

cθ

δθ

(
δθ + sθλu

θ

)

δθ + λu
θ

θ

(
1

δθ + sθλu
θ (1 − Jθ(p))

)2




1
c1

(13)

and

w′
θ(p) = (p − wθ(p))

2sθλu
θ J′θ(p)

δθ + sθλu
θ [1 − Jθ(p)]

(14)

Equations (13)–(14) is a system of two first-order differential equations. Given reduced form es-

timates of δθ , sθ and λu
θ from the data, the required mass of vacancies based on equation (11) is

Vθ =
(
λu

θ

) 1
α hθ

(
δθ

δθ+λu
θ
+

sθλu
θ

δθ+λu
θ

)

. Taking Vθ and the finding rates as given, we solve the system

(13)–(14) subject to the boundary conditions

wθ

(

p
θ

)

=
max

{
φθ , wmin

}

θ
, and lim

p→p
θ

Jθ(p) = 0

to obtain Jθ(p) and wθ(p). A solution requires that the cost of posting vacancies cθ is such that the

optimal vacancy policy aggregates to limp→p Jθ(p) = 1. We find such a cθ by guessing an initial

cθ , solving the problem, and checking whether the condition limp→p J(p) = 1 holds. If it does

not, we update cθ until convergence. In order to subsequently evaluate the impact of a rise in the

minimum wage, we take the estimated cost parameter cθ as given and instead find the job finding

rate λu
θ that ensures that limp→p J(p) = 1 holds.
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C.2 Details of the estimation routine

In practice, we sample one million parameter configurations using Sobol sequences, which effi-

ciently distribute points in a space. After finding the criterion-minimizing parameter configura-

tion, we simulate four million individuals at monthly frequency under the estimated parameter

values. Identically to our treatment of the data, we then aggregate employment data to the annual

level by retaining the highest-paid among all longest employment spells that an individual held

during a given year. Recall that the solution to the equilibrium system of differential equations

(13)–(14) in Section C.1 yields a wage policy and a steady-state mass of workers hired by each

firm of a given productivity p firm operating in ability market θ. We further decompose this wage

policy into a “worker component” and a “firm component” of pay following the AKM procedure

used in Alvarez et al. (2018). Notice that this procedure avoids the need to simulate a large num-

ber of individual wage histories to estimate AKM on model-generated data, which substantially

speeds up estimation. In an earlier version of this paper, we simulated a large number of worker

histories and found that this procedure produced virtually indistinguishable results.

Finally, and done on the data, we estimate the AKM regression on five-year windows of these

simulated work histories, dropping individual-years at firms with less than ten employees and

those whose wage plus noise falls below the minimum wage. As we demonstrate below, the

great majority of the noise is reflected in the AKM residual, with a relatively small share inflating

the variance of the estimated worker AKM fixed effects. This helps make us confident that our

estimation routine appropriately informs the underlying parameters of the model.

C.3 How to compute targeted auxiliary moments

We compute these moments in the following way. First, we estimate firm and worker AKM fixed

effects based on the AKM regression (1) yijt = αi + αj + γt + ε ijt on the 1996–2000 RAIS data.

Following an empirical literature which has suggested that the AKM two-way fixed effect decom-

position is not well identified for small firms, we restrict attention to firms that hire at least 10

employees (and the workers that work for these firms). We impose the same size threshold in

the model.32 Based on the estimates, we group workers into types based on AKM worker fixed

effects, and compute a set of auxiliary moments summarizing worker mobility by worker decile.

32This criterion drops slightly less than 20 percent of individual-years, both in the data and in the model under
our estimated parameter values. We have verified that our results do not substantively change with a less stringent
threshold.
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Categorizing workers’ underlying structural type based on their estimated AKM worker fixed ef-

fect works to the extent that the estimated AKM worker fixed effects are monotonic in underlying

ability, which we find that our estimated model satisfies. Specifically, we compute the following

set of auxiliary moments characterizing labor market flows by worker groups:

1. We estimate the monthly separation rate as the average rate of leaving formal employment

for at least one month: δ̂θ = E(nonemployedt+1|employedt, θ).

2. We estimate the job hazard from nonemployment, λ̂u
θ , by tracking workers for up to 24

months after leaving a formal sector job, and estimating via nonlinear least squares the fol-

lowing proportional hazard model: log P(# months until reentry ≥ t|θ) = t × log(1 − λu
θ ).

3. We map the rate of upward mobility across AKM firm fixed effects ranks into the effec-

tive speed of climbing the job ladder, κθ . To this end, we exploit the model restriction

Gθ(w) = Fθ(w)/(1 + κθ(1 − Fθ(w))) using nonparametric density estimates of the AKM

firm effects distribution, Gθ

(
α̂j

)
, and AKM firm effects starting distribution from nonem-

ployment, Fθ

(
α̂j

)
, to estimate κ̂θ .33 Combined with our estimate of the separation rate, we

obtain the job-to-job mobility parameter of interest using the model relation λ̂e
θ = κ̂e

θ × δ̂θ

and hence ŝθ = λ̂e
θ/λ̂u

θ .

4. We infer workers’ reservation wage as the lowest accepted wage out of nonemployment,

R̂θ = min {wθ}.34

In practice, we group workers by deciles of AKM worker fixed effects and linearly interpolate the

estimated type-specific mobility moments to allow for more types in our structural estimation.

C.4 Identification

To verify that the grids for possible parameter values we pick cover approximately the right do-

main for each parameter, Figure 21 plots the distribution of different moments across the range of

possible parameter values that we consider, together with the empirical moment in red.

33In a previous version of this paper, we obtained similar estimates for the mean value of κθ using two additional
model-consistent methods: one from a job duration regression and the other by comparing the wage distribution of
new hires to that of the population.

34To control for outliers, we estimate Rθ by trimming the lowest one percent of observations by θ-group. As a
robustness checked, we have repeated this procedure for lower (0.1 percent) and higher (3 percent) trims.
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Figure 21. Estimated relative and absolute vacancy posting cost cθ across worker abilities
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Notes: Moments across 5 million evaluations of the model randomly distributed according to Sobol sequences in the 11-dimensional

parameter space.

Figure 22 plots how the distance between the targeted moments in the model and in the data

varies with each of the structural parameters of the model.35 Each small light blue dot in the

“clouds” denotes the distance between the targeted moments in the model and data for one par-

ticular random draw of parameters. The solid blue line traces out the minimum distance across a

range of random draws of the other parameters, holding the parameter of interest fixed at its value

on the x-axis. Because of how we sample points (essentially at random), any systematic variation

in the distance between the model and the data with the parameter on the x-axis may be viewed

as the marginal effect of that parameter, since the other parameters vary at random in the back-

35To save space, we omit the parameter M0, the relative mass of firms, in these graphs. However, this parameter is
clearly identified off average firm size in the data and none of our results are sensitive to its value.
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ground. Although the behavior of the minimum distance suggests that some parameters are less

than perfectly identified, reassuringly the minimum distance increases monotonically both to the

left and right of our point estimates for the key parameters governing the effects of the minimum

wage, θ50 and γ2.

Figure 22. Model: Minimum distance to target

Notes: Graph shows evaluations of the estimation criterion for 5 million random draws of parameters from a Sobol sequence. Each

blue dot represents one model evaluation, the bold blue line represents the minimum distance to the target, and the red vertical line

represents the estimated parameter value that minimizes the distance function. Source: simulations.
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D Empirics Appendix

This appendix provides further empirical evidence related to the facts presented in Section 6,

including subsections on the evolution of the Kaitz index by state over time (Appendix D.1),

additional results on spillover effects identified off regional variation (Appendix D.2), evidence

supporting the empirical identifying assumption of our empirical strategy (Appendix D.3), and

details on the hours distribution and its relation to the bindingness of the minimum wage (Ap-

pendix D.4).

D.1 Evolution of the Kaitz index by state

Figure 23. Data: Evolution of the Kaitz index by state, 1996–2012
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Notes: Kaitz index is defined as kaitz = log (minimum wage)− log (median wage). Each blue line markets one of Brazil’s 27 states.

Red line marks weighted mean across states. Source: RAIS.
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D.2 Additional results on spillover effects identified off regional variation

Figure 24. Data: Wage percentile ratios across Brazilian states over time, 1996–2012
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Notes: Figure plots different wage percentile ratios against the Kaitz index, kaitzst ≡ log wmin
t − log wmedian

st , with each marker repre-

senting one state-year combination for each of Brazil’s 27 states. Source: RAIS.

Figure 25. Data: Wage percentile ratios across Brazilian microregions over time, 1996–2012
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Notes: Figure plots different wage percentile ratios against the Kaitz index, kaitzst ≡ log wmin
t − log wmedian

st , with each marker repre-

senting one state-microregion combination for each of Brazil’s 556 microregions. A small number of outliers are dropped for presen-

tation purposes. Source: RAIS.
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D.3 Evidence supporting the empirical identifying assumption

This section provides support for our empirical identifying assumption in Section 6, namely that

cross-state variation in the “centrality” of the wage distribution is not systematically related to the

shape of the “underlying” wage distribution in Brazil. Although the assumption is not literally

testable, we here provide two proxy tests for the assumption.

We show as a first test of our identifying assumption, namely that Brazilian states share a “la-

tent wage distribution,” the resemblance of the wage wage distribution in one of Brazil’s poorest

states in 1996 and that of one of its richest states in 2012 under the higher minimum wage. Figure

26 shows histograms of wages for the state of Maranhão, the second poorest in Brazil, and for the

state (federal district) of Distrito Federal, the richest in Brazil, in 1996 and 2012. Both states see

pronounced compression in their distribution over time as the minimum wage increases. We note

the striking similarity in the shape of the wage distribution between panel (a) showing the poor

state Maranhão in 1996 and panel (d) showing the rich state Distrito Federal in 2012.

Figure 26. Data: Wage histograms for a poor versus rich state of Brazil, 1996 and 2012
(a) Poor state (Maranhão), 1996
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(b) Poor state (Maranhão), 2012
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(c) Rich state (Distrito Federal), 1996
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(d) Rich state (Distrito Federal), 2012
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Notes: Figure shows wage histograms for the state of Maranhão, the second poorest in Brazil, and in the state (federal district) of

Distrito Federal, the richest in Brazil, in 1996 and 2012. Source: RAIS.

We now demonstrate as a second test of our identifying assumption that the upper tail of the
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wage distribution is invariant to the level of the “effective minimum wage.” Figure 27 shows that

the relation between various upper-tail wage percentile ratios and the median wages across states

from 1996 to 2000 is mostly flat, consistent with a shared “latent distribution” across states that is

differentially uncovered by the federal minimum wage.

Figure 27. Data: Upper-tail inequality versus median earnings across states, 1996–2000
(a) P60-P40

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

P
6

0
−

P
4

0

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Median log earnings (P50)

(b) P70-P50
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(c) P80-P60
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Notes: Blue dots represent state-year observation. Red line represents worker-weighted linear fit. Specification with no state dummies

or state trends. Source: RAIS.

D.4 Hours distribution and its relation to the bindingness of the minimum wage

Most adult males in Brazil’s formal sector work in a full-time contract, defined as either 40 work

hours (spread across 5 days) or 44 work hours (spread across 6 days) per week. Figure 28 shows

the raw distribution of hours for this population for 1996–2000 in panel (a), and for 2008–2012

in panel (b). In the initial period, around 74 percent of all workers work 44 hours per week and

another 15 percent work 40 hours per week, constituting around 89 percent of workers in full-time

employment. Only arounnd five percent of all employees are in employment arrangements with

less than 35 contractual work hours per week.36 Furthermore, the comparison between panels

(a) and (b) show that there is no evidence over time—as the minimum wage increases—of a shift

towards shorter work weeks in the aggregate. In contrast, there was a small reduction in the share

of workers with 30 hour contracts that in the aggregate shifted toward 44 hour contracts.

36According to the Bureau of Labor Statistics a higher share, around 12 percent of employees, works part-time (less
than 35 hours) in the US in 2017.
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Figure 28. Contractual hours distribution

(a) 1996–2000
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(b) 2008–2012
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Notes: Figure shows density of contractual work hours for period 1996–2000 in panel (a) and for 2012 in panel (b). All statistics are

for adult male workers of age 18–49. A very small fraction of observations reporting more than 60 hours has been dropped from the

graphs. Source: RAIS.

Looking beyond the aggregate statistics, there is little systematic covariation between the rel-

ative bindingness of the minimum wage and work hours across Brazilian states. Figure 29 shows

that both the share of full-time employment in panel (a) and the mean number of hours in panel

(b) stay constant as the minimum wage increases between 1996 and 2012. While in 1996 there is

a weak systematic negative relationship between the full-time worker share and the bindngnes

of the minimum wage, measured by the Kaitz index, this appears almost entirely driven by tran-

sitory fluctuations and permanent state-specific heterogeneity, rather than a correlation with the

rising minimum wage over time within states.

Figure 29. Relation between contractual hours and bindingness of the minimum wage
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(b) Mean contractual hours
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Notes: Figure shows for male workers of age 18–49 the share in full-time employment, defined as working 40 hours or more (panel

(a)), and the mean number of contractual work hours (panel (b)), against the Kaitz index, kaitzst ≡ log wmin
t − log wmedian

st , across states

in 1996 and 2012. Area of circles is proportional to population size. Source: RAIS.

To formalize some of these results and as a robustness check to our econometric specification
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finding insignificant employment and hours effects of the minimu wage in Section 6.2 we repeated

a state-level variant of regression equation (4) with the share of full-time workers a the dependent

variable. Our findings indicate a robustly insignificant relation between the incidence of the min-

imum wage and hours worked in all specifications that we ran.
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