
Munich Personal RePEc Archive

Realized Volatility Forecasting with

Neural Networks

Bucci, Andrea

August 2019

Online at https://mpra.ub.uni-muenchen.de/95443/

MPRA Paper No. 95443, posted 08 Aug 2019 17:49 UTC



Realized Volatility Forecasting with Neural Networks

Andrea Bucci*

Abstract

In the last few decades, a broad strand of literature in finance has implemented ar-

tificial neural networks as forecasting method. The major advantage of this approach

is the possibility to approximate any linear and nonlinear behaviors without knowing

the structure of the data generating process. This makes it suitable for forecasting

time series which exhibit long memory and nonlinear dependencies, like conditional

volatility. In this paper, I compare the predictive performance of feed-forward and re-

current neural networks (RNN), particularly focusing on the recently developed Long

short-term memory (LSTM) network and NARX network, with traditional econometric

approaches. The results show that recurrent neural networks are able to outperform

all the traditional econometric methods. Additionally, capturing long-range dependence

through Long short-term memory and NARX models seems to improve the forecasting

accuracy also in a highly volatile framework.

1 Introduction

Measuring and predicting stock market volatility has received growing attention from both

academics and practitioners over the last years. It is well-known that stock return volatil-

ity varies over time (Engle (1982); Bollerslev (1986)) and asymmetrically responds to unex-

pected news (Black (1976); Nelson (1990)), which may cause distortions in the estimation

of volatility and in the definition of its underlying process. For these reasons, some authors

suggested to estimate stock market volatility through a smooth transition or a threshold

model (De Pooter et al. (2008); McAleer and Medeiros (2008)). The nonlinearity makes the

estimation of these models difficult, since the sample log-likelihood can exhibit local max-

ima and may be generally hard to solve with confidence. Furthermore, this class of models

is in general greedy in requiring a substantial amount of data to identify the states and

presents poor out-of-sample forecasting performance Clements and Krolzig (1998); Pavlidis

et al. (2012).
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In this framework, this paper aims to capture the nonlinear relationships between ag-

gregate stock market volatility, measured by realized volatility, and a set of financial and

macroeconomic variables through Artificial Neural Networks (ANN). This method allows

approximating arbitrarily well a wide class of linear and nonlinear functions without know-

ing the data generating process. Furthermore, ANNs are found to be particularly useful to

forecast volatile financial variables exhibiting nonlinear dependence, such as stock prices,

exchange rates and realized volatility; see Donaldson and Kamstra (1996a,b).

ANNs have been commonly implemented for predicting stock prices (White (1988); Kamijo

and Tanigawa (1990); Khan (2011)), while there has been little effort on forecasting volatil-

ity through neural networks. Moreover, neural networks have been mostly employed in

combination with GARCH models (Hajizadeh et al. (2012); Maciel et al. (2016)). For in-

stance, Donaldson and Kamstra (1997) investigated the usefulness of a semi-nonparametric

GARCH model to capture nonlinear relationships, proving that the ANN model performs

better than all competing models. Hu and Tsoukalas (1999), instead, combined the forecasts

from four conditional volatility models within a neural networks architecture, showing that

the ANNs predict accurately well the targeted variable during crisis periods. Recently,

Arnerić et al. (2014) based their neural networks on the squared innovations deriving from

a GARCH model. They relied on a Jordan neural network (JNN) and showed that a NN

model provides superior forecasting accuracy in comparison with other linear and nonlin-

ear models.

Fernandes et al. (2014) extended these studies by specifying a neural-network hetero-

geneous autoregression (HAR) with exogenous variables to improve implied volatility fore-

casts. Finally, a recent paper by Vortelinos (2017) implemented a neural network to forecast

a nonparametric volatility measure. The author concluded that the persistence in realized

volatility is not well approximated by a feed-forward network.

This article contributes to this literature investigating whether a totally nonparametric

model is able to outperform econometric methods in forecasting realized volatility. In partic-

ular, the analysis performed here compares the forecasting accuracy of time series models

with several neural networks architectures, as the feed-forward neural network (FNN), the

Elman neural network (ENN), the Jordan neural network (JNN), a long short-term memory

(LSTM) neural network and the Nonlinear Autoregressive model process with eXogenous

input (NARX) neural network.

The latent volatility is estimated through the ex-post measurement of volatility based on

high-frequency data, namely realized volatility; see Andersen et al. (2001) and Barndorff-

Nielsen and Shephard (2002). Since macroeconomic and financial variables, which are sam-

pled at lower frequencies, are included in the model, realized volatility is estimated on a

monthly basis from daily squared returns.
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The remainder of this paper is organized as follows: Section 2 illustrates the data set,

the estimation method of the volatility and the set of macroeconomic and financial predic-

tors. Section 3 introduces the neural network models. The choice of the architecture of the

neural networks is presented in Section 4. In Section 5, the performance of the ANNs is

assessed in terms of forecasting accuracy, while Section 6 concludes.

2 Data and Volatility Measurement

The data set employed in this study comprises monthly observations from February 1950

to December 2017 for a total of 815 observations. The realized variance for month t is com-

puted as the sum of squared daily returns,
∑Nt

i=1
r2

i,t
, where r i,t is the i-th daily continuously

compounded return in month t and Nt denotes the number of trading days during month t.

Given that the natural logarithm of realized volatility is approximately Gaussian (Ander-

sen et al. (2001)), the realized volatility is here defined as the log of the square root of the

realized variance:

RVt = ln

√

√

√

√

Nt
∑

i=1

r2
i,t

, (1)

where r i,t is the daily return of the Standard & Poor’s (S&P) index. The logarithm of the

realized volatility is highly persistent, as indicated by the time series plot in Figure 1 and

by the autocorrelation function in Figure 2, suggesting that a long-memory detecting model

should be implemented (see Rossi and Santucci de Magistris (2014)). Since volatility ex-

hibits a highly variable behaviour, one may also suspect that its dynamics are partly driven

by several economic variables. A strand of literature has focused on the identification of

economic drivers of volatility. In a seminal work, Schwert (1989) found that volatility be-

haves in a countercyclical way respect to economic activity. Afterwards, both Engle et al.

(2009) and Diebold and Yilmaz (2009) showed a strong link between macroeconomic fun-

damentals and stock return volatility. Recently, Paye (2012) and Christiansen et al. (2012)

examined the role of a large set of macroeconomic and financial variables on the dynamics

of realized volatility. They proved that the presence of exogenous variables helps increasing

forecasting accuracy.

Understanding which are the volatility predictors can be crucial for investment deci-

sions, and for policy makers and monetary authorities. Thus, this analysis relies on a

comprehensive set of macroeconomic and financial variables as volatility predictors.

As in Paye (2012) and Christiansen et al. (2012), I include in the analysis many predic-

tive variables from return predictability literature Mele (2007, 2008).

Firstly, the set of determinants comprehends the dividend-price (DP) and the earnings-

price ratio (EP), commonly included in the set of the excess returns predictors, see also
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Welch and Goyal (2008). The well-known leverage effect (i.e. negative returns reflect higher

volatility) is gathered through the equity market return (MKT). As a measure of risk fac-

tors, the Fama and French (1993) factors (HML and SMB) are considered in the analysis.

The short-term reversal factor (STR) is included to capture the component of stock returns

unexplained by "fundamentals."

A set of bond market variables enriches the set of determinants, as the T-bill rate (T-B),

the rate of return on long-term government bond and the term spread difference (TS) of

long-term bond yield and three-month T-Bill rate. The default spread (DEF) completes the

set of financial determinants to approximate credit risk.

The inclusion of macroeconomic variables, as inflation rate and industrial production

growth, follows Schwert (1989) and Engle et al. (2009). Including these variables permits

to assess whether volatility is countercyclical or not. A description of the variables in the

data is shown in Table 1.

Figure 1: log RV from February 1950 through December 2017
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Figure 2: Autocorrelation function (ACF) and partial autocorrelation function (PACF) of

RV.

Table 1: Variables description

Symbol Variable Data source

Description Source

DP Dividend Yield Ratio S&P Dividends over the past year relative to cur-

rent market prices; S&P500 index

Robert Shiller’s web-

site

EP Earning Price Ratio S&P 500 Earnings over the past year relative to cur-

rent market prices; S&P500 index

Robert Shiller’s web-

site

MKT Market Excess Return Fama-French’s market factor: Return of U.S.

stock market minus one-month T-Bill rate

Kenneth French’s

website

HML Value Factor Fama-French’s HML factor: Average return

on value stocks minus average return on

growth stock

Kenneth French’s

website

SMB Size Premium Factor Fama-French’s SMB factor: Average return

on small stocks minus average return on big

stocks

Kenneth French’s

website

STR Short Term Reversal Factor Fama-French’s STR: Average return on stocks

with low prior return minus average return

on stock with high prior return

Kenneth French’s

website

TB T-Bill Rate Three-month T-Bill rate Datastream

TS Term Spread Difference of long-term bond yield and three-

month T-Bill

Datastream

DEF Default Spread Measure of default risk of corporate bonds:

difference of BAA and AAA bond yields

Datastream

INF Monthly Inflation US inflation rate Datastream

IP Monthly Industrial Production

growth rate

US Industrial Production growth OECD Database
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3 Neural Networks

Artificial Neural Networks (ANNs) can be seen as non-parametric tools, inspired by the

structure of the human brain, for modelling and predicting the unknown function generat-

ing the observed data (Arnerić et al. (2014)). The structure of the network can be modified

to approximate a wide range of statistical and econometric models. For this reason, ANNs

have been widely employed to forecast time series in different areas, like finance, medicine,

biology, engineering and physics. Empirical research indicates that ANNs are particularly

suitable for forecasting volatile financial variables that exhibit nonlinear behaviours, like

stock market returns or stock market volatility (Maheu and McCurdy (2002)), since they

are capable of detecting nonlinear structure that linear models cannot detect. In this way,

the researcher can implement neural networks without any a priori knowledge of the data

generating process.

The neural network is specified as a collection of neurons (or nodes), grouped in layers,

that connect to each other. The nodes of a layer are connected to the nodes of the following

layer through weights and an activation function1. There exists a wide variety of learning

algorithms to obtain these weights, the most popular being the backpropagation (BP). This

algorithm is based on the gradient descent rule and allows to update the weights at each

iteration, until there is no improvement in the error function, which is typically defined as

the mean squared error2.

When the size of the network is too large, because of the number of hidden layers and

hidden nodes, the training algorithm can be very slow. Although some rules have been

suggested in the literature to find the optimal number of hidden layers and neurons (see

Gnana Sheela and Deepa (2013)), there is no commonly agreed solution to this issue. Don-

aldson and Kamstra (1996b) proved that a single hidden neural network is a universal

approximator, meaning that the network can approximate a wide range of linear and non-

linear functions, if a sufficient number of hidden nodes is included. For this reason, a single

hidden layer network is assumed throughout the present article. Assuming then a three-

layer neural network and a single output variable, the output function is of the form:

f t(xt,θ)= F
(

β0 +

q
∑

j=1

G
(

xtγ
′

j

)

β j

)

, (2)

where F is the output activation function, G is the hidden units activation function, β j, with

1An activation function is implemented in order to introduce nonlinearity to the network. Many activation

functions, like sigmoid, hyperbolic tangent and exponential, can be used in this framework, provided that they

satisfy the condition of differentiability to apply the chain rule in the backpropagation algorithm.
2Other loss functions can be also implemented, such as Mean Absolute Error (MAE), Mean Absolute Per-

centage Error (MAPE).
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j = 1, . . . , q, are the weights from hidden unit j to the output unit, xt =

{

1, x1,t, . . . , xs,t

}

is the

1×m vector of input variables at time t (with m = s+1), β0 is the bias of the final output,

γ j =

{

γ1, j, . . . ,γm, j

}

is the 1×m vector of weights for the connections between the inputs and

the hidden neuron j, q is the number of hidden units and θ =

{

β0, . . . ,βq,γ′1, . . . ,γ′q

}

is the

vector of all network weights. This version, with 3 input variables including the bias, and

2 hidden nodes (i.e. m = 3 and j = 2), is depicted in Figure 3 and assumes that information

moves forward from the input layer to the output layer. Accordingly, it is also called feed-

forward neural network (FNN).

Figure 3: FNN with a single hidden layer

Modern practice allows choosing F and G among a variety of functions. In the most

used form of FNN, the output activation function is an identity function, i.e. F(a) = a. In

this case, Equation (2) can be written as follows

f t(xt,θ)=β0 +

q
∑

j=1

G(xtγ
′

j)β j. (3)

A common choice for G is the logistic function, i.e. G(a) = 1
1+e−a , although any continuous,

differentiable and monotonic function may be implemented. This function, bounded be-

tween 0 and 1, permits the network to reproduce any nonlinear pattern and replicate the

way a real neuron becomes active. In particular, the neuron shows a high level of activation

for G close to 1, while it exhibits a poor response when G is close to 0.

Researchers usually refer to FNN as a static network, since a given set of input vari-

ables is used to forecast the target output variable at time t. Hence, feed-forward networks
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show no memory, even when sample information exhibits temporal dependence. The so-

called recurrent neural networks overcome this shortcoming by allowing internal feedbacks.

This type of networks allows propagating data from input to output, but also from later

layers to earlier layers. Such models have many potential applications in economic and fi-

nance, when nonlinear time dependence and long-memory exist. For this reason, the use of

RNN in forecasting volatility has attracted a large number of researchers (see, for example,

Schittenkopf et al. (2000); Tino et al. (2001)). This paper focuses on four recurrent architec-

tures: Elman and Jordan recurrent networks, long short-term memory (LSTM) networks

and NARX neural networks.

In the Elman neural network (ENN), proposed by Elman (1990), the input layer has

additional neurons which are fed back from the hidden layer (see Figure 4). The output of

the ENN, with an identity function as output activation function, can be represented as

f t(xt,θ)=β0 +

q
∑

j=1

ht jβ j (4)

ht j =G
(

xtγ
′

j +ht−1δ
′

j

)

j = 1, . . . , q

where ht−1 =
(

ht−1,1, . . . ,ht−1,q

)

is the vector of lagged hidden-unit activations, and δ j =
{

δ1, j, . . . ,δq, j

}

is the vector of connection weights between the j-th hidden unit and the

lagged hidden-units.

Figure 4: ENN with a single hidden layer

Jordan (1986), instead, introduced a recurrent neural network with a feedback from the

output layer, as in Figure 5. Thus, the network output at time t−1 is used as additional
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input for the network at time t. Specifically, the output of the Jordan neural network (JNN)

can be specified as follows

f t(xt,θ)=β0 +

q
∑

j=1

G
(

xtγ
′

j + ŷt−1ψ j

)

β j (5)

where ŷt−1 is equal to f t−1(xt−1,θ) and ψ is the weight between the lagged output and the

j-th hidden unit.

Figure 5: JNN with a single hidden layer

Equations (4) and (5) indicate that the outputs of these RNNs can be expressed in terms

of current and past inputs. This makes them similar to the distributed lag model or AR

representation of an ARMA model. Furthermore, differently from FNNs, recurrent neural

networks are able to incorporate information of past observations without including them

in the network.

Although extremely appealing, ENN and JNN suffer from the so-called "vanishing gra-

dient problem." In such methods, the network weights are updated through a training algo-

rithm based on the gradient descent rule. When this kind of algorithm is implemented, the

magnitude of the gradients gets exponentially smaller (vanishes) at each iteration, making

the steps very small and resulting in an extremely slow learning process. In such cases, a

local minimum might be reached.

One of the cause of this shortcoming is the choice of the activation function. For example,

a logistic activation function maps all the input values in a relatively small range, i.e. [0,1].

As a result, even a large change in the input will produce a small change in the output,

vanishing the gradient very fast.
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Long short-term memory (LSTM) was introduced by Hochreiter and Schmidhuber (1997)

to alleviate the vanishing gradient problem through a mechanism based on memory cells.

LSTM extends the RNN architecture by replacing each hidden unit with a memory block.

Each block contains one or more self-connected memory cells and is equipped with three

multiplicative units called input, forget and output gates. These gates allow the memory

cells to store and access information, in order to determine which information should be per-

sisted. In this way, LSTMs are capable of retaining relevant information of input signals,

overlooking the unnecessary parts.

Figure 6 illustrates the structure of a simple LSTM memory block with a one cell ar-

chitecture. In the figure, xt denotes the vector of input variables at time t, ct and ct−1

correspond to the cell state at time t and t−1 respectively, while ht and ht−1 denote the

hidden state or output of the cell at time step t and t−1. The input gate is identified by

i t, f t indicates the forget gate, while ot is the output gate. Both input and output gates

have the same role as in the RNNs. The new instance, i.e. the forget gate, is responsible for

removing the unnecessary information from the cell state. The information at time t, given

by xt and ht−1, is passed through the forget gate f t, which determines if the information

should be retained or not using a sigmoid function. Basically, a zero response of the sigmoid

function means that the information should be discarded, while a value close to one implies

that the information should be stored. Meanwhile, the same information is processed by the

input gate to add information to the cell state ct. Additionally, a nonlinear layer, φ= tanh,

is introduced to generate a vector of candidate values, c̃t, to update the state of ct. The

output gate is used to regulate the output values of an LSTM cell, using a logistic function

to filter the output. The final output of the memory cell, ht, is then computed by feeding

the cell state, ct, into a tanh layer and multiplying it by the value of the output gate. The

entire process can be synthesized by the following equations:

f t =σ
(

Wf ht−1 +U f xt +b f

)

(6)

i t =σ
(

Wiht−1 +Uixt +bi

)

(7)

c̃t = tanh
(

Wcht−1 +Ucxt +bc

)

(8)

ct = f t ⊙ ct−1 + i t ⊙ c̃t (9)

ot =σ
(

Woht−1 +Uoxt +Voct +bo

)

(10)

ht = ot ⊙ tanh
(

ct

)

(11)

ŷt = ht (12)

where Wf , Wi, Wc, Wo, U f , Ui, Uc and Uo are the weight matrices of forget, input, memory

cell state, and output gates respectively, Vc is the weight matrix of the cell state, ŷt is the

output of the neural network, b f , bi, bc and bo are the biases of the related gates, σ is a
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sigmoid or logistic function and ⊙ is the Hadamard product function.

Figure 6: Basic LSTM memory cell

Note: The memory cell has four key components: an input gate, a neuron with self-current connection, a forget

gate, and an output gate. The inputs (the predictors at time t and the outputs of the previous steps) are passed

through the memory cell with some non-linear and linear interactions. Linear interactions of the cell state are

point-wise addition ⊕, and point-wise multiplication, ⊗. Non-linear interactions are logistic functions, σ.

LSTM can operate where long memory effects are present in the underlying structure

of the times series, similarly to HAR or ARFIMA models. Accordingly, there are numerous

applications of LSTM models in finance, see, for example, Heaton et al. (2016), Bao et al.

(2017), Pichl and Kaizoji (2017), Kim and Won (2018), Di Persio and Honchar (2017) and

Xiong et al. (2016).

A further way to deal with long-term dependencies and mitigate the effect of the vanish-

ing gradient problem is the NARX neural network. This network, introduced by Lin et al.

(1996), addresses the vanishing gradient problem by using an orthogonal mechanism with

direct connections or delays from the past. Some authors (Bianchi et al. (2017)) showed that

NARX networks accurately predict time series with long-term dependencies, while others

(Menezes and Barreto (2006)) demonstrated that this method accurately forecasts nonlin-

ear time series.

NARX networks can be specified in a twofold way. The first mode is called parallel

(P) architecture, in which the output is fed back to the input of the feed-forward neural

network. The NARX-P architecture behaves like a Jordan neural network where, at each
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training epoch, the output is trained and used in the subsequent time steps (differently from

JNN, this architecture relies on a greater number of lags). The second mode is called series-

parallel (SP) architecture, here the observed output is used as additional input instead of

feeding back the estimated output. The structure is that of a regular Feedforward Neural

Network (FNN) with d additional inputs equal to d delays of the real target variable.

In this paper I consider only NARX-SP networks with zero input order and a one-

dimensional output. Thus, the output function of the NARX networks with zero input order

is defined by

ŷt =Ψ

[

xt, yt−1, . . . , yt−d

]

(13)

where xt and yt are respectively the input and the output of the network at time t, d is

the output order and Ψ is a multilayer perceptron as in Figure 7. This architecture can be

represented by the following equation

f t(xt,θ)=β0 +

q
∑

j=1

G
(

xtγ
′

j +

nd
∑

d=1

yt−dψd, j

)

β j (14)

where ψd, j is the weight associated to the d-th delay of the output.

In the following section, I specify the architecture for the above models, selecting the

final set of inputs, the number of hidden nodes and the training algorithm.

Figure 7: Architecture of a NARX network

4 Neural Networks Architecture

The overall task of constructing a neural network passes through a process of trial and

error. Some authors, Anders and Korn (1996); Panchal et al. (2010) among others, suggested
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various ways to define information criteria that could help driving the choice of the neural

network architecture. However, the most reliable approach remains the training of different

architectures and the choice of the network producing the lowest forecasting error.

Firstly, the researcher should choose a set of inputs. Variable selection represents a cru-

cial phase for the identification of the neural networks’ architecture. While the initial set of

determinants can be guided by the economic theory (see section 2), a subset of these predic-

tors should be used to reduce the number of weights to be trained (equal to (1+m)q+1) and

enable algorithms to work properly. In the related literature, there are several methods to

optimally detect the relevant explanatory variables. Here, I selected the variables through

a Least Absolute Shrinkage and Selection Operator (LASSO) regression, introduced by Tib-

shirani (1996). This method performs estimation and model selection in the same step by

penalizing the absolute size of the regression coefficients, based on a penalty coefficient, λ;

see Zou (2006) for the mathematical details. To assess the results of the analysis, I exam-

ined which variables really affected realized volatility for two samples: the entire sample of

observations, from January 1950 to December 2017, and a subsample3, from February 1973

to June 2009. All independent and control variables were lagged by one year to mitigate

the possibility of simultaneity or reverse causality bias, while the number of lags of the

dependent variables was assessed through information criteria. The final set of variables

selected was equal to Xa = {RVt−1,RVt−2,RVt−3,DPt−1, MKTt−1,STRt−1,DEFt−1} for the

entire sample, and to Xb = {RVt−1,RVt−2,RVt−3, MKTt−1,STRt−1} for the subsample. The

lack of significance of pure macroeconomic variables, i.e. inflation rate and industrial pro-

duction growth, is in line with the findings of Schwert (1989) and Christiansen et al. (2012),

once again underlying the relevance of premium risk’s determinants.

Choosing the set of explanatory variables entails a twofold risk. On the one side, the

so-called look ahead bias4 may occur. On the other side, the variables selected through

this method, i.e. LASSO, may not be relevant in a neural network framework. The choice

of two samples and two different sets of explanatory variables may help alleviating these

drawbacks. Moreover, the former issue was circumvented by selecting the relevant vari-

ables on the training sample (see the following Section for details), where the number of

observations was approximately equal to two-thirds of the entire number of observations.

Furthermore, the neural networks have been implemented without macroeconomic and fi-

nancial determinants, in order to understand if the lags of the dependent variable, alone,

were sufficient to provide accurate forecasts.

3This subsample was used to validate the approach in a more volatile framework. The starting month of

this sample has been determined through a breakpoint analysis, while the final monthly observation coincided

with the end of the Great Recession according to the National Bureau of Economic Research.
4Look ahead bias involves using information not available during the period analysed.
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Once a set of determinants has been identified, the researcher can proceed to select the

number of hidden layers and hidden neurons. To assess the performance of an architecture,

the researcher must modify the number of hidden units or by adding or removing certain

network connections, and then evaluate them by comparing the MSE attained in compared

architectures.

As previously mentioned, a single hidden layer was assumed throughout the paper,

while the selection of the optimal number of hidden neurons was trickier. Since a standard

and accepted method for determining the number of hidden nodes does not exist, I evalu-

ated the performance of the networks5 for each sample by the lowest training MSE for an

increasing number of hidden nodes, where the maximum number of hidden nodes was equal

to the total number of inputs (i.e. 7 and 5 respectively), as suggested by Tang and Fishwick

(1993). To avoid the optimization algorithm being trapped in a local minimum, the network

weights were re-estimated using 300 sets of random starting values. Table 2 provides the

MSE for each architecture in the entire sample, while the results for the subsample are

showed in Table 3. Therefore, the number of hidden nodes was selected according to the

lowest MSE. As in the case of explanatory variables selection, the choice of the architecture

was made on the training samples.

A gradient descent with momentum and adaptive learning rate (gdx) backpropagation

has been used to train the feed-forward, Elman, Jordan and LSTM architectures. Despite

it converges more slowly in comparison to other algorithms, the trained weights iteratively

adapt to the shape of the error surface at each iteration, reducing the risk of a local min-

imum. The NARX network has been trained using a Bayesian Regularization (BR) algo-

rithm, since the predictive performance of the BR algorithm is more robust when a NARX

architecture is implemented, see Guzman et al. (2017).

5LSTM hidden units follow a different setting in comparison with other neural networks, thus the number

of hidden units is set to 50, comparably to similar studies.

14



Table 2: MSE for increasing number of hidden nodes - Entire sample

The table includes the number of hidden nodes, the performance in terms of MSE, and the number of weights trained for

each architecture. Each architecture has a maximum of iterations equal to 1000. The presence of the X in the name of the

model indicates the use of exogenous determinants other than lagged realized variance.

Model N. Hidden Performance N. weights Model N. Hidden Performance N. weights

FNNX

1∗ 0.1029 10

FNN

1 0.1168 6

2 0.1245 19 2 0.1260 11

3 0.1062 28 3 0.1177 16

4 0.1074 37 4 0.1171 21

5 0.1035 46 5∗ 0.1136 26

6 0.1069 58 6 0.1168 31

7 0.1063 71 7 0.1175 36

ENNX

1 0.1027 11

ENN

1 0.1177 7

2 0.1111 23 2 0.1479 15

3 0.1031 37 3 0.1179 25

4∗ 0.1006 53 4 0.1230 37

5 0.1131 71 5 0.1210 51

6 0.1070 91 6 0.1223 67

7 0.1115 113 7∗ 0.1170 85

JNNX

1 0.1006 11

JNN

1 0.1165 7

2 0.1236 21 2 0.1315 13

3∗ 0.1004 31 3 0.1148 19

4 0.1044 41 4 0.1158 25

5 0.1040 51 5∗ 0.1147 31

6 0.1062 61 6 0.1152 37

7 0.1085 71 7 0.1154 43

NARX

1 0.0990 10

NAR

1 0.1141 6

2 0.0981 19 2 0.1123 11

3 0.0978 28 3 0.1160 16

4 0.0968 37 4 0.1123 21

5∗ 0.0953 46 5 0.1110 26

6 0.0967 55 6 0.1113 31

7 0.0966 64 7∗ 0.1100 36

* denotes the selected number of hidden nodes
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Table 3: MSE for increasing number of hidden nodes - Subsample

The table includes the number of hidden nodes, the performance in terms of MSE, and the number of weights trained for

each architecture. Each architecture has a maximum of iterations equal to 1000. The presence of the X in the name of the

model indicates the use of exogenous determinants other than lagged variance.

Model N. Hidden Performance N. weights Model N. Hidden Performance N. weights

FNNX

1 0.1450 8

FNN

1 0.1534 6

2 0.1745 15 2 0.1751 11

3∗ 0.1196 22 3∗ 0.1474 16

4 0.1467 29 4 0.1491 21

5 0.1534 36 5 0.1484 26

ENNX

1 0.1192 9

ENN

1 0.1298 7

2 0.1693 19 2 0.1667 15

3 0.1158 31 3 0.1425 25

4∗ 0.1126 45 4∗ 0.1420 37

5 0.1205 61 5 0.1471 51

JNNX

1 0.1201 9

JNN

1∗ 0.1425 7

2 0.1289 17 2 0.1541 13

3∗ 0.1115 25 3 0.1494 19

4 0.1176 33 4 0.1498 25

5 0.1169 41 5 0.1478 31

NARX

1 0.1111 8

NAR

1 0.1145 6

2 0.1009 15 2 0.1291 11

3 0.1119 22 3∗ 0.1056 16

4∗ 0.0998 29 4 0.1177 21

5 0.1020 36 5 0.1158 26

* denotes the selected number of hidden nodes
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5 Assessing Forecast Accuracy

The forecasting ability of the ANNs was compared to an autoregressive fractionally inte-

grated moving average with the same set of explanatory variables selected in the previous

section (ARFIMAX) and without determinants (ARFIMA). The set of competing models also

included a logistic smooth transition autoregressive model (LSTAR), also entailing exoge-

nous variables (LSTARX), where the number of lags (1) was set relying on the Akaike and

the Bayesian Information criteria. The analysis was performed over a period from January

1950 to December 2017 and a period from February 1973 to June 2009.

Lag selection of the ARFIMA was assessed on the training sample through information

criteria. ARFIMA(0,d,1) and ARFIMAX(0,d,0) were selected for the larger sample, while

ARFIMA(0,d,0) and ARFIMAX(2,d,2) were used for the subsample. In order to determine

the number of regimes of the smooth transition models, the presence of structural breaks

was evaluated through the method introduced by Bai and Perron (2003). A single structural

break (and 2 regimes) was identified, while lagged realized volatility was used as transition

variable.

Realized volatility forecasts were produced on 245 out-of-sample observations (from Au-

gust 1997 to December 2017) for the entire sample, while 22 out-of-sample forecasts (from

September 2007 to June 2009) were produced for the subsample. The number of out-of-

sample observations was equal to one third of the entire sample in the former case, while it

started from the beginning of the Great Recession for the latter. This helped understanding

whether NNs were able to outperform econometric models in a highly volatile context and

in presence of greater persistence.

The one-step-ahead (k = 1) out-of-sample forecasts were generated from a rolling win-

dow scheme, re-estimating the parameters at each step. In addition, multi-step-ahead fore-

casts have been considered. The 5-step-ahead (k = 5) forecasts were iteratively produced

from a rolling window estimation. At each step ahead, the information was updated with

the prediction of the previous step. The resulting set of variables used to make the forecasts

5-step ahead is the following:

ŷt+1 = {yt, yt−1, yt−2, zt}

ŷt+2 = { ŷt+1, yt, yt−1, zt}

ŷt+3 = { ŷt+2, ŷt+1, yt, zt}

ŷt+4 = { ŷt+3, ŷt+2, ŷt+1, zt}

ŷt+5 = { ŷt+4, ŷt+3, ŷt+2, zt}
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where zt = {DPt−1, MKTt−1,STRt−1,DEFt−1} in the entire sample, and zt = {MKTt−1,STRt−1}

in the subsample. The set of input variables used in models ARFIMA, LSTAR, FNN, ENN,

JNN, LSTM, and NAR did not include zt.

The relative performance of the out-of-sample forecasting accuracy was assessed using

mean squared error (MSE) and the quasi-likelihood (QLIKE), which belong to the family

of loss functions robust to a noisy volatility proxy; see Patton (2011). The predictive per-

formance of the competing models was also simultaneously compared via Model Confidence

Set (MCS), introduced by Hansen et al. (2011). The MCS procedure consists in a sequence

of equal predictive accuracy tests through which a set of superior models (SSM) is defined,

given a certain confidence level. For a set of forecasts from M models, MCS tests, through

a pairwise comparison of loss difference dl, j,t from model l and model j, whether all models

provide equal predictive accuracy. Assuming dl, j,t stationary, the null hypothesis assumes

the following form:

H0 : E[dl, j,t]= 0, ∀l, j ∈ M. (15)

Given a confidence level α, a model is discarded when the null hypothesis of equal forecast-

ing ability is rejected. The set of superior models (SSM) is then defined as the set of models

not-rejecting the null hypothesis.

As shown by the average of the loss functions in Table 4, all the neural networks were

able to outperform the traditional long-memory detecting models in the larger sample, when

analysing forecasts for k = 1. In most cases, the exclusion of the explanatory variables

worsened the forecasting accuracy, confirming that the dynamics of realized volatility are

somehow linked to macroeconomic and financial conditions. The best performance in terms

of forecasting accuracy measures was exhibited by LSTMX and NARX. These results held

regardless of the loss function considered.

The analysis of multi-step-ahead forecasts, in the entire sample, further highlighted the

predictive ability of long-term memory detecting recurrent neural networks, which outper-

formed all the competing models in terms of robust accuracy measures.

In the more volatile framework, classical long-memory detecting model seemed to not

forecast accurately well realized volatility. Instead, the superiority of LSTM and NARX

models was enhanced. From a theoretical point of view, this result is not surprising, given

that the LSTM has shown stronger performance in similar works in presence of long-

dependencies (see Heaton et al. (2016); Pichl and Kaizoji (2017)). Furthermore, the predic-

tion differences between neural networks and linear models may indicate a nonlinear be-

haviour of the log-realized variance during financially stressed periods; see also Choudhry

et al. (2016).

Simultaneously analysing one-step-ahead forecasts via MCS, it may be noted that long-
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memory and nonlinear relationships in realized volatility were not well approximated by

ARFIMA and Logistic Smooth Transition Autoregressive models. Not surprisingly, the SSM

contained only the NARX model which provided the best overall performance in terms of

accuracy. Similar findings can be deduced from the analysis of multi-step-ahead forecasts.

The scenario was analogous for the one-step-ahead forecasts on the subsample in Table

5. The SSM included all the competing models, only excluding the forecasts from LSTARX

models and FNNX. The higher probability of being included in the SSM was exhibited by

the NARX and LSTM networks, highlighting the usefulness of a dedicated method to train

persistent time series also in an unstable context such as the recent financial crisis. In

this volatile framework, the 5-step-ahead forecasts provided mixed results. FNN without

exogenous variables exhibited the lowest average losses, which may imply that a simpler

model should be implemented when few multi-step-ahead forecasts need to be produced.

Additionally, the test of equal predictive accuracy of Diebold-Mariano (DM) (Diebold

and Mariano, 1995) was used as robustness check. The pairwise comparison test in Table 6

supported our previous findings by exhibiting positive and strongly significant rejections in

favour of long-memory detecting models, when k = 1. Furthermore, neural networks model

were able to significantly outperform the predictive accuracy of the benchmark method (i.e.

ŷt+5 = yt), also for several steps ahead, enhancing once again the ability of NARX models to

accurately predict realized volatility.

Finally, Figure 8 and Figure 9 provide a graphical representation of the out-of-sample

forecasts, showing that neural networks forecasts accurately approximate observed realized

variance in both the samples.
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Table 4: MCS with α = 0.10 and 10,000 bootstraps (Entire sample: 1997.08 to

2017.12)

k = 1 k = 5

Model MSE QLIKE MSE QLIKE

Loss PMCS Loss PMCS Loss PMCS Loss PMCS

ARFIMAX 0.167 0.000 3.317 0.000 0.185 0.455** 3.323 0.268*

ARFIMA 0.205 0.000 3.325 0.000 0.219 0.118* 3.333 0.211**

LSTARX 0.145 0.000 3.316 0.000 0.323 0.000 3.352 0.000

LSTAR 0.130 0.000 3.311 0.000 0.245 0.145* 3.332 0.137*

FNNX 0.132 0.000 3.313 0.000 0.178 0.174* 3.325 0.068

FNN 0.130 0.000 3.311 0.000 0.176 0.485** 3.325 0.024

ENNX 0.133 0.000 3.313 0.000 0.164 0.663** 3.321 0.549**

ENN 0.138 0.000 3.312 0.000 0.172 0.552** 3.322 0.542**

JNNX 0.136 0.000 3.314 0.000 0.158 1.000** 3.315 1.000**

JNN 0.134 0.000 3.312 0.000 0.161 1.000** 3.314 1.000**

LSTMX 0.042 0.005 3.293 0.004 0.152 1.000** 3.313 1.000**

LSTM 0.110 0.000 3.307 0.000 0.185 0.150* 3.327 0.025

NARX 0.018 1.000** 3.288 1.000** 0.146 1.000** 3.316 1.000**

NAR 0.075 0.000 3.301 0.003 0.164 1.000** 3.317 1.000**

This table reports the average loss over the evaluation sample and the MCS p-values calculated on the basis of the range

statistics. The realized volatility forecasts with MCS p-value larger than 0.1 and 0.3 are identified by one and two asterisks,

respectively. Values in boldface represent the lowest average losses.

Table 5: MCS with α= 0.10 and 10,000 bootstraps (Subsample - 2007.09 to 2009.06)

k = 1 k = 5

Model MSE QLIKE MSE QLIKE

Loss PMCS Loss PMCS Loss PMCS Loss PMCS

ARFIMAX 0.166 0.802** 2.857 1.000** 0.295 1.000** 2.890 1.000**

ARFIMA 0.244 0.226* 2.878 0.546** 0.571 0.582** 2.939 0.616**

LSTARX 0.467 0.002 2.957 0.014 0.503 0.122* 2.947 0.083

LSTAR 0.221 0.088 2.872 0.479** 0.488 0.432** 2.930 0.453**

FNNX 0.176 0.069 2.864 0.178* 0.259 1.000** 2.890 1.000**

FNN 0.138 1.000** 2.849 1.000** 0.234 1.000** 2.874 1.000**

ENNX 0.142 1.000** 2.850 1.000** 0.286 1.000** 2.883 1.000**

ENN 0.143 1.000** 2.853 1.000** 0.283 1.000** 2.887 1.000**

JNNX 0.216 0.220* 2.875 0.318** 0.244 1.000** 2.879 1.000**

JNN 0.137 1.000** 2.855 1.000** 0.290 1.000** 2.892 1.000**

LSTMX 0.151 1.000** 2.853 1.000** 0.533 0.438** 2.936 0.351*

LSTM 0.080 1.000** 2.833 1.000** 0.460 0.202* 2.952 0.075

NARX 0.052 1.000** 2.824 1.000** 0.266 1.000** 2.884 1.000**

NAR 0.237 0.111* 2.878 0.260* 0.358 1.000** 2.905 0.740**

This table reports the average loss over the evaluation sample and the MCS p-values calculated on the basis of the range

statistics. The realized volatility forecasts with MCS p-value larger than 0.1 and 0.3 are identified by one and two asterisks,

respectively. Values in boldface represent the lowest average losses.
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Table 6: Diebold-Mariano test of equal predictive accuracy

Entire sample Subsample

Model k = 1 k = 5 k = 1 k = 5

ARFIMAX -1.714∗ 4.284∗∗ 1.648 2.527∗∗

ARFIMA -3.490∗∗∗ 2.660∗∗∗ 0.130 0.025

LSTARX -0.182 -1.953∗ -2.518∗∗ 0.462

LSTAR 1.308 0.812 0.470 0.755

FNNX 1.454 3.552∗∗∗ 1.343 3.602∗∗∗

FNN 2.457∗∗ 3.523∗∗∗ 1.241 3.663∗∗∗

ENNX 0.778 4.258∗∗∗ 1.191 2.542∗∗

ENN -0.232 4.015∗∗∗ 1.129 2.557∗∗

JNNX 0.203 4.009∗∗∗ 0.904 2.466∗∗

JNN 0.496 4.044∗∗∗ 1.251 2.480∗∗

LSTMX 7.647∗∗∗ 4.457∗∗∗ 1.761∗ 0.271

LSTM 2.713∗∗∗ 3.075∗∗∗ 2.264∗∗ 0.867

NARX 9.179∗∗∗ 4.772∗∗∗ 3.057∗∗∗ 3.010∗∗∗

NAR 7.707∗∗∗ 4.758∗∗∗ 0.276 1.788∗

This table reports the t-statistics for the Diebold-Mariano test

where the null hypothesis is the equivalence of the predictive ac-

curacy of the compared models with the information available at

time t (i.e. ŷt+h = yt). *, ** and *** indicate a significant difference

between the forecasting abilities at 1%, 5% and 10% level. A pos-

itive and statistically significant difference means that the model

in the line predicts better than simply using yt.
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Figure 8: Entire sample forecasts comparison.

a) ARFIMA One-Step-Ahead. b) ARFIMA 5-Step-Ahead.

c) LSTAR One-Step-Ahead. d) LSTAR 5-Step-Ahead.

e) FNN One-Step-Ahead. f) FNN 5-Step-Ahead.
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g) ENN One-Step-Ahead. h) ENN 5-Step-Ahead.

i) JNN One-Step-Ahead. j) JNN 5-Step-Ahead.

k) LSTM One-Step-Ahead. l) LSTM 5-Step-Ahead.

k) NARX One-Step-Ahead. l) NARX 5-Step-Ahead.
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Figure 9: Subsample sample forecasts comparison.

a) ARFIMA One-Step-Ahead. b) ARFIMA 5-Step-Ahead.

c) LSTAR One-Step-Ahead. d) LSTAR 5-Step-Ahead.

e) FNN One-Step-Ahead. f) FNN 5-Step-Ahead.

24



g) ENN One-Step-Ahead. h) ENN 5-Step-Ahead.

i) JNN One-Step-Ahead. j) JNN 5-Step-Ahead.

k) LSTM One-Step-Ahead. l) LSTM 5-Step-Ahead.

k) NARX One-Step-Ahead. l) NARX 5-Step-Ahead.
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6 Conclusions

In this paper, a flexible nonlinear tool for forecasting volatility has been applied. The pur-

pose of the article was to understand whether artificial neural networks were able to cap-

ture linear and nonlinear relations and provide more accurate forecasts than traditional

econometric methods. The target variable to be forecast was the logarithm of realized

volatility, while the models included also macroeconomic and financial variables as deter-

minants.

The most attractive feature of ANNs is that, by modifying the structure of the network,

any linear and nonlinear function can be approximated. Moreover, in comparison with tra-

ditionally employed nonlinear time series model, such as smooth transition autoregressive

model and threshold autoregressive model, they do not necessitate the knowledge of the

number of regimes to be trained and require a minor computational effort in the estimation

of the parameters.

Out-of-sample comparisons indicated that neural networks provide significant benefits

in predicting relations expected to be nonlinear, such as between realized volatility and its

determinants.

In a comparison of feed-forward and recurrent neural networks with traditional econo-

metric methods, the best performing models appeared to be LSTM and NARX neural net-

works. The results further showed that these long-term dependence detecting models con-

sistently outperformed competing neural networks, like FNN, ENN and JNN. The superior

forecasting ability of LSTM and NARX was also assessed in a period where the stock market

volatility was particularly high, like the recent financial crisis.

Since a researcher is often interested in producing forecasts for a horizon greater than

one, multi-step-ahead recursive forecasts were further compared. Among the main results,

it emerged that long-term memory detecting neural networks have the best performance

when a large sample is analysed, and provide comparable performance with other methods

when a smaller and more volatile sample is evaluated.

Although appealing, there are still some issues concerning neural networks. The num-

ber of parameters to be trained can be extremely high even with a limited number of input

variables. This is a stark contrast to the number of parameters of an ARFIMA. However,

the number of trained weights does not differ excessively from the number of parameters

in a smooth transition autoregressive model with multiple regimes. Furthermore, the net-

work models do not lend themselves to easy interpretation of explanatory variables due to

the structure of the layers. On this purpose, the author acknowledges that this paper was

mainly focused on providing superior forecasting accuracy rather than interpreting causal

relationships.
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In future works, the performance of recurrent neural networks should be tested with

different architectures, for example by modifying the activation function, or enlarging the

number of hidden layers.

Moreover, in this paper I have exclusively focused on univariate time series while, in

practice, multivariate forecasting problems require to forecast a set of possibly dependent

time series. An important future direction is to extend the strategies developed in this

paper to the multivariate setting.
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