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Abstract

Negative interest rates are a new (and controversial) monetary policy tool. This

paper studies a novel signalling channel and asks whether negative rates can be

1) an effective and 2) an optimal policy tool. 1) We build a financial-friction new-

Keynesian model in which monetary policy can set a negative reserve rate, but

deposit rates are constrained by zero. All else equal, a negative rate contracts

bank net worth and increases credit spreads (the costly “interest margin” channel).

However, it also signals lower future deposit rates, even with current deposit rates

constrained, boosting aggregate demand and net worth. Quantitatively, we find

the signalling channel dominates, but the effectiveness of negative rates depends

crucially on three factors: i) degree of policy inertia, ii) level of reserves, iii) zero

lower bound duration. 2) In a simplified model we prove two necessary conditions

for the optimality of negative rates: i) time-consistent policy setting, ii) preference

for policy smoothing.
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1 Introduction

In the aftermath of the Great Recession, negative interest rates have become an additional

policy tool for several central banks around the world while others have kept interest

rates in positive territory, despite need for additional monetary accommodation. In the

euro area, both the European Central Bank’s (ECB) deposit facility rate—the rate the

ECB pays on bank reserves held at the ECB—and the overnight interbank market rate

(EONIA) have been negative since June 2014 (Figure 1(a)). At the time of writing, the

deposit facility rate stands at -0.4%.1 At the same time household deposit rates have

declined but remain positive. Figure 1(b) plots the histogram of household deposit rates

across individual banks in the euro area in June 2014 and December 2017. Across this

period, a growing fraction of deposits has earned a zero interest rate, but virtually no

banks have passed on the negative reserve rate to household depositors. Moreover, banks

earning a negative interest rate on reserves did not prevent the accumulation of excess

reserves, with total reserves rising to over 20% of deposits in 2017 (Figure 1(c)).2

This raises four important questions. One, given that banks do not (or cannot) pass on

negative interests rates to households, what is the transmission channel through which

they operate? Two, given that a large fraction of the banking systems’ assets are reserves

that earn a negative interest rate, what are the consequences for the health of the banking

system and its ability to create credit? Three, when the various effects of negative interest

rates are taken into account, is it an effective policy tool for supporting output and

inflation? Four, under what conditions should negative rates be in the toolkit of an

optimal policymaker? This paper studies a novel signalling channel to address these

questions and asks whether negative rates can be an effective and optimal policy tool.

The first contribution of this paper explores a novel signalling channel through which

negative interest rates on reserves can be expansionary, even when deposit rates have a

zero lower bound (ZLB). We build a new-Keynesian model with financial frictions (in

the spirit of Gertler and Karadi, 2011) in which banks hold reserves at the central bank

and monetary policy can set a negative reserve rate, but—in line with the empirical

evidence—deposit rates are constrained by zero.

1 The ECB is not unique in having adopted a negative interest rate policy. In Switzerland, the SNB
set its target rate for the 3-month LIBOR CHF at -0.75% to 0.25% in December 2014, and lowered it to
-1.25% to -0.25% in January 2015. In Sweden, the Riksbank set its deposit rate to -0.5% in July 2014. In
February 2015, it set its deposit and repo rate to -0.85% and -0.1%, respectively, and in February 2016
both rates reached their lowest point of -1.25% and -0.5%. In Denmark, the Danmarks Nationalbank
set its certificates of deposit rate at -0.05% in September 2014, reaching its lowest point of -0.75% in
February 2015. In Japan, the BOJ set the short-term policy interest rate at -0.1% in January 2016.

2 The overall rise in reserves has been the result of the ECB’s liquidity and asset purchase programmes.
However, deposit creation and lending decisions of the banking system determine the amount of reserves
as a ratio of deposits and the split of reserves between required and excess.
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Figure 1: Interest rates and reserves in the euro area

Note: In (a) NFC and HH denote non-financial corporation and household composites, respectively;
EONIA is the euro area overnight interbank market rate. In (b) deposit rates are on outstanding amounts
as reported by individual banks, plotted as a fraction of total deposits in each bucket. In (c) deposits are
HH and NFC deposits; excess reserves are given by total reserves minus required reserves. Source: ECB.

In the model, when the economy is away from the ZLB, an arbitrage condition ensures

that the interest rate on reserves and the interest rate on deposits move in tandem, and the

behavior of the model is observationally equivalent to a model without reserves. However,

when the central bank introduces a negative reserve rate, the deposit rate (the rate that

enters the households’ Euler equation) is bounded by zero, creating a wedge between the

return on reserve assets and the ultimate funding source of banks—deposits. Thus, all else

equal, a negative reserve rate acts like a contractionary bank net worth shock (henceforth,

the costly “interest margin” channel of negative interest rates), where the size of the shock

is scaled by the amount of reserves in the system. As a result of the financial friction, this

fall in net worth widens credit spreads (raising lending rates vis-a-vis deposit rates) and

depresses investment demand. This direct, or intratemporal, effect of negative interest

rates has been a key criticism of banks to negative rate policies in Europe and elsewhere.3

3 See, for example, Financial Times, August 30, 2017:
“Poll exposes tensions between ECB and Germany’s small banks”.
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This paper shows that, in addition to this channel, there are also substantial positive

general equilibrium consequences of negative interest rates that are less directly ascribable

to the policy. In particular, we emphasize the positive role negative rates can play in terms

of signalling future policy (henceforth, the “signalling” channel of negative interest rates).4

An inertial Taylor-type rule ensures that the cut into negative territory can signal that

deposit rates will remain lower-for-longer even though current deposit rates do not change,

generating an expansionary intertemporal aggregate demand effect.

We show that, for a carefully calibrated quantitative model, the contractionary intratem-

poral effect of negative interest rates via the interest margin channel is more than offset

by the expansionary intertemporal aggregate demand effect via the signalling channel.

Moreover, the intertemporal demand effect raises asset values, banks experience capital

gains, reversing the fall in net worth, compressing credit spreads (i.e. lowering lending

rates) and boosting investment demand. However, the effectiveness of monetary policy

in negative territory relative to standard monetary policy depends crucially on three fac-

tors: i) a higher degree of policy inertia strengthens the expansionary signalling channel,

ii) a greater level of reserves in the banking system magnifies the contractionary inter-

est margin channel, iii) a longer expected zero lower bound duration both depresses the

expansionary signalling channel and magnifies the contractionary interest rate channel.

The second contribution of this paper is to study optimal policy and prove conditions

under which an optimal policymaker would include negative interest rates as part of its

policy toolkit. Using a stylized version of the above model, we prove that an optimal

policymaker uses negative interest rates if and only if the following two conditions si-

multaneously hold: i) it sets time-consistent discretionary policy (i.e. it cannot commit

to future promises), and ii) it has an intrinsic preference for policy smoothing. Under

these conditions, lowering the interest rate on reserves into negative territory can act as

a tangible signal of maintaining lower rates in the future. In contrast, a policymaker that

can fully commit to future promises would not use negative interest rates. It can generate

a credible future path of deposit rates without incurring the costly effect of a negative

reserve rate via the interest margin channel. Equally, a discretionary policymaker with-

out a preference for smoothing has no ability to signal and thus negative interest rates

generate a direct cost to banks without any benefits.5

4 Note that our use of the term “signalling” is different from the literature on imperfect information
and the dispersion of information through central bank decisions such as in, for example, Melosi (2017).
Instead, our usage of the term signalling captures a central bank’s ability to give tangible signals about
future policy, akin to Bhattarai et al. (2015)’s signalling theory of quantitative easing.

5 Our signalling channel is akin to forward guidance, except forward guidance is an “open mouth”
operation while negative interest rates provide tangible guidance about the future precisely because policy
smoothing is a well documented characteristic of monetary policy.
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Literature There is a growing empirical literature assessing the transmission and im-

pact of negative interest rates. Both Jobst and Lin (2016) and Eisenschmidt and Smets

(2018) provide overviews on the use of negative interest rates across countries. For the

euro area, Eisenschmidt and Smets (2018) document the empirical regularity—consistent

with our model—that banks have not lowered household deposits rates below zero. How-

ever, they do observe that there is a higher (yet still small) prevalence of negative rates

charged on firm deposits. They conclude that negative rates have been broadly successful

in easing financial conditions and creating modest credit growth, despite some adverse ef-

fects on bank balance sheets. Altavilla et al. (2018) analyze euro area bank balance sheet

data and estimate the impact of a range of unconventional monetary policy measures,

including negative rates, on bank profitability. In line, with our paper, they identify a

direct interest margin channel but find that negative rates also caused a substantial rise

in banks’ asset and equity value. Demiralp et al. (2019) find evidence for significant bank

portfolio rebalancing in response to negative interest rates. Heider et al. (2019) show that

banks adjust both lending quantity and risk profile in response to negative rates.6

The theoretical literature on negative rates is more limited.7 Eggertsson et al. (2019) is

most closely related to our paper. They build a new-Keynesian model but, in contrast to

this paper, find that negative rates are, at best, ineffective, and at worst contractionary

for output. This results from an intermediation cost term that becomes activated at nega-

tive rates. Compared to this approach, we take three further steps, by microfounding the

financial friction, studying the role of policy inertia, and characterizing optimal policy.

Brunnermeier and Koby (2018) build a partial equilibrium model and show that reduc-

ing the policy rate can be contractionary, even at positive interest rates. They define a

(potentially time-varying) “reversal rate” as a notional rate below which a central bank

should not go. This reversal rate results from banks coming up against a binding leverage

constraint. Rognlie (2016) studies optimal policy in a model without banks where a neg-

ative rate can raise aggregate demand but also inefficiently subsidizes paper currency. In

his model, negative rates have a positive intratemporal aggregate demand effect, whereas

in our model, the intratemporal aggregate demand effect is absent because deposit rates

are constrained by the ZLB. Porcellacchia (2019) also considers optimal policy and focuses

on the same central bank policy instrument we do—interest on reserves—but introduces

a ZLB constraint on the interbank market rate. He highlights a maturity-transformation

channel of negative rates: Negative rates boost aggregate demand but hurt bank inter-

mediation and thereby liquidity-risk insurance.

6 In addition, Wu and Xia (2018) and Lemke and Vladu (2017) build term structure models to account
for the effect of negative rates on the yield curve.

7 It has been brought to our attention that our signalling channel connects to the finance literature
on the theory of costly signalling. In Bhattacharya (1979), for example, firms pay out dividends, despite
it being costly, to signal to investors strong future cash flows.
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Our paper also connects with two other literatures, one on signalling and another on policy

smoothing. In terms of signalling, our paper is close in spirit to Bhattarai et al. (2015),

who present a signalling theory of quantitative easing. In their model, quantitative easing

is effective because the government commits to honour outstanding debt obligations,

enabling the discretionary policymaker to generate a credible signal of low future interest

rates. Technically, the discretionary policymaker needs a state variable to signal; in our

model, the state variable is the lagged reserve rate, in their model it is the debt stock. In

terms of policy smoothing, our paper is closely related to Nakata and Schmidt (2019), who

show that delegating policy to a policymaker with a preference for smoothing increases

welfare in an economy subject to occasional ZLB episodes. Our results take this one step

further. We show that delegating to a policymaker with a smoothing preference opens up

the possibility of an additional (welfare improving) policy instrument—negative rates.

The remainder of the paper proceeds as follows: Section 2 describes the main model and

our baseline parameterization. Section 3 presents results on the effectiveness of negative

interest rates. Section 4 describes a simplified model and establishes conditions under

which a negative interest rate policy is optimal. Section 5 concludes.

2 The model

The basis of this model is a financial-friction new-Keynesian model of the type developed

by Gertler and Karadi (2011). To this we add reserves, a liability of the central bank and

an asset on financial intermediaries’ (henceforth, banks’) balance sheets. We assume that

banks demand to hold a fraction of their deposits as reserves. The interest paid on reserves

by the central bank is the instrument of monetary policy. Household (nominal) deposit

rates feature a ZLB. Away from the ZLB, arbitrage ensures the interest rate on reserves

and the interest rate on household deposits is equalized. In this case, equilibrium outcomes

are independent of reserves and the model behaves like a standard new-Keynesian model.

However, the central bank—described by an inertial policy rule—can also set a negative

(nominal) interest rate on reserves, creating a wedge in the aforementioned arbitrage

condition. The financial friction constrains banks’ ability to intermediate funds between

households and firms, with the credit spread (between the return on deposits and the

expected return on capital) largely determined by banks’ net worth. Typically, a financial

friction amplifies the effect of monetary policy. In this environment, it is not clear, ex

ante, whether it will amplify or depress the effectiveness of a negative interest rate policy.

The remainder of the section describes the decision problem of households, three types of

non-financial producers, financial intermediaries, and the central bank in the model.
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2.1 Households

A representative household is composed of a fraction f workers and 1− f bankers, with

perfect consumption insurance. Workers and bankers switch with probability 1 − θ and

when they do, bankers transfer retained profits back to the household. The household

likes (habit-adjusted) consumption, c̃t ≡ ct − ~ct−1, dislikes labor, lt, and discounts the

future with βt, which is exogenous and stochastic. Savings are either kept in cash, vt,

that pays a zero nominal return, or in deposits, dt. Deposits are held at banks and earn

the nominal return rd,t. The household makes contingent plans for consumption, labor

supply and savings to maximize lifetime utility. The household solves

νh,t = max
{ct,dt,vt,lt}

(
c̃ 1−σ
t

1− σ
−

χ

1 + ϕ
lt
1+ϕ

)

+ βtEtνh,t+1, (1)

subject to

ptct = ptwtlt + rd,t−1dt−1 − dt + vt−1 − vt + Ωt, (2)

where pt is the price of consumption, wt is the real wage, and Ωt is the sum of firm and

bank profits and lump-sum transfers. The household’s first-order conditions are given by

1 = Etmt,t+1rd,t/πt+1, (3)

µtwt = χlt
ϕ, (4)

wheremt,t+1 ≡ βtµt+1/µt is the household’s stochastic discount factor, the marginal utility

of consumption is given by µt ≡ c̃−σ
t − βt~Etc̃

−σ
t+1, and πt ≡ pt/pt−1 is the gross inflation

rate. Since the household will not hold deposits with a nominal return less than zero, the

following inequality must also apply: rd,t ≥ 1.

2.2 Financial intermediaries

A banker i uses net worth, ni,t, and household deposits, di,t, to buy si,t units of firm

equity at price qt, and ai,t units of central bank reserves. Firm equity pays a stochastic

real return, rk,t+1, next period while central bank reserves pay a predetermined nominal

interest rate, rt. Within a period, the timing is as follows: One, bankers collect asset

returns and pay creditors. Two, bankers exit with probability 1 − θ. An exiting banker

is replaced by a worker with an initial endowment of net worth equal to a fraction ω

of total firm equity in the previous period. Three, bankers issue new deposits and buy

new assets. We assume that bankers hold at least a fraction α of deposits as central
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bank reserves. This is a reduced form mechanism for capturing banks’ preference for

self-insuring against idiosyncratic liquidity risk.8 Four, at this stage a banker can divert

a fraction λ of its private sector assets. In this case, the banker’s creditors can force

bankruptcy and recover the remaining fraction of assets. This assumption introduces an

agency problem that creates a financial friction and makes bankers’ net worth a crucial

determinant of equilibrium outcomes in the model.9 Bankers solve

νf,t = max
{si,t,ai,t,di,t,ni,t}

Etmt,t+1 ((1− θ)ni,t+1 + θνf,t+1) , (5)

subject to

qtsi,t + ai,t = di,t + ni,t, (6)

νf,t ≥ λqtsi,t, (7)

ai,t ≥ αdi,t, (8)

ni,t+1 = rk,t+1qtsi,t +
rt
πt+1

ai,t −
rd,t
πt+1

di,t, (9)

where the constraints are the balance sheet constraint, incentive compatibility constraint,

reserve constraint and net worth accumulation equation, respectively. We calibrate the

model such that the incentive constraint is always binding.

The central bank supplies reserves elastically and sets the interest rate on reserves. Since

banks are competitive, arbitrage ensures that ai,t = αdi,t and rt = rd,t as long as rd,t ≥ 0.

In equilibrium, st = kt, where kt is the aggregate capital stock in the economy, and

bankers will have a common leverage ratio, denoted φt ≡ qtkt/nt = qtki,t/ni,t. As outlined

in Appendix A.1, it is possible to express the financial intermediaries’ problem in just

two equations, with the binding incentive compatibility constraint and the evolution of

aggregate net worth given by

λφt = Etmt,t+1 ((1− θ) + θλφt+1)

(

rk,t+1φt −
rd,t − αrt

(1− α) πt+1

(φt − 1)

)

, (10)

nt = θ

(

rk,tφt−1 −
rd,t−1 − αrt−1

(1− α) πt
(φt−1 − 1)

)

nt−1 + ωqtkt−1. (11)

When rt = rd,t, reserves are neutral and have no effect on equilibrium outcomes since α

drops out of both equations. However, when rt < 0, banks cannot pass this on in terms

of lower deposit rates and the presence of reserves has real consequences.

8 For a more rigorously microfounded model of idiosyncratic liquidity risk, see Güntner (2015) or
Bianchi and Bigio (2018).

9 We assume this agency problem does not apply to central bank reserves.
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2.3 Producers

2.3.1 Capital goods firms

A representative capital goods firm repairs depreciated capital and produces new capital.

Existing capital depreciates at rate δ and is refurbished at unit cost. New capital goods,

kn,t, are produced using technology kn,t = f (in,t, in,t−1), where in,t is investment in new

capital formation. The capital goods firm solves

νc,t = max
in,t

(qtkn,t − in,t) + Etmt,t+1νc,t+1. (12)

The first-order condition is given by 1 = qtf1,t + Etmt,t+1qt+1f2,t+1, where fj,t is the

derivative of f (·) with respect to argument j. With quadratic flow adjustment cost,

f (·) ≡
(
1− (ηi/2) ((in,t + iss) / (in,t−1 + iss)− 1)2

)
in,t, where iss = δkss is steady state

investment pertaining to gross investment it = f (in,t, in,t−1) + δkt−1.

The exact functional form of the optimal investment decision is given in Appendix A.2.

Capital accumulation follows kt = kt−1 + f (in,t, in,t−1).

2.3.2 Intermediate goods firms

A representative intermediate goods firm produces goods, yt, using technology kγt−1l
1−γ
t .

Labor is rented in a competitive market, and the demand for labor is given by wt =

pm,t (1− γ) yt/lt, where pm,t is the real intermediate output price. Profits per unit of

capital are given by pm,tγyt/kt−1. Firms need external finance to purchase capital goods.

At the beginning of the period, they issue st units of equity to bankers at price qt. In

return, the banker receives the realized return on a unit of capital next period, given by

rk,t =
pm,tγyt/kt−1 + qt − δ

qt−1

. (13)

2.3.3 Retail firms

Retail firms repackage intermediate output one-for-one. Final output, yt, is a CES ag-

gregate of differentiated retail firms’ output given by yt =
(∫ 1

0
y
(ǫ−1)/ǫ
i,t di

)ǫ/(ǫ−1)

, where

yi,t is output by retailer i and ǫ is the elasticity of substitution between goods. Cost

minimization ensures that yi,t = (pi,t/pt)
−ǫ yt and pt =

(∫ 1

0
p1−ǫ
i,t di

)1/(1−ǫ)

. Retail firms

face nominal price rigidities of the type presented in Calvo (1983). Each period, a firm is

able to adjust its price with probability 1− ι. If no adjustment is possible, the price can
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be indexed to the lagged rate of inflation. The retail firm objective is given by

max
pi,t

Et

∞∑

τ=0

ιτmt,t+τ

(

pi,t
pt+τ

τ∏

k=1

π
γp
t+k−1 − pm,t+τ

)

yi,t+τ , (14)

where γp is the degree of price indexation and pm,t constitutes retail firms’ marginal cost.

The first-order condition is given by

Et

∞∑

τ=0

ιτmt,t+τ

(

p∗,t
pt+τ

τ∏

k=1

π
γp
t+k−1 −

ǫ

ǫ− 1
pm,t+τ

)

yi,t+τ = 0, (15)

where p∗,t is the optimal reset price. The aggregate price index can be written as

pt =
(
(1− ι) p1−ǫ

∗,t + ιp1−ǫ
t−1

)1/(1−ǫ)
. (16)

2.4 Monetary policy

The central bank’s policy instrument is the nominal interest rate on reserves, which when

unconstrained follows a Taylor-type inertial policy rule given by

rT,t =

(

rss

(
πt
πss

)φπ
(
xt
xss

)φx

)1−ρ

rρt−1 exp (εm,t) , (17)

where rT,t is the rate implied by the policy rule, xt is marginal cost and proxies the output

gap, and εm,t is a monetary policy shock. We assume zero steady-state inflation, πss = 1.10

ρ describes the degree of inertia in the policy rule. Notice that the inertial term is the

lagged interest rate on reserves. Thus, the policy rule implied rate exhibits no inertia

when the rate on reserves is bounded at zero.11 We compare three scenarios:

I. The unconstrained scenario (UNC) in which

rt = rd,t = rT,t. (18)

In this scenario, both the nominal reserve and deposit rate are unconstrained by the ZLB

and can turn negative.

10 Coibion et al. (2012) derive a utility-based welfare function allowing for positive steady-state inflation
and find that given infrequent but costly ZLB periods, the optimal inflation rate is positive but small.

11 Other studies have considered policy rules in which the inertial term is on the Taylor-rule implied
rate, rT,t, rather than the actual policy rate, rt. To the extent this rule is credible (rT,t is a latent variable),
such a policy rule also increases the effectiveness of monetary policy in a standard ZLB scenario. Thus,
this latter formulation is more akin to explicit forward guidance, whereas in our specification inertia is a
structural feature of monetary policy that is orthogonal to whether the economy is at the ZLB or not.
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II. The deposit rate-only ZLB scenario (ZLB: rd only) in which

rt = rT,t and rd,t = max {1, rT,t} . (19)

In this scenario—our baseline to study the effects of negative interest rates—the deposit

rate is bounded by zero, but the interest rate paid on reserves can fall below zero. While

the central bank can decrease the policy rate into negative territory, there is no contem-

poraneous effect on nominal deposit rates as these are bounded below.

III. The standard ZLB scenario (ZLB: rd & r) in which

rt = rd,t = max {1, rT,t} . (20)

In this scenario, neither the nominal reserve nor the deposit rate can turn negative. At

the ZLB the central bank has no ability to influence nominal interest rates.

The model is closed with the aggregate resource constraint, given by yt = ct+it+gt, where

gt is exogenous government spending. This completes the description of the model. The

full list of equilibrium conditions and further definitions can be found in Appendix A.2.

2.5 Parameterization

Most features of our parameterization are conventional in that we take standard values

from the literature, in particular Primiceri et al. (2006) and Gertler and Karadi (2011).

Table 1 documents the baseline parameterization.

Time is quarterly and the subjective discount factor, β, is 0.99. For households, we

assume log utility with a consumption habit parameter, ~, of 0.815 and a Frisch labor

supply elasticity of 3.6. The utility weight on labor, χ, is set such that steady state labor

supply is normalized to 1. The two financial sector parameters, λ and ω, are calibrated to

match a steady state leverage ratio of 4 and a steady state credit spread, Etrk,t+1 − rd,t,

equal to 100 basis points on an annual basis. The survival probability of bankers, θ, is

set to give an average tenure of 10 years.

On the production side, the capital share of intermediate goods firms, γ, is set to 0.33

and capital depreciates at a fixed rate of 10% per year. Retail firms face an elasticity

of substitution between differentiated goods, ω, equal to 4.167 and on average get to

adjust prices every 10 quarters.12 When firms cannot adjust prices they are partially

12 Note that using a Kimball aggregator as in Smets and Wouters (2007) would have been an alternative
to assuming a relatively high degree of price stickiness.
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indexed, with ιp set at 0.241. Capital goods firms produce new capital subject to quadratic

investment adjustment cost characterized by an inverse elasticity of net investment to the

price of capital, η, of 1.728. In terms of policy, we fix the government expenditure share,

gt/yt, to 0.2 to match consumption and investment expenditure shares in the data. The

Taylor-type monetary policy rule has standard coefficients for the response to inflation

(φπ = 1.5) and to marginal cost (φx = 0.125).

Table 1: Parameters

Households
σ Risk aversion 1.000 β Discount factor 0.990
~ Habit parameter 0.815 χ Utility weight on labor 3.410
ϕ Inverse Frisch elasticity 0.276

Financial intermediaries
λ Fraction of divertible assets 0.381 ω Transfer to new bankers 0.002
θ Survival probability of bankers 0.972 α Reserve-to-deposit ratio 0.200

Producers
γ Capital share 0.330 δ Depreciation rate 0.025
ω Elasticity of substitution 4.167 ι Probability of fixed prices 0.900
ιp Price indexation 0.241 η Inverse investment elasticity 1.728

Monetary Policy
φπ Policy rule inflation response 1.500 φx Policy rule output response 0.125
ρ Policy rule inertia 0.800

The two remaining structural parameters that deserve particular attention are the policy

rule inertial term, ρ, and financial intermediaries’ reserve-to-deposit ratio, α. First, the

strength of the signalling channel of negative interest rates will depend sensitively on the

degree of monetary policy inertia. In the baseline we set the inertia parameter to ρ = 0.8.

To justify this choice, Figure 2(a) shows estimates of policy inertia for the US, the euro

area, and four other countries. Two key messages emerge. First, there is robust evidence

for a large inertial component of monetary policy, irrespective of estimation technique or

country considered. Second, the range of estimates is from 0.8 (Primiceri et al., 2006, for

the US) to 0.96 (Smets and Wouters, 2003, for the euro area). Hence, our baseline value

of 0.8 represents a conservative parameterization in terms quantifying the strength of the

signalling channel of negative interest rates.13

13 Rudebusch (2002, 2006) argued that observed policy inertia may, in fact, reflect persistent shocks
rather than interest rate smoothing. However, recent work by Coibion and Gorodnichenko (2012) finds
strong evidence in favour of the interest rate smoothing explanation.
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Figure 2: Monetary policy inertia in the literature and in practice

(a) Estimates of policy rule inertia

United States Euro area
Primiceri et al. (2006) 0.80 Smets and Wouters (2003) 0.96
Smets and Wouters (2007) 0.81 Christiano et al. (2010) 0.84
Coibion and Gorodnichenko (2012) 0.83 Darracq Pariès et al. (2011) 0.84
Brayton et al. (2014) 0.85 Coenen et al. (2018) 0.93
Christiano et al. (2014) 0.85 Japan
United Kingdom Sugo and Ueda (2007) 0.84
Burgess et al. (2013) 0.83 Sweden
Switzerland Adolfson et al. (2008) 0.88
Rudolf and Zurlinden (2014) 0.90 Christiano et al. (2011) 0.82

Note: Estimates of ρ for a selection of papers and central bank policy models. Brayton et al. (2014) is
the Federal Reserve’s FRB/US model, Burgess et al. (2013) is the Bank of England’s COMPASS model,
and Coenen et al. (2018) is the ECB’s New Area Wide Model II.

(b) Riksbank repo rate forecasts during negative interest rates

Note: The blue-dot and green-dash lines show the Riksbank’s own repo rate forecasts around monetary
policy meetings in which they lowered the repo rate, based on quarterly averages. The actual repo rate
(black-solid line) is based on daily data. Source: Riksbank monetary policy reports.

One concern might be that the estimates in Figure 2(a) are limited to periods in which

policy rates were in positive territory. Figure 2(b) provides suggestive evidence from

Sweden that monetary policy inertia extends to negative rate episodes as well. Between

February 2015 and February 2016, the Swedish Riksbank lowered the repo rate, its key

policy rate, in four steps from 0% to -0.5%. Repo rate forecasts published by the Riksbank

around the respective monetary policy decisions show that every negative rate decision

also came with a substantial downward revision of the forecasted path of the future policy

rate, consistent with inertial policy-setting behaviour.
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Second, the strength of the costly interest margin channel of negative interest rates will

depend sensitively on the quantity of central bank reserves in the banking system. In the

baseline we set the reserve-to-deposit ratio to α = 0.2. This value is broadly in line with

data for both the euro area and the US at the end of 2017. Figure 3 shows the evolution

of the euro area and US reserve-to-deposit ratio, respectively. In the aftermath of the

financial crisis, total reserve holdings have strongly increased, reflecting banks’ desire to

hedge against heightened liquidity risk and central banks’ willingness to supply additional

reserves to the banking system via a range of liquidity and quantitative easing programs.

In the euro area, the reserve-to-deposit ratio has risen from a pre-crisis level of around

3% to a peak of 21.4% in November 2017. In the US, the reserve-to-deposit ratio rose

from a pre-crisis level of around 1% to a peak of 27.9% in August 2014, before declining

to 19.8% in November 2017. In Section 3.2 we show results for a sensitivity analysis in

which we vary the policy rule inertia, ρ, and the reserve-to-deposit ratio, α, to study the

quantitative importance of both parameters.

Figure 3: Evolution of reserves

Note: (a) Total reserves of depository institutions over total deposits of households and non-financial cor-

porations; (b) Total reserves of depository institutions over total deposits of commercial banks. Sources:

ECB, Federal Reserve Bank of St Louis.

Finally, the model is solved using the OccBin toolbox of Guerrieri and Iacoviello (2015).

This is a first-order perturbation method that uses a piecewise approach to account for

the occasionally binding ZLB constraint.
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3 Results

In this section we present results on the effectiveness of negative interest rates and conduct

a sensitivity analysis with respect to the degree of policy inertia (ρ), banks’ reserve-to-

deposit ratio (α), and the ZLB duration. In addition, we provide a novel decomposition

of bank net worth to further illuminate the transmission of negative interest rates.

3.1 Baseline results

In our baseline experiment we consider a shock to the household discount factor that

drives the economy immediately to the ZLB and makes it remain there for 4 quarters

when neither the nominal reserve rate nor deposit rates can turn negative (scenario III).14

Figure 4 shows impulse responses for our three monetary policy scenarios. In response to

the discount factor shock, households become more patient and reduce their consumption.

In addition, bank net worth falls, raising credit spreads and lowering investment demand.

Thus, the discount factor shock acts as an aggregate demand shock, depressing both

output and inflation.

Figure 4: Discount factor shock with inertia in the policy rule

Note: α = 0.2, ρ = 0.8. Impulse responses to a discount factor shock that brings the economy to the ZLB

for 4 quarters. All interest rates displayed are in annualized percent. All other variables are in percent

deviation from steady state. Inflation is annualized

14 To generate this scenario, we use a 12.5% rise in the discount factor with an autoregressive parameter
of 0.66. In using a single large shock, we are trading off realism for expositional clarity.
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The fall in output (and inflation) in the deposit rate-only ZLB scenario (II, red-dash) as

compared to the standard ZLB scenario (III, black-solid) indicates that a negative interest

rate policy—at least under our baseline calibration—is expansionary. The unconstrained

scenario (I, blue-dot) results in the smallest fall in output. This is when both the deposit

and reserve rate mirror the Taylor-type rule implied rate and turn negative in order to

partly offset the contraction in output and inflation. When policy is constrained by the

ZLB and unable to fully react to the drop in aggregate demand, the fall in output is largest.

However, when the central bank can decrease the policy rate into negative territory—

despite the deposit rate being bounded by zero—it is able to extend the ZLB duration

by 1 quarter and lower the future path of the deposit rate, thus providing additional

stimulus. In our baseline experiment, a negative interest rate policy is expansionary even

when the relevant rate for agents’ intertemporal substitution decision is constrained.

Figure 5: Monetary policy shock with inertia in the policy rule

Note: α = 0.2, ρ = 0.8. Impulse responses to a -25 basis point iid monetary policy shock at the ZLB.

All interest rates displayed are in annualized basis points. All other variables are in basis point deviation

from steady state. Inflation is annualized.

To isolate the quantitative implications of negative interest rates, we introduce a -25 basis

point iid monetary policy shock to the economy in period 1 when the economy is at the

ZLB. Figure 5 shows the impulse responses to the pure monetary policy shock by stripping

out the effect of the underlying discount factor shock. When both the deposit rate and

reserve rate are constrained and cannot turn negative, a shock to the Taylor-type rule

implied rate has no effect on equilibrium outcomes (III, black-solid). However, allowing

for a negative reserve rate (II, red-dash) the monetary policy shock is expansionary and
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the peak output effect is 45% of an unconstrained monetary policy shock (I, blue-dot).

In terms of inflation, negative interest rates are even more effective, with a peak inflation

response of 60% of the unconstrained response. Again, the path of the deposit rate is

key to understanding these outcomes. Despite the fact the monetary policy shock occurs

in period 1, the deposit rate remains unchanged until period 6 when it drops by 5 basis

points and remains persistently below the baseline thereafter.

Figure 6: Monetary policy shock without inertia in the policy rule

Note: α = 0.2, ρ = 0. Impulse responses to a -25 basis point iid monetary policy shock at the ZLB.

All interest rates displayed are in annualized basis points. All other variables are in basis point deviation

from steady state. Inflation is annualized.

To explicitly identify the role of the signalling and interest margin channels to which

we have eluded frequently, we remove policy inertia and re-run the previous experiment.

Figure 6 shows impulse responses to the monetary policy shock at the ZLB with ρ = 0.

The most striking difference (relative to Figure 5) is that under the deposit rate-only ZLB

scenario (II, red-dash), negative rates are now contractionary rather than expansionary.

The monetary policy easing into negative territory results in a fall in output and inflation.

There are two reasons for this. First, by setting ρ = 0 we have switched off the signalling

channel. The fall in the reserve rate has no effect on the path of the deposit rate. Second,

the costly interest margin channel results in bank net worth falling. This tightens banks’

incentive constraint and causes credit spreads to rise. With the deposit rate constrained,

a rise in credit spreads implies a higher lending rate for firms which depresses investment

demand. The negative interest rate policy becomes contractionary when the deposit rate

is at the ZLB and the drop in the reserve rate is not transmitted via the signalling channel.
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Figure 7: Contribution of signalling and interest margin channels

Note: Impulse responses to a -25 basis point iid monetary policy shock at the ZLB. Inflation is annualized.

“Signalling” and “Interest margin” plot α = 0 and ρ = 0, respectively.

Figure 7 puts these results together and decomposes the output and inflation response to

negative interest rates into the signalling channel and costly interest margin channel. The

baseline response (black-solid) is equivalent to the deposit rate-only ZLB scenario (II) in

Figure 5. Setting α = 0 and ρ = 0, respectively, we document impulse responses for a

pure signalling (blue-dot) and a pure interest margin channel (red-dash). In the baseline,

the peak output response is 8 basis points. The signalling channel thus accounts for 10

basis points while the costly interest margin channel accounts for -2 basis points.

3.2 Sensitivity analysis

The previous subsection highlighted that negative interest rates can be both expansionary

and contractionary when deposit rates are constrained. In this subsection, we investigate

the factors that determine the effectiveness of negative interest rates more thoroughly.

In Figure 8(a) we plot the absolute peak response of output to the 25 basis point iid

monetary policy shock at the ZLB for different combinations of policy inertia and sizes of

the initial discount factor shock.15 The x-axis scales with the size of the initial shock and

plots the number of quarters the ZLB is binding. The y-axis reports the effectiveness of

monetary policy as a percentage of the effect of an unconstrained monetary policy shock.

15 To be precise, for an impulse response vector denoted by y, where yt is the value of output in period t
after the shock, we find t∗ that is the maximum of |y|. We then plot yt∗ as a percentage of yUNC

t∗ .
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This normalization is important because it strips out the effect of any potential forward

guidance puzzle in the model.16 Comparing Figures 5 and 6 illustrates the need for this.

The effect of monetary policy on output in the unconstrained scenario (I), abstracting

from ZLB considerations, is heavily dependent on the degree of policy inertia: Changing

ρ = 0.8 to ρ = 0, the peak output response decreases from 18 to 3 basis points, respectively.

To strip out this effect driven by a potential forward guidance puzzle, for the purpose of

this sensitivity exercise we do not report the absolute effectiveness of negative interest

rates but rather its effectiveness relative to an unconstrained monetary policy shock with

the same value of ρ. This normalization is also used in Figure 8(b) where we shift the

focus to the reserve-to-deposit ratio. In both cases, when the ZLB binds for zero quarters

(the model is unconstrained) the value reported is always 100%.

Figure 8: Policy inertia, reserve-to-deposit ratio, and the ZLB

Note: The x-axis scales with the size of the initial discount factor (negative aggregate demand) shock.

The y-axis reports the absolute peak response of output to a -25 basis point iid monetary policy shock

in period 1 relative the outcome of the unconstrained scenario.

Figure 8(a) offers two important insights. One, negative interest rates are less effective

if the ZLB is expected to bind for longer. This is because, if the deposit rate is likely to

be constrained at zero for a long period of time, then the effect of lowering the reserve

rate by 25 basis points today will have very little effect on the path of the deposit rate.

By increasing the severity of the initial discount factor shock (with the ZLB binding for 6

rather than 4 quarters), the effectiveness of negative interest rates drop from 45% to 30%

of an unconstrained monetary policy easing. Two, a central bank with a lower degree

of inertia will find negative interest rates to be less effective. In our model, negative

16 For a discussion of the forward guidance puzzle, see Del Negro et al. (2012).
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interest rates are only expansionary as a result of signalling a lower expected path of

future deposit rates. In fact, once we reduce the degree of inertia to ρ = 0.4, negative

interest rates are only effective in a 1-period ZLB scenario. If instead the ZLB is expected

to last for 2 periods, then negative interest rates become contractionary. Without inertia

(ρ = 0), negative interest rates are contractionary even for a 1-period ZLB scenario.

Figure 8(b) conducts a similar sensitivity analysis for the size of the reserve-to-deposit

ratio. When banks want to hold a higher reserve-to-deposit ratio, this diminishes the

positive impact of a negative interest rate policy as the costly interest margin channel is

amplified. With inertia in the policy rule held constant at ρ = 0.8, doubling the amount

of reserves banks want to hold to an extreme value of α = 0.4 results in a contractionary

effect of negative interest rates if the ZLB is expected to bind for more than 5 quarters.

In this case, the interest margin channel dominates the signalling channel.

The conclusion of this sensitivity analysis is that our baseline finding that negative interest

rates are effective is a pretty robust result. Even with ρ = 0.8 (the lowest degree of policy

inertia in Figure 2), α = 0.27 (the largest reserve-to-deposit ratio in Figure 3), and a

severe economic downturn with an expected ZLB duration of 6 quarters, negative interest

rates are expansionary in our model.

3.3 Decomposition of bank profits

As we have seen by comparing Figure 5 and Figure 6 regarding the effectiveness of neg-

ative interest rates with and without policy inertia, the response of bank net worth is

a key determinant in the transmission of negative interest rates. In this subsection, we

investigate this further by examining a novel decomposition of bank net worth.

We begin by defining bank profits, proft (the gross growth rate of an individual banker’s

nominal net worth, conditional on not exiting)—building on Section 2.2—as follows:

proft = (πtrk,t − rd,t−1)φt−1 + rd,t−1 −
α

1− α
(rd,t−1 − rt−1) (φt−1 − 1) . (21)

Next, we log-linearize profits and decompose them into 7 distinct terms given by

ˆproft =
rkφ

prof
(π̂t − Et−1π̂t)

︸ ︷︷ ︸

Surprise: Inflation

+
mpkφ

prof

(
ˆmpkt − Et−1 ˆmpkt

)

︸ ︷︷ ︸

Surprise: Dividend

+
mpkφ

prof
(q̂t − Et−1q̂t)

︸ ︷︷ ︸

Surprise: Capital gain

+
rkφ

prof
ĉst−1

︸ ︷︷ ︸

Credit spread

+
csφ

prof
φ̂t−1

︸ ︷︷ ︸

Leverage

+
csφ

prof
r̂d,t−1

︸ ︷︷ ︸

Deposit rate

−
α

1− α

rd (φ− 1)

prof
(r̂d,t−1 − r̂t−1)

︸ ︷︷ ︸

Interest margin channel

, (22)
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where hats denote log-deviations from steady state, variables without subscripts denote

steady states, cst ≡ πtrk,t− rd,t−1 is the nominal credit spread, and mpkt ≡ pm,tγyt/kt−1 is

the marginal product of capital. As equation (22) shows, bank profits can be decomposed

into three windfall (or “surprise”) components and four predetermined components. In

general, the return on an asset can be split into a dividend payment and a capital gain,

so that, for banks’ assets, we term the surprise change in the marginal product of capital

as the “dividend” and the surprise change in the price of the asset as the “capital gain”.

The third surprise component is inflation since we report nominal profits. The four

predetermined terms are the evolution of (1) the credit spread, (2) leverage, (3) the risk-

free rate, and (4) the partial equilibrium effect of negative rates on interest margins (i.e.

the costly interest marginal channel of a negative interest rate policy).

Figure 9: Decomposition of bank profits

Note: The red-dot line plot the impulse response of bank profits to a -25 basis point iid monetary policy

shock at the ZLB. Stacked bars decompose the impulse response for every period.

Figure 9 plots the decomposition of bank profits in response to a -25 basis point iid mon-

etary policy shock at the ZLB with and without policy inertia. In Panel (a), with the

signalling channel of negative interest rates switched on, in period 1 we observe a sharp

increase in bank profits driven by the three surprise terms from the decomposition. The

largest effect on bank profits comes from the capital gain term—that is, a revaluation of

the banks’ assets in response to the monetary policy shock. With the signalling channel

of negative rates in play, a drop of the reserve rate into negative territory depresses the

future expected path of deposit rates. Households adjust their intertemporal consumption

decision and bring forward consumption demand, aggregate production and the price of

capital increase instantaneously, driving up bank profits. From period 2 on, tighter credit
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spreads (the revaluation of bank assets raises net worth, slackens the banks’ incentive com-

patibility constraint, contracting credit spreads) and the costly interest margin channel

reduce bank profits, slowly bringing bank net worth back to steady state. This decom-

position of how negative interest rates affect different parts of banks’ balance sheets is

consistent with empirical evidence in, for example, Altavilla et al. (2018).

In Panel (b), with the signalling channel of negative interest rates switched off, bank

profits fall in reaction to the negative interest rate policy. Without policy inertia, negative

interest rates do not come with an expansionary aggregate demand effect but reduce

bank net worth via the costly interest margin channel. Lower bank net worth implies

rising credit spreads that affect the decomposition of bank profits in two ways: One, on

impact in period 1, higher expected credit spreads depress the investment demand of

firms and induce capital losses. Two, from period 2 on, higher realized credit spreads

generate additional profits slowly bringing bank net worth back to steady state. Note

that compared to Panel (a), most of the partial equilibrium terms have switched sign.

The only term which has a consistently negative sign is the interest margin channel. This

term reduces bank profits irrespective of the value of ρ.

4 Optimal negative interest rate policy

Having established the effectiveness of a negative interest rate policy, this section proceeds

to study the conditions under which negative interest rates are an instrument in an optimal

policymaker’s toolkit. We conduct the analysis in a stylized new-Keynesian model which

captures the defining features of our main model in the previous section.

In particular, we make use of the canonical 2-equation new Keynesian model augmented

with one additional term. The Phillips Curve and IS curve relations are given as follows:

πt = βEtπt+1 + κỹt, (23)

ỹt = Etỹt+1 − σ−1 (rd,t − Etπt+1 − gt)− φ (rd,t − rt) , (24)

where variables are given in log-levels, ỹt is the output gap, and φ (rd,t − rt) captures, in

reduced form, the effect of the costly interest margin channel on aggregate demand. The

only source of uncertainty is the natural real rate process, gt, which has a steady state

g = log (β). In addition, the policymaker faces three constraints given by

rd,t ≥ 0, rd,t − rt ≥ 0, rd,t (rd,t − rt) = 0. (25)
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The first constraint in (25) is the ZLB on the deposit rate. The second constraint states

that the deposit rate faced by households cannot be below the central bank’s reserve

rate, and the third constraint ensures that the reserve and deposit rate can only diverge

when the deposit rate is at zero. Thus, in this formulation, the policymaker controls the

interest rate on reserves, rt, which, unlike the interest rate on deposits, can turn negative.

In normal times, an arbitrage condition equates the two rates. However, if the reserve rate

turns negative, banks experience a fall in their interest margin, captured by φ (rd,t − rt).
17

Social welfare is derived from a second-order approximation of the representative house-

hold’s expected lifetime utility and is given by

V SW
t = −

1

2

(
π2
t + λỹ2t

)
+ βEtV

SW
t+1 . (26)

We choose to use this stylized model for two reasons. One, we solve for discretionary

optimal policy and this involves derivatives of policy functions. The solution technique

adopted in the previous section, however, solves for perfect foresight paths rather than

policy functions. As a result, it is not feasible for this problem. We instead need to

use a global solution method. This, however, constrains the size of the model in terms

of state variables. One natural simplification of our main model would be to remove

endogenous capital formation. This is done by, for example, de Fiore and Tristani (2013)

and de Paoli and Paustian (2017), who study the optimal policy implications of financial

frictions. However, removing endogenous capital formation fundamentally changes the

nature of financial frictions. In our main model, a widening credit spread acts like an

aggregate demand shifter, lowering both output and inflation. This is the motivation

for the additional term φ (rd,t − rt) we introduce in equation (24). In a model without

endogenous capital formation, a widening of the credit spread acts like a cost-push shock,

lowering output but raising inflation through a rise in marginal cost. Thus, simplifying

the model in this way would fundamentally alter the behaviour of our model.

Two, optimal policy in large-scale models can often be problematic. Since the model

contains many wedges the policymaker wants to minimize, optimal policy can result in a

very erratic interest rate path. As a result, central bank practitioners often introduce an

ad hoc smoothing term into the loss function to remove frequent policy reversals. However,

the effect of delegation of policy to a policymaker with a preference for smoothing is a key

feature we study. In addition, optimal policy in the canonical new-Keynesian model, with

and without the ZLB, is already well understood in the literature. Its simplicity allows

for analytical results and is a useful framework for our analysis of negative interest rates.

17 The assumption that the reduced form term that captures the costly interest margin channel is
linear is in line with the dynamics observed in the fully micro-founded model from the previous section.
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4.1 Analytical results

We begin by considering the commitment solution of the optimal policymaker and derive

the following proposition:

Proposition 1 Under commitment—when the policymaker solves for a state-contingent

plan {πt, ỹt, rt, rd,t}
∞
t=0 maximizing (26) subject to the sequence of constraints (23) - (25)—

it holds that rt ≥ 0.

Proposition 1 states that with full commitment, a policymaker would never use negative

interest rates. A proof of Proposition 1 is given in Appendix B.1. The intuition, however,

is relatively simple. Under commitment, the central bank can credibly promise to hold the

deposit rate lower-for-longer in the future in order to compensate, in part, for the presence

of the ZLB. Thus, setting a negative reserve rate results in a cost via the interest margin

channel without any additional benefit. Next, we consider the optimal discretionary

solution of the central bank and derive the following proposition:

Proposition 2 Under discretion—when the policymaker solves for {πt, ỹt, rt, rd,t} to re-

optimize (26) every period subject to (23) - (25) and the actions of future policymakers—

it holds that rt ≥ 0.

Proposition 2 states that negative interest rates are also not part of the optimal time-

consistent policymaker’s toolkit. A proof of Proposition 2 is given in Appendix B.2. Under

discretion, the policymaker cannot commit to future actions and so a negative interest

rate has no ability to signal. Thus, setting a negative reserve rate results in a cost via

the interest margin channel without any benefits. There are, however, conditions under

which negative interest rates can be part of an optimal policymaker’s toolkit. These are

given in the our final proposition:

Proposition 3 Two necessary conditions for the optimality of negative interest rates are

i) a discretionary policy setting, and ii) the delegation of policy to a policymaker with a

preference for smoothing interest rates.

We prove Proposition 3 by non-linearly solving a calibrated example in Section 4.2 below.

Table 2 summarizes all three propositions.

Table 2: Optimality of negative interest rates

Commitment Discretion

Smoothing × X

No Smoothing × ×
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4.2 A calibrated example

To demonstrate the optimal use of negative interest rates in an environment where the

policymaker has a preference for interest rate smoothing and optimizes under discretion,

we consider a central bank loss function given by

Vt = −
1

2

(
(1− ψ)

(
π2
t + λỹ2t

)
+ ψ (rt − rt−1)

2)+ βEtVt+1, (27)

with an explicit preference for interest rate smoothing weighted by ψ.18 When ψ = 0, the

policymaker’s objective function matches the social welfare function. The discretionary

policymaker reoptimizes every period, taking the policy functions of future policymakers

as given. When ψ > 0, rt−1 becomes an endogenous state variable making negative

interest rates a tangible signal of future interest rates in a time-consistent equilibrium.

Maximizing (27) subject to (23)—(25), the first-order conditions can be written as follows

(where the form of the equilibrium conditions depends on the “regime” rt is in):

Regime I: (rt > 0)

0 = ψ (1 + β) rt − ψrt−1 − ψβEtrt+1 + (1− ψ) βEt
∂π (rt, gt+1)

∂rt

+ (1− ψ)

(

Et
∂y (rt, gt+1)

∂rt
+ σ−1

Et
∂π (rt, gt+1)

∂rt
− σ−1

)

(λỹt + κπt) , rd,t = rt.

Regime II: (rt < 0)

0 = ψ (1 + β) rt − ψrt−1 − ψβEtrt+1 + (1− ψ) βEt
∂π (rt, gt+1)

∂rt

+ (1− ψ)

(

Et
∂y (rt, gt+1)

∂rt
+ σ−1

Et
∂π (rt, gt+1)

∂rt
+ φ

)

(λỹt + κπt) , rd,t = 0.

Regime III: (rt = 0)

rt = rd,t = 0,

where ỹt = y (rt−1, gt), for example, denotes the policy function for the output gap as a

function of the state vector, (rt−1, gt). For a given state vector, the economy can be in

three possible regimes: I: The ZLB is not binding, II: The ZLB on the deposit rate

is binding and the reserve rate is set negative, or III: The ZLB is binding and the

reserve rate is also set to zero. Regime III allows for the possibility that, even though

negative interest rates are feasible, the policymaker may choose not to make use of them.

18 There exists an extensive literature on why, with discretion, it can be beneficial to delegate policy
to a policymaker with a loss function that deviates from the social welfare function. Woodford (2003)
shows—even in the absence of the ZLB—delegation to a policymaker with a preference for smoothing
is desirable. Nakata and Schmidt (2019) show that the benefit of a policymaker with a preference for
smoothing is even greater when the ZLB occassionally binds.
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For example, we will see that if ψ is sufficiently small or φ is sufficiently large, then regime

II is never visited and at the ZLB, the reserve rate is always set to zero. The first-order

condition clarifies the role of policy smoothing in generating the signalling channel. When

ψ = 0, it reduces to a static condition: 0 = λỹt+κπt. When ψ > 0, the policymaker takes

account of the actions of future policymakers and past actions influence current decisions.

Table 3: Parameters

σ Risk aversion 0.500 β Discount factor 0.990
κ Phillips curve slope 0.008 φ Cost of negative rates 0.200

λ Weight on output gap 7.85× 10−4 ψ Weight on policy smoothing 0.029

We solve the model using the Endogenous Grid Method of Carroll (2006).19 Our param-

eterization follows Nakata and Schmidt (2019), given in Table 3. The weight on policy

smoothing, ψ, is the value that maximizes the social welfare function in the absence of

negative interest rates as a policy tool (Nakata and Schmidt, 2019, Table 2, pp 187). The

cost parameter, φ, is set to 0.2. This implies that, all else equal, a 25 basis point gap

between the deposit and reserve rate widens the output gap by 5 basis points. The natural

real rate, g, follows an AR(1) process with persistence 0.85 and standard deviation 0.04.

We approximate the process using Tauchen and Hussey (1991)’s quadrature algorithm

with 21 grid points. The details of the solution algorithm are described in Appendix B.3.

Figure 10 provides several useful insights into the optimal discretionary policy solution

with smoothing. Panel (a) plots policy functions for the reserve rate, rt, as a function

of the endogenous state variable, rt−1, for selected values of gt. The shape of the policy

functions are notable for two reasons. First, the policy functions turn negative, suggesting

that the optimal policymaker, under this parameterization, is willing to use negative

interest rates under certain conditions. This proves Proposition 3. Second, there are

regions of “inaction” where the policy functions are horizontal. That is, there is a region

of the state variable, rt−1, where for a given fall in gt, the policymaker initially drops the

reserve rate to zero and only in subsequent periods lowers the reserve rate into negative

territory. Furthermore, to the left of the inaction region, the slope of the policy function

is steeper than to the right of the inaction region. That is to say, once the policymaker

passes the threshold into negative territory, it will continue cutting the reserve rate more

aggressively than if unconstrained by the ZLB.

19 Blake and Kirsanova (2012) warn that optimal discretionary policy in a linear-quadratic rational
expectations model can yield multiple equilibria. In extensive numerical testing we have not come across
multiple equilibria for our model, but we cannot rule out their existence.
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Panels (b) and (c) display the ergodic distributions (in green) for rt and rd,t, respectively,

to highlight the effect of this inaction. The ergodic distribution of the deposit rate is nat-

urally truncated by the ZLB. The ergodic distribution of the reserve rate has a non-trivial

mass below zero. However, in line with the observed inaction, the ergodic distribution is

not symmetric. First, there is additional mass around rt = 0. Second, there is additional

mass for rt < 0 relative to the distribution without the ZLB constraint (red line).

Comparing ergodic distributions with and without negative interest rate policies, we fur-

ther find that without the use of negative rates, the ZLB on deposit rates is expected to

bind 3.7% of the time compared to the higher frequency of 4.4% when negative rates are

used. The benefits of this increased frequency at the ZLB becomes clear in the next ex-

ercise. In terms of welfare, in the absence of negative interest rates, the household would

forgo 2.57% of consumption per period to avoid uncertainty. Allowing for a negative in-

terest rate policy reduces this value to 2.33%. Thus, the addition of negative rates into

the policymaker’s toolkit can generate a small but meaningful improvement in welfare.20

Figure 10: Optimal policy solution

Note: (a) plots policy functions for five different g values. The black-dash is the 45-degree line. (b) and (c)

plot ergodic distributions generated from simulations of length 106 with a burn-in of length 103. The filled-

green plots the distribution with negative rates, the red line the distribution without a ZLB constraint.

Figure 11 shows the benefits of negative interest rates in an experiment in which the

natural real rate, gt drops into negative territory and remains at the level for 3 quarters

before jumping back to steady state. For comparison, we plot three lines. The red-dash

line is our baseline parameterization. The black-solid line is the equilibrium outcome

when the policymaker is not able to set a negative reserve rate (or, equivalently, when

20 Appendix B.4 derives the consumption equivalent welfare measure and plots welfare against different
values of the smoothing parameter, ψ (Figure B.1).
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the cost of negative interest rates is sufficiently high—in this case φ > 0.35—such that

the policymaker chooses not to use negative interest rates). The green-dotted line plots

an extreme scenario where there is no cost of negative interest rates (φ = 0).

When φ > 0.35, the policymaker behaves as if there was a ZLB on the reserve rate. The

nominal reserve rate is lowered to the ZLB, but this easing does not generate a sufficient

fall in the real deposit rate, rd,t − Etπt+1, to offset the fall in gt. As a result, inflation

falls and the output gap opens. In contrast, when φ = 0.2 the policymaker gradually

lowers the reserve rate into negative territory, reaching −1.2% in period 4. Although the

deposit rate remains bounded by zero, this negative reserve rate ensures that the deposit

rate is lower after period 4 than without negative interest rates. This lower path for the

deposit rate allows inflation to overshoot after gt is back at steady state, also lowering the

expected real deposit rate in early periods. As a consequence the drop in inflation and

the widening of the output gap is less severe. The scenario without the cost of negative

rates (φ = 0) shows the maximum impact of negative interest rates. In this case, the

reserve rate reaches −3.8% in period 2 and the deposit rate is a full 1 percentage point

lower in period 6 than in the case without negative rates. The drop in the output gap

and inflation is much less pronounced than in the other two scenarios.21

Figure 11: Optimal policy scenarios

Note: Impulse responses to a drop in gt into negative territory for 3 quarters before jumping back to its

steady state value. The output gap is measured in percent. Inflation is in annualized percent deviation

from steady state. The deposit and reserve rates are in levels, annualized.

21 This exercise illustrates that the increased frequency at the ZLB arises for two reasons: First, is
the standard reason that signalling with negative rates keeps the deposit rate “lower for longer” at the
ZLB in the event of a contractionary shock. Second, on the impact of a shock a policymaker with access
to negative interest rates is willing to cut the policy rate faster. Observe that, due to smoothing, the
black-solid line does not reach the ZLB until period 3 since the benefit of cutting the period-2 policy rate
further is outweighed by the cost in terms of smoothing rates. In contrast, the red-dash and green-dot
lines that describe negative rate scenarios reach the ZLB in period 2.
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4.3 Comparative statics

In this section, we study comparative statics on how negative the policymaker is willing

to set the reserve rate across the parameter range. The aim is once again for qualitative

insights rather than quantitative predictions. We do this in the following way: First,

we set the natural rate shock, gt, to be iid. Second, we presume that the policymaker

disregards the output gap (λ = 0) and only cares about smoothing interest rates between

periods 2 and 1. These two assumptions effectively reduce the model to a 2-period problem

since {πt, ỹt} = {0, 0} for t ≥ 3, allowing for closed-form solutions, given in Appendix B.5.

In order to highlight the trade-offs at play for the policymaker, we start from an extreme

parameterization with ψ scaled down by 50 and and φ scaled up by 5.

Figure 12: Optimal policy sensitivity analysis

Note: The black-dot refers to the baseline parameterization across the three panels, where, relative to

Table 3, ψ = ψ/50 and φ = φ× 5. The natural real rate, g1, is set to −3.5.

Figure 12 illustrates the comparative statics effects of varying ψ and φ on r1 and r2 when

the natural real rate in period 1 is −3.5% (Panel (c) varies the severity of the scenario by

varying the natural real rate, g1). In Panel (a), we vary the smoothing parameter, ψ. The

value of ψ has a non-monotonic effect on the optimal period-1 reserve rate. When ψ = 0,

the policymaker is unable to signal and thus does not use negative interest rates. Also for

small positive smoothing values, the signalling benefit is outweighed by the cost of negative

rates and the reserve rate remains at zero. Once the smoothing parameter becomes

sufficiently large, however, the signalling channel of negative interest rates dominates the

cost channel and a negative interest rate policy becomes optimal. In this simplified model,

with rd,1 constrained at zero, the only benefit of lowering r1 for period-1 inflation, π1, is to

lower r2 and thus raise period-2 inflation, π2, which lowers the period-1 real interest rate.

When ψ is small the policymaker sets a very negative interest rate in order to induce a
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lowering of r2. However, as ψ rises, the signalling channel becomes more powerful and the

policymaker need not set such a negative rate to achieve the same fall in r2. Thus, we end

up with a non-monotonic result in which both policymakers with very low and very high

smoothing preferences make very little use of negative interest rates, while policymakers

with an intermediate smoothing preference optimally set a very negative reserve rate.

In Panel (b), we vary the cost parameter, φ. In this case, r1 is increasing in the φ, which is

not a surprise. However, the relationship is nonlinear and convex. Starting from φ = 0, a

marginal increase in the cost parameter has only a small effects on the equilibrium decision

of the policymaker, but as φ increases, the policymaker rapidly reduces how negative it

is willing to set the reserve rate. As we increase φ further, there comes a point at which

the cost of setting a negative interest rate outweighs the benefit in terms of signalling. At

this point negative interest rates are no longer optimal, and the policymaker sets r1 = 0.

Finally, in Panel (c) we vary the size of the natural real rate shock, g1. Starting from the

right, and looking left as we increase the size of the shock, the policymaker naturally lowers

the policy rate in order to accommodate the shock. However, we again observe a region

of inaction in which, for a natural real rate between −2.8% to −3.4%, the policymaker

does not engage in setting a negative rate. However, when the shock is sufficiently large

the policymaker begins using negative interest rates and with a slope (∂r1/∂g1) that is

steeper than to the right of the inaction region, similar to our finding in Figure 10.

5 Conclusion

Negative interest rates are a new, albeit controversial monetary policy tool. This paper

studies a novel signalling channel of negative interest rates and asks whether they can

be 1) an effective and 2) an optimal monetary policy tool. To the former we provide

strong evidence that in a carefully calibrated medium-scale new-Keynesian model, the

answer is likely yes. For the majority of the parameter space, the signalling channel

dominates the costly interest margin channel. This exemplifies the importance of taking

into account general equilibrium effects and cautions against partial equilibrium views of

policy actions. In countries in which the central bank has adopted a negative interest

rate policy, many commercial banks have been vocally critical about the contractionary

effects on their net interest margins and profits. However, as we demonstrate, negative

interest rates—via policy signalling—have potentially large beneficial general equilibrium

effects for banks’ asset values and balance sheet health not obviously attributable to the

actions of the central bank.
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One may be concerned that the above result relies heavily on inertia in a non-optimized,

estimated policy rule. In the latter part of the paper, we take an optimal policy approach

and prove conditions under which negative interest rates are (not) part of an optimal

policymaker’s toolkit. We prove that negative rates are redundant when the policymaker

has full commitment. This, however, is unlikely to be a reasonable description of the

reality. We show that (under more realistic conditions) in which central banks do not

have full commitment but have a preference for policy smoothing then negative interest

rates can be a welfare improving policy tool.
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A The model: Derivations

A.1 Derivation of the financial sector equilibrium [Section 2.2]

A banker i solves

νf,t = max
{si,t,ai,t,di,t,ni,t}

Etmt,t+1 ((1− θ)ni,t+1 + θνf,t+1) , (A.1)

subject to

qi,tsi,t + ai,t = di,t + ni,t, (A.2)

νf,i,t ≥ λqi,tsi,t, (A.3)

ai,t = αdi,t, (A.4)

ni,t+1 = rk,t+1qtsi,t +
rt
πt+1

ai,t −
rd,t
πt+1

di,t, (A.5)

where the constraints are the balance sheet constraint, incentive compatibility constraint,

reserve ratio, and net worth accumulation, respectively. We calibrate the model such that

the incentive constraint is always binding. Next, we simplify the system of constraints

by substituting reserves, ai,t, and deposits, di,t, making use of Equations (A.2) and (A.4).

We also define φt ≡ qtsi,t/ni,t to be the leverage ratio of a banker (and φt is common

across banks). Thus, the accumulation of net worth, (A.5), is given by

ni,t+1 =

(

rk,t+1φt −
rd,t − αrt

(1− α) πt+1

(φt − 1)

)

ni,t. (A.6)

Furthermore, we conjecture the value function to take the form

νf,t = (ζs,tφt + ζn,t)ni,t, (A.7)

where ζs,t and ζn,t are as yet undetermined.

Substituting (A.6) and (A.7), the banker’s problem can be rewritten as

(ζs,tφt + ζn,t) = max
φt

Etmt,t+1 ((1− θ) + θ (ζs,t+1φt+1 + ζn,t+1))

×

(

rk,t+1φt −
rd,t − αrt

(1− α) πt+1

(φt − 1)

)

, (A.8)

subject to

ζs,tφt + ζn,t = λφt. (A.9)
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We rearrange the incentive compatibility constraint (A.9) and iterate one period forward

to find optimal (and maximum) leverage given by

φt+1 =
ζn,t+1

λ− ζs,t+1

. (A.10)

With (A.10), comparing the left and right hand side of (A.8), we verify the conjectured

functional form of the value function. This allows us to summarize the solution to the

financial intermediary’s problem in the binding incentive constraint given by

λφt = Etmt,t+1 ((1− θ) + θλφt+1)

(

rk,t+1φt −
rd,t − αrt

(1− α) πt+1

(φt − 1)

)

. (A.11)

Aggregate net worth in the financial sector evolves as a weighted sum of existing banks’

accumulated net worth (A.6) and start up funds new banks receive from the household.

Entering banks receive a fraction ω of the total value of intermediated assets, i.e. ωqtst−1.

In equilibrium, st = kt. Thus, the evolution of aggregate net worth is given by

nt = θ

(

rk,tφt−1 −
rd,t−1 − αrt−1

(1− α) πt
(φt−1 − 1)

)

nt−1 + ωqtkt−1. (A.12)

Equations (A.11) and (A.12) express the financial sector problem in just two equations.

This completes the derivation.
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A.2 List of equilibrium conditions [Section 2.5]

In equilibrium, the model is summarized by 22 equations in 22 endogeneous variables,

{yt, lt, ct, c̃t, mt,t+1, µt, kt, it, in,t, nt, φt, wt, πt, xt, pm,t , p∗,t , pt, qt, rk,t, rT,t, rt, rd,t},

and 3 exogenous processes, {βt, εz,t, εm,t}. Government expenditure, gt, is financed via

lump-sum taxes and kept constant.

Households

• Euler equation

1 = Etmt,t+1rd,t/πt+1 (A.13)

• Labor supply

µtwt = χlt
ϕ (A.14)

• Stochastic discount factor

mt,t+1 = βtµt+1/µt (A.15)

• Marginal utility of consumption

µt = c̃−σ
t − βt~Etc̃

−σ
t+1 (A.16)

Financial intermediaries

• Incentive compatibility constraint

λφt = Etmt,t+1 ((1− θ) + θλφt+1)

(

rk,t+1φt −
rd,t − αrt

(1− α) πt+1

(φt − 1)

)

(A.17)

• Evolution of aggregate net worth

nt = θ

(

rk,tφt−1 −
rd,t−1 − αrt−1

(1− α) πt
(φt−1 − 1)

)

nt−1 + ωqtkt−1 (A.18)

Producers

• Price of capital

1 = qt

(

1−
ηI
2

(
in,t + iss
in,t−1 + iss

− 1

)2

− ηI

(
in,t + iss
in,t−1 + iss

− 1

)
in,t

in,t−1 + iss

)

+ Etmt,t+1qt+1

(

ηI

(
in,t+1 + iss
in,t + iss

− 1

)
in,t+1 + iss

(in,t + iss)
2 in,t+1

)

(A.19)
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• Production function

yt = exp (εz,t) k
γ
t−1l

1−γ
t (A.20)

• Labor demand

wt = pm,t ((1− γ) yt/lt) (A.21)

• Return on capital

rk,t =
pm,t (γyt/kt−1) + qt − δ

qt−1

(A.22)

• Reset price

Et

∞∑

τ=0

ιτmt,t+τ

(

p∗,t
pt+τ

τ∏

k=1

π
γp
t+k−1 −

ǫ

ǫ− 1
pm,t+τ

)

yi,t+τ = 0. (A.23)

• Price index

pt =
(
(1− ι) p1−ǫ

∗,t + ιp1−ǫ
t−1

)1/(1−ǫ)
(A.24)

Monetary policy

• Policy rule

rT,t =

(

rss

(
πt
πss

)φπ
(
xt
xss

)φx

)1−ρ

rρt−1 exp (εm,t) (A.25)

• No arbitrage

(I) rt = rd,t = rT,t , or

(II) rt = rd,t = max {1, rT,t} , or

(III) rt = rT,t and rd,t = max {1, rT,t} . (A.26)

General equilibrium

• Aggregate resource constraint

yt = ct + it + gt (A.28)

• Capital accumulation

kt = kt−1 + f (in,t, in,t−1) (A.29)

where

kn,t = f (in,t, in.t−1) ≡
(
1− (ηi/2) ((in,t + iss) / (in,t−1 + iss)− 1)2

)
in,t.
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Definitions

• Habit adjusted consumption

c̃t = ct − ~ct−1 (A.30)

• Total investment

it = in,t + δkt−1 (A.31)

• Inflation

πt = pt/pt−1 (A.32)

• Leverage

φt = qtkt/nt (A.33)

• Marginal cost

xt = pm,t (A.34)
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B Optimal policy: Derivations & computation

In this section we provide detailed derivations for the stylized new-Keynesian model we use

in Section 4. We derive the first-order conditions under both commitment and discretion;

prove Propositions 1 and 2; document the non-linear solution algorithm used for the

numerical example; derive the consumption equivalent measure of welfare and provide

additional welfare results; and derive analytical results for the simplified version of the

model that effectively reduces to a two-period problem.22

B.1 Proposition 1 [Section 4.1]

Under full commitment, the recursive problem of the optimal policymaker is given by

V = max
{π,y,r,rd}

−
1

2

(
π2 + λy2

)
+ βEg′|gV

′

π = βEg′|gπ
′ + κy, (PC)

y = Eg′|gy
′ − σ−1

(
rd − Eg′|gπ

′ − g
)
− φ (rd − r) , (IS)

rd ≥ 0 (ZLB), rd − r ≥ 0 (ARB), rd (rd − r) = 0 (X).

The first-order conditions are given by

π : 0 = π − ζ ′PC + ζPC + σ−1β−1ζIS,

y : 0 = λy + κζ ′PC − ζ ′IS + β−1ζIS,

rd : 0 = ζ ′IS
(
σ−1 + φ

)
+ ζZLB + ζARB + ζX (2rd − r) ,

r : 0 = ζ ′ISφ+ ζARB + ζXrd,

KT1 : 0 = ζZLBrd,

KT2 : 0 = ζARB (rd − r) ,

where the ζ variables are Lagrange multipliers. The equilibrium for {π, y, rd, r, ζIS, ζPC}

can be simplified to the following set of six conditions:

π = βEg′|gπ (ζ ′PC , ζ
′
IS, g

′) + κy, (B.1)

y = Eg′|gy (ζ ′PC , ζ
′
IS, g

′)− σ−1
(
rd − Eg′|gπ (ζ ′PC , ζ

′
IS, g

′)− g
)
− φ (rd − r) , (B.2)

0 = π − ζ ′PC + ζPC + σ−1β−1ζIS, (B.3)

0 = λy + κζ ′PC − ζ ′IS + β−1ζIS, (B.4)

22 Note that in the interest of expositional clarity, we simplify the notation compared to Section 4. In
particular, we drop time subscripts and replace them with recursive notation. y denotes the output gap.
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with the final two equilibrium conditions written in terms of three regimes as follows:

Regime I (r > 0) : 0 = ζ ′IS, rd = r,

Regime II (r < 0) : 0 = ζ ′ISφr, rd = 0,

Regime III (r = 0) : 0 = r, rd = 0.

Proof of Proposition 1. Proposition 1 states that, under commitment, the reserve rate

will never be set negative. This is equivalent to stating, r ∈ Regime II is not optimal.

We prove this by contradiction.

For a given state vector, s = {ζIS, ζPC , g}, define r
c,zlb (s) and rc,zlbd (s) as the reserve and

deposit rate, respectively, that are the solution to the constrained commitment problem

where negative reserve rates are not an option, i.e. r ∈ {Regime I, Regime III}, and

rc,nir (s) and rc,nird (s) as the reserve and deposit rate that solve the commitment problem

where negative reserve rates are allowed, i.e. r ∈ {Regime I, Regime II, Regime III}.

Consider φ > 0:

Suppose ∃ s | V c,nir (s) > V c,zlb (s) −→ rc,nir < 0 and rc,nird = 0 (Regime II). Then, (B.2)

reduces to y = Eg′|gy (s′) + σ−1
(
Eg′|gπ (s′) + g

)
+ φrc,nir. Yet, rc,* = rc,*d = −φσrc,nir > 0

and ζ ′IS = 0 (Regime I) generates the same equilibrium outcome, V c,* (s) = V c,nir (s).

However, rc,* and rc,*d are in the space of the constrained commitment problem such that

V c,* (s) = V c,nir (s) ≤ V c,zlb (s). Thus, we have a contradiction.

Consider φ = 0:

The reserve rate drops out of the equilibrium system that determines {y, π, rd, ζIS, ζPC}

as φ (rd − r) = 0 ∀ r in (B.2). There is no role for negative interest rates.
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B.2 Proposition 2 [Section 4.1]

To study optimal time-consistent policy with and without policy smoothing, we augment

the policymaker’s objective function by adding a preference for smoothing interest rates,

given by ψ. Under discretion, the recursive planner’s problem is then given by

V (r, g) = max
{π,y,r′,rd}

−
1

2

(

(1− ψ)
(
π2 + λy2

)
− ψ (r′ − r)

2
)

+ βEg′|gV (r′, g′)

π = βEg′|gπ (r′, g′) + κy, (PC)

y = Eg′|gy (r′, g′)− σ−1
(
rd − Eg′|gπ (r′, g′)− g

)
− φ (rd − r′) , (IS)

rd ≥ 0 (ZLB), rd − r′ ≥ 0 (ARB), rd (rd − r′) = 0 (X).

The first-order conditions and the envelope condition are given by

π : (1− ψ) π = ζPC ,

y : (1− ψ)λy = ζIS − κζPC ,

rd : 0 = ζIS
(
σ−1 + φ

)
+ ζZLB + ζARB + ζX (2rd − r′) ,

r′ : 0 = ψ (r′ − r)− βEg′|gV1 (r
′, g′) + βEg′|gπ1 (r

′, g′) ζPC

+ ζIS
(
Eg′|gy1 (r

′, g′) + σ−1
Eg′|gπ1 (r

′, g′) + φ
)
+ ζARB + ζXrd,

KT1 : 0 = ζZLBrd,

KT2 : 0 = ζARB (rd − r′) ,

EC : V1 (r, g) = ψ (r′ − r) .

where the ζ variables are Lagrange multipliers. Again, making use of the three regimes,

the equilibrium for {π, y, rd, r
′, ζIS, ζPC}, can be simplified to a set of four conditions:

π = βEg′|gπ (r′, g′) + κy,

y = Eg′|gy (r′, g′)− σ−1
(
rd − Eg′|gπ (r′, g′)− g

)
− φ (rd − r′) ,

Regime I: (r′ > 0)

0 = ψ (1 + β) r′ − ψr − ψβEg′|gr (r
′, g′) + (1− ψ) βEg′|gπ1 (r

′, g′) π

+ (1− ψ)
(
Eg′|gy1 (r

′, g′) + σ−1
Eg′|gπ1 (r

′, g′)− σ−1
)
(λy + κπ) , rd = r′.

Regime II: (r′ < 0)

0 = ψ (1 + β) r′ − ψr − ψβEg′|gr (r
′, g′) + (1− ψ) βEg′|gπ1 (r

′, g′) π

+ (1− ψ)
(
Eg′|gy1 (r

′, g′) + σ−1
Eg′|gπ1 (r

′, g′) + φ
)
(λy + κπ) , rd = 0.

Regime III: (r′ = 0)

r′ = rd = 0.
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Proof of Proposition 2. Proposition 2 states that, under discretion, with ψ = 0,

the reserve rate will never be set negative. Equivalently, r ∈ Regime II is not optimal.

We prove this by contradiction.

When ψ = 0 the equilibrium system of equations reduces to

π = βEg′|gπ (g′) + κy, (B.5)

y = Eg′|gy (g′)− σ−1
(
rd − Eg′|gπ (g′)− g

)
− φ (rd − r) , (B.6)

0 = λy + κπ, (B.7)

Regime I: rd = r if r > 0,

Regime II: rd = 0 if r < 0,

Regime III: rd = 0 if r = 0,

where the reserve rate is no longer a state variable.

For a given state vector, g, define rd,zlb (g) and rd,zlbd (g) as the reserve and deposit rate,

respectively, that are the solution to the constrained problem under discretion where

negative reserve rates are not an option, i.e. r ∈ {Regime I, Regime III}, and rd,nir (g)

and rd,nird (g) as the reserve and deposit rate that solve the problem under discretion where

negative reserve rates are allowed, i.e. r ∈ {Regime I, Regime II, Regime III}.

Consider φ > 0:

Suppose ∃ g | V d,nir (g) > V d,zlb (g) −→ rd,nir < 0 and rd,nird = 0 (Regime II). Then, (B.6)

reduces to y = Eg′|gy (g′)+ σ−1
(
Eg′|gπ (g′) + g

)
+φrd,nir. Yet, rd,* = rd,*d = −φσrd,nir > 0

(Regime I) generates the exact same equilibrium outcome, yielding V d,* (g) = V d,nir (g).

However, rd,* and rd,*d are in the space of the constrained problem under discretion such

that V d,* (g) = V d,nir (g) ≤ V d,zlb (g). Thus, we have a contradiction.

Consider φ = 0:

The reserve rate drops out of the equilibrium system that determines {y, π, rd} since

φ (rd − r) = 0 ∀ r in (B.6). There is no role for negative interest rates.
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B.3 Policy function iteration [Section 4.2]

To derive a solution to the time-consistent optimal policymaker’s problem, we use a policy

function iteration algorithm, solving for π (r, g), y (r, g), r′ (r, g), rd (r, g), ζZLB (r, g), and

ζARB (r, g). The algorithm proceeds as follows:

1. SetNi: number of points on the interest rate grid, Ns: number of exogenous states, ǫ:

tolerance limit for convergence, u: updating parameter. Set grid points {i0, . . . , iNi
}.

The AR(1) process for the natural rate, g, is approximated using Tauchen and

Hussey (1991)’s quadrature algorithm that gives a set of grid points {s0, . . . , sNs
}

and a transmission matrix, M .

2. Start iteration j with conjectured functions for r′j (r, g) and πj (r, g). The initial

functions are set to r′0 (r, g) = 1/β − 1 and π0 (r, g) = 0. π (r, g) is only defined at

the nodes of the grids for the policy rate and shock, but since r′ (r, g) is generally

not going to match node grids exactly, the function π (r, g) is interpolated over the

first argument to determine its values at πj (r′j (r, g) , g′). Construct expectations

Eπj (r′j (r, g) , g′), denoted Eπj for short. Repeat for r′, giving Erj.

3. Using the Phillips curve, calculate y:

yj (r, g) =
1

κ

(
πj (r, g)− E

jπ
)
.

4. Construct one-step ahead output gap expectations, Eyj.

5. Construct the deposit rate function rd (r, g) = max (0, r′j (r, g)).

6. Using the IS and Phillips curve, re-calculate y and π, respectively:

y∗ (r, g) = Eyj − σ−1
(
rd (r, g)− Eπj − g

)
− φ

(
rd (r, g)− r′j (r, g)

)
,

π∗ (r, g) = βEπj + κy∗ (r, g) ,

and then update expectations, Ey∗ and Eπ∗.

7. Construct numerical derivatives of π as follows:

π1 (r, g) ≡
∂π∗ (r, g)

∂r
=

{
π∗(ik,g)−π∗(ik−1,g)

ik−ik−1

for k = 1, ..., Ni,
π∗(i1,g)−π∗(i0,g)

i1−i0
for k = 0.

and denote the function π1 for short. Calculate the one-step ahead values of these

derivative functions, π1 (r
′j (r, g) , g′), and calculate expectations, denoted Eπ1. Re-

peat for y giving Ey1.
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8. Using the FOC equation to re-calculate r′:

for r′j (r, g) > 0,

r′∗ (r, g) =
1

ψ (1 + β)

(

ψr + ψβErj − (1− ψ) βEπ1π
∗ (r, g) + ζ∗ZLB (r, g)

− (1− ψ) (Ey1 + σ−1
Eπ1 − σ−1) (λy∗ (r, g) + κπ∗ (r, g))

)

,

else

r′∗ (r, g) =
1

ψ (1 + β)

(

ψr + ψβErj − (1− ψ) βEπ1π
∗ (r, g) + ζ∗ZLB (r, g)

− (1− ψ) (Ey1 + σ−1
Eπ1 + φ) (λy∗ (r, g) + κπ∗ (r, g))

)

,

9. if max ((π∗ (r, g)− πj (r, g)) , (r′ ∗ (r, g)− r′j (r, g))) < ǫ, then stop.

else j = j + 1 and update the guess as follows:

πj (r, g) = uπj−1 (r, g) + (1− u) π∗ (r, g) ,

r′j (r, g) = ur′j−1 (r, g) + (1− u) r′∗ (r, g) .

Repeat steps 2-9.
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B.4 Welfare [Section 4.2]

The social welfare function can be translated into a consumption equivalent measure via

CE = 100× (1− β)λ−1
(
σ−1 + η

)
E
(
V SW

)
, (B.8)

where η is the inverse labor supply elasticity, set to 0.47 in our calibration, and E
(
V SW

)

is the unconditional mean of the social welfare function. CE is the percentage of steady

state consumption that the representative household would forgo in each period to avoid

uncertainty. Less negative values thus represent an improvement in welfare. Figure B.1

plots the consumption equivalent measure of welfare across a range of values for the

smoothing parameter, ψ. The figure demonstrates three features. One, allowing for

negative interest rates in the toolkit of the policymaker is weakly welfare dominant. Two,

it is optimal to delegate policy to a central banker with a small but meaningful preference

for smoothing. Three, the optimal value of ψ is virtually the same, irrespective of whether

negative interest rates are available or not.

Figure B.1: Welfare and the optimal degree of smoothing

Note: Consumption equivalent as a percent of steady state consumption. Black-dash denotes the optimal
value of ψ. ZLB denotes policy without negative interest rates. NIR denotes policy with negative rates.
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B.5 Analytical derivations [Section 4.3]

In Section 4.3 we set λ = 0, we set ψ = 0 except for between periods 1 and 2, and we

set gt = 0 for t > 1. This allows for an analytical derivation of equilibrium outcomes. In

particular, πt = yt = 0 for t > 2.

Thus, the central banks loss function reduces to

−V ∝ π2
1 + β

(
(1− ψ) π2

2 + ψ (r2 − r1)
2) . (B.9)

The policymaker is subject to the following constraints

π1 = βπ2 + κy1, (B.10)

y1 = y2 − σ−1 (rd,1 − π2)− φ (rd,1 − r1) + g, (B.11)

π2 = κy2, (B.12)

y2 = −σ−1r2, (B.13)

rd,1 ≥ −r̄, (B.14)

r2 ≥ −r̄, (B.15)

rd,1 − r1 ≥ 0, (B.16)

(rd,1 + r̄) (rd,1 − r1) = 0, (B.17)

where the expectations operator has been dropped because there is no uncertainty. In

addition, there is no incentive to set a negative interest rate in period 2 so rd,2 = r2. In

contrast to the main text, we make g mean zero and set the ZLB constraint as −r̄.

We consider optimal policy under discretion. There are 4 possible equilibrium outcomes:

(++) : r1 > −r̄, r2 > −r̄, (B.18)

(0+) : r1 = −r̄, r2 > −r̄, (B.19)

(−+) : r1 < −r̄, r2 > −r̄, (B.20)

(−0) : r1 = −r̄, r2 < −r̄. (B.21)

We solve the problem backwards. First soving for the optimal r2 given a value for r1.

For (·0), we have

r
∗(0)
2 = −r̄. (B.22)
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For (·+), the period 2 problem is given by

min
r2

(1− ψ) π2
2 + ψ (r2 − r1)

2 s.t. π2 = −κσ−1r2. (B.23)

The first-order condition is given by

(1− ψ)
(
κσ−1

)2
r2 + ψ (r2 − r1) = 0, (B.24)

or, rearranged, as

r
∗(+)
2 = R

(+)
2 r1, (B.25)

π
∗(+)
2 = Π

(+)
2 r1, (B.26)

where R
(+)
2 ≡

ψ

ψ + (1− ψ) (κσ−1)2
, (B.27)

Π
(+)
2 ≡ −κσ−1R

(+)
2 . (B.28)

Now that we have the optimal reaction function for r2 as a function of r1, we can solve

the period 1 problem, taking the behaviour of the policymaker in period 2 as given.

For (++), the period 1 problem is given by

min
r1

π2
1 + β

(
(1− ψ) π2

2 + ψ (r2 − r1)
2) (B.29)

s.t. π1 = Π
(++)
1 r1 + κg, (B.30)

π2 = Π
(+)
2 r1, (B.31)

r2 = R
(+)
2 r1, (B.32)

where Π
(++)
1 ≡ −κ

((
β + 1 + κσ−1

)
σ−1R

(+)
2 + σ−1

)

, (B.33)

and the first-order condition is given by

(

Π
(++)
1 r1 + κg

)

Π
(++)
1 + β

(

(1− ψ)
(

Π
(+)
2

)2

r1 + ψ
(

R
(+)
2 − 1

)2

r1

)

= 0, (B.34)

or, rearranged, as

r
∗(++)
1 = −

κΠ
(++)
1 g

(

Π
(++)
1

)2

+ β

(

(1− ψ)
(

Π
(+)
2

)2

+ ψ
(

R
(+)
2 − 1

)2
) . (B.35)
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For (−+), the constraints are given by

π1 = Π
(−+)
1 r1 + CΠ

(−+)
1 r̄ + κg, (B.36)

π2 = Π
(+)
2 r1, (B.37)

r2 = R
(+)
2 r1, (B.38)

where Π
(−+)
1 ≡ −κ

((
β + 1 + κσ−1

)
σ−1R

(+)
2 − φ

)

, (B.39)

CΠ
(−+)
1 ≡ κ

(
σ−1 + φ

)
, (B.40)

and the solution is given by

r
∗(−+)
1 = −

CΠ
(−+)
1 Π

(−+)
1 r̄ + κΠ

(−+)
1 g

(

Π
(−+)
1

)2

+ β

(

(1− ψ)
(

Π
(+)
2

)2

+ ψ
(

R
(+)
2 − 1

)2
) . (B.41)

For (0+), we have

r
∗(0+)
1 = −r̄. (B.42)

For (−0), the constraints are given by

π1 = Π
(−0)
1 r1 + CΠ

(−0)
1 r̄ + κg, (B.43)

π2 = CΠ
(0)
2 r̄, (B.44)

r2 = −r̄, (B.45)

where Π
(−0)
1 ≡ κφ, (B.46)

CΠ
(−0)
1 ≡ κ

((
β + 2 + κσ−1

)
σ−1 + φ

)
, (B.47)

CΠ
(0)
2 ≡ κσ−1, (B.48)

and the first-order condition is given by

(

Π
(−0)
1 r1 + CΠ

(−0)
1 r̄ + κg

)

Π
(−0)
1 + βψ (r̄ + r1) = 0, (B.49)

or, rearranged, as

r∗(−0) = −
Π

(−0)
1 CΠ

(−0)
1 r̄ +Π

(−0)
1 κg + βψr̄

(

Π
(−0)
1

)2

+ βψ
. (B.50)

This completes the full set of equilibrium conditions. Numerically, we solve for each

possible case and throw out any solutions which violate the assumptions of that case. If

multiple solutions exist, we choose the one that maximizes welfare.
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