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Abstract The aim of this paper is to introduce the notion of truthfulness in
an influence based decision making model. An expert may submit his opinions
truthfully or he may dismantle the original situation by undermining the actual
opinion, such a decision maker is called an evasive decision maker or an almost
truthful decision maker in this paper. It is assumed that experts in the panel
are dignified members hence even though they are not habitual liars, they are
either ”almost truthful” or evasive. To measure their degree of truthfulness,
we use the information provided by them in the form of preference relations.
We use this information to state the foundation of influence model of evasive
decision makers. Finally, a ranking method is proposed to find best possible
solutions.

Keywords Truthfulness; group decision making ; social influence networks;
additive reciprocity

1 Introduction

Influence models discussed in literature are yet to involve innate human be-
haviors. Truthfulness is an attribute that impacts the expressed opinions of the
expert. It is a fact that in all decision modeling processes, the panel of experts
comprise of the most dignified and reliable personals of the society. However,
since they are human beings after all, there is possibility of deviating from the
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facts and portraying a picture different from reality. With this understanding,
we refer to such decision makers as ”almost truthful”.
In the influence based process, experts present initial opinions that are revised
because of social influence [3,5] of other group members. In [11], Liang et al
describes social influence as the changes incurred by an individual after inter-
acting with one another. Social influence network (SIN) builds on the idea that
there exists interdependence among actors and their actions [15,19,14,8,13].
Some interesting work on self management mechanism for non-cooperative
behaviors in large-scale group consensus reaching processes is discussed in
[7]. The similarities and differences between influence based decision making
method and opinion dynamic based GDM has been discussed in [25]. The no-
tion that plays a vital role in the influence model is an n×n adjacency matrix
denoted by W = (wij). This matrix represents the interpersonal influence de-
gree among the experts. In this matrix, wij represents the influence of expert j
on the expert i [4]. Each row of the matrix satisfy the normalization property
∑m

j=1 ωij = 1 for all i ∈ {1, 2, ...,m}. Some experts are prone to influence while
others are less susceptible to change. From the matrix W , the diagonal matrix
of susceptibility of each expert is deduced and named as A. It is assumed that
W is such that the influence model reaches an equilibrium and hence in the
long run, the influence model provides the final opinions of all the experts [4,
6,14,18,24].

In this paper, we model an influence based problem for evasive or ”almost
truthful” decision makers. If all experts are speaking the truth then the matrix
of truthfulness becomes an identity matrix. This is a particular case, which
reduces this study to the basic influence model already discussed in literature.
However, if any decision makers’ opinions are farther from the reality and
decision makers are ”almost truthful” then the regular influence model will not
adequately model the situation and this is the major difference between the
proposed work and the work that is already existing in literature. All around
the world, there are many cases of corruption and mishaps that are undermined
and misrepresented by media and political parties in power. Specifically before
elections, the political parties tend to undermine the problems faced by the
country to reflect that their tenure has been successful while the reality may
be different. Dishonest decision makers are studied recently by Dong et. al in
[7].

We assert that the revised opinions will change completely based on how
truthful an expert is. Hence, this innate behavior is important and must be
studied. We also assume that the choice of the decision makers is such that they
are reliable people who are mostly truthful. Also, even if they defy from the
truth it is evasive lies. Because of this assumption that they are not habitual
liars, our measure of truthfulness belongs to the interval [0.5, 1] and not the
unit interval. It is assumed in this paper that if a person is not truthful, it
will be evident from the preference relation provided by him. Such a decision
maker would show indifference when comparing most alternatives. The reason
is that he does not want to express his original preferences over alternatives.
Another contribution of this paper is that decision makers are not expected
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to provide crisp opinions. On the other hand, given a set of alternatives, the
decision makers provide preference relations to express their liking for each
alternative over others. In this study, we extract important information out
of the preference relation in the form of priority vectors and use it in the
influence model for evasive decision makers. Since the decision makers are
”almost truthful” and not complete liars, this measure starts at 0.5. Similarly,
the input to the influence model is not the entire preference relation but a
column vector called the priority vector deduced from the preference relation.
Once, final opinions are calculated, we define a ranking method to find best
possible solution from the set of alternatives. We compare the truth based
influence model with the present model to show that if truthfulness is not taken
into account then this may lead to policy making that my not be realistic.

The paper is arranged as follows: Section 2 states some definitions that are
used in the sequel. Section 3 proposes the influence model for evasive decision
makers. For this purpose, we introduce a measure of truthfulness to find the
degree of truthfulness of each expert. The degree of truthfulness of all experts
helps us form a diagonal matrix which is used in the influence based model. In
this section we find the final opinions on all alternatives and then convert them
back into the final utility vectors provided by all experts. For this purpose,
we calculate the degree of truthfulness from the given preference relations.
Similarly, the initial opinion of the expert is calculated with the help of a
ranking method that is proposed to rank the alternatives. A comparison of
the existing method with the proposed method has also been established in
this section. Section 4 concludes the paper and proposes some future directions.

2 Preliminaries

This section presents preliminary definitions that are required for the sequel
sections. Given a non-empty finite set of alternatives X = {x1, x2, ...xn}.

Definition 1 [23] A fuzzy preference relation R on X is defined by the mem-
bership function µR : X ×X → [0, 1]. The membership function µR(xi, xj) =
rij is interpreted as follows:
The alternative xi is absolutely preferred over the alternative xj if rij = 1.
The alternative xj is absolutely preferred over the alternative xi if rji = 1.
The alternative xi is preferred over xj if rij ∈ (0.5, 1].
The alternative xj is preferred over xi if rji ∈ (0.5, 1].
There exists indifference between the alternatives xi and xj if rij = 0.5.
Additive reciprocity property [2,12] in a fuzzy preference relation R is defined
as rij + rji = 1 for all i, j ∈ {1, 2, ..., n}. Moreover, additive consistency in R

[16,17] is defined as rij = rik + rkj − 0.5 for all i, j, k ∈ {1, 2, ..., n}, i 6= j.

Now we define ordered weighted averaging operator (OWA) [20–22] in the fol-
lowing definition. In OWA operators, magnitude of the values to be aggregated
determines the reordering step. These aggregation operators are used as we
aggregated column matrices in the next section.
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Definition 2 An OWA operator of dimension n is a mapping φ : Rn → R
with associated weights W = (w1, w2, ..., wn)

T with wi ∈ [0, 1],
∑n

i=1 wi = 1,

φ(a) = φ(p1, p2, .., pn) =
∑n

i=1 wipσ(i)

where σ : {1, 2, ..., n} → {1, 2, ..., n} is a permutation function such that pσ(i) ≥
pσ(i+1) for all i = 1, 2, ..., n−1. These weighting vectors can be obtained using
the soft majority concept by using quantifier guided aggregation given by
Yager [20–22].

3 Influence based decision making method

With the advent of social networking sites like Facebook and Twitter, human
beings can interact not just with the people in the vicinity of their neighbor-
hoods but with anyone and everyone belonging to any part of the globe. With
these advancements, decision modelling also needs to cater for the fact that
human beings may influence one another and the chance of this happening has
increased by leaps and bounds over the past two decades.

In group settings, experts interact with one another and influence each
other to some extent. The degree to which an expert is influenced by others
depends on the susceptibility of the expert to interpersonal influence. Experts
form their opinions in complicated interpersonal environment in which prefer-
ences are modified because of social influence. We can use directed graph to
model the presence of influence in a social influence network (SIN) [4,9]. For
this purpose, the adjacency matrix of interpersonal influences, W = (wij), can
be formed and represented with the help of a directed graph.

If expert i has some influence on expert j, then there will be a directed
arc between expert i and j starting from expert i and heading towards expert
j. Similarly, if expert i has no influence on expert j then there will be no
such arc. Each arc has a weight wij ∈ [0, 1] representing the intensity with
which the jth expert has influenced the ith expert. It is assumed that these
weights satisfy the normalization property so that influence of all experts on
one expert sums up to 1. Mathematically, this implies that the row sum is 1
for all rows.

Consider the following iterative scheme that depicts how opinions of an
expert are revised over time because of the adjacency matrix of interpersonal
influences. In the following model, y(1) represents the initial opinion and y(t)

represents opinion of the expert at time t. Note that since W t is positive,
opinions will reach the state of equilibrium. This means that each expert will
revise her opinion and that it will eventually converge in the long run. The
same theory will hold for all of the experts in the decision making process. This
phenomenon that opinions of all experts will converge over time is exhibited
below.

y(t) = Wy(t−1)
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For the convergence of this iterative scheme, one problem could be that of
acyclicity. Consider the following matrix of interpersonal influences among

two experts as W =

(

0 1
1 0

)

. Suppose that opinion of the first expert is 0.2

whereas the second expert states it as 0.7. That is, y(1) =

(

0.2
0.7

)

. According

to the model, we have,

y(2) =

(

0 1
1 0

)(

0.7
0.2

)

=

(

0.2
0.7

)

Whereas,

y(3) =

(

0 1
1 0

)(

0.2
0.7

)

=

(

0.7
0.2

)

= y(1)

We can see that this results in a never ending cycle and because of such a
choice of W the iterative scheme will not converge. This problem was taken
care of by Groot [4] who suggested that W is such that there exists a positive
integer t for which W

t is positive. Because of this condition, the opinions will
converge after a finite number of iterations.
The diagonal matrix of susceptibility of experts represented asA = diag(a11, ..., amm)
is deduced form the matrix W. This matrix A represents the susceptibility of
all experts to interpersonal influence. Friedkin et al [9] suggested to include
susceptibility of each expert to interpersonal influence as aii = 1 − wii. The
closer the degree of aii ∈ [0, 1] is to 1, the more susceptible the expert is to
interpersonal influence.
Consider the matrix W of interpersonal influences among three experts in the
following. Let,

W =





0.3 0.2 0.5
0 1 0
1 0 0





Then the diagraph of interpersonal degrees of three experts is represented in
figure 1. It can be seen that w21 = 0 which means that expert 1 has no in-
fluence on expert 2, hence in figure 1 there is no directed line from the first
expert to the second expert.
With the help of the matrix of interpersonal influences W, matrix of suscepti-
bility of each expert A, identity matrix I, and initial opinion y(1), the following
iterative scheme is defined to find the revised and final opinion.

y(t) = AWy(t−1) + (I −A)y(1) (1)

Note that opinion of an expert at time t is stated as a convex combination
of his initial opinion and the influenced opinion at the time t − 1. The basic
assumption of this model is that (I − AW) is non-singular. Because of this
underlying assumption, it is assumed that this process reaches an equilibrium
in the long run. That is, y(∞) = limt→∞ y(t) exists and it is equal to the
following.

y(∞) = (I −AW)−1(I −A)y(1) (2)
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Fig. 1 Diagraph of interpersonal influence degrees

where (I −AW)−1 is non-singular.
Note that, for the sake of clarity and better understanding, equation 1 can be
expanded and re-written as follows:

y(t) = ((AW)(t−1) + (I −A)
∑t−2

i=0((AW)i))y(1) =

(AW)(t−1)y(1) + (I −A)(AW)(t−2)y(1) + ....+ (I −A)(AW)y(1) + (I −A)y(1)

It should be noted here that this is a bounded monnotonic geometric series
and hence it is convergent. In the next section, we take into account the truth-
fulness of an expert and define a measure to calculate it. We propose a model
that includes this attribute of each decision maker to produce more realistic
results. [25]

4 Influence models for evasive decision makers

In this section, we are asserting that the influence model is not complete unless
we cater for truthfulness. We know that truthfulness is a human attribute and
it needs to be incorporated for in the influence model. We assume in this
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study that the decision makers selected as members of the panel are dignified
members of the society. By which we mean that they are not liars instead they
are either evasive or ”almost truthful” decision makers. In the following, we
will define the measure of truthfulness and because of our assumption that
the members are ”almost truthful” ,or evasive, this measure will belong to the
domain of 0.5 to 1. In this section, we define that if a person is not truthful,
it will be visible in the preference relation provided by him. Such a decision
maker will be indifferent between most alternatives because he is evasive and
does not want to express his preferences truthfully.
As mentioned in the introduction section, all countries in the world are facing
a handful of problems ranging from poverty to lack of education and absence
of clean drinking water. However, the casualties that take place because of
the poor health facilities are often understated by the people in power. We
define the diagonal matrix of truthfulness T = (tii)m×m, where tii represents
truthfulness of the i − th expert. In the following definition, we explain how
to find truthfulness t of any expert.

Definition 3 Let t : Pn → [0.5, 1] be the measure of truthfulness defined as

t = Tr(PPT)−0.25n
n(n−1)/2

where Tr is the trace of the preference relation PPT and PT stands for the
transpose of the matrix P .

According to definition 3, a decision maker is truthful if his degree of truthful-
ness is 1. Whereas, the expert is ”almost truthful” or evasive, if the degree of
truthfulness of the expert is less than 1. The closer the value is to 0.5, the dis-
tant the opinions of the decision maker is from truth. Since it is assumed that
the experts are not liars hence, the degree of truthfulness never goes below 0.5
and towards 0.

Consider the following preference relation provided by a decision maker e1
over the set of four alternatives X = {x1, x2, x3, x4}. It can be noted that the
expert is indifferent between all the four alternatives presented to him. This
is an extreme case where the expert does not want to express his preference
of alternative at all.

P 1 =









0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5









Clearly, the decision maker is indifferent about all alternatives and hence ac-
cording to definition 3, truthfulness of this expert is 0.5 which is the lowest.
This means that this expert is evasive and his degree of truthfulness is the
least possible value. The other extreme is when a decision maker e2 is very
clear, expressive and decisive and not indifferent about presenting his prefer-
ences over any two choices presented to him. Consider the following preference
relation,
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P 2 =









0.5 1 1 0
0 0.5 0 1
0 1 0.5 0
1 0 1 0.5









According to definition 3, the truthfulness of decision maker e2 is 1. As stated
earlier, choice of the decision makers is such that they are either truthful
and even if they are twisting facts, they are evasive decision makers and not
habitual liars. We now introduce the ”almost truthful” decision makers in the
influence model for evasive decision makers as follows:

y(t) = AWy(t−1) + T (I −A)y(1) (3)

The assumption is that if the expert is truthful then the initial opinion will be
truthfully expressed and T will become the identity matrix. This is a particular
case of our proposed model and hence in this case, the model will reduce to
the original influence model. Otherwise, if the expert is evasive and ”almost
truthful”, then he will ameliorate the original opinion by understating the
intensity of his opinion.
For convergence of the iterative scheme presented in equation 3, note that T is
a diagonal matrix hence the convergence condition for the influence iterative
scheme holds true here as well. Note that opinion of an expert at time t is
a convex combination of the decision maker’s initial opinion, based on his
truthfulness in expression, and the influenced opinion at time t− 1.

For this iteration to reach an equilibrium, (I−AW ) must be non-singular.
That is, y(∞) = limt−>∞ y(t) exists, and we have,

y(∞) = (I −AW )−1T (I −A)y(1) (4)

Let us re-write equation 4 as

y(∞) = VT y
(1)

where VT = (I − AW )−1T (I − A). Note that equation 3 can be expanded as
follows.

y(t) = (AW )(t−1)y(1) + T (I −A)
∑t−2

i=0((AW )iy(1) =

= (AW )(t−1)y(1)+T (AW )(t−2)(I−A)y(1)+....+T (AW )(I−A)y(1)+(I−A)y(1)

We note that from the second term onwards, it is a monotonic convergent
geometric series. Note that in this study, we are provided with fuzzy prefer-
ence relations by the decision makers and not just single values from the unit
interval. Preference relations cannot become the input to the influence model
for evasive decision makers. Therefore, we need to use the information given
in the preference relations in order to state the corresponding priority vectors.
This indicates that the model will be applied to each alternative separately.
Because of this reason, we find the need to re-write equation 3 as follows:

y(t)xi
= AWy(t−1)

xi
+ T (I −A)y(1)xi

(5)
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where xi is the alternative under consideration.
Note that y

(1)
x1 is the column vector comprising of initial opinions of all the de-

cision makers over the alternative x1. As mentioned earlier, we need to convert
the preference relation into priority vectors. The initial priority vectors will
later be revised based on the degree of truthfulness of the evasive or ”almost
truthful” decision makers. Consider the fuzzy preference relation provided by
the k−th expert, Pk, over the set of alternatives X = {x1, x2, .., xn} as follows:

Pk =













pk11 − − − pk1n
− − −− − −
− − −pkij − pkin
− − − − −
pkn1 − − − pknn













Set of all preference relations have been defined as Pn and the set of alterna-
tives as X. Let U represent set of n × 1 priority vectors. Then we define the
ranking rule f : Pn → U which is defined as f(Pk) = Uk where Uk ∈ U. Note
that, Uk = (uk

i )n×1 is the priority vector corresponding to the kth preference
relation Pk. Now we will convert the preference relation into the priority vec-
tor. In the following, we define a method to calculate (uk

i )n×1 in two steps.
Step 1: The first step is to find the column sum of the j − th column in Pk

as
∑n

l=1 plj and then dividing each value pkij of the preference relation by its
corresponding column sum. This is done as follows:

















pk11 − − − pk1n
− − −− − −
− − −pkij − pkin
− − − − −
pkn1 − − − pknn

∑n
l=1 p

k
l1 −

∑n
l=1 plj −

∑n
l=1 pln

















Now that we have the column sum of each column present in the preference
relation, we divide each preference value by the column sum as shown in the
following matrix. Note that this matrix (uij)n×n will have a column sum of 1.

(uij)
k
n×n =



















pk
11∑

n
l=1 pk

l1

− − −
pk
1n∑

n
l=1 pln

− − − − −

− −
pk
ij∑

n
l=1 plj

−
pk
in∑

n
l=1 pln

− − − − −
pk
n1∑

n
l=1 pk

l1

− − −
pk
nn∑

n
l=1 pln



















This matrix is normalized by its column sum. We simplify this by re-writing
the above matrix as follows. The last row shows that the column sum will be
1.
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(uij)
k
n×n =

















uk
11 − − − uk

1n

− − −− − −
− − −uk

ij − uk
in

− − − − −
uk
n1 − − − uk

nn

1 1 1 1 1

















Step 2: The second step is to calculate the column vector Uk = (uk
i )n×1

corresponding to the fuzzy preference relation Pk. We use normalized matrix
(uij)

k
n×n from step 1, calculate the row sum and divide it by the dimension of

the matrix. Let the i− jth element of this matrix be represented as uk
ij . Then,

uk
i =

∑n
l=1 uk

il

n

With this method we transform a preference relation into a priority vector
without losing the information provided in the preference relation. Accord-
ingly, the corresponding priority vector of Pk is as follows:

Uk =













uk
1

...

uk
i

...

uk
n













where uk
i represents that alternative xi is preferred over other alternatives by

this value.

Consider {U1, ..., Um} as the collection of column vectors where each Ui repre-
sents a vector of preference of an alternative over others. As already discussed,
we need information pertaining to each alternative in separate column vectors
because this is the requirement of our model in equation 5. Therefore, we sepa-

rate information relevant to the first alternative x1 in order to form y
(1)
x1 which

is explained as:

y
(1)
x1 =













u1
1

...

uk
1

...

um
1













Similarly, we separate the information provided for each alternative x2, .., xn to
form corresponding column vectors. In the following we segregate information
relevant to alternative xn.

y
(1)
xn =













u1
n

...

uk
n

...

um
n












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This column matrix represents preferences given by all decision makers to
alternative xn over other alternatives. We use this in the truth based influence
model to attain the final column matrix for each alternative. For instance, for
alternative xn, we have the following.

y
(∞)
xn =













u1∞
n

...

...

...

um∞

n













Now that we have the final opinions on each alternative, we use this infor-
mation to restate the priority matrix that has been revised by the influence
model of evasive decision makers. Here, the column vector represents the final
preference of each alternative over the set of alternatives X by the evasive or
”almost truthful” decision maker m.

U (m∞) =













um∞

1

...

...

...

um∞

n













The final step is to rank the alternatives. We have φ
′

: U (1∞) × ...×U (m∞) →
R+ where R+ is the set of all positive real numbers. For alternative xi for
i ∈ {1, 2, .., n}, we define the following.

φ
′

(u1∞
i , ..., um∞

i ) =
∑m

k=1 u
k∞
i

Now we use the operation max{
∑m

k=1 u
k∞
1 , ...,

∑m
k=1 u

k∞
n } in order to find the

most preferred alternative. Then we construct another set excluding the most
preferred alternative to find the second most preferred alternative and so on
till all the alternatives have been ranked. We illustrate this with the help of
the following example.

Example 1 Suppose that there are four issues X = {x1 = education, x2 =
health, x3 = security, x4 = environment} faced by the country of Greencity.
Also suppose that there are three evasive or ”almost truthful” policy makers
who need to address these problems. Since they are partially truthful, instead
of giving a fair opinion on the issues, they understate the problem to undermine
the intensity of the issues.
Fuzzy preference relations provided by the experts are as follows.

P1 =









0.5 0.2 0.4 0.6
0.5 0.5 0.7 0.3
0.6 0.3 0.5 0.7
0.1 0.4 0.2 0.5









, P2 =









0.5 0.9 1 0.5
0.1 0.5 0.9 0.2
0 0 0.5 0.6
0.8 0.4 0.3 0.5









, P3 =









0.5 0.3 0.2 0.5
0.7 0.5 0.6 0.3
0.5 0.4 0.5 0.7
0.6 0.7 0.4 0.5









,

and P4 =









0.5 0.8 0.5 0.4
0.2 0.5 0.7 0.7
0.5 0.2 0.5 0.9
0.6 0 0.1 0.5








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1 4

2 3

0.4 0.2

1

0.2

0.7
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0.5

0.1

0.3

Diagram 1: Graphical representation of interpersonal influence matrix W

Let us first convert these preference relations into priority vectors. Otherwise,
the truth based influence model cannot take input of a preference relation. It
is known that the experts are evasive or ”almost truthful”, so before using the
priority vectors, we w ill first find the degree of truthfulness of each expert.
The corresponding priority vectors are calculated as follows:

U1 =









0.23622782
0.295751634
0.2945845

0.173436041









, U2 =









0.376322751
0.198412698
0.12962963
0.295634921









,

U3 =









0.185733275
0.267611724
0.268008817
0.278646184









, U4 =









0.31222
0.278333
0.26222

0.147222222









As stated earlier, we need to derive information from these priority vectors
pertaining to each alternative. Information relevant to each alternative is to
be used in the truth based influence model. The following column matrices
are compiled such that each one represents the information available in the
priority vectors according to each alternative.
Accordingly, we have,

y
(1)
x1 =









0.23622
0.3763
0.1857
0.3122









, y
(1)
x2 =









0.295
0.198
0.267
0.278









y
(1)
x3 =









0.295
0.129
0.268
0.262









, y
(1)
x4 =









0.173
0.295
0.278
0.147









Consider the adjacency matrix of interpersonal influence among the four ex-
perts as given. As mentioned earlier, the row sum must be 1 and the entry wij

represents the interpersonal influence of decision maker j on the expert i.
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W =









0.4 0.6 0 0
0 0.7 0.1 0.2
1 0 0 0
0.2 0.5 0.3 0









Accordingly, the matrix A of susceptibilities of each expert is as follows.

A =









0.6 0 0 0
0 0.3 0 0
0 0 1 0
0 0 0 1









Now, we find the truthfulness of the four experts using definition 3 and it
is 0.59,0.861666,0.705,0.7566 respectively. Accordingly, the matrix of truthful-
ness of all experts is stated as follows.

T =









0.59 0 0 0
0 0.862 0 0
0 0 0.705 0
0 0 0 0.7566









In order to find the final opinions pertaining to each alternative, we use equa-
tion 5 and get the following.

y
(∞)
x1 =









0.22322
0.31638
0.22322
0.2698









, y
(∞)
x2 =









0.17252
0.1708
0.17252
0.17167









y
(∞)
x3 =









0.1455
0.1139
0.1456
0.1297









, y
(∞)
x4 =









0.1711
0.2477
0.1711
0.2093









Accordingly, the revised opinions of all four experts are as follows.

U (1∞) =









0.22322
0.17252
0.1455
0.1711









, U (2∞) =









0.31638
0.1708
0.1139
0.2477









U (3∞) =









0.22322
0.17252
0.1456
0.1711









, U (4∞) =









0.2698
0.17167
0.1297
0.2093









According to the ranking method defined above, we use φ
′

to rank the four al-
ternatives. According to the method we have, max{1.03262, 0.68751, 0.5347, 0.7992}
which implies that x1 � x4 � x2 � x3.

In order to make comparison of the influence model for almost truthful decision
makers with the previous model, we do not consider the truthfulness of the
decision makers at all. This implicity assumes that all decision makers are
truthful and hence the matrix T is an identity matrix. The initial opinions of
the judges stay the same, and accordingly equation 2 concludes the following.
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y
(∞)
x1 =









0.299709
0.370253
0.299709
0.334981









, y
(∞)
x2 =









0.251036
0.202187
0.251036
0.226612









y
(∞)
x3 =









0.219763
0.136165
0.219763
0.177964









, y
(∞)
x4 =









0.228295
0.289734
0.228295
0.259014









It can be seen that expert whose degree of truthfulness is closer to 1 has less
variation in his final outcome as compared to the experts whose truthfulness
is closer to 0.5. If truthfulness of experts is not catered for then the ranking
of alternatives would have been x1 = x3 � x4 � x2. This shows that the
attention of the policy makers can be on different aspects if the truthfulness
of the expert is not catered for.

5 Conclusion

In the classical models of decision modeling, role of influence is not incor-
porated. Moreover, personal attributes of human beings are not addressed.
Which means that when studying interpersonal influence of experts over one
another in a group setting, it is assumed that all experts are truthful.
It is obvious that in any matter, the panel of decision makers comprises of
dignified personals. But since they are humans, there is still chance of them to
deviate from the truth deliberately, or because they are lying evasively. This
paper identifies this behavior of decision makers and calls them ”almost truth-
ful” decision makers. It is a generalization of the influence model provided in
[14]. We generalize this model by also including the innate ability of experts to
be truthful or to understate the original scenario. The attribute of truthfulness
plays an important role in decision making and hence must be incorporated.
We propose a method of calculating truthfulness of each expert based on the
preference relation provided by the expert. Since the decision makers are ”al-
most truthful”, the values belong to [0.5, 1] and not the unit interval. If all
decision makers are truthful then their degree of truthfulness is 1, and hence,
the matrix of truthfulness becomes the identity matrix and reduces this case
is reduced to the regular influence model. However, if decision makers are ”al-
most truthful” then this has an impact on their revised opinions. Which in
return changes the choice of alternatives after ranking.
Another assumption in this study is that decision makers provided preference
relations instead of mere opinions in the form of a number from unit interval.
In this truth based influence model of ”almost truthful” decision makers, the
preference relations provided by experts are converted into priority vectors.
From these priority vectors, information is extracted for each alternative and
stated as column vectors. These column vectors are used in the truth based
influence model. With the help of the model, we find the final utility vectors.
These utility vectors are then ranked to find the best alternative.
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In future, we would like to introduce more traits of human nature [1] by in-
corporating the theory of image processing. Moreover, similar influence model
needs to be studied if interpersonal influences are not mere numbers from the
unit interval but they are sub-intervals. Apart from this, consensus reaching
is an area that has not been studied in influence based GDM models in our
study, in our future work we would like to study how consensus reaching is
affected by the degree of interpersonal influences among experts [24–26].
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