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Abstract 

 

Although volatility is an important characteristic of tourism economies, it has not received a lot of 

attention from regional researchers.  Volatility in monthly international tourist arrivals is defined 

as the squared deviation from mean monthly international tourist arrivals and is akin to the standard 

deviation, which is a common measure of financial risk.  Conditional volatility in monthly tourist 

arrivals are primarily due to unanticipated events, such as natural disasters, crime, the threat of 

terrorism, and business cycles in tourist source countries.  This study exploits recent volatility 

modelling techniques to measure and investigate the implications of conditional volatility in 

monthly international tourist arrivals from major tourism source markets. 
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1. Introduction 

In recent times, there has been a rekindling of interest in the livelihood of small islands with small 

populations, which overwhelmingly rely on tourism as a source of income.  In these islands, 

commonly referred to as small island tourism economies (SITEs), tourism accounts for a 

substantial proportion of foreign exchange earnings. These earnings enable importation of 

consumer as well as capital goods for economic development, are a significant share of 

government revenue, are a key determinant of development expenditure, and provide employment 

for a considerable proportion of the workforce.   

 

As a result of time-varying effects such as changes in economic fortunes abroad, natural disasters, 

ethnic conflicts, crime, terrorist incidents, and other exogenous factors, there have been periods of 

considerable fluctuation in international tourism demand to SITEs.  These fluctuations in demand 

can and do have a significant impact on the solvency of small hotels, employment in the industry 

and the economies of SITEs in general.  It is therefore imperative that tourism planners and 

policymakers have an understanding of volatility and models to forecast volatility of tourist 

arrivals. 

 

Although international tourism is presently the fastest growing and most important tradable sector 

in the world economy, this important sector has often been ignored and consequently there is only 

a limited literature on the significance of tourism in SITEs and the attendant economic 

implications.  Consequently, little is known about the relationship between tourism and economic 

performance, particularly with respect to SITEs.  We hope to help assuage this neglect by analysing 

the fluctuations and volatility in tourist arrivals to a representative SITE, Barbados.   
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Since Barbados depends primarily on tourism earnings as a source of foreign exchange and 

employment, a careful examination of the volatility of tourist arrivals is important to formulate 

macroeconomic policy, as well as decision-making in the public and private sectors.  This paper 

provides estimates of univariate symmetric and asymmetric models of the logarithm of and log-

difference of monthly long-stay tourist arrivals to Barbados for the period 1977-2005.  We also 

examine the associated volatilities of monthly long-stay tourist arrivals. 

 

The only cases where variations in international tourism demand, particularly the conditional 

variance in international tourist arrivals, have been investigated in tourism literature are in Chan, 

Lim and McAleer (2005), Chan et al. (2005) and Shareef and McAleer (2005). 

 

In Chan, Lim and McAleer (2005), the authors model the conditional mean and conditional 

variance of the logarithm of the monthly tourist arrival rate from the 4  leading source countries – 

Japan, New Zealand, UK and USA – to Australia using monthly data from July 1975 to July 2000 

using three multivariate constant conditional correlation (CCC) volatility models, specifically the 

symmetric CCC-MGARCH model of Bollerslev (1990), the symmetric vector ARMA-GARCH 

model of Ling and McAleer (2003) and the asymmetric vector ARMA-AGARCG model of Chan, 

Hoti and McAleer (2002).  They find the presence of interdependent effects in the conditional 

variances between the four leading countries, and asymmetric effects in Japan and New Zealand.  

They also find that their estimates are robust to the alternative specifications of the multivariate 

conditional variance. 
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Chan et al. (2005) use several techniques to investigate the conditional volatility in monthly 

international tourist arrivals to Barbados (1973-2002), Cyprus (1976-2002) and Fiji (1968-2002).  

They estimate a constant volatility linear regression model by OLS as a baseline for comparison 

with three time-varying conditional volatility models – ARCH, GJR and EGARCH.  Overall, they 

find evidence of short run persistence, and occasionally long run persistence, of shocks to 

international tourist arrivals.  They also find report evidence of asymmetric effects of shocks for 

Barbados using the EGARCH specification.  Using the RMSE, MAE, MAPE and FSE criteria, 

Chan et al. determine that the optimal forecasting models for Barbados, Cyprus and Fiji are the 

EGARCH(1,1) EARCH(1) and GARCH(1,1) respectively. 

 

Shareef and McAleer (2005) model both the volatility in monthly international tourist arrivals and 

the volatility in the growth rate of monthly tourist arrivals for six SITEs, Barbados, Cyprus, 

Dominica, Fiji, Maldives and Seychelles during the period (1980-2000) using GARCH(1,1) and 

GJR(1,1).  While estimates for the conditional mean and variance in monthly international tourist 

arrivals for a particular country were similar using both the GARCH(1,1) and GJR(1,1), estimates 

varied somewhat across countries.  A similar result held when the growth rate of monthly tourist 

arrivals was modelled.  Using the log-moment and second moment conditions, they found support 

for the statistical adequacy of the GARCH(1,1) and GJR(1,1) models. 

 

The following section discusses the patterns of tourist arrivals to Barbados.  Section 3 describes 

the data used, namely the logarithm of monthly tourist arrivals.  Specifications of the volatility 

models used in this study are described in Section 4.  Section 5 presents the estimates and 

discussion of the empirical results and the Section 6 presents concluding remarks. 
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2. Trends and Composition of Tourist Arrivals 

In this section we analyse the trends in tourist arrivals to Barbados over the period 1977-2005.  

Table 1 gives an overview of the average numbers of tourist arrivals in each period respectively 

and their respective shares.  The sample is split into two halves, 1977-1990 and 1991-2005, for 

further comparison. 

 

There are many different tourist source countries for which the Barbados Statistical Service 

maintains data.  Of these, the main markets are the US, the UK, Canada and CARICOM; the 

remaining source markets are too small relative to the main markets and are hence placed in the 

category called OTHER.  Over the entire period, 1977-2005, tourist arrivals showed an annual 

growth rate of 2.22 percent from US, 7.41 percent from the UK, 3.15 from the CARICOM and 

0.70 percent from OTHER.  With an annual growth rate of -2.01 percent, Canada was the only 

major market to record an annual decline.   

 

In the period 1977-1990, the US was the single biggest tourist source with a share of 32.76 percent 

of average tourist arrivals and an annual growth rate of 5.47 percent.  Over this period arrivals 

averaged 121,081 tourists.  Over the period 1991-2005, the US lost its dominance to the UK – the 

specific year in which annual UK arrivals surpassed US arrivals was 1994.  The share of average 

tourist arrivals declined by 33 percent to 24.08 percent and the annual growth rate plunged to -

0.60 percent.  Tourist arrivals fell to an average of 112,713 over this latter period.   

 

Tourists from the UK have been keen visitors to Barbados over the period 1977-2005.  An analysis 

of UK tourist arrival figures in Figure 1 illustrates an increasing trend over the entire sample 
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period.  For the period 1977-1990, UK tourist arrivals grew at 10.11 percent per annum with a 

corresponding share of 16.69 percent of tourist arrivals.    In the second half of the sample, the UK 

dominated every category.  Tourist arrivals averaged 164,549, up 167 percent over the first half of 

the sample, the share of tourist arrivals doubled from 16.69 percent 34.43 percent and while the 

growth rate actually fell to 5.06 percent from 10.11 percent, it was still the strongest annual growth 

rate recorded by any source market.  

 

In the first half of the sample, inbound tourism from Canada recorded a 19.07 percent share of 

average tourist arrivals, second only to the share recorded by the US.  However, over this period, 

there was a decline of 2.85 percent per annum in Canadian tourist arrivals.  In the second half, 

Canada’s share of average tourist arrivals plummeted by 42 percent to 11 percent, falling to 5th in 

the list of the largest tourist source markets to Barbados.  Despite this sharp decline in Canada’s 

share of tourist arrivals, there was a slowdown in the decline in annual tourist arrivals to 1.29 

percent per annum.   

 

There was a generally increasing trend in visitor arrivals from CARICOM over the entire sample 

1977-2005 during which CARICOM was the third largest tourist source market.  Although average 

annual tourist arrivals from CARICOM increased in number from 70,475 in 1977-1990 to 74,882 

in 1991-2005, their share decreased from 18.95 percent to 15.67 percent.  This was mainly due to 

the overwhelming increase in the UK’s share and to a much lesser extent, the increase in OTHER’s 

share.  Nevertheless, the annual growth rate increased from by 109 percent from 1.99 percent to 

4.16 percent over the two periods respectively. 
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As recorded in Table 1, there was an increase in the average numbers of tourists from OTHER, 

from 46,317 in 1977-1990 to 70,849 in 1991-2005.  There was a corresponding increase in 

OTHER’s share of average tourist arrivals from 12.53 percent to 14.82 percent.  Despite these 

increasing trends, however, the annual growth rate of tourist arrivals from OTHER plummeted 

from 4.38 percent per annum to -2.50 percent per annum.  Further analysis shows that the reason 

for the higher average number of tourist arrivals in 1991-2003 over 1977-1990 was due to very 

large numbers of tourist arrivals over the period 1991-1998 when tourist arrivals averaged 85,903 

and the annual growth rate was 2.23%.  In 1999, there was a precipitous 34 percent decline in 

tourist arrivals from OTHER and with the exception of the years 2003 and 2004, tourist arrivals 

declined from that point onward. 

 

When we analyse the overall numbers, we find that the average annual number of tourists was 29 

percent higher in the 1991-2005 period than in the 1977-1990 period.  This increase occurred even 

though the US, Canada and OTHER each recorded negative annual growth (-1.46 percent as a 

group) in tourist arrivals during the period 1991-2005.  The reason why the average number overall 

increased was because of the positive annual growth in tourist arrivals from the UK and 

CARICOM (4.61 percent as a group) quadrupled the negative growth rate of the previous group; 

in fact, the positive growth in the UK market (5.06 percent) was enough to outstrip the negative 

rate of the US, Canada and OTHER combined.  While there is a clear upward trend in total tourist 

arrivals (see Figure 2), the annual growth rate of total tourist arrivals fell by 57 percent, from 3.64 

percent during 1977-1990 to 1.58 percent during 1991-2005.  This is not surprising, since annual 

growth rates of tourist arrivals from all source markets, except CARICOM, declined by an average 

of 93 percent in the period 1991-2005 when compared with the period 1977-1990.   
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3. Characteristics of Monthly Tourist Arrivals 

For the analysis in this section, the authors use logarithms of total monthly tourist arrivals for the 

entire sample period under study, 1977-2005.  The primary reason for using the logarithm of 

monthly arrivals was as a result of the presence of a unit root in the level of the series.  The data 

are deseasonalised using Census X12, the US Census Bureau seasonal adjustment algorithm.  The 

augmented Dickey-Fuller (ADF) test (1979, 1981) and the Phillips-Perron (PP) tests of the unit 

root hypothesis, conducted using Eviews 5.0, both suggest the absence of a unit root in the log of 

the monthly deseasonalised series (see Table 2).  These tests are robust to changes in lag length 

and auxiliary equation specification.   

 

Figure 3 plots the log of the monthly deseasonalised arrival rate to Barbados between 1977 and 

2005.  The cyclicality in the log deseasonalised arrival rate is very apparent.  The peaks in the 

cycle correspond to the boom in the latter half of the 1970s and the recovery from the recession 

early in the 1990s while the troughs correspond to the recession caused by the second oil price 

shock in 1979 and the recession of the early 1990s.   

 

Figure 4 gives the volatility of the log arrival rate.  Following Chan, Lim and McAleer (2005), 

volatility is calculated as the square of the estimated residuals  from an autoregressive moving 

average process.  The correlogram of the log arrival rate suggested that an ARMA(1,1) or an AR(2) 

would be suitable.  Diagnostic checking confirmed that the ARMA(1,1) with a deterministic time 

trend was a more suitable description of the process: 

                          (1) 

                 (2) 
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where TA is the total monthly international tourist arrivals at time t and time = 1,…,T, where T = 

324. 

 

Volatility in tourist arrivals is characterised by clustering mainly over the first half of the sample, 

1977-1990, with little evidence thereafter.  These volatility clusters correspond to the peaks and 

troughs of the cycles described previously.  Monthly tourist arrivals are also more volatile in the 

first half of the sample. 

 

4. Volatility Models 

The RiskMetrics volatility model is a popular tool employed to measure risk.  The framework has 

two main advantages: (1) it is fairly simple, and; (2) it only requires a small number of 

observations.  The RiskMetrics volatility is calculated as follows: 

                             (3) 

where is the volatility at time  and is the squared return at time (month-on-month change 

in arrivals).  Usually, the weighting parameter ( ) is set at 0.97 for monthly data.   

 

The RiskMetrics approach is a special case of a generalised autoregressive conditional 

heteroskedasticity (GARCH) model.  GARCH models, introduced by Engle (1982) and 

generalised by Bollerslev (1986) and Taylor (1986), are specifically designed to model and 

forecast conditional variances.  Volatility is modelled as a function of past values of the dependent 

variable and independent, or exogenous variables. 

 

In general form the GARCH(p,q) model can be written as: 
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                          (4) 

where Equation (4) states that the conditional variance of tourist arrivals depends on a constant (

), the previous period’s squared random component of tourist arrivals (referred to as ARCH 

effects or the short-run persistence of shocks) and the previous period’s variance (the contribution 

of shocks to long-run persistence, ).  Non-negativity of  requires that ,   and  are 

non-negative, while stationarity requires that .1  A value of  close to zero therefore 

implies that the persistence in volatility is high.  The GARCH model is suitable when large changes 

in returns are likely to be followed by further large changes. 

 

The GARCH model assumes that negative shocks have the same impact on future volatility 

(symmetry) as a big positive shock of the same magnitude, i.e. a terrorist attack on the tourist 

destination would have the same impact on volatility as hosting a major sporting event.  To allow 

for asymmetry (negative shocks have a larger impact on future volatility than positive shocks), one 

can use Nelson’s (1990) exponential GARCH model (EGARCH).  The model is given by: 

                       (5) 

The EGARCH model is asymmetric as long as  when , then positive shocks 

generate less volatility than negative shocks.  

 

                                                

1 It is also possible to consider so-called integrated GARCH models where .  However, in these models 

volatility shocks have permanent effects (see Engle and Bollerslev, 1986), which is not likely to be the case for tourist 

arrivals. 
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One can also account for asymmetry using the threshold GARCH (Thr.-GARCH) model 

introduced independently by Zakoïan (1994) and Glosten, Jaganathan and Runkle (1993).  The 

specification for the conditional variance is given by: 

                                (6) 

where  if  and 0 otherwise.  In this model, positive and negative shocks have 

differential effects on the conditional variance: negative shocks increase volatility, if , while 

shocks are symmetric if . 

 

Ding et. al. (1993) also introduced the Power ARCH specification to deal with asymmetry.  In the 

PARCH model the power parameter  is estimated rather than imposed, and optional parameters 

are added to capture asymmetry: 

                                (7) 

where ,  for ,  for all , and .  As in the previous models, 

shocks are asymmetric if . 

 

Rather than assume that the conditional variance shows mean reversion to , which is constant 

for all , one can estimate a model that allows mean reversion to a varying level, .  Using a 

GARCH(1,1) model, the component GARCH model (CGARCH) can be expressed as: 

                         (8) 
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The CGARCH model would be appropriate if policies implemented by tourism officials can result 

in reduced volatility in the industry.   

  

5. Empirical Results 

All models are estimated for the period 1977Q2 to 2005Q12 and the results are presented in Table 

x.  All specifications are estimated by maximum likelihood in the econometric programme EViews 

5.0.  Additionally, the Thr.-GARCH model is estimated assuming that the errors have a generalised 

error distribution, while all the remaining models assume that the conditional distribution of the 

errors is normal. 

 

The results for the ARCH(4) specification shows that with the exception of the second lag (which 

is insignificant), all the lags have a positive effect.  Moreover, the coefficients on the lags do not 

appear to decrease to zero very quickly, suggesting that a shock to tourist arrivals in the current 

month can have significant (but not too large) effects on volatility of arrivals four months ahead.  

The ARCH test suggests that the inclusion of the ARCH terms is enough to remove these effects 

from the residuals of the mean equation. 

 

For the GARCH(1,1) model all the coefficients are positive and significant at classical levels of 

testing.  The estimated value of  is 0.544, which implies that the residuals are stationary.  

Moreover, since the value of  is not close to unity, it implies that the persistence in volatility 

is not too high.  Like the ARCH model, the GARCH(1,1) removes all of the ARCH effects from 

the residuals in the mean equation.  However, the GARCH(1,1) model only requires the estimation 

of three unknowns, compared five in the case of the ARCH specification. 

ba +

ba +



 13 

 

To allow the effects of positive and negative shocks to differ the author also estimate three models 

that allow for asymmetry.  In the EGARCH(1,1,1) model, the GARCH term is now insignificant 

at normal levels of testing.  The results do, however, suggest that there is some asymmetry in the 

response of tourist arrivals volatility to shocks, since , but not in the direction originally 

anticipated.  Surprisingly,  is positive which suggests that positive economic shocks tend to have 

a larger effect on tourism volatility than negative shocks.  The authors investigated the robustness 

of this result by using different selection criteria (Schwarz, Akaike and Adjusted R-squared), but 

the results did not change appreciably. 

 

This surprising asymmetric result is also obtained when the Thr.-GARCH(1,1,1) model is 

employed.  In this model when  (-0.325) and suggests that positive shocks increase the 

volatility of tourist arrivals.  A similar estimate for the asymmetric term is also obtained when the 

PGARCH(1,1,1) model is used.  Again alternative selection criteria are employed, but the results 

did not vary significantly. 

 

The asymmetric response to economic shocks found in this paper, although surprising, can be 

attributed to the tourist area life cycle concept (see Moore and Whitehall, 2005 for evidence of this 

phenomena in Barbados).  This response may be due to the ebbs and flows of attracting new airlift 

capacity in a mature tourist destination like Barbados.  A larger number of flights coming to 

Barbados, provided there is enough demand, should lead to greater tourist arrivals.  However, it is 

a difficult task to build up demand in a new market.  Butler (1980) suggests that a tourist market 

goes through six key phases: exploration, involvement, development, consolidation, stagnation, 
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and decline and/or rejuvenation.  In the first two stages growth in arrivals is likely to be positive 

but slow and volatile.  

 

The final volatility model considered is the CGARCH model which allows mean reversion to 

varying levels of volatility.  Since , this implies that Equation (8) has an unconditional 

value of , or that shocks affecting the conditional variance decay exponentially, with a 

speed of mean reversion governed by .  In Table x,  has a value of 0.688, which suggest a 

fairly rapid speed of mean reversion. 

 

To compare the alternative volatility models, Figure 5 plots the estimated variances as implied by 

the parameter estimates.  In order to minimise the impact of initial conditions and to appreciate the 

differences across models the authors present the results for two years after 9/11.  The figure shows 

that the RiskMetrics, ARCH, CGARCH, GARCH all capture the large spike in volatility.  In 

addition, the volatility implied by the ARCH, EGARCH, PARCH and Thr.-GARCH are all less 

smooth than that obtained from the RiskMetrics, CGARCH and GARCH specifications 

 

The authors also compare the implied volatility obtained from the models outlined above to the 

estimated volatility using quantile-quantile (QQ)-plots.  The results are shown in Figure 6.  The 

QQ figures plot the quantiles of the chosen series against the quantiles of another series.  If the 

two distributions are the same, the QQ-plot should lie on a straight line.  If the QQ-plot does not 

lie on a straight line, the two distributions differ along some dimension. The pattern of deviation 

from linearity provides an indication of the nature of the mismatch.  One will notice that most of 

10 << r

)1/( rw -

r r
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the points on the QQ-plot for the CGARCH are on the straight line.  The implied variances from 

the GARCH model are also having a similar distribution to that of the estimated volatility.  

  

 

5. Conclusions 

 

This study estimates various models of tourism volatility using monthly data from 1977 to 2005.  

The models used include the popular RiskMetrics, ARCH, GARCH, exponential GARCH, 

Threshold GARCH, power GARCH and component GARCH.  Each model allows the author to 

examine a particular aspect of tourism volatility.  The ARCH and GARCH models suggest that 

there is some degree of volatility persistence in monthly tourist arrivals to Barbados, but it is not 

very large.   

 

The Threshold GARCH, Power GARCH and Exponential GARCH all indicate some degree of 

asymmetry in the volatility of tourism arrivals: positive shocks have a differential impact on future 

volatility than negative shocks.  The authors attribute these findings to the tourist area life cycle, 

where new markets tend to add to growth in arrivals, but are also likely to be more volatile.  The 

Component GARCH model also finds evidence of mean reversion to varying levels of volatility. 

 

The models are then evaluated by comparing the implied volatilities as well as with QQ-plots.  The 

results show that the CGARCH and GARCH models tend to capture most of the volatility 

persistence in the tourism arrivals to Barbados, and also have a similar distribution to that of the 

estimated volatility. 
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Table 1: Mean of Tourist Arrivals and Shares 1977-2005 

1977-1990 1991-2005 

Source Head Count Share/% Growth/% Source Head Count Share % Growth/% 

1.US 121,081 32.76 5.47 1.UK 164,549 34.43 5.06 

2.Canada 70,475 19.07 -2.85 2.US 115,062 24.08 -0.60 

3.CARICOM 70,046 18.95 1.99 3.CARICOM 74,882 15.67 4.16 

4.UK 61,702 16.69 10.11 4.OTHER 70,849 14.82 -2.50 

5.OTHER 46,317 12.53 4.38 5.Canada 52,575 11.00 -1.29 

Total 369,621 100 3.64 Total 466,905 100 1.58 
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Table 2: Descriptive Statistics and Unit Root Tests of Log of Monthly Deseasonalised Tourist 

Arrivals 

Statistic Value 

Mean 10.457 

Maximum 10.471 

Minimum 9.879 

St. Dev 0.197 

Skewness -0.366 

Kurtosis 2.546 

Jarque-Bera  10.777 

[0.004] 

Observations 348 

  

ARCH test (F-statistic) 5.827 

[0.016] 

  

ADF test -4.542 

[0.002] 

PP test -6.740 

[0.000] 

Notes: p-value given in square parenthesis.
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Table 3: List of Volatility Models 

Naïve  

RiskMetrics    

ARCH 
 

GARCH 
 

Taylor/Schwert 
 

A-GARCH 
 

Thr.-GARCH 
 

GJR-GARCH 
 

Log-GARCH 
 

EGARCH 

 

NGARCH 
 

A-PARCH 
 

CGARCH(1,1)a 
 

 a  Model also estimated with threshold. 
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Table 4:  Out-of-Sample Forecasting Accuracy  

 Forecast Comparison Criteria  Rank 

 Forecasting Horizon  Forecasting Horizon 

MSE1 1 3 6 12 24  1 3 6 1

2 

2

4 

Averag

e 

VOLF_AGARCH 2.72

6 

0.89

6 

1.11

6 

0.73

6 

0.75

7 

 1

2 

1

0 

1

1 

9 6 9.6 

VOLF_APARCH 1.68

8 

1.09

7 

1.06

7 

0.82

1 

0.86

2 

 1

1 

1

3 

1

0 

1

0 

1

2 

11.2 

VOLF_ARCH 0.71

8 

0.62

8 

0.76

3 

0.60

2 

0.67

6 

 8 4 2 1 1 3.2 

VOLF_CGARCH 0.12

2 

0.62

7 

0.77

2 

0.62

9 

0.72

0 

 3 3 3 4 4 3.4 

VOLF_CGARCHT 0.06

5 

0.55

1 

0.77

8 

0.62

5 

0.72

8 

 2 1 4 3 5 3 

VOLF_EGARCH 0.67

7 

0.60

1 

0.81

5 

0.62

3 

0.68

4 

 7 2 6 2 2 3.8 

VOLF_GARCH 0.34

3 

0.68

8 

0.82

5 

0.69

2 

0.76

3 

 4 7 7 5 7 6 

VOLF_GJRGARC

H 

0.36

7 

0.69

6 

0.73

3 

0.70

8 

0.77

4 

 5 8 1 7 9 6 

VOLF_LOGGARC

H 

0.39

5 

0.70

1 

0.77

8 

0.72

0 

0.77

8 

 6 9 5 8 1

0 

7.6 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.00

0 

1.00

0 

 9 1

1 

8 1

4 

1

3 

11 

VOLF_PARCH 1.14

6 

0.66

8 

1.03

4 

0.69

3 

0.71

6 

 1

0 

6 9 6 3 6.8 

VOLF_RSK 0.02

3 

0.64

4 

1.37

2 

0.93

9 

1.11

0 

 1 5 1

3 

1

3 

1

4 

9.2 

VOLF_TAYLOR 4.68

4 

1.19

9 

1.33

1 

0.83

6 

0.83

7 

 1

4 

1

4 

1

2 

1

1 

1

1 

12.4 

VOLF_TRGARCH 3.35

4 

1.04

2 

1.48

2 

0.85

5 

0.76

9 

 1

3 

1

2 

1

4 

1

2 

8 11.8 

             

MSE2 1 3 6 12 24  1 3 6 1

2 

2

4 

 

VOLF_AGARCH 3.18

2 

0.90

9 

0.50

9 

0.25

5 

0.04

8 

 1

2 

1

0 

1

0 

8 8 9.6 

VOLF_APARCH 1.81

6 

1.32

1 

0.67

4 

0.37

9 

0.13

0 

 1

1 

1

3 

1

1 

1

2 

1

1 

11.6 

VOLF_ARCH 0.69

2 

0.44

6 

0.18

4 

0.16

8 

0.02

4 

 8 5 4 3 3 4.6 

VOLF_CGARCH 0.10

3 

0.37

6 

0.16

4 

0.17

8 

0.04

4 

 3 3 2 5 7 4 
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 Forecast Comparison Criteria  Rank 

 Forecasting Horizon  Forecasting Horizon 

VOLF_CGARCHT 0.05

3 

0.28

3 

0.16

7 

0.16

9 

0.02

4 

 2 1 3 4 2 2.4 

VOLF_EGARCH 0.64

7 

0.30

8 

0.11

2 

0.14

4 

0.03

1 

 7 2 1 2 4 3.2 

VOLF_GARCH 0.30

9 

0.47

1 

0.21

4 

0.22

6 

0.07

7 

 4 6 5 7 1

0 

6.4 

VOLF_GJRGARC

H 

0.33

2 

0.42

0 

0.21

7 

0.32

9 

0.18

9 

 5 4 6 1

0 

1

3 

7.6 

VOLF_LOGGARC

H 

0.36

0 

0.52

4 

0.33

7 

0.32

7 

0.16

7 

 6 8 8 9 1

2 

8.6 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.00

0 

1.00

0 

 9 1

2 

1

2 

1

4 

1

4 

12.2 

VOLF_PARCH 1.16

6 

0.50

6 

0.32

4 

0.18

2 

0.00

3 

 1

0 

7 7 6 1 6.2 

VOLF_RSK 0.01

7 

0.54

3 

0.44

4 

0.11

2 

0.03

3 

 1 9 9 1 5 5 

VOLF_TAYLOR 6.12

7 

1.67

4 

1.03

7 

0.35

2 

0.06

1 

 1

4 

1

4 

1

4 

1

1 

9 12.4 

VOLF_TRGARCH 4.07

8 

0.93

6 

1.03

4 

0.38

0 

0.03

7 

 1

3 

1

1 

1

3 

1

3 

6 11.2 

             

R2LOG 1 3 6 12 24  1 3 6 1

2 

2

4 

 

VOLF_AGARCH 2.36

8 

0.98

3 

0.99

7 

0.91

0 

0.88

1 

 1

2 

1

0 

1

0 

9 8 9.8 

VOLF_APARCH 1.57

9 

1.00

5 

1.00

1 

0.94

1 

0.91

9 

 1

1 

1

2 

1

2 

1

3 

1

3 

12.2 

VOLF_ARCH 0.74

4 

0.93

3 

0.92

9 

0.85

8 

0.83

6 

 8 4 2 1 3 3.6 

VOLF_CGARCH 0.14

3 

0.93

2 

0.92

9 

0.87

7 

0.86

5 

 3 3 3 3 6 3.6 

VOLF_CGARCHT 0.07

8 

0.91

5 

0.92

0 

0.86

1 

0.85

5 

 2 2 1 2 5 2.4 

VOLF_EGARCH 0.70

5 

0.93

8 

0.94

0 

0.88

4 

0.87

2 

 7 5 4 5 7 5.6 

VOLF_GARCH 0.37

9 

0.94

7 

0.94

5 

0.90

6 

0.89

5 

 4 8 7 8 1

0 

7.4 

VOLF_GJRGARC

H 

0.40

3 

0.95

8 

0.94

4 

0.92

4 

0.91

9 

 5 9 6 1

1 

1

2 

8.6 

VOLF_LOGGARC

H 

0.43

2 

0.94

5 

0.94

1 

0.90

5 

0.89

1 

 6 7 5 7 9 6.8 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.00

0 

1.00

0 

 9 1

1 

1

1 

1

4 

1

4 

11.8 
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 Forecast Comparison Criteria  Rank 

 Forecasting Horizon  Forecasting Horizon 

VOLF_PARCH 1.12

8 

0.94

3 

0.96

4 

0.88

2 

0.85

1 

 1

0 

6 9 4 4 6.6 

VOLF_RSK 0.03

1 

0.81

8 

0.95

8 

0.91

4 

0.82

1 

 1 1 8 1

0 

1 4.2 

VOLF_TAYLOR 3.67

8 

1.01

8 

1.03

3 

0.92

9 

0.89

6 

 1

4 

1

4 

1

3 

1

2 

1

1 

12.8 

VOLF_TRGARCH 2.80

9 

1.01

5 

1.04

9 

0.88

4 

0.83

6 

 1

3 

1

3 

1

4 

6 2 9.6 

             

QLIKE 1 3 6 12 24  1 3 6 1

2 

2

4 

 

VOLF_AGARCH 1.00

6 

1.00

7 

0.90

6 

0.96

7 

0.92

9 

 1

3 

6 3 2 6 6 

VOLF_APARCH 1.00

4 

0.99

9 

0.96

3 

0.97

7 

0.89

2 

 1

1 

2 7 5 3 5.6 

VOLF_ARCH 0.99

7 

1.01

4 

0.97

3 

1.00

1 

0.94

9 

 8 1

3 

1

1 

1

1 

9 10.4 

VOLF_CGARCH 0.98

0 

1.00

9 

0.97

1 

0.99

6 

0.94

2 

 3 9 1

0 

9 7 7.6 

VOLF_CGARCHT 0.97

5 

1.01

1 

0.96

9 

0.99

4 

0.90

5 

 2 1

1 

9 8 4 6.8 

VOLF_EGARCH 0.99

6 

1.00

8 

0.93

7 

0.98

4 

0.97

4 

 7 7 6 6 1

1 

7.4 

VOLF_GARCH 0.98

9 

1.00

9 

0.96

3 

0.98

6 

0.94

4 

 4 8 8 7 8 7 

VOLF_GJRGARC

H 

0.99

0 

1.00

6 

0.99

1 

1.00

4 

0.98

6 

 5 5 1

2 

1

3 

1

2 

9.4 

VOLF_LOGGARC

H 

0.99

1 

1.00

9 

0.99

9 

1.00

1 

0.97

2 

 6 1

0 

1

3 

1

2 

1

0 

10.2 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.00

0 

1.00

0 

 9 4 1

4 

1

0 

1

3 

10 

VOLF_PARCH 1.00

1 

1.01

3 

0.91

3 

0.97

1 

0.88

9 

 1

0 

1

2 

5 3 2 6.4 

VOLF_RSK 0.94

6 

1.01

7 

0.88

2 

1.05

6 

1.07

2 

 1 1

4 

1 1

4 

1

4 

8.8 

VOLF_TAYLOR 1.00

6 

0.99

9 

0.91

3 

0.95

7 

0.86

9 

 1

2 

3 4 1 1 4.2 

VOLF_TRGARCH 1.00

7 

0.99

4 

0.90

3 

0.97

4 

0.91

9 

 1

4 

1 2 4 5 5.2 

             

MAE1 1 3 6 12 24  1 3 6 1

2 

2

4 

 

VOLF_AGARCH 1.65

1 

0.95

5 

1.05

0 

0.87

1 

0.79

6 

 1

2 

1

1 

1

1 

9 7 10 
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 Forecast Comparison Criteria  Rank 

 Forecasting Horizon  Forecasting Horizon 

VOLF_APARCH 1.29

9 

1.09

0 

1.02

0 

0.91

7 

0.87

3 

 1

1 

1

3 

1

0 

1

2 

1

2 

11.6 

VOLF_ARCH 0.84

8 

0.77

4 

0.85

9 

0.79

0 

0.76

4 

 8 6 6 1 3 4.8 

VOLF_CGARCH 0.35

0 

0.73

8 

0.84

7 

0.80

3 

0.78

8 

 3 3 2 3 5 3.2 

VOLF_CGARCHT 0.25

4 

0.67

7 

0.85

1 

0.80

3 

0.79

2 

 2 1 3 4 6 3.2 

VOLF_EGARCH 0.82

3 

0.67

9 

0.85

7 

0.79

1 

0.76

4 

 7 2 5 2 2 3.6 

VOLF_GARCH 0.58

6 

0.79

1 

0.88

8 

0.84

7 

0.81

8 

 4 7 7 6 8 6.4 

VOLF_GJRGARC

H 

0.60

6 

0.76

1 

0.83

5 

0.84

7 

0.84

3 

 5 4 1 7 1

0 

5.4 

VOLF_LOGGARC

H 

0.62

9 

0.81

7 

0.85

4 

0.85

4 

0.83

4 

 6 9 4 8 9 7.2 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.00

0 

1.00

0 

 9 1

2 

9 1

4 

1

4 

11.6 

VOLF_PARCH 1.07

1 

0.80

1 

0.97

7 

0.82

7 

0.76

2 

 1

0 

8 8 5 1 6.4 

VOLF_RSK 0.15

1 

0.76

8 

1.07

4 

0.87

3 

0.88

6 

 1 5 1

2 

1

0 

1

3 

8.2 

VOLF_TAYLOR 2.16

4 

1.16

3 

1.14

9 

0.92

0 

0.84

5 

 1

4 

1

4 

1

4 

1

3 

1

1 

13.2 

VOLF_TRGARCH 1.83

1 

0.92

6 

1.11

6 

0.87

8 

0.78

4 

 1

3 

1

0 

1

3 

1

1 

4 10.2 

             

MAE2 1 3 6 12 24  1 3 6 1

2 

2

4 

 

VOLF_AGARCH 1.78

4 

0.95

3 

1.07

2 

0.82

9 

0.75

5 

 1

2 

1

0 

1

1 

9 6 9.6 

VOLF_APARCH 1.34

7 

1.14

9 

1.05

4 

0.89

8 

0.84

9 

 1

1 

1

3 

1

0 

1

1 

1

2 

11.4 

VOLF_ARCH 0.83

2 

0.66

8 

0.81

5 

0.71

4 

0.71

6 

 8 5 6 2 3 4.8 

VOLF_CGARCH 0.32

2 

0.61

3 

0.79

8 

0.72

2 

0.73

9 

 3 3 2 3 5 3.2 

VOLF_CGARCHT 0.23

1 

0.53

2 

0.80

2 

0.72

3 

0.73

8 

 2 1 3 4 4 2.8 

VOLF_EGARCH 0.80

4 

0.55

5 

0.81

2 

0.70

8 

0.70

8 

 7 2 4 1 1 3 

VOLF_GARCH 0.55

6 

0.68

6 

0.84

8 

0.77

6 

0.77

0 

 4 6 7 7 7 6.2 
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 Forecast Comparison Criteria  Rank 

 Forecasting Horizon  Forecasting Horizon 

VOLF_GJRGARC

H 

0.57

6 

0.64

8 

0.77

9 

0.77

2 

0.79

3 

 5 4 1 5 9 4.8 

VOLF_LOGGARC

H 

0.60

0 

0.72

4 

0.81

3 

0.79

6 

0.79

9 

 6 8 5 8 1

0 

7.4 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.00

0 

1.00

0 

 9 1

2 

9 1

4 

1

4 

11.6 

VOLF_PARCH 1.08

0 

0.71

1 

0.97

9 

0.77

4 

0.71

3 

 1

0 

7 8 6 2 6.6 

VOLF_RSK 0.13

0 

0.78

6 

1.16

0 

0.88

5 

0.96

3 

 1 9 1

2 

1

0 

1

3 

9 

VOLF_TAYLOR 2.47

5 

1.29

4 

1.24

5 

0.92

4 

0.82

4 

 1

4 

1

4 

1

3 

1

3 

1

1 

13 

VOLF_TRGARCH 2.01

9 

0.96

7 

1.24

5 

0.90

5 

0.77

0 

 1

3 

1

1 

1

4 

1

2 

8 11.6 
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Table 5:  Out-of-Sample Forecasting Accuracy (Combination Models) 

 Comparison Criteria  Rank 

 Forecasting Horizon  Forecasting Horizon 

MSE1 1 3 6 12 24  1 3 6 12 24 Avera

ge 

VOLF_COMB

1 

0.25

2 

0.59

6 

0.93

8 

0.698 0.811  4 1 4 4 5 3.6 

VOLF_COMB

2 

0.13

9 

0.59

7 

0.90

7 

0.681 0.798  1 2 2 2 3 2 

VOLF_COMB

3 

3.06

3 

0.76

6 

1.25

4 

0.728 0.776  7 5 7 5 1 5 

VOLF_COMB

4 

0.18

2 

0.59

8 

0.91

3 

0.692 0.805  2 3 3 3 4 3 

VOLF_COMB

5 

0.40

6 

0.61

6 

0.87

5 

0.655 0.778  5 4 1 1 2 2.6 

VOLF_COMB

6 

0.19

1 

1.16

3 

1.03

8 

1.031 1.016  3 7 6 7 7 6 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.000 1.000  6 6 5 6 6 5.8 

             

MSE2 1 3 6 12 24  1 3 6 12 24  

VOLF_COMB

1 

0.22

2 

0.39

5 

0.43

2 

0.265 0.056  4 3 3 4 4 3.6 

VOLF_COMB

2 

0.11

8 

0.37

3 

0.35

7 

0.237 0.050  1 1 2 2 3 1.8 

VOLF_COMB

3 

3.65

7 

0.68

6 

0.69

7 

0.243 0.039  7 5 5 3 1 4.2 

VOLF_COMB

4 

0.15

7 

0.38

6 

0.43

7 

0.286 0.074  2 2 4 5 5 3.6 

VOLF_COMB

5 

0.37

1 

0.40

5 

0.32

0 

0.217 0.041  5 4 1 1 2 2.6 

VOLF_COMB

6 

0.16

6 

1.21

1 

1.02

6 

1.091 0.971  3 7 7 7 6 6 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.000 1.000  6 6 6 6 7 6.2 

             

R2LOG 1 3 6 12 24  1 3 6 12 24  

VOLF_COMB

1 

0.28

4 

0.91

9 

0.94

1 

0.855 0.854  4 2 3 2 4 3 

VOLF_COMB

2 

0.16

1 

0.92

0 

0.93

7 

0.860 0.858  1 3 1 4 5 2.8 

VOLF_COMB

3 

2.60

8 

0.95

8 

0.99

4 

0.860 0.843  7 5 5 5 1 4.6 

VOLF_COMB

4 

0.20

9 

0.91

9 

0.93

8 

0.854 0.852  2 1 2 1 2 1.6 
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 Comparison Criteria  Rank 

 Forecasting Horizon  Forecasting Horizon 

VOLF_COMB

5 

0.44

3 

0.93

1 

0.94

2 

0.858 0.852  5 4 4 3 3 3.8 

VOLF_COMB

6 

0.21

9 

1.01

1 

0.99

7 

1.007 1.005  3 7 6 7 7 6 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.000 1.000  6 6 7 6 6 6.2 

             

QLIKE 1 3 6 12 24  1 3 6 12 24  

VOLF_COMB

1 

0.98

6 

1.01

3 

0.97

1 

0.994 0.819  4 7 3 3 1 3.6 

VOLF_COMB

2 

0.98

1 

1.01

1 

0.96

9 

0.993 0.839  1 4 2 2 2 2.2 

VOLF_COMB

3 

1.00

7 

1.01

0 

0.90

5 

0.972 0.896  7 3 1 1 5 3.4 

VOLF_COMB

4 

0.98

3 

1.01

2 

0.97

8 

1.001 0.855  2 5 5 7 4 4.6 

VOLF_COMB

5 

0.99

1 

1.01

3 

0.97

2 

0.997 0.852  5 6 4 4 3 4.4 

VOLF_COMB

6 

0.98

4 

0.98

9 

0.99

4 

1.000 0.996  3 1 6 5 6 4.2 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.000 1.000  6 2 7 6 7 5.6 

             

MAE1 1 3 6 12 24  1 3 6 12 24  

VOLF_COMB

1 

0.50

2 

0.74

7 

0.94

7 

0.848 0.844  4 3 4 5 5 4.2 

VOLF_COMB

2 

0.37

2 

0.73

4 

0.92

5 

0.838 0.837  1 1 2 2 4 2 

VOLF_COMB

3 

1.75

0 

0.85

4 

1.07

5 

0.847 0.798  7 5 7 4 1 4.8 

VOLF_COMB

4 

0.42

7 

0.74

2 

0.93

2 

0.842 0.837  2 2 3 3 3 2.6 

VOLF_COMB

5 

0.63

8 

0.75

4 

0.91

2 

0.822 0.827  5 4 1 1 2 2.6 

VOLF_COMB

6 

0.43

7 

1.04

8 

1.01

1 

0.998 0.980  3 7 6 6 6 5.6 

VOLF_NAIVE 1.00

0 

1.00

0 

1.00

0 

1.000 1.000  6 6 5 7 7 6.2 
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 Comparison Criteria  Rank 

 Forecasting Horizon  Forecasting Horizon 

VOLF_COMB

2 

0.34

3 

0.61
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0.90
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0.60

9 
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0.760 0.786  5 4 1 1 2 2.6 

VOLF_COMB
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1.013 0.989  3 7 6 7 6 5.8 

VOLF_NAIVE 1.00
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1.00
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1.00

0 

1.000 1.000  6 6 5 6 7 6 
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Table 6:  Superior Predictive Ability Tests 

 Naïve SPAl SPAc SPAu 

Benchmark: RiskMetrics     

MSE1 0.149 0.222 0.222 0.222 

MSE2 0.049 0.068 0.068 0.068 

QLIKE 0.010 0.010 0.010 0.010 

R2LOG 0.576 0.569 0.648 0.668 

MAE1 0.164 0.243 0.243 0.254 

MAE2 0.151 0.213 0.213 0.222 

     

Benchmark: GARCH(1,1)     

MSE1 0.003 0.007 0.008 0.009 

MSE2 0.005 0.010 0.010 0.012 

QLIKE 0.004 0.008 0.009 0.011 

R2LOG 0.232 0.011 0.011 0.012 

MAE1 0.047 0.016 0.019 0.022 

MAE2 0.065 0.018 0.018 0.026 

     

Benchmark: 

CGARCHT(1,1) 

    

MSE1 0.031 0.085 0.089 0.158 

MSE2 0.037 0.084 0.090 0.147 

QLIKE 0.026 0.065 0.070 0.092 

R2LOG 0.357 0.142 0.142 0.257 

MAE1 0.200 0.150 0.150 0.263 

MAE2 0.228 0.208 0.212 0.314 



 31 

Figure 1:  
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Figure 2: 
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Figure 3: Log of Deseasonalised Tourist Arrivals  
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Figure 4: Volatility of Arrivals to Barbados 
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Figure 5: Performance of Volatility Models Post 9/11 
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Figure 6: Empirical Quantile-Quantile Plots 
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