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Abstract

Time-varying VAR models have become increasingly popular and are now widely used for policy
analysis and forecast purposes. They constitute fundamental tools for the anticipation and anal-
ysis of economic crises, which represent rapid shifts in dynamic responses and shock volatility.
Yet, despite their flexibility, time-varying VARs remain subject to a number of limitations. On
the theoretical side, the conventional random walk assumption used for the dynamic parameters
appears excessively restrictive. It also conceals the potential heterogeneities existing between the
dynamic processes of different variables. On the application side, the standard two-pass proce-
dure building on the Kalman filter proves excessively complicated and suffers from low efficiency.

Based on these considerations, this paper contributes to the literature in four directions:
i) it introduces a general time-varying VAR model which relaxes the standard random walk as-
sumption and defines the dynamic parameters as general auto-regressive processes with variable-
specific mean values and autoregressive coefficients.
ii) it develops an estimation procedure for the model which is simple, transparent and efficient.
The procedure requires no sophisticated Kalman filtering methods and reduces to a standard
Gibbs sampling algorithm.
iii) as an extension, it develops efficient procedures to estimate endogenously the mean values
and autoregressive coefficients associated with each variable-specific autoregressive process.
iv) through a case study of the Great Recession for four major economies (Canada, the Euro
Area, Japan and the United States), it establishes that forecast accuracy can be significantly
improved by using the proposed general time-varying model and its extensions in place of the
traditional random walk specification.
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1 Introduction

VAR models have become the cornerstone of applied macroeconomics. Since the seminal work of
Sims (1980), they have been used extensively by financial and economic institutions to perform
routine policy analysis and forecasts. While convenient, VAR models with static coefficients
and residual variance often turn out to be excessively restrictive in capturing the dynamics of
time-series, which often exhibit some form of non-linearity in their behaviours. This motivated
the introduction of time-varying coefficients in VAR models (Doan et al. (1983), Canova (1993),
Stock and Watson (1996), Cogley (2001), Ciccarelli and Rebucci (2003)), along with stochastic
volatility (Harvey et al. (1994), Jacquier et al. (1995), Uhlig (1997), Chib et al. (2006)), and
more recently both features (Cogley and Sargent (2005), Primiceri (2005)), in order to account
for potential shifts in the transmission mechanism and volatility of the underlying structural
shocks.

Since then, time-varying VAR models have become increasingly popular. They have been used
for a wide range of applications related to policy analysis, including the evolution of monetary
policy over the last decades (Primiceri (2005), Mumtaz and Zanetti (2013), Korobilis (2013)),
the response to exchange rate movements (Mumtaz and Sunder-Plassmann (2010), Kavtaradze
and Mokhtari (2018), Abbate and Marcellino (2018b)), the impact of fiscal policy (Gerba and
Hauzenberger (2013), Eisenstat et al. (2016)), or the general analysis of macroeconomic fluctua-
tions (Gali and Gambetti (2008), Koop and Korobilis (2012)). Time-varying vector autoregres-
sions have also become a benchmark for forecasting as a well-established literature demonstrates
that they generally perform better than their static counterparts (Clark (2011), D’Agostino et al.
(2011), Aastveit et al. (2017), Abbate and Marcellino (2018a)).

Lately, time-varying VAR models have received much attention regarding the analysis and an-
ticipation of economic crises, in particular the events of the Great Recession. The literature has
considered two main classes of explanations for this episode of severe economic decline. The
first view focuses on the heteroskedasticity of the exogenous shocks (Stock and Watson (2012),
Doh and Connolly (2013), Bijsterbosch and Falagiarda (2014), Gambetti and Musso (2017)). It
interprets the Great Recession primarily as an episode of sharp volatility of the structural dis-
turbances affecting the economy. The second view emphasizes the changes in the transmission
mechanism (Baumeister and Benati (2010), Benati and Lubik (2014), Ellington et al. (2017)
among many others). It considers the Great Recession essentially as a period of altered response
of macroeconomic variables to economic policy. In either case, there is strong evidence that
modelling time variation adequately is important to the accuracy of both policy analysis and
forecasts in a context of crisis. In this respect, it seems plausible that the Great Recession could
have been better apprehended with a proper use of time-varying VAR models. Time-varying
VARs may also constitute a benchmark tool in the future to predict economic downturns and
accurately forecast their evolutions.

Despite the versatility of time-varying VAR models, there remain concerns about their per-
formances. The most widely employed methodology, in line with the seminal contributions of
Primiceri (2005) and Del Negro and Primiceri (2015), implies a number of limitations of both
theoretical and applied order.
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On the theoretical side, the first limitation consists in the choice of a random walk specification
for the laws of motion of the different dynamic parameters. This formulation has been widely
adopted by the literature, both for the VAR coefficients and the log volatilities of the structural
shocks. Though convenient for its simplicity and parsimony, it may be inconsistent with the
behaviour of the data. A random walk implies that the range of values taken by the dynamic
parameters of the model increases over time and becomes eventually unbounded, resulting in an
explosive behaviour in the limit. This is at odd with both empirical observations and economic
theory such as the notion of balanced growth path. Most importantly, it is unlikely that such a
formulation proves appropriate to describe the short-term fluctuations of economic data. For in-
stance, a well-known feature of the random walk is that it grants equal weight to all past shocks.
But if an economy experiences rapid shifts in its dynamics due to a series of large disturbances,
as would be the case in a context of crisis, it becomes crucial to capture correctly the effect of the
most recent shocks while granting less weight to past shocks. This supposes the use of more gen-
eral formulations, possibly stationary and mean-reverting, in place of the standard random walk.

The random walk specification is further criticisable as it results de facto in a homogeneity as-
sumption. It indeed implies that all the dynamic parameters follow a similar unit-root process.
There is yet no legitimate reason to assume that the dynamic parameters of different variables
evolve homogenously. In fact, it is quite likely that different economic variables are characterised
by different behaviours of their dynamic coefficients and residual volatilities. Following, the state
equations of the parameters should be formulated on a variable-specific basis to account for the
potential heterogeneities prevailing from one variable to another.

While switching from a homogeneous random walk specification to a set of variable-specific sta-
tionary processes is conceptually trivial, it complicates the estimation procedure. Perhaps for
this reason, and even though such alternative formulations have attracted considerable attention
in the univariate ARCH literature (Jacquier et al. (1994), Kim et al. (1998), Chib et al. (2002),
Jacquier et al. (2004), Eisenstat and Strachan (2016), among others), the contributions on the
multivariate side are considerably more limited. Doan et al. (1983) consider a general stationary
formulation for the VAR coefficients of their model, but set the autoregressive coefficient to 0.999,
which effectively turns the formulation into a random walk. Ciccarelli and Rebucci (2003) and
Lubik and Matthes (2015) also propose a general stationary formulation for the law of motion
of their time-varying VAR models, but retain the random walk for empirical applications. Clark
and Ravazzolo (2015) test for different specifications of stochastic volatility in VAR models, in-
cluding a stationary autoregressive specification. Their results with the competing random walk
formulation are overall inconclusive.

The main challenge while adopting a general stationary process for the dynamic parameters is
that of a choice for the mean values and autoregressive coefficients. As economic theory pro-
vides little guidance, the literature has mostly avoided the issue by adopting the random walk
specification. Yet another option consists in estimating those parameters endogenously. While
there has been again much attention to this question in the univariate ARCH literature (see
references hereabove), effort has been scarce on the multivariate side. In a first attempt to de-
termine the mean of the structural shock volatility, Uhlig (1997) relies on a set of Beta prior
distributions. Primiceri (2005) questions the random walk assumption and tests for exogenous
estimation of the autoregressive coefficients on the dynamic processes. He obtains near random
walk estimates and concludes that no relevant differences exist compared to the homogeneous
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random walk specification. Nevertheless, he does not include a mean term in the autoregressive
processes and does not adopt an variable-specific formulation, which may significantly affect the
results. Mumtaz and Zanetti (2013) endogenously estimate a single autoregressive coefficient on
stochastic volatility, assumed to be common to all the structural shocks.

Aside from theoretical considerations, estimation remains the main challenge for time-varying
VAR models. Except for a marginal number of contributions building on frequentist methods
(Gorgi et al. (2017)), the Bayesian approach has been unanimously adopted by the literature for
its flexibility. So far the benchmark methodology relies on the state-space formulation proposed
by Primiceri (2005), building on the algorithm developed by Carter and Kohn (1994). The
technique involves a two-pass procedure. It starts with an initial forward filtering pass making
use of the Kalman filter to produce recursively the predictive mean for each period, followed
by a subsequent backward filtering pass drawing the states in reverse order. A first limit of
the procedure resides in its complexity. The use of multiple filtering stages combined with the
general Kalman filter approach makes the technique complicated to understand and implement.
It also limits the transparency and intuitiveness of the procedure.

A second concern comes for the efficiency of the process. The multiple loops through time and
the building of the states in a recursive fashion considerably slow down the procedure. It is
not uncommon for time-varying Bayesian VARs to be estimated in hours or even days. This
significantly reduces the attractiveness of the model, feasibility remaining a key factor in empir-
ical applications. In this respect, an important contribution was made by Chan and Jeliazkov
(2009). These authors propose to replace the usual state-space resolution method with a pre-
cision sampler based on a full sample formulation. Despite its efficiency, the procedure has
remained confidential and applications have been limited. Poon (2018) expands the approach to
time-varying panel VAR models, using a structural factor approach, while Chan and Eisenstat
(2018) expand the use of the precision sampler to the estimation of the structural identification
matrix. These preliminary expansions remain nevertheless limited. First, they only extend the
precision sampler to a fraction of the parameters involved in the model. Second, the dynamic
parameters remain defined by the standard random walk approach. Third, the formulation of
the precision sampler is not optimised, resulting in reduced efficiency benefits.

Based on these considerations, this paper contributes to the literature in four directions. First,
it introduces a general time-varying VAR model which adopts a fully variable-specific approach.
For each dynamic parameter, the homogeneous random assumption is relaxed and replaced with
a general autoregressive processes with variable-specific mean values and autoregressive coef-
ficients. Second, it proposes an estimation procedure for the model which replaces the usual
state-space approach by the precision sampler of Chan and Jeliazkov (2009), generalised to all
the dynamic parameters of the model. The procedure is simple, intuitive, and reduces to a
standard Gibbs sampling algorithm. It it also optimised in its formulation and provides con-
siderable efficiency gains. Third, it proposes extension procedures to endogenously estimate the
mean terms and autoregressive coefficients associated with the laws of motion of each dynamic
parameters. The employed priors are informative and contribute to improve the performances
of the model. Finally, it conducts a case study on the Great Recession in four major economies
(Canada, the European Union, Japan and the United States) which shows that the forecasts
produced by the general time-varying model and its extensions outperform the competing homo-
geneous random walk specifications. Following, it suggests that the crisis could have been better
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predicted with a proper use of time-varying VAR models. In this respect, this paper adds to
a growing literature discussing the optimal specification of time-varying VAR models regarding
forecast accuracy (Clark and Ravazzolo (2015), Aastveit et al. (2017), Kalli and Griffin (2018)).

The remaining of the paper is organised as follows: section 2 introduces the general time-varying
model and provides the details of the estimation procedure; section 3 discusses the efficiency
of the procedure compared to the usual state-space formulation, along with alternative estima-
tion strategies for the stochastic volatility components of the model; section 4 and 5 respectively
develop the extensions allowing for endogenous estimation of the autoregressive coefficients (ran-
dom inertia) and mean terms (random mean) of the dynamic parameters; section 6 presents the
results of the case study on the Great Recession and discusses the benefits of the general time-
varying model and its extensions in terms of forecast accuracy; section 7 concludes.

2 A general time-varying model

2.1 The model

Consider the general time-varying model:

yt = Ctzt +A1,tyt−1 + · · ·+Ap,tyt−p + εt t = 1, · · · , T , εt ∼ N (0,Σt) (1)

yt is a n× 1 vector of observed endogenous variables, zt is a m× 1 vector of observed exogenous
variables such as constant or trends, and εt is a n×1 vector of reduced-form residuals.1 The resid-
uals are heteroskedastic disturbances following a normal distribution with variance-covariance
matrix Σt. Ct, A1,t, · · · , Ap,t are matrices of time-varying VAR coefficients comfortable with zt
and the lagged values of yt. Stacking in a vector βt the set of VAR coefficients, (1) rewrites:

yt = Xtβt + εt (2)

with:

Xt = In ⊗ xt , xt =
(
z′t y′t−1 · · · y′t−p

)
, βt = vec(Bt) , Bt =

(
Ct A1,t · · · Ap,t

)′
(3)

Considering specifically row i of (2), the equation for variable i of the model rewrites:

yi,t = xtβi,t + εi,t (4)

where βi,t is the k × 1 vector obtained from column i of Bt. Stacking (4) over the T sample
periods yields a full sample formulation for variable i:

Yi = Xβi + E i (5)

with:

Yi =


yi,1
yi,2

...
yi,T

 , X =


x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xT

 , βi =


βi,1
βi,2

...
βi,T

 , E i =


εi,1
εi,2

...
εi,T

 (6)

1Unlike Primiceri (2005) and part of the literature, the model is introduced in reduced form rather than as
a structural VAR. There are a number of reasons for doing so, including intuitiveness and flexibility in the
implementation of a potential structural decomposition. The correspondence between the two formulations is
neverthless straightforward, as the matrix ∆−1 developed in this model is readily identified as the structural
matrix in Primiceri (2005).
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The variance-covariance matrix Σt for the reduced form residuals is decomposed into:

Σt = ∆tΛt∆
′
t (7)

∆t is a unit lower triangular matrix, and Λt is a diagonal matrix with positive diagonal entries,
taking the form:

∆t =


1 0 · · · 0

δ21,t 1
. . .

...
...

. . .
. . . 0

δn1,t · · · δn(n−1),t 1

 , Λt =


s1 exp(λ1,t) 0 · · · 0

0 s2 exp(λ2,t)
. . .

...
...

. . .
. . . 0

0 · · · 0 sn exp(λn,t)

 (8)

The decomposition of the variance-covariance matrix Σt implemented in (9) is common in time-
series models (see for instance Hamilton (1994)). The coefficients in ∆t and Λt can be respectively
interpreted as the covariance and volatility components of Σt. The si terms are positive scaling
hyperparameters which represent the equilibrium value of the diagonal entries of Λt. For technical
reasons which will become clear later, it is more convenient to work with ∆−1t than with ∆t. The
transformation is harmless since there is a one-to-one correspondence between the two terms.
As ∆t is unit lower triangular, so is ∆−1t :

∆−1t =


1 0 · · · 0

δ−121,t 1
. . .

...
...

. . .
. . . 0

δ−1n1,t · · · δ−1n(n−1),t 1

 (9)

Denoting by δ−1i,t the vector of non-zero and non-one terms in row i of ∆−1t so that δ−1i,t =

(δ−1i1,t · · · δ−1i(i−1),t)
′, δ−1i,t represents the (inverse) residual covariance terms of variable i with

the other variables of the model.

The dynamics of the model’s time varying parameters is specified as follows:

βi,t = (1− ρi)bi + ρiβi,t−1 + ξi,t t = 2, 3, . . . , T ξi,t ∼ N (0,Ωi)

βi,1 = bi + ξi,1 t = 1 ξi,1 ∼ N (0, τΩi)

λi,t = γiλi,t−1 + νi,t t = 2, 3, . . . , T νi,t ∼ N (0, φi)

λi,1 = νi,1 t = 1 νi,1 ∼ N (0, µφi)

δ−1i,t = (1− αi)d−1i + αiδ
−1
i,t−1 + ηi,t t = 2, 3, . . . , T ηi,t ∼ N (0,Ψi)

δ−1i,1 = d−1i + ηi,1 t = 1 ηi,1 ∼ N (0, ε Ψi) (10)

ρi, γi and αi represent variable-specific autoregressive coefficients while bi, si and d−1i represent
the mean values of the processes. In the base version of the model, these are treated as exoge-
nously set hyperparameters, an assumption which will be relaxed in sections 4 and 5. Clearly,
each law of motion nests the usual random walk specification as a special case setting the autore-
gressive coefficient to 1. For each process, the initial period is formulated to be consistent with
the overall dynamics of the parameters. The mean corresponds to the unconditional expectation
of the process, while the variance is scaled by the hyperparameters τ, µ, ε > 1 in order to account
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for the greater uncertainty associated with the initial period.

All the innovations in the model are assumed to be jointly normally distributed with the following
assumptions on the variance covariance matrix:

V ar


εt
ξi,t
νi,t
ηi,t

 =


Σt 0 0 0
0 Ωi 0 0
0 0 φi 0
0 0 0 Ψi

 (11)

This concludes the description of the model. The parameters of interest to be estimated are: the
dynamic VAR coefficients βi = {βi,t : i = 1, . . . , n; t = 1, . . . , T}, the dynamic volatility terms
λi = {λi,t : i = 1, . . . , n; t = 1, . . . , T}, the dynamic inverse covariance terms δ−1i = {δ−1i,t : i =
2, . . . , n; t = 1, . . . , T}, and the associated variance-covariance parameters Ωi, φi and Ψi. To
these six base parameters must be added an additional parameter ri = {ri,t : i = 1, . . . , n;
t = 1, . . . , T}, whose role will be clarified shortly.

2.2 Bayes rule

Following most of the litterature on time-varying VAR models, Bayesian methods are used to
evaluate the posterior distributions of the parameters of interest. Given the model, Bayes rule
is given by:

π(β,Ω, λ, φ, δ−1,Ψ, r|y) ∝ f(y|β, λ, δ−1, r)

×
(

n∏
i=1

π(βi|Ωi)π(Ωi)

)(
n∏
i=1

π(λi|φi)π(φi)

)(
n∏
i=2

π(δ−1i |Ψi)π(Ψi)

)(
n∏
i=1

T∏
t=1

π(ri,t)

)
(12)

2.3 Likelihood function

A standard formulation of the likelihood function can be obtained from (2):

f(y|β, λ, δ−1, r) =
T∏
t=1

(2π)−n/2|Σt|−1/2exp
(
−1

2
(yt −Xtβt)

′Σ−1t (yt −Xtβt)

)
(13)

(13) does not permit to estimate the different parameters of the model since it is not expressed
in variable-specific terms. After some manipulations, it reformulates as:

f(y|β, λ, δ−1, r) = (2π)−nT/2

(
n∏
i=1

s
−T/2
i

)
exp

(
−1

2

n∑
i=1

λ′i1T

)

× exp

(
−1

2

n∑
i=1

s−1i

{
(Yi −Xβi)′Λ̃i(Yi −Xβi) + (E−i δ−1i )′Λ̃i(E−i δ−1i ) + 2(Yi −Xβi)′Λ̃i(E−i δ−1i )

})
(14)
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with:

λi =


λi,1
λi,2

...
λi,T

 , 1T =


1
1
...
1

 , Λ̃i =


exp(−λi,1) 0 · · · 0

0 exp(−λi,2)
. . .

...
...

. . .
. . . 0

0 · · · 0 exp(−λi,T )



E−i =


ε′−i,1 0 · · · 0

0 ε′−i,2
. . .

...
...

. . .
. . . 0

0 · · · 0 ε′−i,T

 , ε−i,t =


ε1,t
ε2,t

...
εi−1,t

 , δ−1i =


δ−1i,1
δ−1i,2

...

δ−1i,T

 (15)

(14) proves convenient for the estimation of βi and δ−1i , but does not provide any conjugacy
for λi due to the presence of the exponential term Λ̃i. This is a well-known issue of models
with stochastic volatility, and the most efficient solution is the so-called normal offset mixture
representation proposed by Kim et al. (1998).2 The procedure consists in reformulating the

likelihood function in terms of the transformed shock et = (∆tΛ
1/2
t )−1εt. It is trivially shown

that et is a vector of structural shock with et ∼ N (0, In). Considering specifically the shock ei,t
in the vector, squaring, taking logs and rearranging eventually yields:

êi,t = log(e2i,t) = ŷi,t − λi,t ŷi,t = log
(
s−1i (εi,t + δ−1i,t

′ε−i,t)
2
)

(16)

êi,t follows a log chi-squared distribution which does not grant any conjugacy. Kim et al. (1998)
thus propose to approximate the shock as an offset mixture of normal distributions. The ap-
proximation is given by:

êi,t ≈
7∑
j=1

1(ri,t = j) zj , zj ∼ N (mj , vj) , P r(ri,t = j) = qj (17)

The values for mj , vj and qj can be found in Table 4 of Kim et al. (1998). The constants mj

and vj respectively represent the mean and variance components of the normally distributed
random variable zj . ri,t is a categorical random variable taking discrete values j = 1, . . . , 7, the
probability of obtaining each value being equal to qj . Finally, 1(ri,t = j) is an indicator function
taking a value of 1 if ri,t = j, and a value of 0 otherwise. To draw from the log chi-squared
distribution, the mixture first randomly draws a value for ri,t from its categorical distribution;
once ri,t is known, its value determines which component zj of the mixture is selected. êi,t then
turns into a regular normal random variable with mean mj and variance vj . Given (16) and the
offset mixture (17), an approximation of the likelihood function obtains as:

f(y|β, λ, δ−1, r) =
n∏
i=1

T∏
t=1

7∑
j=1

1(ri,t = j)

{
(2πvj)

−1/2 exp

(
−1

2

(ŷi,t − λi,t −mj)
2

vj

)}
(18)

For the estimation of λi, a more convenient joint formulation can be adopted. Defining ri =
(ri,1 . . . ri,T )′, denoting by J any possible value for ri, by mJ and vJ the resulting mean and
variance vectors, and defining VJ = diag(vJ), the likelihood function rewrites as a mixture of
multivariate normal distributions:
2Section 3.3 discusses a number of alternative strategies to overcome this issue.
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f(y|β, λ, δ−1, r)

=
n∏
i=1

J∑
1(ri = J)

{
(2π)−T/2|VJ |−1/2exp

(
−1

2
(Ŷi − λi −mJ)′V −1J (Ŷi − λi −mJ)

)}
(19)

with:

Ŷi =
(
ŷi,1 ŷi,2 . . . ŷi,T

)′
= log(s−1i Qi) Qi = (E i + E−i δ−1i )2 (20)

2.4 Priors

The formulation of the priors for the dynamic parameters obtains from a generalisation of the
procedure by Chan and Jeliazkov (2009). Consider first the VAR coefficients βi. Starting from
(10), the law of motion can be expressed in compact form as:

Ik 0 · · · 0

−ρiIk Ik
. . .

...
...

. . .
. . . 0

0 · · · −ρiIk Ik



βi,1
βi,2

...
βi,T

 =


bi

(1− ρi)bi
...

(1− ρi)bi

+


ξi,1
ξi,2
...
ξi,T

 (21)

or:

(Fi ⊗ Ik) βi = b̄i + ξi Fi =


1 0 · · · 0

−ρi 1
. . .

...
...

. . .
. . . 0

0 · · · −ρi 1

 b̄i =


bi

(1− ρi)bi
...

(1− ρi)bi

 ξi =


ξi,1
ξi,2
...
ξi,T

 (22)

Also:

V ar(ξi) =


τΩi 0 · · · 0

0 Ωi
. . .

...
...

. . .
. . . 0

0 · · · 0 Ωi

 = Iτ ⊗ Ωi Iτ =


τ 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 (23)

(22) and (23) respectively imply βi = (Fi⊗ Ik)−1b̄i+(Fi⊗ Ik)−1ξi and ξi ∼ N (0, Iτ ⊗Ωi). From
this and rearranging, the prior distribution eventually obtains as:

π(βi|Ωi) ∼ N (βi0 ,Ωi0) βi0 = 1T ⊗ bi Ωi0 = (F ′i I
−1
τ Fi ⊗ Ω−1i )−1 (24)

Using for λi and δ−1i equivalent procedures and notations, it is straightforward to obtain:

π(λi|φi) ∼ N (0,Φi0) Φi0 = φi(G
′
iI
−1
µ Gi)

−1

π(δ−1i |Ψi) ∼ N
(
δ−1i0 ,Ψi0

)
δ−1i0 = 1T ⊗ d−1i Ψi0 = (H ′i I

−1
ε Hi ⊗Ψ−1i )−1 (25)

Once the prior distributions for the dynamic parameters are determined, it remains to set the
priors for their associated variance-covariance parameters. The choice is that of standard inverse
Wishart and inverse Gamma distributions. Precisely:

π(Ωi) ∼ IW (ζ0,Υ0) π(φi) ∼ IG
(κ0

2
,
ω0

2

)
π(Ψi) ∼ IW (ϕ0,Θ0) (26)

Finally, from (17), it is immediate that the prior distribution for ri,t is categorical:

π(ri,t) ∼ Cat(q1, . . . , q7) (27)
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2.5 Posteriors

The joint posterior obtained from (12) is analytically intractable. Following standard practices,
the marginal posteriors are then estimated from a Gibbs sampling algorithm relying on condi-
tional distributions.

For βi, Bayes rule (12) implies π(βi|y, β−i) ∝ f(y|β, λ, δ−1, r)π(βi|Ωi).
3 From the likelihood

(14), the prior (24) and rearranging, it follows that:

π(βi|y, β−i) ∼ N (β̄i, Ω̄i) with:

Ω̄i =
(
s−1i X ′Λ̃iX + F ′i I

−1
τ Fi ⊗ Ω−1i

)−1
β̄i = Ω̄i

(
s−1i X ′Λ̃i

[
Yi + E−i δ−1i

]
+ F ′iI

−1
τ Fi1T ⊗ Ω−1i bi

)
(28)

For λi, Bayes rule (12) implies π(λi|y, λ−i) ∝ f(y|β, λ, δ−1, r)π(λi|φi). From the approximate
likelihood (19), the prior (25) and rearranging, it follows that:

π(λi|y, λ−i) ∼ N (λ̄i, Φ̄i) with:

Φ̄i = (V −1J + φ−1i G′iI−µGi)
−1 λ̄i = Φ̄i(V

−1
J [Ŷi −mJ ]) (29)

For δ−1i , Bayes rule (12) implies π(δ−1i |y, δ
−1
−i ) ∝ f(y|β, λ, δ−1, r)π(δ−1i |Ψi). From the likelihood

(14), the prior and rearranging, it follows that:

π(δ−1i |y, δ
−1
−i ) ∼ N (δ̄−1i , Ψ̄i) with:

Ψ̄i = (s−1i E
′
−i Λ̃i E−i +H ′i I−ε Hi ⊗Ψ−1i )−1

δ̄−1i = Ψ̄i(−s−1i E
′
−i Λ̃i E i +H ′iI−εHi1T ⊗Ψ−1i d−1i ) (30)

Consider now the associated variance-covariance parameters. For Ωi, Bayes rule (12) implies
π(Ωi|y,Ω−i) ∝ π(βi|Ωi)π(Ωi). From the priors (24) and (26) then rearranging, it follows that:

π(Ωi|y,Ω−i) ∼ IW (ζ̄, Ῡi) with: ζ̄ = T + ζ0 Ῡi = B̃i + Υ0

B̃i = (Bi − 1′T ⊗ bi) (F ′i I−τ Fi)(Bi − 1′T ⊗ bi)′ Bi = (βi,1 βi,2 · · · βi,T ) (31)

For φi, Bayes rule (12) implies π(φi|y, φ−i) ∝ π(λi|φi)π(φi). From the priors (25) and (26) then
rearranging, it follows that:

π(φi|y, φ−i) ∼ IG(κ̄, ω̄i) with: κ̄ =
T + κ0

2
ω̄i =

λ′i(G
′
iI−µGi)λi + ω0

2
(32)

For Ψi, Bayes rule (12) implies π(Ψi|y,Ψ−i) ∝ π(δ−1i |Ψi)π(Ψi). From the priors (25) and (26)
then rearranging, it follows that:

π(Ψi|y,Ψ−i) ∼ IW (ϕ̄, Θ̄i) with: ϕ̄ = T + ϕ0 Θ̄i = D̃i + Θ0

D̃i = (Di − 1′T ⊗ d−1i ) (H ′i I−ε Hi)(Di − 1′T ⊗ d−1i )′ Di = (δ−1i,1 δ−1i,2 · · · δ−1i,T ) (33)

Finally, for ri,t, Bayes rule (12) implies π(ri,t|y, r−i,t) ∝ f(y|β, λ, δ−1, r)π(ri,t). From the ap-
proximate likelihood (18) and the prior (27), it follows immediately that:

π(ri,t|y, r−i,t) ∼ Cat(q̄1, . . . , q̄7) with: q̄j = (2πvj)
−1/2 exp

(
−1

2

(ŷi,t − λi,t −mj)
2

vj

)
qj (34)

3For θi any parameter, π(θi|θ−i) is used to denote the density of θi conditional on all the model parameters except
θi.
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2.6 MCMC algorithm

Once the conditional posteriors are obtained, it is possible to introduce the MCMC algorithm
for the model. The latter reduces to a simple 7-step procedure, as follows:

Algorithm 1: MCMC algorithm for the general time-varying model:

1. Sample λi from π(λi|y, λ−i) ∼ N (λ̄i, Φ̄i).

2. Sample βi from π(βi|y, β−i) ∼ N (β̄i, Ω̄i).

3. Sample δ−1i from π(δ−1i |y, δ
−1
−i ) ∼ N (δ̄−1i , Ψ̄i).

4. Sample Ωi from π(Ωi|y,Ω−i) ∼ IW (ζ̄, Ῡi).

5. Sample φi from π(φi|y, φ−i) ∼ IG(κ̄, ω̄i).

6. Sample Ψi from π(Ψi|y,Ψ−i) ∼ IW (ϕ̄, Θ̄i).

7. Sample ri,t from π(ri,t|y, r−i,t) ∼ Cat(q̄1, . . . , q̄7).

Two remarks can be made about the algorithm. First, observe that the ordering of the steps in
the algorithm differs from the one used for the presentation of the model. It introduces λi first,
then the other model parameters, and eventually the offset mixture parameter ri,t. This specific
ordering is necessary to recover the correct posterior distribution if the normal offset mixture is
used to provide an approximation of the likelihood function. See Del Negro and Primiceri (2015)
for details. Second, due to the large dimension of βi and δ−1i , it is not advisable nor efficient to
compute explicitly the parameters β̄i, Ω̄i, δ̄

−1
i and Ψ̄i defining the normal distributions. A better

option consists in taking advantage of the sparse and banded nature of Ω̄−1i and Ψ̄−1i to proceed
efficiently by backward and forward substitution. See Chan and Jeliazkov (2009), Algorithm 1
for details.

3 Efficiency analysis

3.1 Estimation

As a preliminary exercise and for the sake of comparison, the methodology introduced in section
2 is used to estimate the small U.S. economy model of Primiceri (2005). The data set includes
3 variables: a series of inflation rate and unemployment rate representing the non-policy block,
and a short-term nominal interest rate representing the policy block. Estimation is conducted
with two lags and one constant on quarterly data running from 1963q1 to 2001q3, resulting in a
sample of size T = 153 quarters.

For the priors, one possibility consists in calibrating the hyperparameters with a training sample,
as done by Primiceri (2005). Since there is no evidence that such a strategy improves on the esti-
mates, simple values are used instead. For the inverse Wishart priors on the variance-covariance
hyperparameters Ωi and Ψi, the degrees of freedom are set to a small value of 5 additional to
the parameter dimension, namely ζ0 = k + 5 and ϕ0 = (i − 1) + 5. The scale parameters are
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set to Υ0 = 0.01Ik and Θ0 = 0.01Ii−1. Combined with the degrees of freedom, this implies
an average 0.05 standard deviation for the shocks on the dynamic processes, or in other words
a 5% difference between consecutive values of βi and δ−1i . For the stochastic volatility part of
the model, the prior is slightly looser. The shape and scale parameters of the inverse Gamma
prior distribution on φi are set to κ0 = 1 and ω0 = 0.01 to generate a weakly informative prior.
Finally, the initial period variance scaling terms are set to τ = µ = ε = 5 in order to obtain a
variance over the initial periods which is roughly equivalent to that prevailing for the rest of the
sample. For the dynamic processes, the autoregressive coefficients are set to ρi = γi = αi = 0.9,
inducing stationarity but a susbtantial degree of inertia. For the mean of the dynamic processes,
static OLS estimates are used. bi is set to its OLS counterpart β̂i. Similarly, the static OLS
estimate Σ̂ is decomposed into Σ̂ = ∆̂Λ̂∆̂′. si is then set as the ith diagonal entry of Λ̂, and d−1i
is determined as the free elements of the ith row of ∆̂−1. The model is run from 10000 iterations
of the MCMC algorithm, discarding the initial 2000 iterations as burn-in sample. As shown in
Appendix A, The convergence diagnostics are satisfactory, indicating proper convergence to the
posterior distribution.

To highlight the main characteristics of the model, Figure 1 compares the results obtained with
the methodologies of Primiceri (2005) (left panels, without corrigendum), Del Negro and Prim-
iceri (2015) (middle panels, integrating the corrigendum), and the general time-varying model
(right panels).4 The three top panels report the historical evolution of the volatility of the struc-
tural shocks while the three bottom panels focus on the developments of the dynamic coefficients
(own first lag of each variable).

On the qualitative side, the different models produce comparable outcomes in terms of shock
volatility. For inflation and unemployment, the three models detect an initial fuelling in volatility
somewhere around 1975 followed by a moderate recurrence in the course of the 1980’s. For the
interest rate, the three models adequately identify the high volatility peak occurring in 1982.
Interestingly enough, the results obtained with the general time-varying model are qualitatively
closer to those obtained from the original Primiceri (2005) model than to those provided by
the corrigendum model by Del Negro and Primiceri (2015) which are considerably smoother.
The conclusion concerning the VAR coefficients are quite different: while the estimates from the
general time-varying model display a significant amount of variation accross the sample, those
produced by the two comparative models are virtually flat.

4The results for the models by Primiceri (2005) and Del Negro and Primiceri (2015) are obtained from the Matlab
code written by Marco Del Negro and Giorgio Primiceri, and cross-checked with alternative versions of the code
provided by Haroon Mumtaz, Dimitris Korobilis and Benedikt Kolb. I am grateful and indebted to these authors
for providing their material.
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Figure 1: Median and 70% credibility interval for the volatility and VAR
coefficients (own first lag) of inflation, unemployment and the interest rate

left panels: Primiceri (2005) (no corrigendum), middle panels: Del Negro and Primiceri
(2015) (with corrigendum), right panels: general time-varying model
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The explanation comes from the quantitative side of the models. The three top panels reveal that
the overall range of volatility induced by the general time-varying model is considerably smaller
than with the other models. This is true for all the variables, despite the higher peak in volatility
for the interest rate in 1982. This is a consequence of the inclusion of the variable-specific mean
terms si in the dynamic processes of stochastic volatility, as stated in (8). This sets si as
the prior equilibrium value of the process, which drives by construction the posterior towards
it. By contrast, the log-normal random walk formulations of Primiceri (2005) and Del Negro
and Primiceri (2015) effectively amount to scaling the means to si = 1 for all the variables.
This normalisation of the prior equilibrium is not innocuous as it pushes the posterior estimates
upward, resulting in higher levels of fluctuation. As a consequence, most of the variation observed
in the data is attributed to stochastic volatility. This leaves only a marginal extent of variation
to be explained by the dynamic coefficients, hence the remarkably flat estimates. On the other
hand, because the stochastic volatility contributions of the general time-varying model remain
modest, a larger share of the observed data variability is left to be explained by the dynamic VAR
coefficients, hence the wider range of fluctuation. Overall, these conclusions question the common
belief that time-varying models attribute the bulk of observed fluctuations to stochastic volatility,
while the dynamic responses play a marginal role. This feature may in fact be a technical artefact
produced by the random walk assumption, which disappears once a more general formulation is
adopted.

3.2 Efficiency

This section discusses the computational efficiency of the general time-varying model compared
to the standard Primiceri (2005) methodology, integrating the corrigendum of Del Negro and
Primiceri (2015). To do so, three models are considered. The first is the model developed in
the previous section, labeled as the “small” model. As a reminder, the model includes three
variables (inflation, unemployment and interest rate), two lags and runs from 1963q1 to 2001q3,
which represents an estimation sample of 153 quarters. The second is an abridged version of
the small model which contains only two variables (inflation and unemployment), one lag, and
runs for a smaller period ranging from 1980q1 to 2001q3, resulting in an estimation sample of
86 quarters. This is labelled as the “tiny” model. The final “medium” model to be estimated is
an expanded version of the initial model. It comprises four variables (inflation, unemployment
and interest rate supplemented with a series of real GDP growth), three lags and covers a longer
period ranging from 1953q1 to 2018q1, for a total of 218 quarters. Table 1 reports the approx-
imate estimation time to achieve 10000 iterations with the Primiceri (2005) methodology and
the general time-varying model 5. The table reveals significant efficiency gains from using the
general time-varying model methodology. The computational benefits range from about 55% for
the medium model to more than 90% for the tiny model. For a typical small-sized time-varying
model like the small US economy model of Primiceri (2005), the computational gain is greater
than 80%. Clearly, the returns are diminishing with the number of parameters to be estimated.
The benefit remains however considerable even when the number of parameters is quite large,
as in the case of the medium model. In fact, for any reasonably sized time-varying VAR model,
the benefit will remain sizable.

5All the estimations were conducted on a computer equipped with a 2 GHz Intel Core processor and 4 Go of
RAM, for a Windows performance rating of 5.1/10, i.e., a fairly average computer. While the absolute numerical
performances depend on the technical capacities of every machine, the ratio of the relative performance on
estimating different models remains invariant to the computer used.
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Number of
estimated parameters

Methodology of
Primiceri (2005)

General time-varying
model

Efficiency gain

Tiny model 774 558 s (9 m 18 s) 51 s (0 m 51 s) 90.9 %
Small model 4131 1186 s (19 m 46 s) 218 s (3 m 38 s) 81.6 %
Medium model 16132 2650 s (44 m 10 s) 1195 s (19 m 55 s) 54.9 %

Table 1: Summary of estimation performances for the
different methodologies (for 10000 iterations; time in seconds)

There are two main sources for the observed efficiency gains. The first consists in the adoption of
the precision sampler of Chan and Jeliazkov (2009) in place of the usual Kalman filter procedure
of Carter and Kohn (1994) for drawing the dynamic parameters βi, λi and δ−1i . The benefit
from the procedure is double: while the standard approach proceeds period by periods and re-
quires a two-pass filtering process, the precision sampler draws for all the periods at once from
the highly multivariate posterior distribution of each parameter. The efficiency of the method
depends on the size of the matrices involved (see Fi, I

−1
τ ,Ωi, Gi, I−µ, Hi, I−ε and Ψi in (28), (29)

and (30)) which themselves depend on the dimension of the model n, the number of coefficients
per equation k, as well as the number of sample periods T . Larger matrices involve a more than
linear increase in the number of computations and result in a relative loss of efficiency, though
the number of calculations evolve at less than a square rate due to the sparse and banded nature
of Ω̄−1i , Φ̄−1i and Ψ̄−1i . It is then not surprising that the benefit from the precision sampler gets
smaller as the overall number of parameters increases, even though it remains substantial for
any reasonable model.

The second source of gains lies in the optimised formulation of the precision sampler. While
Chan and Jeliazkov (2009) and Chan and Eisenstat (2018) realise the computations at the
largest scale, the present model is formulated to take advantage of the Kronecker structure of
the formulas, allowing to work at a smaller scale. For instance, the computation of the posterior
parameter Ω̄−1i in (28) only involves the update of the k × k matrix Ω−1i at each iteration of
the MCMC algorithm, which is then enlarged through the Kronecker product F ′i I

−1
τ Fi ⊗Ω−1i ,

where F ′i I
−1
τ Fi is a constant term which needs only to be computed once, prior to the initiation

of the algorithm. By contrast, Chan and Jeliazkov (2009) explicitly re-compute the whole term
(Fi ⊗ Ik)(Iτ ⊗ Ωi)

−1(Fi ⊗ Ik) at every iteration,6 which involves products and inversions of
matrices of size Tk × Tk. Also, rather than relying on the simple parameter τ to determine
the distribution of the first period, these authors create an additional step which endogenously
estimate an initial condition for period 0. While the gains from these formulations may sound
modest, they eventually add up to generate substantial benefits once applied to all the dynamic
parameters and repeated over thousands of iterations. 7

6In fact, the term computed by Chan and Jeliazkov (2009) is only an equivalent of (Fi ⊗ Ik)(Iτ ⊗Ωi)
−1(Fi ⊗ Ik),

the formulation of their model being slightly different from the present general time-varying model.
7Chan and Jeliazkov (2009) report an approximate 60% efficiency gain from their precision sampler procedure
applied to a small-sized model which only includes time-varying VAR coefficients. The present time-varying
model, which includes both time-varying VAR coefficients and stochastic volatility results in more than 80%
efficiency gains, for a model of similar size.
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3.3 Alternative estimation strategies

The main difficulty in the estimation of time-varying models comes from the standard log-normal
formulation of the stochastic volatility processes. This assumption results in a likelihood function
containing double exponential stochastic volatility terms such as the Λ̃i matrices in (14). These
terms are challenging and prevent any conjugacy with a normal prior distribution for λi. The
solution adopted for the general time-varying model is the normal offset mixture strategy of
Kim et al. (1998). While it yields a convenient reformulation of the likelihood function, it also
involves the estimation of the extra set of parameters ri which is undesirable as it generates
additional computations which contribute to reduce efficiency. It is thus important to consider
alternative estimation strategies which may prove more efficient. To introduce the alternative
solutions, observe first that the likelihood function (14) can rewrite as:

f(y|β, λ, δ−1, r) = (2π)−nT/2

(
n∏
i=1

s
−T/2
i

)
exp

(
−1

2

n∑
i=1

{
λ′i1T + s−1i λ̃′i Qi

})
(35)

where λ̃i = (exp(−λi,1) exp(−λi,2) · · · exp(−λi,T ))′. Clearly, λ̃i is the equivalent of Λ̃i in
(14). It constitutes the log normal term which generates the difficulties in obtaining analytical
forms for the posterior distribution of λi. Indeed, Bayes rule (12) implies that π(λi|y, λ−i) ∝
f(y|β, λ, δ−1, r)π(λi|φi); substituting then for (35) and (25) and rearranging eventually yields:

π(λi|y, λ−i) ∝ exp
(
−1

2

{
λ′i1T + s−1i λ̃′i Qi +λ′iΦ−1i0 λi

})
(36)

This cannot be reformulated as a multivariate normal density due to the presence of λ̃i. As
such, this posterior density is not workable. Besides the normal offset mixture approach of
Kim et al. (1998), the literature has provided two classes of solutions for this issue. The first
consists in the adoption of an accept-reject algorithm approach, while the second relies on the
Metropolis-Hastings methodology. Both strategies can be applied either for all the sample peri-
ods simultaneously, or on a period-by-period basis.

Consider first the accept-reject approach. This strategy was advocated for model with stochastic
volatility by Kim et al. (1998). Noting that the problematic term λ̃i in (36) can be approximated
by a first-order Taylor series around 0 as λ̃i = exp(−λi) ≥ 1T − λi, where the inequality follows
from the convexity of λ̃i, one obtains:

π(λi|y, λ−i) ∝ exp
(
−1

2

{
λ′i1T + s−1i λ̃′i Qi +λ′iΦ−1i0 λi

})
≤ exp

(
−1

2

{
λ′i1T + s−1i (1T − λi)′ Qi +λ′iΦ−1i0 λi

})
∝ exp

(
−1

2
(λi − λ̄i)′Φ−1i0 (λi − λ̄i)

)
(37)

with:

λ̄i =
1

2
Φi0(s

−1
i Qi−1T ) (38)
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The final row of (37) is immediately recognisable as the kernel of a multivariate normal den-
sity. In other words, the actual posterior density (36) is dominated by a simple multivariate
normal density. A natural accept-reject approach thus consists in drawing a candidate value
from λi ∼ N (λ̄i,Φi0), and then accept it with a probability equal to the ratio of the actual

density to the candidate density, given by p(a) = exp
(
−1

2s
−1
i (λ̃i + λi − 1T )Qi

)
. If the can-

didate is rejected, a new candidate is considered until acceptance is obtained. In theory, the
algorithm can be very efficient, especially if the acceptance rate is high. The additional benefits
are obvious: unlike the offset mixture approach, the accept-reject approach does not involve the
estimation of any additional random variables; the formulas involved in the algorithm are trivial
to compute; also, efficiency is maximised from the fact that in case of rejection, a new candidate
is immediately drawn until acceptance is achieved.

In practice however, the algorithm works poorly and often ends up being trapped repeatedly at
the rejection stage. There are two main explanations for this situation. The first is the quality
of the approximation provided by the dominating function: a poor approximation results in low
acceptance rates, except if the candidate is drawn very close to the approximation point. For
the considered application, it is clear that the first-order Taylor series λ̃i ≈ 1T − λi constitutes
only a crude approximation. The second explanation lies in the dimensionality of the target
distribution: a high dimension contributes to reduce the acceptance rate of the algorithm as the
distances between the actual and candidate distributions add up over the dimensions. It is in
fact a well-known property that the acceptance probability of any accept-reject algorithm falls
to zero as the dimensionality of the candidate distribution approaches infinity. Due to its high
dimensionality of T , the joint accept-reject approach for λi becomes quickly inefficient.

In an attempt to suppress the dimensionality issue, one may opt for a period-by-period approach.
From Bayes rule (12), the likelihood function (35), the prior (25), a Taylor approximation and
some rearrangement, one obtains:8

π(λi,t|y, λ−i−t) ∝ exp
(
−1

2

{
λi,t + s−1i λ̃i,t Qi,t +

(λi,t − λ̂i,t)
φ̂i

})
≤ exp

(
−1

2

(λi,t − λ̄i,t)
φ̄i

)
(39)

with:

φ̄i = φ̂i =
φi

1 + γ2i
λ̄i,t = λ̂i,t +

φ̄i
2

(s−1i Qi,t−1) λ̂i,t =
γi

1 + γ2i
(λi,t−1 + λi,t+1) (40)

Following, a period-by-period accept-reject procedure consists in drawing a candidate value from

λi,t ∼ N (λ̄i,t, φ̄i) and accept it with probability p(a) = exp
(
−1

2s
−1
i (λ̃i,t + λi,t − 1)Qi,t

)
. While

this procedure yields slightly better results than the simultaneous period approach, its perfor-
mance remains poor. Even though the dimensionality issue is settled, the approximation remains
too rough and the acceptance probability stays close to zero.9 In the end, the accept-reject ap-
proach proves unsuccessful, except in the case of extremely tight priors for λi which generate
candidates close to zero, the point of approximation. Consequently, it does not represent a viable
alternative to the offset mixture approach in general.

8The values are slightly different for the initial and final periods and are omitted to save space.
9It may be tempting to use higher order Taylor series to refine the approximation. However, such approximations
do not dominate the target distribution anymore, or yield formulas which are not conjugate. Attempts with
alternative dominating functions were not successful either.
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The second class of methodologies relies on the Metropolis-Hastings approach. This strategy
was proposed by Cogley and Sargent (2005) for multivariate models with stochastic volatility.
A first possibility consists in adopting a joint period approach. Notice that (36) can rewrite as:

π(λi|y, λ−i) ∝ exp
(
−1

2

{
λ′i1T + s−1i λ̃′i Qi

})
exp

(
−1

2
λ′iΦ

−1
i0 λi

)
(41)

The first term on the right-hand side represents the contribution of the data, while the second
represents the prior distribution. A simple strategy consists in drawing a candidate from the
prior (the second term) and then confront it to the data (the likelihood contribution) to decide
on acceptance or rejection.10 Specifically, this defines an independent transition kernel which
yields an acceptance probability of:

p(a) = exp

(
−1

2
{(λ(n)i − λ

(n−1)
i )′1T + s−1i (λ̃

(n)
i − λ̃

(n−1)
i )′Qi}

)
(42)

where λ
(n−1)
i denotes the value inherited from the previous iteration, and λ

(n)
i denotes the candi-

date at iteration n. If the candidate is rejected, the value from the previous iteration is retained.
The advantage of this Metropolis-Hastings algorithm lies in the simplicity of the approach and
the formulas involved in the calculations. On the other hand, a well-known drawback of such
algorithm is that it produces repeated values at rejection, which often leads to increase the
number of iterations or implement thinning of the draws to reduce the autocorrelation of the
chain. In the case of the multivariate approach developed here, however, the prime concern is
the failure to reach the posterior distribution. Because the candidates are drawn from the prior
distribution, they may only partially cover the posterior distribution. Following, even though
the accepted values belong to the posterior, the full distribution will not be recovered except if
the prior fully overlaps with the posterior, which is not generally true.

For this reason, it is preferable to follow a period-by-period approach. Observe that (39) may
rewrite:

π(λi,t|y, λ−i−t) ∝ exp
(
−1

2

{
λi,t + s−1i λ̃i,t Qi,t

})
exp

(
−1

2

(λi,t − λ̂i,t)
φ̂i

)
(43)

The procedure then consists in drawing a candidate from the the second term and use the first
term to decide on acceptance or rejection. This again defines an independent transition kernel
which yields an acceptance probability of:

p(a) = exp

(
−1

2
{(λ(n)i,t − λ

(n−1)
i,t ) + s−1i (λ̃

(n)
i,t − λ̃

(n−1)
i,t )Qi,t}

)
(44)

The main difference between the multivariate approach and the period-by-period approach is
that in the latter the candidates are not drawn from the prior distribution. As can be seen
from (40), the mean value λ̂i,t of the candidate distribution involves λi,t−1 and λi,t+1 which
come directly from the posterior distribution. For this reason, a period-by-period algorithm will
properly converge to the posterior distribution and cover its whole support.

10Alternatively, one may draw the candidates from exp
(
− 1

2

{
λ′i1T + λ′iΦ

−1
i0 λi

})
rearranged as a multivariate

normal density, and use the remaining term exp
(
− 1

2

{
s−1
i λ̃′i Qi

})
to decide on acceptance or rejection. This

produces similar results.
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In terms of efficiency, the performances of the algorithm are satisfactory. On the one hand, the
iterative scheme of the procedure makes it intrinsically slower than the offset mixture method-
ology, but on the other hand the omission of the additional parameter ri permits to spare some
computations. In the end, the two algorithms are roughly equivalent on a per iteration basis.
Also, the concern that Metropolis-Hastings produces repeated values is not to bee taken too
seriously in this case: empirical applications suggest that the acceptance rate of the procedure
typically exceeds 80%, which produces only few repetitions. The only significant difference be-
tween the two approaches resides in the number of iterations required for convergence. While the
offset mixture typically obtains convergence in 2000 iterations or so, the Metropolis-Hastings al-
gorithm is more sluggish and requires between 5000 and 10000 iterations to achieve convergence.
This is due to the recursive nature of the algorithm which only allows for small moves of the
chain for each sample period, the amplitude being restricted by the neighbouring values. In the
end, the offset mixture approach remains the most efficient method, though the period-by-period
Metropolis-Hastings algorithm constitutes an acceptable alternative.

4 Random inertia

In the basic version of the general time-varying model, the autoregressive coefficients ρi, γi and
αi associated with the dynamic processes in (10) are treated as exogenous hyperparmeters. The
traditional choice in the literature consist in setting ρi = γi = αi = 1 which corresponds to the
homogeneous random walk assumption. Rather, the calibration proposed for the general time-
varying model uses ρi = γi = αi = 0.90, which reduces the inertia of the process and attributes
some weight to the mean component. While this choice is reasonable and preferable to the usual
random walk specification, it is in not necessarily optimal. For this reason, this section proposes
a simple procedure to estimate endogenously the autoregressive coefficients ρi, γi and αi.

4.1 Priors

The literature has produced a number of options to define the prior distributions of autoregressive
coefficients. On the univariate side, the Beta distribution has sometimes been favoured for its
support producing values between zero and one (Kim et al. (1998)). The Beta is however not
conjugate with the normal distribution, which leads to an inefficient Metropolis-Hastings step
in the estimation. On the multivariate side, a simpler alternative has consisted in using normal
distributions (Primiceri (2005), Mumtaz and Zanetti (2013)). The prior is diffuse to let the
data speak and produce posteriors centered on OLS estimates. While simple, this strategy is
unadvisable for two reasons. First, as the support of the normal distribution is unrestricted, part
of the posterior distribution may lie outside of the zero-one interval, which is not meaningful from
an economic point of view. Second, the use of a diffuse prior is suboptimal as relevant information
can be introduced at the prior stage. For these reasons, the prior is chosen here to be a truncated
normal distributions with informative hyperparameters. Considering for instance ρi in (10), the
prior distribution is a normal distribution with mean ρi0 and variance πi0, truncated over the
[0 1] interval:

π(ρi) ∼ N [0 1](ρi0, πi0) (45)

An informative and reasonable prior belief consists in assuming that with 95% probability an
autoregressive coefficient value should be comprised between 0.6 and 1. This is obtained by
setting a mean value of ρi0 = 0.8 and a standard deviation of 0.1, yielding a variance of πi0 =
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0.01. This way, the prior is sufficiently loose to allow for significant differences in the posterior
distributions of the different ρi’s, but also sufficiently restrictive to avoid posteriors that would be
too far away from the prior and implausible. Finally, the truncation operated at the prior stage
ensures that the posterior distribution is restricted over the same range [0 1], effectively ruling
out irrelevant parts of the support. A similar strategy is applied to the other autoregressive
coefficients in (10):

π(γi) ∼ N [0 1](γi0, ςi0) π(αi) ∼ N [0 1](αi0, ιi0) (46)

The mean and variance parameters are set to γi0 = αi0 = 0.8 and ςi0 = ιi0 = 0.01.

4.2 Bayes rule

Bayes rule must be slightly amended due to the inclusion of ρi, γi and αi as random variables.
The updated version obtains as:

π(β,Ω, ρ, λ, φ, γ, δ−1,Ψ, α, r|y) ∝ f(y|β, λ, δ−1, r)
(

n∏
i=1

π(βi|Ωi, ρi)π(Ωi)π(ρi)

)

×
(

n∏
i=1

π(λi|φi, γi)π(φi)π(γi)

)(
n∏
i=2

π(δ−1i |Ψi, αi)π(Ψi)π(αi)

)(
n∏
i=1

T∏
t=1

π(ri,t)

)
(47)

4.3 Posteriors

As for the basic model, the marginal posteriors are estimated from a Gibbs sampling algorithm re-
lying on conditional distributions. For ρi, Bayes rule (47) implies π(ρi|y, ρ−i) ∝ π(βi|Ωi, ρi)π(ρi).
From the priors (24) and (45) and some rearrangement, it follows that:

π(ρi|y, ρ−i) ∼ N [0 1](ρ̄i, π̄i) with:

π̄i = (β̈′i,t−1β̈i,t−1 + π−1i0 )−1 ρ̄i = π̄i(β̈
′
i,t−1β̈i,t + π−1i0 ρi0)

β̈i,t = vec (Ω
−1/2
i

′
(βi,2 − bi · · · βi,T − bi)) (48)

For γi, Bayes rule (47) implies π(γi|y, γ−i) ∝ π(λi|φi, γi)π(γi). From the priors (25) and (46)
and some rearrangement, it follows that:

π(γi|y, γ−i) ∼ N [0 1](γ̄i, ς̄i) with:

ς̄i = (λ̈′i,t−1λ̈i,t−1 + ς−1i0 )−1 γ̄i = ς̄i(λ̈
′
i,t−1λ̈i,t + ς−1i0 γi0)

λ̈i,t = φ
−1/2
i (λi,2 . . . λi,T )′ (49)

Finally for αi, Bayes rule (47) implies π(αi|y, α−i) ∝ π(δ−1i |Ψi, αi)π(αi). From the priors (25)
and (46) and some rearrangement, it follows that:

π(αi|y, α−i) ∼ N [0 1](ᾱi, ῑi) with:

ῑi = (δ̈−1i,t−1
′δ̈−1i,t−1 + ι−1i0 )−1 ᾱi = ῑi(δ̈

−1
i,t−1

′δ̈−1i,t + ι−1i0 αi0)

δ̈−1i,t = vec(Ψ
−1/2
i

′
(δ−1i,2 − d

−1
i · · · δ−1i,T − d

−1
i )) (50)

The other posteriors are unchanged.
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4.4 MCMC algorithm

The Markov Chain Monte Carlo algorithm for the model with random inertia is fundamentally
similar to the one of the general time-varying model. The 7 steps of Algorithm 1 are thus un-
changed, but 3 additional steps specific to the model must be inserted between steps 6 and 7:

Algorithm 2: additional steps of the MCMC algorithm for the model with random
inertia:

1. Sample ρi from π(ρi|y, ρ−i) ∼ N [0 1](ρ̄i, π̄i).

2. Sample γi from π(γi|y, γ−i) ∼ N [0 1](γ̄i, ς̄i).

3. Sample αi from π(αi|y, α−i) ∼ N [0 1](ᾱi, ῑi).

5 Random mean

The standard version of the general time-varying model treats the mean parameters bi, si and
d−1i in (8) and (10) as exogenously supplied hyperparameters. While simple, this assumption
may be overly restrictive. In particular, the preliminary conclusions obtained from Figure 1
suggest that the mean terms may be of considerable importance as they determine the share
of data variation endorsed by each component of the model (dynamic coefficients, stochastic
volatility and residual covariance). Endogenous estimation then constitutes a natural extension.
While the univariate ARCH literature has paid some attention to this question in the context of
stochastic volatility processes (Jacquier et al. (1994), Kim et al. (1998)), the subject has been
almost completely neglected in multivariate models. One notable exception is the contribution
of Chiu et al. (2015) who integrate a (period-specific) mean component to the dynamic variance
of the residuals. This section fills the gap by proposing simple estimation procedures for the
mean components of the dynamic processes.

5.1 Priors

For bi, the choice for the prior is that of a simple multivariate normal distribution with mean bi0
and variance-covariance matrix Ξi0:

π(bi) ∼ N (bi0,Ξi0) (51)

In the basic version of the general time-varying model, bi is set according to its static OLS
estimate β̂i, which constitutes a reasonable starting point. For this reason, the prior mean bi0
is set to β̂i while the prior standard deviation is set to a fraction $i of this value, resulting in
Ξi0 = diag(($iβ̂i)

2). Small values of $i generate a tight and hence informative prior around
β̂i while larger values can be used to achieve diffuse and uninformative priors. Given the lack of
economic theory concerning the equilibrium value of the time-varying coefficients, the prior is set
to be informative but somewhat looser than usual in order to leave sufficient weight to the data.
This is achieved by setting $i = 0.25, implying that bi lies within 50% of β̂i with 95% confidence.
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Similar strategies are applied for si and d−1i . For the si which are positive scaling terms, the
inverse Gamma represents a natural candidate. Specifically, the prior for each si is inverse
Gamma with shape χi0 and scale ϑi0:

π(si) ∼ IG
(
χi0
2
,
ϑi0
2

)
(52)

The hyperparameter values χi0 and ϑi0 are then chosen to imply a prior mean of ŝi, the OLS
estimate used for the general time-varying model, and a prior standard deviation equal to a
fraction ψi of this value.11 . As a base case, ψi is set to 0.25 in order to generate, again, an
informative but sufficiently loose prior.

Finally, the prior for each d−1i is multivariate normal with mean d−1i0 and variance-covariance
matrix Zi0:

π(d−1i ) ∼ N (d−1i0 , Zi0) (53)

The prior mean is set as d−1i0 = d̂−1i , the OLS estimate used for the general time-varying
model, and the the prior standard deviation is set to a fraction %i of this value, resulting in
Zi0 = diag((%id̂

−1
i )2). An informative but loose prior is achieved by setting %i = 0.25.

5.2 Bayes rule

Given the model, the updated version of Bayes rule is given by:

π(β,Ω, b, λ, φ, s, δ−1,Ψ, d−1, r|y) ∝ f(y|β, λ, s, δ−1, r)
(

n∏
i=1

π(βi|Ωi, bi)π(Ωi)π(bi)

)

×
(

n∏
i=1

π(λi|φi)π(φi)

)(
n∏
i=1

π(si)

)(
n∏
i=2

π(δ−1i |Ψi, d
−1
i )π(Ψi)π(d−1i )

)(
n∏
i=1

T∏
t=1

π(ri,t)

)
(54)

5.3 Posteriors

For bi, Bayes rule (54) implies π(bi|y, b−i) ∝ π(βi|Ωi, ρi)π(bi). From the priors (24) and (51)
and some rearrangement, it follows that:

π(bi|y, b−i) ∼ N (b̄i, Ξ̄i) with:

Ξ̄i =
(
τ̃iΩ
−1
i + Ξ−1i0

)−1
b̄i = Ξ̄i

(
Ω−1i (ρ̃i ⊗ Ik)βi + Ξ−1i0 bi0

)
τ̃i = τ−1 + (1− ρi)2(T − 1) ρ̃i =

(
τ−1 − (1− ρi)ρi (1− ρi)2 · · · (1− ρi)2 (1− ρi)

)
(55)

For si, Bayes rule (54) implies π(si|y, s−i) ∝ f(y|β, λ, s, δ−1, r)π(si). From the likelihood func-
tion (35), the prior (52) and some rearrangement, it follows that:

π(si|y, s−i) ∼ IG(χ̄i, ϑ̄i) with:

χ̄i =
T + χi0

2
ϑ̄i =

λ̃′i Qi +ϑi0
2

(56)

11This is conveniently achieved by exploiting the fact that the inverse Gamma distribution defines a unique
correspondence between any pair of mean/variance values and shape/scale parameters.
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Finally for d−1i , Bayes rule (54) implies π(d−1i |y, d
−1
−i ) ∝ π(δ−1i |Ψi, d

−1
i )π(d−1i ). From the priors

(25) and (53) and some rearrangement, it follows that:

π(d−1i |y, d
−1
−i ) ∼ N (d̄−1i , Z̄i) with:

Z̄i =
(
ε̃iΨ
−1
i + Z−1i0

)−1
d̄−1i = Z̄i

(
Ψ−1i (α̃i ⊗ Ii−1)δ−1i + Z−1i0 d

−1
i0

)
ε̃i =ε−1 +(1− αi)2(T − 1) α̃i =

(
ε−1 −(1− αi)αi (1− αi)2 · · · (1− αi)2 (1− αi)

)
(57)

The other posteriors are unchanged.

5.4 MCMC algorithm

The Markov Chain Monte Carlo algorithm for the model with random mean is fundamentally
similar to the one of the general time-varying model. The 7 steps of Algorithm 1 are thus un-
changed, but 3 additional steps specific to the model must be inserted between steps 6 and 7:

Algorithm 3: additional steps of the MCMC algorithm for the model with random
mean:

1. Sample bi from π(bi|y, b−i) ∼ N (b̄i, Ξ̄i).

2. Sample si from π(si|y, s−i) ∼ IG(χ̄i, ϑ̄i).

3. Sample d−1i from π(d−1i |y, d
−1
−i ) ∼ N (d̄−1i , Z̄i).

6 A case study on the Great Recession

6.1 Setup

To conclude this work, a short case study on the Great Recession is proposed. The study focuses
on four major economies which have been severely impacted by the crisis: Canada, the Euro
area, Japan, and the United States. The model considered is, again, the small economy model of
Primiceri (2005). It comprises two lags, a constant, and 3 variables: unemployment and inflation,
which represent the non policy block of the model, and a series of interest rate which represents
the policy part of the setup. The data is quarterly. For each country, it starts in 1971q1 and
runs up to 2010q1. Unemployment series are harmonised rates. Inflation is computed as a
hundred times the difference of the log CPI with the log CPI of previous year at the same
period. For Canada, the Euro area and the United States the interest rate is chosen as the
3-month interbank rate. For Japan the discount rate is retained, due to both unavailability of
long series of interbank rates and the fact that the discount rate was used until recently as the
main instrument of monetary policy. For Canada, Japan and the US the data comes from the
OECD, while for the Euro area it is obtained from the Area Wide Model Database of Fagan
et al. (2001) which has become the standard for academic research on the Euro Area.
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The aim of the exercise consists in assessing the forecast performances of different models for
key periods of the crisis. Figure 2 displays the growth rate of GDP 12 for the four considered
economies over the Great Recession periods. For each country, three critical periods of the crisis
are considered. The first period is the recession period, the period at which the country enters
into negative growth. For Canada, the Euro area, Japan and the United States, this respectively
occurs in 2009q1, 2008q4, 2008q2 and 2008q3. The second period considered is the reversion
period, the period at which GDP growth reaches its minimum before it starts increasing again.
This respectively happens in 2009q3, 2009q1, 2009q1 and 2009q2. The final period considered is
the recovery period, the period at which the economy hits positive growth again. For the four
countries considered, this happens in 2010q1. These periods are of special importance for policy
makers as they corresponds to the points where the crisis respectively initiates, reverts and ends.
It is crucial to anticipate them correctly in order to provide an adequate answer to the rapidly
changing economic conditions.
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Figure 2: Year-on-year GDP growth for the four major economies

The forecasting exercise is performed in pseudo real time, that is, it does not use information
which is not available at the time the forecast is made. For this reason, for each country and each
considered period of the crisis the model is estimated from 1971q1 up to the period preceding the
forecast period. The forecast is then obtained as the one period-ahead out-of-sample prediction.
For each forecast, two criteria are considered. The first criterion is the classical Root Mean
Squared Error (RMSE) which considers the accuracy of point forecasts. Denoting by ỹt+h the
h-step ahead prediction and by yt+h the realised value, it is defined as:

12Estimates are year-on-year growth rates from chained volume series, obtained by taking a hundred times the
difference of the log value with the log value of previous year at the same period.
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RMSEt+h =

√
1

h

h

Σ
i=1

(ỹt+h − yt+h)2 (58)

The second criterion is the Continuous Ranked Probability Score (CRPS) of Gneiting and Raftery
(2007) which evaluates density forecasts. As pointed by those authors, this criterion presents
advantages over alternative density scores such as the log score as it rewards more density
points close to the realised value and is less sensitive to outliers. Denoting by F the cumulative
distribution function of the h-step ahead forecast density and by ŷt+h and ŷ′t+h independent
random draws from this density, the CRPS is defined as:

CRPSt+h =

∫ ∞
−∞

(F (x)− 1(x ≥ yt+h))2dx = E |ŷt+h − yt+h| −
1

2
E |ŷt+h − ŷ′t+h| (59)

Empirical estimations of the CRPS use the second term on the right-hand side of (59), ap-
proximated from the Gibbs sampler draws. For both criteria, a lower score indicates a better
performance.

Finally, the exercise considers five competing models. The first model is the homogenous random
walk (Hrw) specification of Primiceri (2005), which obtains as a special case of the general time-
varying model by setting the autoregressive coefficients of the dynamic processes to ρi = γi =
αi = 1 for all i = 1, · · · , n.13 The second model is the general time-varying (Gtv) model
developed in section 2, following the calibration proposed in section 3.1. The third and fourth
models respectively consist in the general time-varying model augmented by the random inertia
(Ri) extension developed in section 4 and the random mean (Rm) extension developed in section
5. The last model combines the two extensions, thus adding both random inertia and random
mean (Rim) to the general time-varying model.

6.2 Results

Table 2 reports the results of the experiment for unemployment. The results for inflation and
the interest rate are fairly similar and relegated to Appendix B in order to save space. Table
2 comprises three parts: the top, middle and bottom panels which respectively correspond to
forecast evaluations for the recession, reversion and recovery periods. In each panel, the left
part summarizes the results for the RMSE while the right part reports the results for the CRPS.
For each country and each criterion, the bold entry corresponds to the model achieving the best
forecast performance among the five competitors. Also, a shaded entry for the general time-
varying model (second entry) indicates that the model performs better than the homogenous
random walk formulation (first entry). In total, the experiment considers three periods, three
variables, four countries and two evaluation criteria for a total of 72 forecast evaluations, each
carried on a set of five competing models.

13Beyond the random walk assumption on the dynamic parameters, there exist a number of additional differences
in the specification of the model of Primiceri (2005) and the present general time-varying model. As the
objective of the exercise consists primarily in assessing the impact of the random walk assumption, a meaningful
comparison necessitates that the competing models are similar in every other respect. For this reason, the
exercise is conducted with the general time-varying model specified a random walk rather than with the actual
model of Primiceri (2005). For the sake of robustness, the exercise was replicated with the code of Primiceri
(2005). The results are similar to those obtained in section 6.2, the main difference being found in the recovery
phase for which the Primiceri (2005) model performs slightly better than the general time-varying formulated
as a random walk.
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Unemployment: recession period

RMSE CRPS

Hrw Gtv Ri Rm Rim Hrw Gtv Ri Rm Rim

Canada 1.120 0.808 0.870 0.924 0.965 0.944 0.594 0.705 0.732 0.806

Euro area 0.299 0.291 0.331 0.316 0.339 0.198 0.185 0.231 0.212 0.235

Japan 0.066 0.005 0.026 0.013 0.023 0.047 0.041 0.038 0.038 0.037

United States 0.456 0.406 0.445 0.461 0.491 0.290 0.247 0.316 0.309 0.363

Unemployment: reversion period

RMSE CRPS

Hrw Gtv Ri Rm Rim Hrw Gtv Ri Rm Rim

Canada 0.853 0.470 0.296 0.512 0.290 0.606 0.281 0.176 0.319 0.173

Euro area 0.632 0.376 0.470 0.474 0.516 0.450 0.252 0.353 0.341 0.400
Japan 0.416 0.438 0.443 0.461 0.445 0.299 0.329 0.347 0.352 0.349
United States 0.089 0.284 0.018 0.044 0.166 0.171 0.179 0.078 0.110 0.116

Unemployment: recovery period

RMSE CRPS

Hrw Gtv Ri Rm Rim Hrw Gtv Ri Rm Rim

Canada 0.095 0.186 0.171 0.119 0.135 0.103 0.140 0.118 0.111 0.110

Euro area 0.154 0.050 0.028 0.034 0.037 0.098 0.071 0.056 0.065 0.060
Japan 0.060 0.136 0.028 0.108 0.000 0.067 0.086 0.051 0.075 0.050

United States 0.303 0.222 0.191 0.267 0.214 0.192 0.158 0.132 0.169 0.138

Table 2: Forecast evaluation criteria for unemployment

Overall, four main conclusions can be drawn from these results. First and foremost, the results
unambiguously disqualify the homogenous random walk as the best formulation regarding fore-
cast accuracy. When considering the homogenous random walk against the general time-varying
model only (the shaded entries in the tables), the latter performs better in 57 out of 72 eval-
uations, that is, in 79% of the cases. When all the five competing models are considered (the
bold entry providing the best performance), the homogenous random walk is over-performed in
64 out of 72 evaluations, or 89% of the cases. This questions the common belief that a random
walk formulation may represent an optimal, or even reasonably efficient representation for the
dynamics of time-varying coefficient models. Looking more closely at the results, the relative in-
efficiency of the homogenous random walk assumption appears to be consistent across variables,
countries and periods. The only significant difference appears in the case of inflation for which
the random walk performs especially poorly and never represents the optimal formulation. Also,
the RMSE and the CRPS select almost systematically the same candidate, which demonstrates
that the results are not affected by the evaluation being conducted on the point estimate only
or on the whole density. Overall, this further supports the robustness of the results.
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Second, the gains in forecast accuracy resulting from relaxing the random walk assumption are
substantial. Table 3 reports the average forecast accuracy gain from adopting the general time-
varying model compared to the homogenous random walk assumption, for the three variables of
the model and both in terms of RMSE and CRPS. For each variable and each criterion, the aver-
age accuracy gain is defined as the ratio of the sums of the criteria under the general time-varying
model over the sum of the criteria under the random walk specification. For unemployment and
the interest rate, the gains are significant. For unemployment, the general time-varying model
results in an average 19% cut in the RMSE and 26% decline in the CRPS. The gain is slightly
more modest for the interest rate, with average drops of 15% in RMSE ad 16% in CRPS. Overall,
those gains are already considerable. The gains however become remarkably high in the case
inflation where they attain 44% for the CRPS and exceed 50% for the RMSE. It is not clear what
the reasons are for these significant differences in gain across variables, but this demonstrates
that any variable may benefit from adopting the general time-varying model, though in general
the gain may vary considerably from one variable to another.

RMSE CRPS

Unemployment 19.17 % 26.03 %
Inflation 50.09 % 44.06 %
Interest rate 15.90 % 16.13 %

Table 3: Average forecast accuracy gain
compared to random walk formulation

Third, the random inertia and random mean extensions significantly contribute to improve fore-
cast accuracy. Over the 64 evaluations where the homogenous random walk specification is
dominated, 61% of the cases (39 evaluations) retain either random inertia, random mean or both
as the optimal model. Stated differently, in almost two third of the cases forecasts can be im-
proved by adopting one extension or both. This is not surprising as the mean and autoregressive
coefficient values used by the general time-varying model constitute reasonable starting points,
but in no way optimal candidates. Leaving some freedom to the data to endogenously determine
these parameters may logically contribute to produce estimates that are closer to the actual data
generating process, resulting in better forecasts.

Fourth and last, there does not seem to exist a hierarchical pattern between random inertia,
random mean or their combination. Over all forecast evaluations, random inertia constitutes the
best formulation 13 times, random mean 11 times, and the combination of both 15 times. These
results are not sufficiently different one from each other to assert that one extension proves better
than the other. This suggests that which extension is the best may be a dataset-specific matter,
and perhaps even a variable-specific one. For a given model, it might therefore be advisable to
conduct testing before an extension is retained in order to assess the suitability of this extension
for the considered setting.
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6.3 Crisis analysis with random inertia and random mean

This brief section proposes an economic analysis of the Great Recession from the perspective
of random mean and random inertia. It outlines the differences - both in terms of results and
interpretations - of the Primiceri (2005) approach compared to the general time-varying model
augmented by the random mean and random inertia extensions.

The exercise focuses on the United States, using again the small economy model of Primiceri
(2005). The sample is extended to 2017q4 in order to provide a broader view of the Great
Recession by including its aftermath. The first 40 periods of the dataset (1971q1-1980q4) are
used to generate the training sample required for the Primiceri (2005) methodology, so the es-
timation is conducted from 1981q1 onwards for both models. The number of lags is reduced
to one in order to provide direct interpretation to the estimated VAR coefficients. In partic-
ular, the shocks associated to the three variables of the model (unemployment, inflation and
the interest rate) can be readily interpreted as real, nominal and monetary policy shocks. The
dynamic coefficients can then be interpreted as the impulse response at impact of each variable
to these shocks. Finally, the random inertia and random mean hyperparameters are increased
to πi0 = ςi0 = ιi0 = $i = ψi = %i = 1 in order to implement a slightly loser prior and attribute
increased weight to data information.

Figure 3 reports the volatility estimates for the unemployment and interest rate shocks. The
left panels provide the estimates obtained from the Primiceri (2005) model. In these panels the
dashed lines represent the empirical sample mean, which provides an approximation of the long-
run volatility level. The right panels provide the volatility estimates obtained from the random
mean extension. The dashed line in the plots represents the theoretical equilibrium level si,
endogenously estimated by random mean. These equilibrium values are also reported in Table
4.

The left panels reveal that the stochastic volatility components of the Primiceri (2005) model are
characterised by large shocks and wide amplitudes of fluctuations. The figure suggests indeed
that the long-run levels of volatility are quite high: around 0.24 for real activity shocks, and
0.38 for monetary policy shocks. More importantly, the deviations from the equilibrium levels
become considerable in a context of crisis. For the Great Recession, the peak in volatility for
unemployment culminates at about four times the long-run level, while monetary policy shocks
attain roughly twice their equilibrium value.

By contrast, the estimates obtained from random mean on the right panels suggest that the
volatility levels endogenously estimated with random mean are considerably smaller than the
one produced with the Primiceri (2005) approach. The equilibrium level for unemployment
shocks is at about 0.017, more than 14 times smaller than the value of 0.241 obtained with the
Primiceri (2005) methodology. The same holds for the long-run levels of inflation and interest
rate shocks which take values of 0.161 and 0.067, respectively more than 3 and 5 times smaller
than their Primiceri (2005) counterparts. Table 4 shows that in general, the data does not
endorse the Primiceri (2005) estimates: the posterior estimates obtained from random mean
prove considerably smaller than the prior means, rather than tending to the larger Primiceri
(2005) values, if the latter were correct.
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Figure 3: Volatility of (a) unemployment shocks, (b) interest rate shocks
left panels: Primiceri (2005), right panels: random mean

Unemployment Inflation Interest rate

Primiceri (2005): empirical posterior mean 0.241 0.568 0.381
Random mean: prior 0.092 0.406 0.307
Random mean: posterior 0.017 0.161 0.067

Table 4: Summary of random mean estimates for si (United States)

The amplitude of the fluctuations in volatility obtained with random mean is also substantially
smaller than those suggested by the Primiceri (2005) methodology. While interest rate shocks
did double in size with both methodologies during the Great Recession, the absolute magni-
tude of increase with random mean is limited to a mere 0.1, against 0.4 with the Primiceri
(2005) approach. As for unemployment shocks, random mean indicates that they increased only
marginally during the Great Recession, rising by a mere 3% (from 0.017 to 0.0175) and in fact
hardly exceeding the long-run level, far from the fourfold rise observed with the Primiceri (2005)
model.

Consider then the dynamic coefficients of the model. Figure 4 display the dynamic responses of
unemployment (to unemployment shocks) and the interest rate (to unemployment and interest
rate shocks). The left panels display the estimates obtained from the Primiceri (2005) model
and the right panels the estimates from the general time-varying model augmented with random
mean. On these panels, the dashed line represents the theoretical equilibrium value bi endoge-
nously estimated by random mean.
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Figure 4: Dynamic response of (a) unemployment to unemployment shocks, (b)
interest rate to unemployment shocks, (c) interest rate to inflation shocks

left panels: Primiceri (2005), right panels: random mean

The Primiceri (2005) estimates displayed on the left panels suggest that the changes in the dy-
namic responses of the economy have been negligible. Panel (a) reveals a virtually flat response
of unemployment to real shocks over the whole sample. In other words, the propagation mecha-
nism of the real side of the economy has remained remarkably stable, even during the periods of
recession. The same conclusion holds for Monetary policy. Panels (b) and (c) show that mone-
tary policy hardly experienced any adjustment over the sample. The only noticeable evolution
consists in a moderate increases in the reaction of the interest to real shocks from 2007 on and
a simultaneous marginal cut in the reaction to inflation.

By contrast, a substantial level of fluctuation obtains under the random mean model. Concern-
ing the response of unemployment to real shocks, panel (a) reveals a sudden departure from the
long-run level during the Great Recession to reach a peak at more than 20% over the equilibrium
level in 2009, at the worse of the crisis. The response then returned to its equilibrium value in
2010, after the end of the crisis. According to panels (b) and (c), monetary policy also adjusted
significantly during the crisis. Considering the response of the interest rate to real shocks, the
right panel in (b) shows that from 2007 on the FED had been placing its response below its
long-run level, continuously loosening its stance regarding real activity over the Great Recession.
It stiffened its response again from 2009 on as the economy initiated its recovery, before initiating
a new episode of accommodating policy from 2010 on.
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The results for the response of the interest rate to inflation shocks are quite singular. They reveal
that even during the Great Recession, the FED maintained a primarily anti-inflationary stance.
From 2004 on, its started stiffening its response to inflation, pushing it above its long-run level. It
then steadily loosened it until late 2008, to the point where it went back to its long-run level. But
then, rather than accommodating inflation further as the crisis was reaching its worse, the FED
pushed again its reaction to inflation upward. In fact it maintained it durably above the equilib-
rium level, reducing it gradually from 2009 onward to return to its equilibrium level only in 2015.

Critical to the analysis is also the degree of inertia characterising the dynamic responses of the
economy. A possible explanation for the lack of variability of the dynamic coefficients estimated
with the Primiceri (2005) approach is the sluggishness involved by the random walk formulation.
This formulation seems at odd with the high frequency movements observed for the coefficients
of the general time-varying model. To answer this question, Table 5 reports the estimates of the
autoregressive coefficients obtained with the random inertia extension. The results confirm that
the data does not support the random walk formulation of Primiceri (2005). While the volatility
processes are unambiguously characterised by a near random walk process, the dynamic co-
efficients experience a much lower degree of inertia, with autoregressive coefficients comprised
between 0.47 and 0.71. This suggests that the changes in the dynamic responses of the economy
may in fact be very swift as little weight is attributed to past disturbances.

In general, the results of Table 4 and Table 5 also confirm the validity of the variable-specific
approach. Be it for the mean level of the dynamic processes or their autoregressive coefficients,
the random mean and random inertia extensions unambiguously demonstrate that different vari-
ables experience significantly different dynamics. They also reveal that these singularities affect
profoundly the results and the ensuing analysis.

Unemployment Inflation Interest rate

VAR coefficients 0.71 0.47 0.53
Shock volatility 0.99 0.97 0.99
Shock covariance 0.54 0.38

Table 5: Summary of random inertia estimates (United States)

Gathering all this information, two different narratives of the Great Recession emerge, depend-
ing on the model considered. The Primiceri (2005) approach yields the first narrative, which is
consistent with the mainstream interpretation of the Great Recession. This narrative considers
the crisis primarily from the perspective of structural shocks. In this scenario, the Great Re-
cession was initiated by a series of large adverse financial disturbances which severely affected
the real side of the economy (Figure 3, left panel (a)). As the Housing bubble burst in late
2007, banks and financial institutions incurred heavy losses in asset value leading them to either
bankruptcy or being bailed out by the government. Coupled with the strong decline in the
housing construction sector, economic activity was dragged down and entered into recession. In
this narrative, the dynamic response of the corporate and private side of the economy was left
essentially unchanged (Figure 4, left panel (a)), the shocks constituting the principal drivers of
the crisis. Similarly, the monetary authorities maintained a rather conservative stance and did
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not alter regular monetary policy profoundly (Figure 4, left panels (b) and (c)). Rather, they
focused on protecting the banks against the risks of exposure to bad mortgages, intervening by
the way of unconventional policies to restore the flow of liquidities. The policies consisted in
expended access to the FED discount window, and the settlement of temporary programmes like
the Term Auction Facility (TAF) and the Troubled Asset Relief Program (TARP). Such policies
can then be interpreted as a series of expansionary monetary policy shocks in an attempt to
offset the impact of the negative financial shocks (Figure 3, left panel b)).

With this interpretation the Great Recession becomes essentially exogenous, conditioned by
large-sized adverse shocks triggering and prolonging the crisis. Recovery is then understood as
an automatic process resulting from the return of the shocks to their equilibrium levels, possibly
with the support of positive shocks from the monetary authorities.

A different narrative obtains however from the random mean and random inertia extensions. In
this alternative scenario, three actors become involved in the crisis: the shocks, the response of
the monetary authorities, and the response of the private sector. As the Housing bubble burst
in late 2007, a series of adverse real disturbances impacted negatively the banking and housing
sectors of the economy, initiating the financial crisis. These shocks however remained of moder-
ate size and in fact barely exceeded their long-run levels (Table 4 and Figure 3, right panel (a)).
As a consequence the installing crisis may have remained mild, had the shocks been properly
accommodated.

The response of the FED however proved inadequately restrictive: the monetary authorities
maintained a very strong stance against inflation, perceived as the major risk (Figure 4, right
panels (b) and (c)). For this reason the nominal interest rate experienced a fairly slow decline,
the FED taking no less than eight quarters to eventually cut it below 0.5% (from 5.4% at the
beginning of the financial crisis in 2007q3 to 0.3% in 2009q3, as the crisis ended). The effects
of this restrictive monetary policy ended up impacting the real side of the economy as well. As
investment banks fell short of liquidities, they disturbed the flow of credit to consumers and
corporations, reducing aggregate demand and nominal GDP. By preventing the normal level
of transactions to be conducted, the FED policy contributed to turn a financial crisis initially
triggered by the housing slump into a general macroeconomic crisis affecting the response of the
entire corporate sector (Figure 4, right panels (a)). The propagation of the crisis to the entire
private sector proved fast, due to the low persistence of past disturbances in the dynamics of the
real side of the economy (Table 5).

In this narrative, the adverse financial shocks merely acted as the trigger for the recession, far
from representing the main culprit as suggested by the Primiceri (2005) approach. Also, while the
unconventional monetary policy conducted by the FED might have had some supportive effects,
the latter remained most likely modest due to the small size of the implied shocks (Figure 3,
right panel (b)). In this scenario, the main drivers of the Great Recession consist in fact in the
lack of reactivity of the Federal Reserve, and the overall fall in aggregate demand and nominal
GDP faced by the private sector. Such a narrative is not mainstream and remains controversial.
It is nevertheless supported by the data and consistent with the findings of certain economists
who emphasize the role and responsibility of the FED in the events of the Great Recession (see
for instance Beckworth (2012) and Sumner (2017)).
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7 Conclusion

This paper introduces a general methodology for time-varying Bayesian VAR models. The model
takes a variable-specific approach and provides general autoregressive formulations for the dy-
namic parameters, in contrast to the random walk assumption used by the canonical approach
of Primiceri (2005). The developed estimation methodology is simple and yields significant effi-
ciency gains compared to the standard Carter and Kohn (1994) procedure. From a case study on
four countries during the Great Recession, overwhelming evidence is found against the homoge-
nous random walk formulation of Primiceri (2005). In general, it is shown that forecast accuracy
can be significantly improved by adopting the general time-varying model and its extensions,
random mean and random inertia. The results obtained from these extensions also suggest that
contrary to the common belief, stochastic volatility plays only a marginal role in time-varying
VAR models while the dynamic coefficients represent the main source of time variation.
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Appendix A Convergence of the MCMC algorithm

Because the estimation methodology of this paper differs from the standard methodology devel-
oped by Carter and Kohn (1994), it is important to check that the MCMC algorithm converges
properly to the posterior distribution. Kim et al. (1998) suggest that 2000 burn-in iterations are
sufficient when using the normal offset mixture approximation of the likelihood function. This
also corresponds to the number of initial iterations discarded by Primiceri (2005) for his small
model of the U.S economy. As a base case, the model is thus estimated on the basis of 10000
total simulations, including 2000 initial iterations trimmed as burn-in sample.

To check for convergence, the chain is first started from different starting points (randomly
selected), yielding similar results. The estimation results are also not affected by increasing
the number of burn-in and post burn-in iterations (attempts with 20000 burn-in iterations and
50000 post burn-in iterations, retaining all the draws or only one over ten, produce results with
no visible differences). As a second set of checks, and following Primiceri (2005), the model is
then submitted to 3 different types of tests. The first and second tests respectively focus on the
autocorrelation functions and inefficiency factors of the draws, while the third test consists in the
diagnostic test of Raftery and Lewis (1992) for the total number of runs of the algorithm. Given
the 153 sample points, 3 variables and 2 lags, the total number of dynamic parameters βi, λi and
δ−1i to estimate is 4131. Therefore, for the sake of saving space the results are only presented
for these parameters, leaving aside the static variance-covariance hyperparameters Ωi, φi and Ψi.

Figure 5 presents the results for the different diagnostics. For the three panels, the leftmost part
of the plot (3213 points) represents the results for the dynamic VAR coefficients β, while the
right and rightmost parts (459 points each) respectively provide the results for the volatility and
inverse covariance terms λ and δ−1. The 20th-order autocorrelation functions are summarised in
panel (a). Low autocorrelation functions are usually interpreted as evidence that the draws are
almost independent. All the values remain below 0.25, and, in fact most values don’t even exceed
0.10, particularly for the VAR coefficients. The second diagnostics consists in the calculation
of the inefficiency factors, presented in panel (b). Following Chib and Griffiths (2008), the

inefficiency factor is computed as 1 + 2
K

Σ
k=1

ρk, where ρk represents the kth-order autocorrelation

function and K is chosen as the value at which the autocorrelation functions tapper off, from a
4% tapered window. Inefficiency factor values around 20 or below are considered satisfactory.
Again, a vast majority of the values are around or below 20. Further information about the
inefficiency factors is provided in Table 6. The most inefficient coefficients are the volatility
terms λ for which the inefficiency factors commonly reach a value of 30, a value which remains
nevertheless reasonably close to 20. For the other two sets of coefficients, 90% of the estimated
values are below 25, with remarkably low inefficiency factors for the VAR coefficients β.

Median Mean Min Max 10th percentile 90th percentile

β 1.13 1.55 0.95 8.21 1.03 2.82
λ 9.45 13.37 2.19 64.59 4.69 30.4551
δ−1 7.06 9.59 1.70 52.02 2.43 22.09

Table 6: Summary of the distribution of the inefficiency
factors for the dynamic parameters
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Figure 5: Convergence diagnostics for the time-varying parameters
(a) 20-th-order sample autocorrelation, (b) inefficiency factors, (c) Raftery and Lewis’s total

number of runs
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As a final diagnostics, panel (c) plots the Raftery and Lewis (1992) total number of runs required
to achieve a given level of accuracy. The parameters are set as follows: quantile = 0.025; required
precision = 0.025; probability of attaining the required precision = 0.95. The total number of
runs is always far below the number of 10000 iterations used to conduct the estimation, and
suggests that 4000 iterations might in fact be sufficient. Again, the number of draws required to
achieve convergence for the VAR coefficients β appears to be particularly low.

Overall, given the complexity and high dimensionality of the model, the convergence checks are
satisfactory and provide evidence that convergence to the posterior distribution is efficient and
properly achieved.
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Appendix B Results for the case study on the Great Recession

Inflation: recession period

RMSE CRPS

Hrw Gtv Ri Rm Rim Hrw Gtv Ri Rm Rim

Canada 0.468 0.073 0.237 0.197 0.252 0.290 0.186 0.203 0.183 0.190

Euro area 1.722 1.677 1.637 1.594 1.610 1.530 1.379 1.390 1.340 1.394

Japan 0.427 0.341 0.402 0.541 0.508 0.254 0.232 0.243 0.329 0.299

United States 1.138 0.869 0.862 1.027 0.953 0.742 0.537 0.552 0.691 0.647

Inflation: reversion period

RMSE CRPS

Hrw Gtv Ri Rm Rim Hrw Gtv Ri Rm Rim

Canada 0.751 0.030 0.279 0.488 0.417 0.448 0.200 0.221 0.300 0.263

Euro area 1.850 0.365 0.561 0.525 0.581 1.372 0.225 0.346 0.316 0.364

Japan 0.979 0.570 0.532 0.514 0.531 0.657 0.352 0.319 0.315 0.312

United States 2.181 0.663 0.686 0.430 0.003 1.342 0.446 0.448 0.376 0.312

Inflation: recovery period

RMSE CRPS

Hrw Gtv Ri Rm Rim Hrw Gtv Ri Rm Rim

Canada 0.648 0.035 0.195 0.035 0.110 0.417 0.205 0.210 0.184 0.187

Euro area 0.582 0.127 0.327 0.208 0.363 0.370 0.158 0.207 0.160 0.220

Japan 1.090 0.801 0.921 0.542 0.626 0.750 0.492 0.595 0.336 0.375

United States 0.433 0.572 0.107 0.409 0.134 0.541 0.462 0.390 0.402 0.367

Table 7: Forecast evaluation criteria for inflation
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Interest rate: recession period

RMSE CRPS

Hrw Gtv Ri Rm Rim Hrw Gtv Ri Rm Rim

Canada 0.932 0.689 0.792 0.911 0.901 0.645 0.426 0.548 0.619 0.655

Euro area 0.903 0.749 0.758 0.781 0.765 0.685 0.487 0.552 0.521 0.571

Japan 0.076 0.019 0.001 0.003 0.003 0.054 0.057 0.043 0.050 0.042

United States 0.866 0.689 0.567 0.570 0.540 0.542 0.417 0.343 0.344 0.329

Interest rate: reversion period

RMSE CRPS

Hrw Gtv Ri Rm Rim Hrw Gtv Ri Rm Rim

Canada 0.539 0.341 0.440 0.247 0.068 0.322 0.286 0.293 0.232 0.194

Euro area 2.178 1.184 1.246 1.312 1.257 1.800 0.870 1.031 1.002 1.041

Japan 0.255 0.226 0.205 0.136 0.143 0.154 0.134 0.122 0.089 0.087
United States 0.964 1.764 1.786 1.085 1.359 0.580 1.165 1.313 0.629 0.888

Interest rate: recovery period

RMSE CRPS

Hrw Gtv Ri Rm Rim Hrw Gtv Ri Rm Rim

Canada 0.577 0.576 0.369 0.672 0.484 0.345 0.352 0.258 0.415 0.294

Euro area 0.358 0.256 0.143 0.491 0.260 0.226 0.211 0.144 0.296 0.174
Japan 0.010 0.107 0.083 0.128 0.112 0.054 0.085 0.064 0.087 0.074

United States 0.484 0.247 0.547 0.064 0.318 0.309 0.304 0.360 0.259 0.275

Table 8: Forecast evaluation criteria for the interest rate
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