
Munich Personal RePEc Archive

Synchronization in Sunspot Models

Patir, Assaf

The Hebrew University of Jerusalem

25 August 2019

Online at https://mpra.ub.uni-muenchen.de/95720/

MPRA Paper No. 95720, posted 27 Aug 2019 06:11 UTC



Synchronization in Sunspot Models

Assaf Patir∗

August 25, 2019

Abstract

This note illustrates how agents’ beliefs about economic outcomes can dynami-
cally synchronize and de-synchronize to produce business-cycle-like fluctuations in a
simple macroeconomic model. I consider a simple macroeconomic model with mul-
tiple equilibria, which are different ways that sunspots can forecast future output
in a self-fulfilling manner. Agents are assumed to learn to use the sunspot variable
through econometric learning. I show that if different agents have different interpre-
tations of the sunspot, this leads to a complex nonlinear dynamic of synchronization
of beliefs about the equilibrium being played. Depending on the extent of disagree-
ment on the interpretation of the sunspot, the economy will be more or less volatile.
The dispersion of the agents’ beliefs is inversely related to volatility, since low dis-
persion implies that output is very sensitive to extrinsic noise (the sunspot). When
disagreement crosses a critical threshold, the sunspot is practically ignored and the
output is stable.
The equation describing the evolution of the economy can be interpreted as a
nonlinear-stochastic version of the Kuramoto model, a prototypical model of syn-
chronization phenomena, and simulations confirm that the qualitative features of
the model are in agreement with results from the Kuramoto literature.

1 Introduction

This paper has two goals: first, to analyze, in a model with strategic uncertainty, how
using a sunspot can emerge as a coordination mechanism even when agents don’t agree
on what the sunspot is; and, second, to show that in such a situation the perpetual
learning about the equilibrium leads to fluctuations in output.

Macroeconomic models with strategic uncertainty frequently use sunspots to facil-
itate coordination between agents (Cass and Shell, 1983). The literal interpretation is
that the agents incorporate some extrinsic source of randomness into their decision mak-
ing process in a manner that generates an actual law of motion that is equivalent to their
perceived law of motion. Clearly, there are plenty of processes in the world that are ran-
dom – or at least quasi-random for all practical purposes – and can therefore be used as
sunspots, but is such behaviour ever seen in the real world? Indeed, if economists assert
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that a certain real-life system is well described by a sunspot model, how come they can’t
tell us what the sunspot is? How could it be that the lay agents are all coordinating on
a sunspot, yet the economists are not clued in on what the sunspot it?

Of course, one shouldn’t be so literal when interpreting a model: a more plausible
interpretation is that the agents are observing various processes that are influenced by
a random process that is not related to the fundamentals, and coordination emerges
somehow as an equilibrium result. This interpretation, however, poses a new difficulty:
if the particular source of stochasticity is not clearly defined, how can agents learn
to coordinate on it? Sunspots in such equilibria are, by definition, only related to
outcomes because agents are coordinated on using them, therefore, unlike signals about
fundamentals, it is far less clear if agents can learn its relationship to economic outcomes
unless the other agents are already coordinated. Previous literature has assumed that
agents know that some process, {zt}, is potentially relevant to outcomes, and analyzed
the circumstances under which they can learn to use it,1 but this might be considerably
more difficult when they don’t know what variables are potential sunspots and perhaps
have different preconceptions about the source of randomness.

To put this in more formal terms, in the above mentioned papers, and in most
sunspot applications, the sunspot process is assumed to be a well defined iid process. It
could be something like the intensity of actual sunspots (i.e. on the sun) at 8AM every
day. However, another agent may think that the sunspot is the same measurement
preformed a fixed amount of time after sunrise. Both stochastic series would be iid with
the same distribution as would infinitely many other possibilities, and in the non-literal
interpretation of sunspots, where the identity of the sunspot is not clearly communicated,
it is hard to imagine that agents won’t have such different interpretations. Thus, the
problem of learning to coordinate on sunspots is before anything else, the problem of
learning to construct a stochastic process out of many sources of randomness.

In this paper I demonstrate how, despite the above, it is perfectly possible for agents
to learn to coordinate even if they do not agree at any given moment on what the
coordination mechanism is. To do this, I consider a system with a continuum of sunspot
equilibria that are distinguished by different choices of the sunspot, and show that agents
that are using a simple learning rule can converge on playing an outcome similar to an
equilibrium, even while not agreeing about the identity of the sunspot. As the level
of disagreement increases up to some critical level, the outcome is that agents put less
weight on the sunspot, and beyond the critical level the sunspot is ignored. This will be
defined precisely in the body of the paper.

Learning models have typically been used in economics to study stability properties
of equilibria. If the learning process leads to convergence to the equilibrium, then it is
more plausible that it will be observed in reality, and the converse, if the process diverges,
then the equilibrium would not be played by agents whom are not perfectly rational and
knowledgable. In contrast, the analysis here shows that the learning process can lead
to complicated non-linear dynamics in the agents’ belief-space, in which their beliefs

1For example, see Woodford (1990); Guesnerie and Woodford (1990); Evans et al. (1994);
Evans and Honkapohja (2003a,b); Honkapohja and Mitra (2004).
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go through periods of synchronization and of desynchronization, and consequently the
strategies neither converge on an equilibrium nor diverge. Instead, there are long periods
in which the agents’ behaviour resembles a sunspot equilibria, and then periods where
the agents are not coordinated on the use of the sunspot. Consequently, the economy
goes through periods of high volatility (when the agents are coordinated on the sunspot)
and periods of low volatility (when the dis-coordination leads to the agents’ actions
canceling out and output being roughly constant).

As we shall see, the learning process does not converge to a point in the belief
space. Instead, the agents’ beliefs about the relationship between the sunspot and output
fluctuate around a “steady-state”. This volatility in the belief space is highest for some
medial level of disagreement, and drops toward higher and lower levels.

While the results of the paper can easily be adapted to any sunspot model, I focus for
concreteness on a modified version of a model from Benhabib, Wang, and Wen (2015).
In the model, firms are trying to learn about the relationship between two publicly
observed stochastic processes (zit, i = 1, 2) and total output (yt). There are specific
linear combinations, yt = φ+ ξ ·zt, such that if all agents believed that output fluctuates
according to this formula, it would be self fulfilling, and these are the stable equilibria
of the model. However, I allow agents to have different notions of the mapping between
zit and z

i
t+1, and this difference combined with the learning process leads to the complex

dynamics in the belief space that are described above.
The organization of this note is as follows: in the next section I review some of the

relevant economic and mathematical literature. Section 3 describes the model, which is
a modified version of the model of Benhabib, Wang, and Wen (2015). Section 4 includes
the main analysis: describing the rational-expectations equilibria of the model and their
stability properties, the results of numerical simulations for the full model, as well as
some analytical results based on simplifications of the model. Finally, some concluding
remarks are left to section 5.

2 Related Literature

Learning has a long history in macroeconomics, but the stochastic recursive descrip-
tion in this paper originates with Marcet and Sargent (1989). For a comprehensive
account of the state of this field see Evans and Honkapohja (2012). Some papers that
study learning in the presence of multiple equilibria and sunspots are Woodford (1990);
Guesnerie and Woodford (1990); Evans et al. (1994); Evans and Honkapohja (2003a,b);
Honkapohja and Mitra (2004).

Traditionally, the term sunspot is used in macroeconomics to describe a situation
where the dynamic equations of a system lead to indeterminacy, and therefore a new
stochastic process, the sunspot, can be introduced for the agents to coordinate their
actions on (for example Benhabib and Farmer, 1994; Christiano and Harrison, 1996).
In these models the realization of the stochastic process determines the equilibrium being
played. In a more recent paper Angeletos and La’O (2013) describe a different situation
where there is a unique equilibrium in which the agents use a random variable that they
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call the sentiment to choose their actions. While similar in spirit, these are formally
different situations. This note makes use of the model introduced by Benhabib et al.
(2015), which is similar to the latter in that the role of the stochastic process is not to
choose between equilibria.

The dynamics of the model are closely related to the Kuramoto model (Kuramoto,
1975), which has been used to describe synchronization phenomena across different dis-
ciplines and subject areas including synchronization of flashing fireflies, phase lock in
metronomes, and synchronized applause at the end of a concert. The Kuramoto model
describes a set of oscillators whose phases, are nonlinearly coupled, not unlike how the
learning process in my model links the agents’ beliefs about the equilibrium being played.
This is, to my knowledge, the first time that this link has been made, and potentially
opens the door to incorporating into macroeconomics the rich phenomena that the Ku-
ramoto model can describe. Thorough introductions to the model and reviews of the
current state of the literature include Strogatz (2000) and Acebrón et al. (2005). The full
model in this paper can be seen as a Kuramoto model with three modifications: stochas-
tic coupling, nonlinear corrections, and amplitudes interactions. Similar types of modi-
fications have been studied in previous literature as extensions of the Kuramoto model:
multiplicative stochastic coupling has been studied in Park and Kim (1996), generalized
nonlinear interactions between phases in (Daido, 1993, 1994, 1996a,b), and amplitude
interactions in (Ermentrout, 1990; Matthews and Strogatz, 1990; Matthews et al., 1991).

3 Model Setup

The model setup is based on Benhabib, Wang, and Wen (2015).

3.1 Households and Firms

3.1.1 Households

A representative household values streams of consumption Ct ≥ 0 and labor Nt ≥ 0
according to

U =

∞
∑

t=0

βt[logCt − ψNt], β ∈ (0, 1), ψ > 0,

and is subject to the budget constraint

PtCt ≤WtNt +Πt,

where Pt,Wt and Πt are the prices of the consumption good, the nominal wage, and the
profits from ownership of firms, respectively.

The household’s first-order conditions are

Ct =
1

ψ
·
Wt

Pt
, (1)

Nt =
1

ψ
−

Πt

Wt
. (2)
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3.1.2 Final Good Producers

The consumption good is produced by competitive final good producers using a contin-
uum of intermediate goods indexed by j ∈ [0, 1], with the stochastic technology

Yt =

[
∫ 1

0
ǫθjtY

1−θ
jt dj

]

1

1−θ

, θ > 0 (3)

where ǫjt are iid random variables, and can be interpreted as preference shocks. We shall
assume throughout that log ǫjt ∼ N(0, σ2ε ).

Denoting the price of good j at time t by Pjt, the demand for intermediate good j
is given by

(

Yjt
Yt

)θ

=
Pt

Pjt
εθjt.

From which we also get the relationship:

P
1−1/θ
t =

∫ 1

0
ǫjtP

1−1/θ
jt dj.

3.1.3 Intermediate Goods Producers

Each variety of intermediate good j is manufactured by a monopolist using labor as
the only input and with the production function: Yjt = ANjt. The intermediate good
manufacturers must decide on their level of production simultaneously at the beginning
of the period without observing the shocks ǫjt. After these decisions have been made,
prices are set so that markets clear, similarly to a Cornout competition.

The intermediate good producers’ problem is therefore

max
Yjt

Ejt[(Pjt −Wt/A)Yjt],

where Ejt represents the firms expectation operator conditioned on the information (and
beliefs) available to firm j at time t, which will be described below. The first-order-
condition is

Yjt = Ejt

[

A(1− θ)
Pt

Wt
Y θ
t ǫ

θ
jt

]1/θ

.

Substituting (1) into the above, we get

Yjt = Ejt

[

A(1− θ)

ψ
Y θ−1
t ǫθjt

]1/θ

= Ejt

[

Y θ−1
t ǫθjt

]1/θ
,

where in the last step, without loss of generality, I choose units of output such that
ψ = A(1 − θ). Finally, it is useful to redefine yt = log Yt, and εjt = log ǫjt so that we
have

yjt =
1

θ
logEjt

[

eθǫjt−(1−θ)yt
]

. (4)
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3.2 Information

There is a large number of ‘forecasters’ who observe both the firm specific shocks ǫjt and
a “sunspot” variable zt. The process {zt}

∞
t=0 is a standard Gaussian white noise vector,

i.e. for all t, zt ∈ R
k is multivariate normal N(0, Ik) (k > 1), and independent across t.

The intermediate-good firms do not get to see zt directly. Instead, they rely on a
survey of the forecasters to estimate their demand curves. However, the firm is limited
in its ability to conduct market research, so that it eventually obtains a signal that mixes
the information that the forecasters have:

sjt = λεjt + (1− λ)Ef
t yt, λ ∈ (0, 1), (5)

where E
f
t yt is the forecasters average estimate for yt. The value of zt is revealed at the

end of each period after all decisions have been made.
Benhabib et al. (2015) show that it is always an equilibrium for the agents to ignore

zt and believe that

yt = θσ2ε/(2(1 − θ)) ≡ φC . (6)

In this case sjt reveals εjt to the firms, so the firms each produce the efficient amount and
overall output is constant. However, when λ > 1/2, they also find a sunspot equilibrium.
In my notation, the sunspot equilibrium is obtained when all agents assume that output
follows yt = φS + ξS · zt with

‖ξS‖2 =
θλ(1− 2λ)

(1− λ)2
σ2ε , φS = φC

(

1−
(1− θ)(1− 2λ)

1− λ

)

. (7)

These are sunspot equilibria: when the projection of zt on a certain vector ξS is high
the firms get a high signal, but since they do not know if the signal is high due to εjt
or yt being high, they overproduce, and yt ends up high as a result. Any vector ξS that
satisfies the norm condition above can serve as an equilibrium.

In this paper I focus on the case of λ > 1/2, when both types of equilibria exist,
but, as shown in the appendix, only the sunspot equilibria are stable under the learning
scheme. Therefore, the agents are trying to learn about the use of zt.

3.3 Learning

The sunspot-process takes values in ⊗∞
t=0(R

k), and I will use a particular basis in this
space to describe zt. However, as explained in the introduction, I do not want to as-
sume that this basis is special in some way, or that agents should give that choice any
precedence. Indeed, for any arbitrary sequence of orthogonal matrices {Mt}

∞
t=0, with

M ′
t = M−1

t , the series z̃t = Mtzt has the same statistical properties as zt. an arbitrary
sequence of orthogonal matrices (M ′

t =M−1
t ). The choice of a series is a matter of how

agents understand what the sunspot is, and since I assume that the sunspot is an amor-
phous source of randomness, I allow different agents to have different understandings of
what the sunspot process is.
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Specifically, I assume that each agents is considering a sunspot series of the form
z̃jt = (M j)tzt, i.e. agents j believes that the sunspot z̃jt is conceptually related to
M j z̃jt+1. The model of Benhabib et al. (2015) is simply the case when all agents use the
same M j .

At any point in time, all agents are assumed to have the point-belief that output is
related to the sunspot via yt = log Yt = φj+ ξ̃j · z̃jt , with (φj , ξ̃j) ∈ R

k+1. In other words,
we limit the belief space of each agent to points in R

k+1. At the end of the period, the
variable zt and yt are revealed, and firms update their beliefs. This non-Bayesian form
of learning is sometimes called econometric learning, and has been used extensively in
macroeconomics.2

The updating process can be written recursively:
(

φjt+1

ξ̃jt+1

)

=

(

φjt
ξ̃jt

)

+ gtΥ
j
t+1

−1
(

1

z̃jt

)

(yt − φjt − ξ̃jt · z̃
j
t ),

Υj
t+1 = Υj

t + gt

[

(

1

z̃jt

)

·

(

1

z̃jt

)′

−Υj
t

]

=

= (1− gt)Υ
j
t + gt

(

1 0
0 M j

)(

1 z′t
zt ztz

′
t

)(

1 0

0 M j ′

)

where gt is the gain sequence and Υj
t is the estimated variance-covariance martix. The

gain sequence gt = 1/t corresponds to least-square learning (RLS), and replicates the
OLS estimator. This paper employs the RLS gain sequence as well as the sequence
gt = (1 − q)/(1 − qt), that corresponds to weighting past observations with a factor
of q ∈ (0, 1) per-time-period. It is more reasonable to assume that agents who live in
an environment that seems to keep changing would prefer to employ the latter gain
sequence, in order to react faster to changes.

The estimator Υj
t depends on the initial prior Υj

0, on M
j , and on the realizations of

zt. Using the strong law of large numbers, it is straightforward to show that if gt = 1/t
or gt → 1− q, the estimators limt→∞Υj

t = Ik+1 uniformly over j. This is simply stating
that all agents, regardless of their M j , must come to agree on the variance-covariance
matrix of the sunspot regardless of how they interpret it. Thus, for simplicity, I assume
that Υj

t = Ik+1 throughout. Furthermore, by redefining ξ̃jt = (M j)tξjt , the learning
process simplifies to

φjt+1 = φjt + gt(yt − φjt − ξjt · z
j
t ), (8a)

ξjt+1 =M j ′ · (ξjt + gtzt(yt − φjt − ξjt · zt)). (8b)

Finally, the beliefs of the forecasters at the beginning of every period are assumed to
be identically distributed to those of the firms. This simplifying assumption is similar
to assuming that firms do get to observe zt but with a very large error, so that this
information is not useful for making their own prediction about output, and that the
surveys are conducted by polling representatives of other firms.

2For a comprehensive account of this approach, see Evans and Honkapohja (2012)
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4 Analysis

4.1 The Firm’s Problem

First, consider a firm whose beliefs are given by (φj , ξj). Defining xjt = (θ − 1)(yt −
φj) + θεjt, we have from (4)

yjt = θ−1 logEjt

[

e(θ−1)yt+θǫjt |sjt

]

= (1− θ−1)φj + θ−1 logEjt [e
xjt |sjt] . (9)

Since log ǫj,t ∼ N(0, σ2ε ), we have Ejt[xjt] = Ejt[sjt] = 0, and the subjective variance-
covariance matrix of (xjt, sjt) is

Σ =

(

θ2σ2ε + (1− θ)2‖ξj‖2 θλσ2ε − (1− λ)(1 − θ)‖ξj‖2

sym. λ2σ2ε + (1− λ)2‖ξj‖2

)

.

Therefore, xjt|sjt ∼ N(m(‖ξj‖2)sjt, Σ̂(‖ξ
j‖2)), where

m(‖ξj‖2) =
θλσ2ε − (1− λ)(1− θ)‖ξj‖2

λ2σ2ε + (1− λ)2‖ξj‖2
, (10a)

Σ̂(‖ξj‖2) =
(θ + λ− 2θλ)2‖ξj‖2σ2ε
λ2σ2ε + (1− λ)2‖ξj‖2

. (10b)

Therefore, from (9)

yjt = (1− θ−1)φj + θ−1

[

m(‖ξj‖2)sjt +
1

2
Σ̂(‖ξj‖2)

]

.

Using this in (3),

(1− θ)yt = log

∫ 1

0
eθεjt+(1−θ)yjtdj =

= log

∫ 1

0
eθεjt+(1−θ){(1−θ−1)φj+θ−1[m(‖ξj‖2)sjt+

1

2
Σ̂(‖ξj‖2)]}dj =

= log

∫ 1

0
eθεjt+(1−θ){(1−θ−1)φj+θ−1[m(‖ξj‖2)(λεjt+(1−λ)〈ξi〉·zt)+ 1

2
Σ̂(‖ξj‖2)]}dj,

where (5) is used in the last step. Since εjt is independent of beliefs, we can integrate

(1− θ)yt = log

∫ 1

0
e

σ2
ε
2
[θ+(θ−1−1)λm(‖ξj‖2)]2×

× e(1−θ){(1−θ−1)φj+θ−1[(1−λ)m(‖ξj‖2)〈ξi〉·zt+
1

2
Σ̂(‖ξj‖2)]}dj. (11)

Equation (11) describes the mapping from the full belief space to actual output.
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4.2 Rational Expectations Equilibria

We can recover the equilibria found in Benhabib et al. (2015) by considering equation
(11) in the case that all agents have common beliefs φj = φ, ξj = ξ. We have

(1− θ)yt = −
(1− θ)2

θ
φ+

1

2
[θ + (θ−1 − 1)m(‖ξ‖2)λ]2σ2ε

+ (θ−1 − 1)

[

m(‖ξ‖2)(1− λ)ξ · zt +
1

2
Σ̂(‖ξ‖2)

]

.

Since yt is a linear function of zt, the mapping from the commonly perceived law of
motion yt = φ+ ξ · zt to the actual law of motion is:

φ→ −
(1− θ)

θ
φ+

1

2θ
Σ̂(‖ξ‖2) +

[θ + (θ−1 − 1)m(‖ξ‖2)λ]2σ2ε
2(1 − θ)

, (12a)

ξ →
1

θ
m(‖ξ‖2)(1− λ)ξ. (12b)

Rational expectations equilibria (REE) are fixed points of the above mapping. One such
fixed point is:

ξC = 0, φC =
θσ2ε

2(1 − θ)
,

which is the equilibrium described above in (6). The superscript C stands for ‘certainty’,
since output is constant in this fixed point. The S equilibria (for ‘stochastic’) of (7) are
the fixed points that exist when 0 < λ < 1/2:

‖ξS‖2 =
θλ(1− 2λ)

(1− λ)2
σ2ε , φS = φC

(

1−
(1− θ)(1− 2λ)

1− λ

)

.

As noted in Benhabib et al. (2015), average output is lower in the stochastic equilibrium
(φC > φS), and it is also straightforward to show that the welfare of the representative
consumer is lower.

It is worth noting that the C equilibrium is only stable-under-learning for λ ∈
(1/2, 1). For λ ∈ (0, 1/2), when both equilibria exist, only the S equilibria are sta-
ble. The remainder of the paper focuses on the case λ ∈ (0, 1/2).

4.3 Numerical Analysis

Before going into further analysis, it is useful to get a general idea of the dynamics of
this system through numerical simulations. Consider first the three-dimensional model
(k = 2), and let the M j matrices be M j =M(αj), where

M(α) =

(

cosα − sinα
sinα cosα

)

,
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and α ∼ N(0, η2), i.e. I include all the special-orthogonal matrices and choose some
distribution around the unit matrix.

To get a general impression, figure 1 displays the results of three typical trial runs
with low, mid, and high values of η2.3 Recall that for the parameter values chosen, the
stochastic equilibria defined by φ = φS , |ξ| = ξS are stable, i.e. for η = 0 the learning
process will converge to one of these equilibria. The specific equilibrium chosen in this
case depends on the initial beliefs and the realization of the stochastic process. The
left-most column in figure 1 demonstrates that the dynamics seem to be continuous: for
low levels of disagreement (η2) the economy settles into a noisy version of the stochastic
equilibria. We see that the average belief about φ is close to φS and the belief about ξ
remains on a circle of radius ξS . Further investigation shows that dispersion is also low,
i.e. each individual belief remains close to the average belief, and the errors that agents
are making are roughly averaged out of the aggregate outcome.

Turning to the right-most column, we see that when η2 is high, coordination fails
and players end up playing the non-stochastic equilibrium. This equilibrium would not
be stable with rational agents, but the disagreement over a choice of sunspot precludes
coordination with our non-rational agents.

Finally, the central column illustrates the case for an intermediate value of η2. Here
we see an example of a learning process that does not converge, and yet does not diverge
either. Over time beliefs about the use of the sunspot ξjt converge and increase the
average ‖〈ξjt 〉‖, but then rapidly diverge as coordination fails. Consequently, output
becomes more or less volatile, and average output fluctuates between φS and φC .

To better understand the above interpolation, figure 2 displays summary results of
simulations for different values of η2.4 The four subplots display the values of: (a) the

average φjt across agents, (b) the dispersion of φj across agents:
〈

φjt

〉2
−
〈

φjt

〉2
, (c) the

norm of the average ξjt , (d) the dispersion of the last quantity across agents. Note that
these quantities change over time, so every point in the plot is an average both across
time and across simulations. The dashed lines are standard deviations which give a sense
of the ergodic distribution. These results suggests that the distributions are continuous
in η2. It also shows that the system has a bifurcation point: above some critical level
of η2 the system is exactly at the deterministic equilibrium, and the statistics (b)-(d)
appear to have a discontinuous first derivative at the critical point.

3The technical details of the simulations: I fix all parameter values, discretize to J = 800 agents,
and set αj = ηΦ−1(j/J). Initial conditions are chosen at random. The simulation is run for T = 105

periods with different initial conditions. The results reported in the graph are typical for many values of
the parameters that have been checked (the only requirements are λ < 1/2 and q small enough to avoid
immediate divergence).

4Here I allow the simulation to run for 1000 periods and calculate the statistics for the remaining
periods, and over a number of simulations with different initial conditions. The averages are over time,
and the dashed lines represent a one-standard-error interval around the means, i.e. it is a statistic of the
ergodic distribution of the variable.
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4.4 A Non-Stochastic Simplification

The full model discussed is both stochastic and highly nonlinear. However, one can
gain much insight by considering a simplification of the model that does away with the
stochasticity and eliminates some of the non-linearity. In this subsection I shall discuss
this simplified model and relate the results back to the full model. The inspiration for this
simplification is the Kuramoto model (Kuramoto, 1975), which describes synchronization
phenomena in general, and has been used in various fields with considerable success
(Strogatz, 2000).

Consider a modification to our model: rather than playing the game once within
every period t = 0, 1, . . . , imagine that the players play the game many times within
each period while holding their beliefs fixed. At the end of each period the agents
use all of their observations to update their beliefs as before. The point is that for
enough repetitions within each period, the stochastic nature of the learning process (8)
is eliminated and the correction to the players’ beliefs at the end of every period does
not depend on the random realization of zt. This simplification is certainly not “legal”
in any mathematical sense, but is useful for the purpose of gaining intuition on the
underlying mechanism.

The learning rule for φ (8a) is simplified to

φjt+1 = φjt + gt(ŷt − φtj),

where ŷt is the within period average of yt (over all realizations of zt). Notice that this
rule also implies that for any j, j′,

|φjt+1 − φj
′

t+1| = (1− gt)|φ
j
t − φj

′

t | = |φj0 − φj
′

0 |

t
∏

s=0

(1− gs)
t→∞
−−−→ 0,

i.e. after enough time the simplified learning process leads to a common belief about φ.
Next, consider equation (11). It gives a formula for yt that is the logarithm of an

average of exponents. Schematically, this can be written as:

(1− θ)y = log

∫ 1

0
eA(φj ,ξj)+B(ξj ,〈ξi〉)·zdj = log

∫ 1

0
eA

j+Bj ·zdj.

The right-hand-side is the log of the moment-generating function of the argument of the
exponent. Assuming that the moments are finite, we can expand:

(1− θ)y =
〈

Aj
〉

+
〈

Bj
〉

· z +
1

2
Var[Aj +Bj · z] + higher moments.

Combining this with the previous simplification and (8b), we get the learning dynamics:

M j · ξjt+1 = ξjt +
gt

1− θ

(

〈

Bi
t

〉

− (1− θ)ξjt +Cov[Ai
t, B

i
t ] + · · ·

)

.
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We shall return to the above setup, but for now, let us ignore drop all the higher-order
terms. Replacing the actual expression for

〈

Bi
t

〉

in the above, we get

M j · ξjt+1 = ξjt + gt

(

1− λ

θ

〈

m(‖ξit‖
2)
〉 〈

ξit
〉

− ξjt

)

.

Using the definition (10a), and after some manipulation,

1− λ

θ
m(‖ξit‖

2) = 1−
1

θ

[

1 +
λ(θ(1− 2λ) + λ)σ2ǫ

(1− λ)2(‖ξi‖2 − ξS2)

]−1

,

which allows us to rewrite

M j · ξjt+1 = ξjt + gt

(

〈

ξit
〉

− ξjt

)

−
gt
θ

〈

1 +
λ(θ(1− 2λ) + λ)σ2ǫ

(1− λ)2(‖ξi‖2 − ξS2)

〉−1
〈

ξit
〉

.

Next I would like to consider the continuous-time limit of this equation. To do this,
we take the limit ∆t→ 0, and also gt → 0 (that determines how fast agents learn), and
αj → 0 (that determines how agents’ interpretation of the sunspot changes in time),
keeping the ratios constant. In a slight abuse of notation, I call the limit gt/∆t ≡ g and
αj/∆t ≡ ωj , to arrive at

ξ̇jt =

(

0 −ωj

ωj 0

)

· ξjt + g
(

〈

ξit
〉

− ξjt

)

−
g

θ

〈

1 +
λ(θ(1− 2λ) + λ)σ2ǫ

(1− λ)2(‖ξit‖
2 − ξS2)

〉−1
〈

ξit
〉

. (13)

4.4.1 Solving the nonstochastic equation

The system (13) has two important steady-state solutions. The first is the trivial ξjt = 0.
To obtain the second solution, let us assume without loss of generality that

〈

ξit
〉

is

entirely in the 1-direction. The 2-component of (13) gives ξ2jt /ξ
1j
t = ωj/g. Therefore,

define tanψj = ωj/g, and consider the solution ξjt = Rj(cosψj , sinψj)′. The remaining
equation is:

Rj = cosψj
〈

Ri cosψi
〉



1−
1

θ

〈

1 +
λ(θ(1− 2λ) + λ)σ2ǫ

(1− λ)2(Ri2 − ξS2)

〉−1


 ,

i.e. Rj must be proportional to cosψj (which is exogenously determined), therefore let
Rj = C cosψj , and we are left with

1 =
〈

cos2 ψi
〉



1−
1

θ

〈

1 +
λ(θ(1− 2λ) + λ)σ2ǫ

(1− λ)2(C2 cos2 ψi − ξS2)

〉−1


 . (14)

For a given distribution of ωj (and therefore ψj) equation (14) determines C. Fur-
thermore, since the right-hand-side is decreasing in C and becomes negative for large

12



enough C (since θ < 1), it is enough to evaluate the right-hand-side at C = 0 to deter-
mine if a solution exists. After some algebraic manipulation one arrives at the condition

〈

cos2 ψi
〉

=

〈

1

1 + (g/ωi)2

〉

>
λ

1− λ
. (15)

Thus,

Theorem 1. The simplified model equation (13) admits a trivial steady-state solution,
ξjt = 0. If the distribution of ωj is that (15) is satisfied, then there also exists a family
of solutions:

ξjt = C cosψj

(

cos(ψj + ψ0)
sin(ψj + ψ0)

)

, (16)

for any ψ0 and C is the unique solution to (14). Furthermore, both solutions are locally
(Lyapunov) stable.

The stability property is trivial: since a change in a single ψj (a small mass) has a
negligible effect on the terms inside the 〈· · ·〉 operators, the equation for a small deviation
is simply

ξ̇jt = −

(

g ωj

−ωj g

)

· ξjt + constant.

Since the eigenvalues for this equation, −g± iωj , have negative real part, local stability
is assured.

Note that (16) describes a circle of radius C/2 centered at v = (C/2)(cos ψ0, sinψ0).
The agents will always end up distributed on such a circle, with the exact distribution
determined by the distribution of ωj. This also means that v · ξj > 0 for all j, so that
they all agree that v · zt > 0 implies higher output this period. That is, they agree on
the sign, but not the magnitude, of the impact of a sunspot realization parallel to v.
They will not agree on the relevance of the perpendicular component: some will believe
that (I − vv′)zt > 0 implies higher than average output and some lower.

In numerical simulations I find that the non-trivial is also a global attractor if it
exists, and that otherwise the trivial solution is an attractor. Indeed, the system (13)
tends to one of the two solutions for all the specifications that I have tried.

4.5 From the Deterministic to the Stochastic Model

In order to arrive at (13) we ignored the higher moments of the belief distribution. This,
however, is only needed in order to find the explicit condition (15) that determines when
the nontrivial solution exists. In fact, in the fully nonlinear version the equation in the
direction perpendicular to

〈

ψi
〉

still requires that ξ2jt /ξ
1j
t = ωj/g, and therefore leads

to a solution of the form ξjt = C cosψj(cosψj , sinψj)′. The equation for C is now more
complicated, but for a given distribution of ωj , one can still determine if a solution exists
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numerically and find it. The local stability properties also work in exactly the same way:
the nontrivial solution is stable when it exists, and appears to be a global attractor; and
when it does not, the trivial solution is the attractor.

Figure 3 shows examples of the stead-state solutions of the fully nonlinear but non-
stochastic model for different distributions of ωj. In all examples ωj ∼ U(−η, η), which
makes it possible to plot the support of ξj. We can see that for small η, the stead-
state solution resembles a rational-expectations solution of type S. Instead of the agents
agreeing on some point on the ξS-circle they are dispersed on a small arc close to the
circle. For η large, but below the critical point, the beliefs form a small loop close to
the origin. In both cases the belief-dispersion is low and the average belief is close to
the S or C REE. For intermediate values, we get a much larger dispersion of beliefs,
and the average belief takes a value within the circle. This is all in agreement with the
properties of the full stochastic model (as described in figure 2).

The difference between this model and the full stochastic one is in the information
based on which learning happens: in the deterministic model the learning is based on
the ergodic distribution of zt, while in the full model it is based on a single realization.
We can interpolate between the full model and the deterministic one by modifying the
number of realizations of zt between each learning episode (in the deterministic model it
is infinite). Changing the distribution of zt changes the steady-state in the deterministic
model, so we cannot draw impulse-response-functions (IRFs) in the standard sense,
but we can use the idea of interpolation from slow to fast learning to define a similar
construct: begin at t = 0 with the steady-state solution of the deterministic model and
play one period (t = 1) of learning as in the original model. After that, for all periods
t > 1, the learning is again as in the deterministic model. This approach can be thought
of as an impulse to the learning speed, or more accurately to the stochasticity that is
introduced by the difference between the realization of zt and its ergodic distribution.

Figure (4) shows the single-period responses of beliefs, ξj, to such a shock when the
realization is in the direction parallel and perpendicular to the average belief

〈

ξi
〉

. The
reader is invited to view the IRF over multiple periods in a video attachment to this
paper5, but it can also simply be summarized by saying that the beliefs simply decay
back to the steady-state. Notice that perpendicular shocks make the distribution of
beliefs narrower, and parallel shocks make it wider regardless of whether the projection
of zt on

〈

ξi
〉

is positive or negative.
The IRFs help us understand another feature of the full model. As mentioned above,

the steady-state distribution is more dispersed for intermediate values of η than for low
and high values. Therefore, each ‘shock’ generates a larger movement in beliefs for
intermediate values of η, resulting in the type of stochastic behaviour seen in the middle
column of figure 1.

5The video is available at https://youtu.be/Xn2DR-CmWTg
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4.6 Interim Summary

To summarize the results so far, I postulated a model in which agents face multiple
sources of amorphous non-fundamental random processes, and the nature of these pro-
cesses precludes explicit agreement on how to use them in the decision making process.
The extent of how amorphous the processes are is captured in the dispersion of ωj. I
find that:6

1. Without any dispersion in ωj (the distribution is a singleton), the agents converge
over time to the S or C rational-expectations-equilibria found in Benhabib et al.
(2015).

2. When the dispersion is beyond some critical value (which can be calculated for
any particular family of distributions), the agents learn to play the C equilibrium.

3. Below this critical value, in the deterministic model, agents converge on a solution
of the form (16), where the value of C can be determined by solving equation (14)
for the particular distribution (or an equivalent equation in the nonlinear model).

4. In the full model, when dispersion is just below criticality or just above zero,
the system tends toward a solution that is similar to the one mentioned in the
pervious item. The beliefs fluctuate due to the random realizations of the sunspot,
but overall the belief dispersion is low. Output in such an economy will be close
to yt = φC for high dispersion, and distributed approximately yt ∼ N(φS , (ξS)2)
for low dispersion.

5. For intermediate values, the above solution is not a good approximation since
realizations of the sunspot shift beliefs to create large fluctuations in the average
belief. The economy will fluctuate between periods of high output and low volatility
(high

〈

φit
〉

, low
〈

ξit
〉

), and periods of low average output and high volatility.

5 Discussion

The first conclusion of this paper is that synchronization on sunspot models does not
require agents to be able to explicitly agree on what the sunspot is. As long as the differ-
ent interpretations are not too far apart, agents can spontaneously learn to synchronize
on the use of random noise, and while they will differ in their use of the noise, in the
aggregate there will be a sunspot that is correlated with output.

The second conclusion is that, unless the differences in interpretation are minimal,
the learning dynamics will not lead to a settled use of the sunspot. Rather, the process
leads to a constant flow in the belief-space that generates periods of higher and lower
levels of coordination. In periods of high coordination, the sunspot has a larger impact
on the agents’ actions, which results in output being more volatile. We can, in fact,

6Based on numerical simulations for the full model and analytical results for the simplified determin-
istic version.
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translate the results for low-, high-, and mid-dispersion in ωj into three corresponding
macroeconomic scenarios: (a) output is constantly volatile, (b) output is constantly non-
volatile ,(c) the volatility of output is itself volatile. This will also correspond to low
(a,b) or high (c) levels of dispersion of beliefs of forecasters.

My model is clearly too stylized to be compared to data as is – in particular, it
lacks capital that generates more persistence in the real economy – but these are all in
principle predictions that can be tested empirically. At the very least, it demonstrates
the sorts of phenomena that learning can create when the information is not very easily
and clearly defined.

5.1 Will they ever learn?

The agents in our model are using a misspecified learning model: they are not considering
a linear law of motion with time-independent parameters, which is not the actual law of
motion when other agents are also learning. Clearly, an agent who understands this can
profit by making superior forecasts. However, this would require a very clever agents,
who is also able to understand how other agents perceive the sunspot. Since the premise
of the model was that the sunspot is not easily definable, that seems like a tall order.

Still, one can try to address this concern by considering a modification of the model
in which the forecasters who consistently make bad predictions fall out of the profession
over time. Recall that the deterministic solution (13) describes a circle, and note that
the forecast error is on average simply the difference between the belief of the agent and
the average belief. If the average belief was the center of the circle, then there would
be no difference in the average forecast error. Thus, i the deterministic model one can
figure out which agents will get eliminated by considering the difference between the
average belief and the center of the circle. One can construct examples where the worst
forecasters are the ones with extreme values of ωj, and examples where they are the
ones close to the mean. Therefore, it is not clear if dropping the worst forecasters leads
to higher or lower eventual dispersion.

More specifically, when dispersion is low, the agents with the ωj that is farthest from
the mean are the ones making the worst predictions. If they fall out, then dispersion be-
comes even lower until eventually we reach the S equilibrium of the rational-expectations
model. When dispersion is high, all the agents are virtually ignoring the sunspot, so no
elimination would happen at all. For medium levels of dispersion, the relationship is not
so clear: even if it is true that on average and over long periods of time the agents with
extreme ωj are the worst forecasters, over short periods of time the differences are small
compared to the variance, and the stochastic nature of the sunspot combined with the
seemingly chaotic flows in the belief space introduce uncertainty into who will drop out.
In numerical simulations I find that even over samples of 30-40 periods, sometimes it is
actually the agents close to the mean that are performing worst.

To conclude, close to the extreme levels of dispersion termination of ‘bad’ forecasters
will reinforce the results we already have. For medium levels, the details of the model
in combination with the rate of attrition will determine in which direction things go.
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5.2 The Kuramoto Connection and the Matthews-Strogatz Model

Finally, I’d like to add a comment about a similarity between my model and a version
of the Kuramoto model Kuramoto (1975) that is due to Matthews and Strogatz (1990)
(hence, MS).

In section 4.4 I derived equation (13)

ξ̇jt =

(

0 −ωj

ωj 0

)

· ξjt + g
(

〈

ξit
〉

− ξjt

)

−
g

θ

〈

1 +
λ(θ(1− 2λ) + λ)σ2ǫ

(1− λ)2(‖ξit‖
2 − ξS

2
)

〉−1
〈

ξit
〉

.

This equation bears similarity to an equation studied by MS, which can be written as:7

ξ̇jt =

(

0 −ωj

ωj 0

)

· ξjt + g
(

〈

ξit
〉

− ξjt

)

− (‖ξjt ‖
2 − ξS

2
)ξjt . (17)

The first two terms are identical. To first order, the last term of (13) is proportional to

(
〈

‖ξit‖
2
〉

− ξS
2
)
〈

ξi
〉

, which is the same as (17) except that the latter has ξjt instead of
〈

ξit
〉

.
Both my equation and (17) lead to a steady-state solutions where agents are syn-

chronized and a trivial ξjt = 0 solution. Additionally, both systems have regions of the
parameter space where each of the steady-state solutions is a global attractor. MS find
additional regions where neither of the above are attractors, which is not the case in
my model. The reason for the difference is due to the last term of the equation. In
equation (17) each ξj has its own natural frequency ωj, an interaction with the average
〈

ξi
〉

, and a nonlinear interaction with itself. Without the interaction between ξj and
the average, all agents would end up in a moving in a circle of radius ξS , with constant
angular velocity ωj. In (13) there is no limit cycle. Lacking the interaction with the
average, each agent would spiral down to ξj = 0.

The phenomena that MS find (e.g. periodic fluctuations, non-periodic fluctuations,
chaos) are fascinating and should be of interest to economists. Models that combine the
methods of this paper with limit-cycle models would naturally lead to these phenomena.
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J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler. The
Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of
Modern Physics, 77(1):137–185, Apr. 2005.

G. Angeletos and J. La’O. Sentiments. Econometrica, 81(2):739–779, 2013.

J. Benhabib and R. E. A. Farmer. Indeterminacy and Increasing Returns. Journal of
Economic Theory, 63(1):19–41, June 1994.

7The notation was changed to conform to the notation my paper

17



J. Benhabib, P. Wang, and Y. Wen. Sentiments and Aggregate Demand Fluctuations.
Econometrica, 83:549–585, March 2015.

D. Cass and K. Shell. Do Sunspots Matter? Journal of Political Economy, 91(2):
193–227, 1983.

L. J. Christiano and S. G. Harrison. Chaos, sunspots, and automatic stabilizers. Staff
Report 214, Federal Reserve Bank of Minneapolis, 1996.

H. Daido. A solvable model of coupled limit-cycle oscillators exhibiting partial perfect
synchrony and novel frequency spectra. Physica D: Nonlinear Phenomena, 69(3):
394–403, Dec. 1993.

H. Daido. Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle
oscillators with uniform all-to-all coupling. Phys. Rev. Lett., 73(5):760–763, Aug. 1994.

H. Daido. Multibranch Entrainment and Scaling in Large Populations of Coupled Os-
cillators. Phys. Rev. Lett., 77(7):1406–1409, Aug. 1996a.

H. Daido. Onset of cooperative entrainment in limit-cycle oscillators with uniform all-
to-all interactions. Physica D: Nonlinear Phenomena, 91(1):24–66, Mar. 1996b.

G. B. Ermentrout. Oscillator death in populations of “all to al” coupled nonlinear
oscillators. Physica D: Nonlinear Phenomena, 41(2):219–231, Mar. 1990.

G. W. Evans and S. Honkapohja. Existence of adaptively stable sunspot equilibria near
an indeterminate steady state. Journal of Economic Theory, 111(1):125–134, 2003a.

G. W. Evans and S. Honkapohja. Expectational stability of stationary sunspot equilibria
in a forward-looking linear model. Journal of Economic Dynamics and Control, 28
(1):171–181, 2003b.

G. W. Evans and S. Honkapohja. Learning and Expectations in Macroeconomics. Prince-
ton University Press, 2012.

G. W. Evans, S. Honkapohja, and S. Honkapohja. Learning, convergence, and stability
with multiple rational expectations equilibria. European Economic Review, 38(5):
1071–1098, 1994.

R. Guesnerie and M. Woodford. Stability of Cycles with Adaptive Learning Rules.
DELTA Working Paper 90-25, DELTA (Ecole normale supérieure), 1990.

S. Honkapohja and K. Mitra. Are non-fundamental equilibria learnable in models of
monetary policy? Journal of Monetary Economics, 51(8):1743–1770, 2004.

Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In
P. H. Araki, editor, International Symposium on Mathematical Problems in Theoret-
ical Physics, number 39 in Lecture Notes in Physics, pages 420–422. Springer Berlin
Heidelberg, 1975.

18



A. Marcet and T. J. Sargent. Convergence of least squares learning mechanisms in self-
referential linear stochastic models. Journal of Economic Theory, 48(2):337–368, Aug.
1989.

P. C. Matthews and S. H. Strogatz. Phase diagram for the collective behavior of limit-
cycle oscillators. Phys. Rev. Lett., 65(14):1701–1704, Oct. 1990.

P. C. Matthews, R. E. Mirollo, and S. H. Strogatz. Dynamics of a large system of coupled
nonlinear oscillators. Physica D: Nonlinear Phenomena, 52(2):293–331, Sept. 1991.

S. H. Park and S. Kim. Noise-induced phase transitions in globally coupled active
rotators. Phys. Rev. E, 53(4):3425–3430, Apr. 1996.

S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in
populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(1–4):1–20,
Sept. 2000.

M. Woodford. Learning to Believe in Sunspots. Econometrica, 58(2):277–307, Mar. 1990.

19



Figures

0 100 200 300

S

C

j

=0.10

0 100 200 300

t

0

S

||
j

||

0 100 200 300

S

C

j

=0.02

0 100 200 300

t

0

S

||
j

||

0 100 200 300

S

C

j

=0.30

0 100 200 300

t

0

S

||
j

||

Figure 1: The left, center, and right columns, are each an example of a simulation
of the full system for low, mid and high values of η2 respectively. In each column

the top graph displays the evolution of the average belief
〈

φjt

〉

. The middle graph

shows the norm of the average belief on ξ, i.e. ‖
〈

ξjt

〉

‖. The remaining parameters

are: θ = 2/3, λ = 1/4, σǫ = 1, q = 0.9. A video of these simulations is available at
https://youtu.be/Xn2DR-CmWTg
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Figure 2: Summary statistics for simulations of the main model. The horizontal axes
display values of η, and all other parameters are kept constant as in the previous figure.
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Figure 3: The steady state solution of the steady-state solution to the (fully nonlinear)
non-stochastic model for different values of η. The outer circle is of radius ξS .
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Figure 4: The ‘Impulse Response Functions’ described in subsection 4.5. The dotted
black line is the steady-state solution to the (fully nonlinear) non-stochastic model. The
solid and dashed lines show how the ξj distributions react to a shocks parallel and
perpendicular to

〈

ξi
〉

respectively. The average belief at t = 0 and after the parallel and
perpendicular shocks are denoted by a plus, square and diamond respectively.
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