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Abstract

We develop an endogenous grid method for models with the option to default in which price

schedules are endogenously determined in equilibrium and depend on individuals’ states. The

algorithm has noticeable computational benefits in efficiency and accuracy. We obtain these

computational benefits by combining Fella’s (2014) identification for non-concave regions

with our algorithm that numerically searches for risky borrowing limits. These two proce-

dures identify the region of solution sets to which Carroll’s (2006) endogenous grid method

is applicable. To demonstrate the method, we apply our method to Nakajima and Rı́os-Rull’s

(2014) model. In terms of computation time, this method is seven to twenty-seven times faster

than the conventional grid search method. Moreover, various types of accuracy tests indicate

that our method yields more accurate results than the grid search method.
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1 Introduction

Dynamic models which allow agents to default on their debts are often difficult to solve accurately

and efficiently because the features of these models hinder the use of efficient algorithms, such as

Carroll’s (2006) endogenous grid method (EGM) and Arellano, Maliar, Maliar, and Tsyrennikov’s

(2016) envelope condition method. These algorithms require a feasible set for the solution to

be defined before being implemented through an exogenous borrowing constraint or a collateral

constraint. However, in models with the option to default, it is hard to define the feasible set before

solving the models because it differs across individual states and is endogenously determined in

equilibrium.1 Additionally, because the choice of default is discrete, value functions become non-

concave and non-differentiable. Therefore, it is difficult to use efficient algorithms that exploit the

necessity and sufficiency of the first-order condition for an interior optimum.

In this paper, we propose a solution method which addresses these computational issues. First,

we handle issues from the non-concavity and non-differentiability by employing Fella’s (2014)

algorithm. Fella (2014) suggests a generalized EGM that can handle non-concavity and non-

differentiability of value functions. However, Fella’s (2014) EGM cannot be directly applied to

models with the option to default because it works only when the feasible set for the solution is

predetermined through an exogenous borrowing constraint or a collateral constraint. Second, to

address this issue, we define the feasible set for the solution of asset holdings by adding a step that

numerically calculates its lower bound, which is called the risky borrowing limit. This numerical

procedure is based on a theoretical result in Arellano (2008) and Clausen and Strub (2019). They

show that for every optimal debt contract, the size of debt, defined as the product of the price and

the quantity of debt, increases with the quantity of debt. For each state, we numerically compute

a level of asset holdings above which this theoretical finding always holds. Then, we take it as the

risky borrowing limit, which acts as the lower bound of the feasible set of asset holdings. These

1In contrast, when the option to default is unavailable, this issue does not appear because the feasible set of the

solution is irrelevant to its equilibrium. It is predetermined through an exogenous borrowing constraint or a collateral

constraint.
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procedures allow us to exploit the computational benefits of the EGM in solving models with the

option to default.

To demonstrate our algorithm, we apply our method to the model in Nakajima and Rı́os-Rull

(2014), which studies the effects of access to credit along with the nature of business cycles. In the

model, besides deciding whether to repay or default on their debt, households determine saving and

labor supply and are exposed to idiosyncratic risks on their labor productivity as well as aggregate

shocks. To find equilibrium in this model, using the conventional grid search method is inefficient.

The value function iterations must be repeated multiple times because it is in general equilibrium

and uses the algorithm of Krusell and Smith (1998) to address aggregate shocks in the model. By

applying our algorithm to this model, we examine how helpful our algorithm is in solving rich

models that require significant computational time.

Our algorithm has noticeable computational benefits in accuracy and efficiency. It converges

seven to twenty-seven times faster and yields more accurate results than the grid search method

based on various accuracy tests, such as Bellman equation errors, Den Haans forecasting test, and

R2 of the forecasting rules. We attribute this improvement in accuracy to the first-order conditions

(FOCs) in the EGM. Several components in our algorithm contribute to improvements in effi-

ciency. First, our algorithm defines the regions of solution sets to which Carroll’s (2006) EGM is

applicable. This step reduces the use of a forward-looking nonlinear equation solver, which is one

of the most time-consuming procedures in computation. Second, our algorithm simultaneously

updates risky borrowing limits, the loan price schedule, and value functions, instead of iterating

separately on them.2 Finally, our algorithm solves the choice of labor supply by combining the

first-order condition of the leisure-consumption choice with the EGM following Khan (2016).3

2These three objects are inter-winded in the equilibrium. When the option to default is available, a risk-neutral

intermediary needs to price loans so that it can operate at a zero profit for each type of borrower. Therefore, on

the one hand, the financial intermediary takes into account that each type of individual makes their default decision

by comparing default and non-default values. On the other hand, these individuals take into consideration that the

financial intermediary charges loan prices and sets up the risky borrowing limit based on their decision. Since the

risky borrowing limit, loan price schedule, and value functions interact in this way, it is not clear how to find fixed

points of these objects stably. Our algorithm updates these objects at the same time, which contributes to improvements

in efficiency.
3Note that solving the choice of labor supply is costly with the EGM. For example, Barillas and Fernández-

Villaverde (2007) add a step of searching the grid into the EGM to solve the choice of labor supply.
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This paper belongs to the stream of the literature of EGM, originally developed by Carroll

(2006). Barillas and Fernández-Villaverde (2007) extends it to solve models with endogenous

labor supply. Fella (2014) develops a generalized EGM to solve models with discrete choices

and exogenous borrowing constraints by addressing the non-concavity and non-differentiability of

value functions. Iskhakov, Jørgensen, Rust, and Schjerning (2017) propose another type of EGM

that can handle discrete choices and show that introducing taste shocks improves its efficiency.

Hintermaier and Koeniger (2010) develop an EGM to solve multidimensional models with smooth

and concave value functions. Druedahl and Jørgensen (2017) extend it to solve multidimensional

models with non-convexity and constraints. However, none of these EGMs can be applied to

models with the option to default because they require the feasible set for the solution to be defined

before they can be implemented. Our method extends these EGMs to be applicable to models with

the option to default by adding a numerical procedure of identifying the feasible set for the solution

through the risky borrowing limit.

This paper is also related to the literature on other types of computational methods to solve

models with default risks. Arellano, Maliar, Maliar, and Tsyrennikov (2016) develop an envelope

condition method applicable to default models. However, as mentioned in Arellano, Maliar, Maliar,

and Tsyrennikov (2016), it is difficult to achieve the convergence of the envelope condition method

in models with endogenous default rules. This paper contributes to this margin by suggesting a

computational method that attains stable convergence with endogenous default rules without loss

of efficiency and accuracy.

The organization of this paper is as follows. Section 2 describes the Nakajima and Rı́os-Rull

(2014) model, to which we apply our method. Section 3 describes the details of the algorithm.

Section 4 presents the results. Section 5 concludes.
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2 Model

In this section, we demonstrate our algorithm using a simplified version of Nakajima and Rı́os-

Rull’s (2014) model.4 In the model, A continuum of households exists with a stochastic lifespan

and a risk neutral credit intermediary. They can access a one-period non-contingent debt and

can default on it. They face two types of idiosyncratic shocks: preference shocks γ, and labor

productivity shocks i. Labor productivity shocks, i, takes the following form:

log i = log e+ log p+ log t (1)

where e is the permanent shock, p is the persistent shock, and t is the transitory shock. The perma-

nent shock and the transitory shock are drawn from N(0, (ησe)
2) and N(0, (ησt)

2), respectively.

The persistent shock, p, follows an AR(1) process:

p′ = ρpp+ ǫp (2)

Let us denote x = (γ, e, p, t). Then the individual state variables are {x, h, a}, where h ∈ {0, 1} is

a households credit history, and a is a current asset position of the household. The aggregate state

variables are {z,K,m}, where z is an aggregate shock to productivity, K is the aggregate capital

stock, and m(x, h, a) is a distribution of households.5

A household with a good credit history, h = 0, solves the following problem:

V (z,K,m, x, 0, a) = max {V0(z,K,m, x, 0, a), V1(z,K,m, x, 0, a)} (3)

where V (z,K,m, x, 0, a) is the value of a household with a good credit history, V0(z,K,m, x, 0, a)

is the value associated with not defaulting, and V1(z,K,m, x, 0, a) is the value associated with

4Their model includes uncertainty shocks on labor productivity. We do not consider them while preserving id-

iosyncratic shocks on labor productivity and TFP shocks.
5 As the authors pointed out, aggregate capital, K, is a state variable along with the distribution m, since m is not

a sufficient statistic for the aggregate capital in the current period.
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defaulting.

A non-defaulting household with a good credit history solves the following problem:

V0(z,K,m, x, 0, a) = max
c,l,a

′

{

(cα(1− l)1−α)1−σ

1− σ
+ βπγ

∑

z′x′

Γz

z,z
′Γx

x,x′V (z′, K ′,m′, x′, 0, a
′

)

}

,

(4)

such that

c+ a
′

πq(z,K,m, x, a
′

) = a[1 + r(z,K,m)1a≥0] + eptw(z,K,m) · l

m′ = φm(z, z
′, K,m)

K ′ = φK(z,K,m)

where c is the current consumption, l is the hours worked, α is the parameter of weight on con-

sumption over the utility function, σ is the coefficient of relative risk aversion, and a
′

is the asset

holdings in the next period. Households die with a probability of (1 − π). q(·) is the discount

rate of debt, and w(·) is the wage. For savers, q(·) = 1, because there is no discount due to de-

fault risks. Borrowers have an option to default on their debt, which implies that q(·) includes a

default premium as well as the inverse of the expected interest rate. 1a≥0 is the indicator function

of holding positive assets. φm(·) is the law of motion for the distribution, m, and φK(·) is the law

of motion for the aggregate capital, K.

A household that files for bankruptcy with a good credit history solves the following problem:

V1(z,K,m, x, 0, a) = max
c,l

{

(cα(1− l)1−α)1−σ

1− σ
+ βπγ

∑

z′x′

Γz

z,z
′Γx

x,x′V (z′, K ′,m′, x′, 1, 0)

}

(5)

such that

c = eptlw(z,K,m)(1− ξ)

Those who file for bankruptcy cannot save during the current period. They pay a fraction of ξ out

of their labor income for a wage garnishment to creditors. In the next period, their credit status
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changes to a bad credit history, h′ = 1, and they start with zero assets, a
′

= 0.

A household with a bad credit history (h = 1) solves the following problem:

V (z,K,m, x, 1, a) = max
c,l,a

′≥0

{

(cα(1− l)1−α)1−σ

1− σ
+ βπγ

∑

z′x′,h′

Γz

z,z
′Γx

x,x′Γh
h′V (z′, K ′,m′, x′, h′, a

′

)

}

,

(6)

such that

c+ a
′

π = a[1 + r(z,K,m)] + eptlw(z,K,m)

Households with a bad credit history cannot borrow. Their credit status, h, reverts to be good

according to a stochastic transitional process Γh
h′ in the next period.

Given an aggregate state (z,K,m), the probability of defaulting for a household of type x =

(γ, e, p, t) with a good credit history, h = 0, and amount of debt, a
′

, is

d(z,K,m, x, a
′

) =
∑

z
′
,x

′

Γz

z,z
′Γx

x,x
′1gh=1(z

′, φK(z,K,m), φm(z, z
′

, K,m), x
′

, a) (7)

where Γz

z,z
′ is the transitional probability function of z

′

conditional on z, Γx
x,x′ is the transitional

probability function of x
′

conditional on x, and 1gh is the indicator function of the default decision

rule, gh = 1.

The following condition needs to hold for intermediaries in the credit industries who operate at

expected zero profit:

[1 + r(z,K,m)]q(z,K,m, x, a
′

)(−a
′

) =
∑

z
′
,x

′

Γz,z
′Γx,x

′ |z′ [1gh
′=1ξe

′

p
′

t
′

gl
′

w(z′, K ′,m′) + 1gh
′=0(−a

′

)].

(8)

They follow a constant return to scale production technology, F , where the price of factors is

determined from the standard marginal conditions:
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w(z,K, L,m) = zFL(K,L) (9)

rK(z,K, L,m) = zFK(K,L)− δ (10)

where L is total labor input in efficiency unit, and K is aggregate capital in the current period.

Due to the default option, rK is different from the return on savings for households. There is a

representative mutual fund and that all savers hold their wealth in the fund. The return on the

mutual fund is

r(z,K, L,m) =
K

K +D
rK(z,K, L,m) +

D

K +D
rD(z,K, L,m), (11)

rD(z,K, L,m) =

∫

1a<0[1gh=1ξeptlg
lw(z,K, L,m) + 1gh=0(−a)]dm

D
− 1, (12)

where D is the aggregate amount of loans today, gl is a working hours decision, and gh is a

default decision. I follow all the other details, such as the market clearing condition and recursive

equilibrium, in Nakajima and Rı́os-Rull (2014).

3 Algorithm

We focus on demonstrating how our algorithm is applied to solve the problem of non-defaulting

households with a good credit history because that with a bad credit history can be solved by the

EGM of Fella (2014) owing to its exogenous borrowing constraint.

Let S = (z,K,m, x, h = 0). Then we can write the value function of households with a good

credit history, V0(z,K,m, x, h = 0, a) = V0(S, a), and the loan discount rate, q(z,K,m, x, h =

0, a
′

) = q(S, a
′

). n is the number of iterations for the value function and loan price schedule.

EV n(S, a
′

) = βπγ
∑

z′x′ Γz

z,z
′Γx

x,x′V n(z′, K ′,m′, x′, 0, a
′

) is the expected value function. We will

denote Ga
′ = {a

′

1, . . . , a
′

N
a
′
} as the grid for assets, a

′

, in the next period. In addition, we define
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Da
′EV n(S, a

′

) as the derivative of the expected value function with respect to asset holdings, a
′

,

in the next period. We compute the numerical derivative of the expected value function in the

following way:

Da
′EV n(S, a

′

k) =















EV n(S,a
′

k+1
)−EV n(S,a

′

k
)

a
′

k+1
−a

′

k

, for k < Na
′

EV n(S,a
′

N
a
′
)−EV n(S,a

′

N
a
′ −1

)

a
′

N
a
′
−a

′

N
a
′ −1

, for k = Na
′ .

(13)

The numerical derivative of the discount loan rate with respect to a
′

, Da
′qn(S, a

′

), is computed in

the same way.

Before dipping into the details, we provide a road map of our algorithm.

1. For each S, define the feasible set of the solution for asset holdings by calculating the risky

borrowing limit and save it.

2. Identify the (non-) concave region of asset holdings a
′

by using the algorithm of Fella (2014).

3. For each S, for each grid point of future asset holdings, a
′

, whose value is larger than the

borrowing limit, compute the endogenously-determined cash on hand by solving the FOC.

Save these pairs of the endogenously-determined cash on hand and the grid for future asset

holdings a
′

.

4. Compute the value function for non-defaulting over the endogenous grid for cash on hand.

5. Identify the global solution over the endogenous grid for cash on hand.

• If a
′

is on the concave region, save the pair of the endogenous grid for cash on had and

asset holdings a
′

.

• If a
′

is on the non-concave region, verify whether the pair implies the maximum by

solving the value function. If this is the maximum, save the pair. Otherwise, discard it.

6. For the saved pairs of the endogenous cash on hand and a
′

, compute the corresponding

endogenous grid for the current assets, a(S, a
′

). Save the pairs of the endogenous grid for

the current assets a(S, a
′

) and a
′

.

7. Evaluate the value function for non-defaulting over the endogenous grid for the current assets
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into the exogenous grid for the current assets.

• Compute the value of the endogenous grid for the current assets a(S, a
′

= 0) corre-

sponding to a
′

= 0

– If ai ≥ a(S, a
′

= 0), use a linear interpolation.

– If ai < a(S, a
′

= 0), solve the value function V0(S, ai) by searching for the grid

between the risky borrowing limit and zero assets.

8. Compute the value function for defaulting.

9. Update the value function and loan price schedules.

10. Start a new iteration until the updated value function is close enough to the current value

function.

In the following subsections, we describe each step of the algorithm with more details.

3.1 Calculating the Risky Borrowing Limit

We set up the feasible sets of the solution through the risky borrowing limit, which is studied in

Arellano (2008) and Clausen and Strub (2019). They show that , for each state S, the size of loan

q(S, a
′

)a
′

increases with a
′

for any optimal debt contract. If the size of loan q(S, a
′

)a
′

decreases in

a
′

, households can increase their consumption by increasing debts, which cannot an optimal debt

contract. Arellano (2008) (Clausen and Strub (2019)) defines the risky borrowing limit to be the

lower bound of the set for optimal contract. Figure 1 illustrates the risky borrowing limit, anrbl(S).

Based on this theoretical finding, for each state S, we numerically compute the risky borrowing

limit as follows.

Definition 3.1.1. For each n and S, anrbl(S) is the risky borrowing limit if

∀a
′

> anrbl(S), Da
′qn(S, a

′

) · a
′

> 0. (14)

Going forward, when we compute the endogenous grid, we will only use grid points above the
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a
′

0anrbn(S)

q(S, a
′

) · a
′

Slope= 1
1+r

Figure 1: Risky Borrowing Limit

risky borrowing limit.

3.2 Identifying the (Non-) Concave Region

We use the algorithm of Fella (2014) to identify the concave region of the expected value function.

Figure 2 helps us understand how his algorithm works. The vertical axis represents, given S, the

values for the derivative of the expected value function, Da
′V n(S, ·), and the marginal utility of

consumption, Dcu(·, 1 − l(S)). The horizontal axis implies the value of asset holdings in the

next period, a
′

. The upward-sloping curve indicates that, given a level of cash on hand M , the

marginal utility of present consumption increases with asset holdings in the next period, a
′

. The

shift of marginal utility of consumption to the right means that the marginal utility of consumption

declines with cash on hand, M , which implies M
′′′

< M
′′

< M
′

. The non-monotonic and

discontinuous graph is the derivative of the expected value function, Da
′EV n(S, ·). The curve is

discontinuous at those values of a
′

for which the default probability discontinuously varies along
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a
′

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10a11a12a13a14a15a16a17a18a19a20a21a22a23
‖

anrbl(S)

Da
′V n(S, a

′

)

Dcu(M
′′′

− a
′

, 1− l(S))

Dcu(M
′′

− a
′

, 1− l(S))

Dcu(M
′

− a
′

, 1− l(S))

vmax(S)

vmin(S)

‖

amin(S)

‖

amax(S)

Figure 2: Illustrating the Algorithm.
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changes in a
′

.6 The First Order Condition (FOC) is satisfied whenever the two curves intersect.

The multiple crossing points mean that the FOC, while necessary, is not a sufficient condition for

equilibrium.

Recall that, for each state S, we calculated the risky borrowing limit, anrbl(S), which plays a

role in the lower bound of feasible solutions for asset holdings, a
′

. In Figure 2, the risky borrowing

limit, anrbl(S), is represented at a2. Let’s define G
rbl(S)

a
′ as the set of all grid points for assets above

the risky borrowing limit anrbl(S). Here, Grbl

a
′ = {a2, . . . , a23}. Following Fella (2014), we iden-

tify regions in which the two curves are single-crossed, which means the FOC is a sufficient and

necessary condition for the global solution of asset holdings in the next period, a
′

. For each state

S, Let us denote Gc
a(S) (G

nc

a
′ (S)) as the concave (non-concave) subset of G

rbl(S)

a
′ . a

′

i ∈ G
rbl(S)

a
′ is

on the concave region either if for any a
′

j ∈ G
rbl(S)

a
′ with a

′

j < a
′

i, Da
′V n(S, a

′

i) < Da
′V n(S, a

′

j)

or if for any a
′

j ∈ G
rbl(S)

a
′ with a

′

j > a
′

i, Da
′V n(S, a

′

i) > Da
′V n(S, a

′

j). This condition implies

that the derivative of the expected value function with regard to future assets, Da
′V n(S, a

′

), mono-

tonically decreases on the concave region. In Figure 2, a5 and a15 are the two thresholds of this

condition. Thus, in Figure 2, the concave region is Gc

a
′ (S) = {a

′

2, a
′

3, a
′

4} ∪ {a
′

16, · · · aN ′

a
′

}, and

the non-concave region is Gnc

a
′ (S) = {a

′

min = a
′

5, · · · , a
′

15 = a
′

max}. vmax(S) (vmin(S)) is the

corresponding value of a
′

max(S) (a
′

min(S)).

For each state S, we compute the threshold pair of (amax(S), vmax(S)) in the following way.

First, we check the discontinuous points of the derivative function, Da
′V n(S, ·). Next, among the

discontinuous points, we find the minimum value, which is vmax(S). To compute amax(S), we

search for the maximum of a
′

i satisfying Da
′V n(S, a

′

i) ≤ vmax(S), which is defined as amax(S).

vmin(S) is similarly computed. We check the discontinuous points of the derivative function,

Da
′V n(S, ·). Next, among the discontinuous points, we find the maximum value, vmin(S). Then,

we search for the minimum of a
′

i satisfying Da
′V n(S, a

′

i) ≥ vmin(S), which is defined as amin(S).

6Whereas the decision on default is the only discrete choice in the model, other types of discrete choices can be

addressed along with the option to default.
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3.3 Computing the Endogenous Grid for the Cash on Hand

For each S and a
′

i ∈ Ga
′ with a

′

i > anrbl(S), we compute the endogenously-determined cash on

hand, M(S, a
′

i). To retrieve this endogenously-determined cash on hand, M(S, a
′

i), we need to

obtain the endogenously-determined consumption by using the following FOC:

For each n, S and a
′

i ∈ Ga
′ with a

′

i > arbl(S),

Dcu(c(S, a
′

i), 1− l(S, a
′

i)) =
Da

′EV n(S, a
′

i)

π(Da
′qn(S, a

′

i) · a
′

i + qn(S, a
′

i))
. (15)

where c(S, a
′

i) and l(S, a
′

i) are the endogenously-determined consumption and hours worked, re-

spectively. The derivative of the expected value function, Da
′EV n(S, a

′

i), and the loan price

schedules, Da
′qn(S, a

′

i), are computed by using the equation (13). Given Da
′EV n(S, a

′

i) and

Da
′qn(S, a

′

i), c(S, a
′

i) and l(S, a
′

i) are obtained by using the consumption-leisure optimal condi-

tion. Appendix A describes the details as to how to compute them.

Given c(S, a
′

i), we retrieve the endogenously-determined cash on hand M(S, a
′

i) as follows:

M(S, a
′

i) = c(S, a
′

i) + πqn(S, a
′

i)a
′

i. (16)

For each S and a
′

i ∈ Ga
′ with a

′

i > arbl(S), we save this corresponding cash on hand, M(S, a
′

i).

Note that the right hand side of the FOC (15) is numerically computable.7 Moreover, the FOC

(15) is well-defined. Clausen and Strub (2019) prove the differentiability of the expected value

function and the loan price schedules and show the existence of the FOC (15).8

7For each a
′

i
∈ G

a
′ with a

′

i
> arbl(S), the derivative of the size of the loan, D

a
′ qn(S, a

′

i
)a

′

i
+ qn(S, a

′

i
), is always

positive by the definition of the risky borrowing limit, arbl(S). We assume that the utility function u(c, 1 − l) is

differentiable with respect to c and l. Moreover, the derivative of the expected value function and price function can

be obtained numerically using equation (13).
8The proof in Clausen and Strub (2019) is based on the case of iid shocks on earnings; yet as they mentioned, the

inclusion of AR-1 shocks does not make a huge difference in the proof.
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3.4 Storing the Value Function for Non-Defaulting over the Endogenous

Grid for Cash on Hand

Given n, for each S and a
′

i ∈ Ga
′ with a

′

i > anrbl(S), we compute the value function over the

endogenous grid for cash on hand, M(S, a
′

i) as follows:

V0(S,M(S, a
′

i)) = u(M(S, a
′

i)− πqn(S, a
′

i) · a
′

i, 1− l(S, a
′

i)) + EV n(S, a
′

i) (17)

It is worth noting two things at this step. First, the value function is computed without any max-

operator, which contributes to efficiency. We use the endogenously-driven cash on hand, M(S, a
′

i).

Second, the value functions are defined on the endogenous grid of M(S, a
′

i), not on its exogenous

grid.

3.5 Identifying the Global Solution over the Endogenous Grid for Cash on

Hand

We identify a set of the global solutions and save the corresponding pairs of (M(S, a
′

i), a
′

i). Given

n and S, a
′

i ∈ Ga
′ with a

′

i > anrbl(S) is either on the concave region, Gc

a
′ (S), or on the non-concave

region Gnc

a
′ (S). When a

′

i ∈ Gc

a
′ (S), as a3 in Figure 2, the pair of (M(S, a

′

i), a
′

i) implies a global

solution because the FOC (15) is a sufficient and necessary condition for equilibrium when the

value function is concave in a
′

. We save all of the pairs (M(S, a
′

i), a
′

i) on the concave region.

When a
′

i ∈ Gnc

a
′
(S)

– e.g., a
′

i = a9 in Figure 2, the pair of (M(S, a
′

i), a
′

i) does not guarantee a

global maximum because the FOC (15) is not a sufficient condition. As in Fella (2014), for each S

and ai ∈ Gnc

a
′ (S), we verify whether this ai is the global solution by solving the following problem:

a
′

g = argmax
{a

′

k
∈Gnc

a
′
(S)}

[

u(M(S, a
′

i)− π · q(S, a
′

k) · a
′

k, 1− l(S, a
′

k)) + EV n(S, a
′

k)
]

. (18)

If a
′

i = a
′

g, this implies that the pair of (M(S, a
′

i), a
′

i) implies a global solution. Thus, we save this
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pair. If a
′

i 6= a
′

g, we discard this pair. Note that we search the grid only on the non-concave region

Gnc

a
′ (S), which reduces computational losses in efficiency. we compute the decision rule for labor

supply, l(S, a
′

k), by using the consumption-leisure optimal condition in Appendix A.

Note that the stored pairs are corresponding to the global solutions. Thus, when a
′

i corresponds

to the global solutions, V0(S, ·) and M(S, ·) monotonically increases with a
′

i, which allows us to

use splines in the following steps.

3.6 Computing the Endogenous Grid for the Current Assets

Until the previous step, the value function V0 is evaluated on the endogenous grid for cash on hand

M . For each n, S and a
′

i ∈ Ga
′ with a

′

i > anrbl(S), we compute the endogenous grid for the current

assets, a(S, a
′

i) as follows:

a(S, a
′

i) =
M(S, a

′

i)− eptw(S)l(S, a
′

i)

(1 + r(S) · 1a≥0)
. (19)

Note that when a set of a
′

i involves the stored pair (M(s, a
′

i), a
′

i) in the previous step, a(S, ·)

monotonically increases with a
′

i. As mentioned previously, for the saved pairs of (M(S, a
′

i), a
′

i),

M(S, ·) is monotonically increasing with a
′

i. In addition, Equation (19) presents that a(S, ·) in-

creases with M(S, ·), which implies that a(S, ·) is monotonic in a
′

. We save these pairs of

(a(S, a
′

i), a
′

i). In the same logic, for these saved pairs of (a(S, a
′

i), a
′

i), V0(S, ·) monotonically

increases with a(S, a
′

i).

3.7 Evaluating the Value Function for Non-Defaulting and the Policy Func-

tion on the Exogenous Grid for the Current Assets

Due to the monotonicity of V0(S, ·) in a(S, ·) and that of a(S, ·) in a
′

, we can use an interpola-

tion to evaluate them on the exogenous grid of the current asset, Ga; yet we restrict the usage of

interpolation to non-negative asset holdings, a
′

≥ 0, due to computational issues. As Hatchondo

et al. (2010) point out, the computational accuracy is sensitive to how the derivative of the loan

15



rate schedule, Da
′q(S, a

′

), is calculated. We also find that the convergence of the value function,

V (S, ·), and loan rate schedules, q(S, ·), are sensitive to the method used to compute their deriva-

tives in the borrowing region where a
′

< 0. For these reasons, we employ the grid search method

for the borrowing region, a
′

< 0.

Because this endogenous grid method produces a mapping from asset holdings a
′

in the next

period into the current assets a, it is not very costly to find the threshold of borrowing over the

current assets a. For each S, we find a(S, a
′

= 0), which is the value of the endogenous grid for

the current assets corresponding to a
′

= 0. When a grid point of the current assets ai is greater

than the threshold of borrowing a(S, a
′

= 0), we use a linear interpolation to evaluate the value,

V0(S, ai), and the policy function of asset holdings, a
′

(S, ai). When ai < a(S, a
′

= 0), we compute

V0(S, ai) and a
′

(S, ai) by solving the following problem:

V0(S, ai) = (20)

max
{arbl(S)<a

′

j<0}
u((1 + r(s) · 1ai≥0)ai + eptw(S) · l(S, a

′

j)− πq(S, a
′

j)a
′

j, 1− l(S, a
′

j)) + EV n(S, a
′

j).

Note that this inclusion of the grid search does not bring about a huge loss in efficiency because

this problem searches the grid just between the risky borrowing limit, arbl(S), and zero assets,

a
′

= 0. We compute the decision rule for labor supply, l(S, a
′

j), by using the consumption-leisure

optimal condition in Appendix A.

3.8 Computing the Value Function for Defaulting

We solve the value function of defaulting with a good credit history:

V n+1
1 (S, a) = u(eptlw(z,K,m)(1− ξ)) + βπγ

∑

z′x′

Γz

z,z
′Γx

x,x′V
n(z′, K ′,m′, x′, 1, 0) (21)
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Since the value function of defaulting is not related to any continuous endogenous state, it is not

costly to compute it.

3.9 Updating the Value Function and Loan Price Schedules

We update the value function, V n+1(S, a) and the price function, qn+1(S, a
′

) in the following way:

V n+1(S, a) = max {V n+1
0 (S, a), V n+1

1 (S, a)} (22)

qn+1(S, a
′

) =
∑

z
′
,x

′

Γz

z,z
′Γx

x,x
′

1g
′h=1ξe

′

p
′

t
′

g
′lw(z

′

, K
′

,m
′

) + 1g
′h=0(−a

′

)

[1 + r(z′

, K
′

,m
′)](−a

′)

where

d(z,K,m, x, a
′

) =
∑

z
′
,x

′

Γ
′

z,z
′Γx

x,x
′
|z

′1gh(z′,φK(z,K,m),φm(z,z′ ,K,m),x′
,a

′ )=1.

If ||V n+1(S, a)− V n(S, a)||∞ > 10−5 with || · ||∞ the sup norm over SXA, start a new iteration.

3.10 Summary of the Algorithm

To sum up, given an iteration number, n, and the expected value function EV n(S, a), the algorithm

is as follows:

1. For each S, calculate the risky borrowing limit, anrbl(S), and save it.

2. Identify the (non-) concave region of asset holdings a
′

by using the algorithm of Fella (2014).

3. Given (S, a
′

rbl(S)), compute the endogenously-determined cash on hand, M(S, a
′

), by solving

the FOC (15). Save these pairs of (M(S, a
′

), a
′

).

4. Compute the value function for non-defaulting over the endogenous grid for cash on hand,

(V n
0 (S,M(S, a

′

)).

5. Identify the global solution over the endogenous grid for cash on hand.

• If a
′

i is on the concave region, save the pair of (M(S, a
′

i), a
′

i)

• If a
′

i is on the non-concave region, verify whether the candidate (M(S, a
′

i), a
′

i) implies
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the maximum by solving the value function. If this is the maximum, save the pair of

(M(S, a
′

i), a
′

i). Otherwise, discard it.

6. For the saved pairs of (M(S, a
′

i), a
′

i), compute the corresponding endogenous grid for the

current assets, a(S, a
′

i). Save the pairs of (a(S, a
′

i), a
′

i).

7. Evaluate the value function for non-defaulting over the endogenous grid for the current assets

into the exogenous grid for the current assets.

• Compute the value of the endogenous grid for the current assets a(S, a
′

= 0) corre-

sponding to a
′

= 0

– If ai ≥ a(S, a
′

= 0), use a linear interpolation.

– If ai < a(S, a
′

= 0), solve the value function V0(S, ai) by searching for the grid

between the risky borrowing limit, anrbl(S) and zero assets, a
′

= 0.

8. Compute the value function for defaulting, V n+1
1 (S, a).

9. Update the value function, V n+1(S, a), and loan price schedules, qn+1(S, a
′

).

10. Start a new iteration if ||V n+1(S, a)− V n(S, a)||∞ > 10−5.

4 Results

We compare the computing time and accuracy of our EGM with those of the grid search method.

As in Nakajima and Rı́os-Rull (2014), we use Krusell and Smith’s (1998) method to handle the

aggregate uncertainty. Note that this method approximates aggregate states using a few moments

and agents expect next period states using parameterized functional forms of those moments. The

method achieves high accuracy, but it requires a long simulation to update forecasting rules and

may take many trials to find a proper functional form.
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4.1 Parameterization

Table 1: Chosen Parameters

λ π σ γ1 θ δ σe ρp

0.1000 0.9800 3.7167 1.0000 0.3600 0.0800 0.4400 0.9630

σp σt ξ β α Γγ
2 γ2 η

0.1300 0.3500 0.3395 1.0011 0.3681 0.0310 0.0000 0.7500

ν1 = ν2 ν3 γz
1,1 γz

2,2 γz
3,3 γz

3

0.0134 0.0267 0.6667 0.6667 0.3333 0.0200

We follow Nakajima and Rı́os-Rull’s (2014) choice of parameter values. Table 1 shows the values

of the chosen parameters.

4.2 Specification of Krusell and Smith’s (1998) Method

Nakajima and Rı́os-Rull (2014) approximated (z,K;m) with (z,K,O), where O is average indi-

vidual labor productivity and use forecasting rules for K ′, L, r, and O
′

. Here, we abstract from the

counter-cyclical earnings risk and approximate aggregate states (z,K;m) to (z,K). Additionally,

instead of forecasting L, which is necessary to calculate the wage, we forecast the wage directly.

We specify the forecasting functions for K ′, r, and w as the following log-linear forms:

log K ′ = φk1(z,K) + φk2(z,K) · log K

log r = φr1(z,K) + φr2(z,K) · log K

log w = φw1(z,K) + φw2(z,K) · log K
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4.3 Computing Time and Accuracy

We vary the size of the grid for assets across computational exercises. In all computational ex-

ercises, we keep the number of the grid points for the other variables as follows. The size of the

grid for the permanent labor productivity shock is 2, ne = 2, that for the persistent shock is 15,

np = 15, and that for the transitory shock is 3, nt = 3. The number of the grid for the TFP shock

is 3, nz = 3, and that for K is 5, nk = 5. Because we use Krusell and Smith’s (1998) method, we

must go through the inner and outer loops several times until the forecasting rules are convergent.

We compute the average CPU time per iteration in the inner loop and outer loop, respectively. We

simulated the model for 2,000 periods with Krusell and Smith’s (1998) method, and all computa-

tions were carried out on on a single core of an Intel i7-4770 processor. The programs were written

in Fortran 95.

Table 2: Computing Time

# of GRD. PTS. for INR. - OTR. 200-500 300-500 400-500 500-600

Computational Method EGM GS EGM GS EGM GS EGM GS

# of ITER 7 7 7 7 7 7 7 7

AVG CPU Time in INR. per ITER.* 0.68 12.54 1.25 29.27 1.99 54.39 2.99 79.65

AVG CPU Time in OTR. per ITER.* 29.49 173.49 27.05 185.62 24.48 182.79 38.66 286.97

.∗: Unit = minute

Table 2 indicates that the EGM is faster than the grid search method both in the inner loop and

in the other loop. In the inner loops, the EGM is from 18.5 to 27.3 times faster than the grid search

method. In the outer loop, the EGM is approximately 7.5 times faster than the grid search method.

The gap differs across the size of the asset grid, but the EGM is much more efficient than the grid

search method across all grid settings.

To measure accuracy, we use three criteria in the literature. First, we compute not Euler

equation errors but Bellman equation errors. To compute the Euler error, we must calculate the

derivative of the loan price schedule, of which value depends on types of numerical derivatives.

As Hatchondo et al. (2010) point out, Euler equation errors are sensitive to how to calculate the

derivative of the loan rate schedule, q(S, a
′

). To avoid this issue, we compute Bellman equation
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errors. Recall the following notation: S is the state vector other than assets a. Then, the Bellman

equation

V (S, a) = u(c(S, a), l(S, a)) + ES
′

[

V (S
′

, a
′

(S, a))
]

(23)

should hold exactly for the true decision rules. Because in our computational exercises, the de-

cision rules are numerically computed, the Bellman equation (23) does not hold exactly with the

numerically calculated decision rules. We define c∗ as the solution for

u(c∗(S, a), l̄(S, a)) = V (S, a)− ES
′

[

V (S
′

, ā
′

(S, a))
]

(24)

where bars indicate the numerically calculated decision rules. We define the Bellman equation

error as

BE(s, a) =

∣

∣

∣

∣

1−
c∗(S, a)

c̄(S, a)

∣

∣

∣

∣

. (25)

Following the literature, we report both the maximum and the average of Bellman equation errors.

Second, we take Den Hann’s forecasting test described in Algan et al. (2014). It is the difference

between expected K ′
e by the forecasting rules and realized K ′

r from the simulations: |logK ′
r −

logK ′
e|. Finally, we reports the R2 of the forecasting rules in the simulation step.

Figure 3 implies that with the EGM, the price dynamics in the simulation are very close to

those generated by the forecasting rules. Since they are very close to one another, it is hard to

observe blue lines in the dynamics of the risk-free interest rate and wage. Figure 4 shows that,

with the grid search method, there are differences between the simulated-dynamics of these prices

and those generated by the forecasting rules. Den Hann error measures those differences. Overall,

Den Han errors from the EGM are smaller than those from the grid search method.

Table 3 implies that the EGM produces more accurate outcomes than the grid search method.

Regarding the Bellman equation error, the average Bellman equation error in the EGM is approx-
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Figure 3: Simulation Results for the EGM with the 500-600 grid
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Figure 4: Simulation Results for the Grid Search Method with the 500-600 grid

imately three times lower than that in the grid search methods in various grid settings. Although

the gap in the maximum Bellman error is smaller than that in the average Bellman error, the EGM

generates a smaller value of the maximum Bellman error than the grid search method. This smaller

gap appears because our EGM also uses the grid search method for the borrowing region, a
′

< 0.

Additionally, the EGM produces smaller values of R2s than the grid search method. The gap in

R2 is well-observed for r. Moreover, the average Den Hann error from the EGM is lower than that

from the grid search method across various grid settings. The EGM also generates smaller values

of the maximum Den Hann error than the grid search method.
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Table 3: Computational Accuracy

# of GRD. PTS. for INR. - OTR. 200-500 300-500 400-500 500-600

Computational Method EGM GS EGM GS EGM GS EGM GS

AVG BE Error∗ 0.11% 0.36% 0.06% 0.16% 0.03% 0.09% 0.02% 0.06%

MAX BE Error∗ 10.77% 15.53% 11.34% 11.76% 11.57% 17.49% 11.71% 15.46%

R2 of K
′

0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

R2 of r 0.9987 0.9911 0.9971 0.9882 0.9975 0.9963 0.9977 0.9940

R2 of w 0.9999 0.9997 0.9999 0.9997 0.9997 0.9997 0.9997 0.9996

mean(DH) 0.004% 0.01% 0.005% 0.012% 0.009% 0.01% 0.007% 0.01%

max(DH) 0.029% 0.06% 0.038% 0.081% 0.047% 0.073% 0.04% 0.05%

.∗: The Bellman equation errors are computed in stationary equilibrium.

5 Conclusion

We develop an endogenous grid method for models with the option to default. This method ex-

tends Fella’s (2014) endogenous grid method by newly introducing a numerical step to search

for the risky borrowing limit, which is the lower bound of the feasible set for the solution of as-

set holdings. By using the algorithm of Fella (2014) and our novel step for the risky borrowing

limit, we identify the region of solution sets to which Carroll’s (2006) endogenous grid method

is applicable. Compared to the conventional grid search method, the method brings substantial

improvements in computational efficiency and accuracy. We hope this method opens up possibili-

ties for researchers to investigate topics with the default option that have not been explored due to

computational complexities.
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A Computing Labor Supply with the EGM

Following Khan (2016), we obtain the decision rule for labor supply by using the FOCs of con-

sumption and labor. The FOCs of labor and consumption, respectively, are as follows.

FOC:[l] : [cα(1− l)1−α]−σ(1− α)cα(1− l)−α = λeptw(z,K,m) (26)

FOC:[c] : [cα(1− l)1−α]−σαcα−1(1− l)1−α = λ. (27)

where λ is the Lagrangian multiplier for the budget constraint. By rearranging the two FOCs, we

can represent leisure 1− l in terms of consumption c as follows.

1− l =
1− α

α

c

eptw(z,K,m)
. (28)

We substitute (28) into the budget constraint, c+ a
′

πq(z,K,m, x, a
′

) = a[1 + r(z,K,m)1a≥0] +

eptw(z,K,m) · l. Then, we obtain

c = α ·
(

a[1 + r(z,K,m)1a≥0] + eptw(z,K,m)− a
′

πq(z,K,m, x, a
′

)
)

. (29)

We substitute c in (29) into (28) again. If the implied l is greater than or equal to 0, we keep l and

c from this step. Otherwise (l < 0), we replace the value of l with 0 and compute c by using the

FOC (15).
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