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Highlights 

 

 
• Techno-economic assessment for integrating evaporators in biogas plants. 

• Rigorous Monte Carlo simulations were carried out for liquid digestate modelling. 

• Artificial Neural Network is used to prioritize variables in decision making. 

• Decision trees are used to search for favourable decision pathways for the industry. 

• Having CHP bonus would improve the scenario for industrial digestate thickening. 
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Abstract 

Biogas production is one of the most promising pathways toward fully utilizing green energy within a circular 

economy. The anaerobic digestion process is the industry standard technology for biogas production due to its 

lowered energy consumption and its reliance on microbiology. Even in such an environmental-friendly process, 

liquid digestate is still produced from the remains of digested bio-feedstock and will require treatment. With 

unsuitable treatment procedure for liquid digestate, the mass of bio-feedstock can potentially escape the circular 

supply chain within the economy. This paper recommends the implementation of evaporator systems to provide a 

sustainable liquid digestate treating mechanism within the economy. Studied evaporator systems are represented 

by vacuum evaporation in combination with ammonia scrubber, stripping and reverse osmosis. Nevertheless, 

complex multi-dimensional decisions should be made by stakeholders before implementing such systems. Our work 

utilizes a novel techno-economics model to study the techno-economics robustness in implementing recent state-

of-art vacuum evaporation systems with exploitation of waste heat from combined heat and power (CHP) units in 

biogas plants (BGP). To take into the account the stochasticity of the real world and robustness of the analysis, we 

used the Monte-Carlo simulation technique to generate more than 20,000 of different possibilities for the 

implementation of the evaporation system. Favourable decision pathways are then selected using a novel 

methodology which utilizes the artificial neural network and a hyper-optimized decision tree classifier. Two pathways 

that give the highest probability of providing a fast payback period are identified. Descriptive statistics are also used 

to analyse the distributions of decision parameters that lead to success in implementing the evaporator system. The 

results highlighted that integration of evaporation system are favourable when transport costs and incentives for 

CHP units are large and while feed-in tariffs for electricity production and specific investment costs are low. The 

result of this work is expected to pave the way for BGP stakeholders and decision makers in implementing liquid 

digestate treating technologies within the currently existing infrastructure. 

 

Graphical Abstract 
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1. Introduction 
Biological processes have the inherent characteristics of preserving resources at a low cost and eco-friendly manner 

(Liguori and Faraco, 2016). One of the most attractive sources of energy from biological processes is the anaerobic 

digestion process (Ragazzi et al., 2017). It can effectively convert organic waste to biogas and can serve as a 

sustainable decentralised energy source even in developing countries (Azouma et al., 2018). The current boom of 

biogas plants (BGP) in Europe has led the Union to produce 61 TWh of electricity and 26.6 PJ of heat in the year 

2015 (Scarlat et al., 2018). The ecosystem is causing biogas processing facilities to rapidly shift towards a circular 

economy (Fagerström et al., 2018). Biogas processing plants produce a large amount of leftover of digestate by-

products from the bioreactor that must be properly processed (Al Seadi et al., 2013). This is a critical issue for 

sustainability development, as bio-resources can potential “escape” from the circular economy, giving net waste 
generation. Venkata Mohan et al. (2016) discussed that the utilisation of bio-waste as renewable feedstock can 

provide potential in developments towards the circular economy by enhancing bio-refinery competitiveness and 

social acceptance. 

  

Anaerobic digestion is the industrial standard biogas production method. Waste biomass such as animal manure 

and crops are collected and fed to the anaerobic bioreactor. The slurry of biomass feedstock is digested by 

anaerobic microorganisms to produce biogas. In order to maintain a stable and high-quality biogas production, the 

feedstock’s C/N ratio is ideally between 20-30 (Gómez et al., 2006). It was also reported that an increasing amount 

of long-chain fatty acid will also cause the flocculation of biomass and act as inhibition (Dasa et al., 2016). The 

sensitive nature of the anaerobic digestion process has encouraged many innovations in the research field, leading 

to the development of multiple types of bioreactors. Uçkun Kiran et al. (2016) stated that bioreactor configuration 

should depend on the solid content of feedstocks, where low solid content bioreactor includes anaerobic lagoons, 

completely mixed reactors, anaerobic filter reactors, fluidized bed reactors, upflow anaerobic sludge blanket 

reactors, anaerobic baffled reactors and membrane reactors. The work also recommended plug flow reactors, 

completely mixed reactors and contact reactors for medium solid content; while plug flow, completely mixed and 

leach-bed reactors can be used for high solid content feedstock. A review from Zhang et al. (2016) has shown that 

the research for anaerobic digestion has blossomed beautifully, covering detailed research on substrate analysis, 

pre-treatment, bioreactor configuration, operation and system analysis. 

  

On the other hand, the fast-growing anaerobic digestion industry has opened new opportunities for digestate 

utilisation (Monlau et al., 2015). The work studied the possibility of digestate utilisation by algae cultivation, energy 

production using biological or thermal process and pyrolysis. Works of Fuchs and Drosg (2013) even refers to 

digestate utilisation as the bottleneck of the biogas industry (see Figure 1). They concluded that digestate 

processing plant of European countries such as Austria, Germany, Switzerland and Italy require an appropriate 

method for disposal of residue digestate. The industrial development of digestate to produce highly enriched nutrient 

was also recommended (Fuchs and Drosg, 2013). Life-cycle assessment of biogas production carried out by 

Berglund and Börjesson (2006) concluded with a set of transportation distance limits for different raw material to 

prevent negative energy balance. This indicates that dewatering (to reduce transportation load) is crucial in 

maintaining the net energy gain within the circular economy. 

 

  

Figure 1: Digestate Treatment and the Circular Economy of Biogas Industry 
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Kirchherr et al. (2017) conceptualized the circular economy with core principles of the 4R framework (Reduce, 

Reuse, Recycle and Recover), waste hierarchy and system perceptive. Key strategies to achieve circular economy 

from the linear economy are proposed to include creating useful applications of materials, extending the lifespan of 

products and parts, innovating smarter product use and manufacturing (Potting et al., 2017). In this context, the 

digestate by-products can be treated and transformed into bio-resources that are able to contribute in the soil, 

horticulture, renewable energy and bio-products within the circular economy (van Haeff, 2015). To accelerate this 

progress, encouraging efforts have been carried out by the European Commission in terms of funding for 

environmental and circular economy research (European Commission, 2019a). In the European Union, biogas 

factories are actively transitioning to complete the circular economy by improving the digestate treatment process 

(Fagerström et al., 2018). From a techno-economical viewpoint, integration of digestate treatment is not always 

feasible for all BGPs (Vondra et al., 2018b), more industrial incentives are required to make the project favourable 

by industry players and stakeholders. 

  

The design of digestate treatment system is technically challenging and requires multiple dimensions of 

considerations. A recent review (Monfet et al., 2018) concluded that there are 14 possible categories of processes 

for digestate treatment. Those 14 processes are: thickening, dewatering, membrane filtration, struvite precipitation, 

ammonia stripping, ammonia oxidation, microwave radiation, pH adjustment, chemical hydrolysis, thermal drying, 

combustion, pyrolysis, gasification and ultrasound. Vaneeckhaute et al. (2017) shown that matured nutrient 

recovery technologies for digestates include phosphorus crystallization or extraction, ammonia stripping, acid air 

scrubber, membrane filtration, ammonia/phosphorus sorption, macrophytes or microalgae production and 

evaporation. The selection decision of these processes can be carried out with decision tools such as Biomethane-

Calculator (Miltner et al., 2013) and CDPQ Decision Tools (2018). Works of Rehl and Müller (2011) also shown a 

comprehensive life cycle assessment comparison of biogas digestate processing technologies that can be used for 

process selection. Tampio et al. (2016) demonstrated that an approach of mass, nutrient and energy balance can 

be applied to digestate treatment systems. These methods can only select the category of which process to be 

used. Much more research and industrial experience are required to implement the correct system design. 

Significant works from various authors and their contribution to the current digestate treatment research can be 

found in Table 1 below: 

 

Table 1: Significant works for the development and implementation of digestate treatment technologies 

Work Contribution 

Chen et al. (2009) Highlighted ecological and environmental protection type disposal of 
anaerobic digestate for large-scale BGPs. 

Fuchs and Drosg (2013) Conveyed the development in state-of-art industrial-scale technologies. 
Shown that industrial applicable technologies mainly consists of a 
combination of membrane treatment, evaporation and stripping 
technologies. 

Al Seadi et al. (2013) Proposed that digestate quality can be affected by feedstock of anaerobic 
digestion and shown that consideration of such variability is critical. 

Golkowska et al. (2014) Compared the treatment costs of four different digestate treatment 
technologies. Focused mainly on drying, pelletizing, reverse osmosis and 
denitrification. 

Guercini et al. (2014) Exploited the excess heat within the combined heat and power (CHP) unit of 
a BGP to a single-effect vacuum evaporator. 

Koszel and Lorencowicz 
(2015) 

Highlighted the use of biogas digestate as a replacement for agricultural 
fertilizer. 

Dahlin et al. (2015) Discussed the importance and barriers of marketing digestate products from 
a qualitative perspective. 

Vondra et al. (2016) Compared various designs of vacuum evaporators for the application of 
digestate treatment. Highlighted that multi-stage flash vacuum evaporator 
performs most efficiently.  

Xia and Murphy (2016) Demonstrated a front-end research on utilizing microalgae cultivation in 
treating liquid digestate from biogas systems. 

Hung et al. (2017) Front-end research demonstrating that treated digestate can be converted 
into valuable material such as biochar. Demonstrated the future possibilities 
of digestate-derived products. 

Vondra et al. (2018b) Proposed the integration of multi-stage flash vacuum evaporator in a BGP to 
exploit the excess heat within CHP unit. 

Bolzonella et al. (2018) Re-emphasized the importance of digestate treatment with estimated costs 
for non-vacuum dryers, stripping and membrane technologies. 
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For liquid digestate (LD) treatment using dewatering methodologies, our previous work (Vondra et al., 2016) has 

demonstrated the technical potential of LD thickening with the considerations of multiple industrial-standard 

evaporator systems. Chiumenti et al. (2013) tested the effectiveness of a two-stage configuration vacuum 

evaporator pilot plant in a 1 MWe anaerobic plant. The work studied the temperature, pH, total solid, volatile solids, 

total Kjeldhal nitrogen and acid consumption of the evaporation process. Full-scale evaporator plant is estimated to 

have energy consumption at 5-8 kWhe/m3 of digestate and 350 kWht/m3 of evaporated water (Chiumenti et al., 

2013). A case study in Croatia has shown the high energy potential of treated digestate (Đurđević et al., 2018), 

which can be achieved using evaporation methodologies. This solution was also implemented in France where a 

23,000 ton/year digestate evaporation plant was commissioned (Bamelis et al., 2015), showing that evaporation 

methodologies have become the industrial standards for digestate treatment. In our recent work, we studied the 

techno-economic assessment of integrating a novel vacuum evaporator into a conventional BGP (Vondra et al., 

2018b). From that work, we concluded that the design decision and consideration of integrating the evaporator in a 

BGP can vary for each situation. As in any industrial processes, new technologies must be considered in terms of 

energy intensity, environmental impact, and financial aspects (Máša et al., 2013). Economic feasibility of integration 

depends on many factors. Besides the investment cost, it is digestate transport and application cost, dry matter 

content in liquid digestate, energy consumption of an evaporator system and many others. This paper will guide the 

reader on the implementation of evaporator systems based on the criteria in the BGP. 

  

The main objective of this work is to analyse the integration of an evaporation technology for digestate treatment 

into BGP regarding investment. The analysis provides important results subsequently used in a tool to support 

decision making on investment. The tool is developed for BGP owners to make decisions on investing in evaporator 

technology. For this purpose, a complex mathematical model is presented and rigorous simulations (possible 

scenarios) for large range of inputs are analysed. As a secondary objective, the study aims to investigate the 

significance of individual inputs in terms of the overall payback period of the project. The novelty of this work is that 

it analyses the implementation of current state-of-art industrial-scale digestate treatment technologies (evaporation 

systems). As the implementation of such technologies requires complex multi-dimensional considerations (Monfet 

et al, 2018), a novel techno-economic assessment methodology is introduced which utilizes Monte-Carlo sampling, 

artificial neural network (ANN) and hyper-optimized decision tree to search for the optimal policies and scenarios 

to implementing such technologies. 

 

2. Methodology 

2.1. Introduction 

The methodology and scientific procedure of this study are shown in Figure 2. Individual steps are described in the 

text below. At first, the BGP system was studied and clearly defined (Chapters 2.2, 2.3). Based on this definition, 

an analytical steady state techno-economic model was established (Chapter 2.4) and crucial input variables for 

further detailed research were identified. A thorough survey has revealed relevant ranges of values for particular 

operational variables (Table 2), which could occur in practice. Since there are no typical individual values which 

could be representative for a significant number of plants, we have decided to generate combinations of variables 

within allowable ranges. In this way, it was possible to simulate and analyse a large number of operating states that 

could appear in real BGPs.  

 

Two procedures for the generation of particular values of given variables were subsequently defined. During the 

“no-rules based” procedure, input variables could reach any value within the given range. The “rules-based” 
procedure introduces restrictions, which do not allow certain combinations of variables to enter the model since 

their appearance in a real BGP is improbable. Both procedures implement the Monte Carlo simulation method for 

the generation of datasets and are thoroughly described in Chapter 2.5. Each dataset represents a particular 

scenario (Base cases, “CHP bonus“, “No ASS sale”) which are also defined in Chapter 2.5. The aim of the 

subsequent data analysis was to provide support for decision making (decision analysis) and to identify trends for 

technology implementation (exploratory data analysis).  

 

2.2 System description 
This study considers a typical agricultural BGP, which processes different biomass substrates for biogas production 

and subsequent heat and electricity generation. A major part of the electricity, not consumed by the BGP itself, is 

sold to the power grid and represents the main source of income. The produced heat is partly supplied to digesters 

for the anaerobic fermentation process, eventually to other thermal appliances (e.g. drying). In most cases, the 

produced heat is not fully utilized (Guercini et al., 2014) and needs to be wasted by air-cooled chillers to ensure a 

sufficiently low temperature of the recirculating cooling water. Digestate serves as valuable fertilizer, but its storage 

and transportation are associated with significant costs for operators. To save storage capacities, digestate is often 

subjected to mechanical separation, which reduces the volume of liquid fractions that needs to be stored in 

specialized tanks. However, the overall volume of fertilizer (liquid + solid fraction) stays the same. 
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Figure 2: Scientific procedure of this study. 

 
For further treatment of LD, which could take up to 90 % of the original digestate volume, we assume the integration 

of an evaporation system. For the purpose of this study, we define evaporation system (ES) as a processing unit 

that: 1) contains a vacuum evaporator (VE), 2) reduces LD volume and at the same time preserves its fertilizing 

potential, 3) can produce clean water suitable for discharge into the environment, i.e. is able to prevent ammonia 

from entering the outgoing freshwater stream. Considered ESs are visualized in Figure 3. 

Each ES (A, B, C) produces two output streams during the vacuum evaporation – concentrate (thickened LD) and 

ammonia water. The degree of volume reduction of LD differs with the efficiency of VE and with input parameters 

of LD. Higher the input dry matter (DM) content, lower the potential for volume reduction. The concentrate contains 

most of the original nutrients. The only serious but major loss is dedicated to ammonia, which volatilizes during the 

evaporation step. This could be partially avoided by pH modification, using sulphuric or nitric acid. The dosage of 

acid depends on the concrete strategy for the ES operation and could be omitted. The operation of VE could also 

require the addition of a certain anti-foaming agent, since LD is prone to foaming. 

In the case of ES (A), presented by Maier (2018), ammonia and water are leaving the VE in gaseous form and are 

entering the scrubber where the ammonia is reacted with sulphuric acid, forming ammonium sulphate. Since the 
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reaction is exothermic, the scrubber can prevent most of the water from condensing. The small portion of condensed 

water leaves process together with ammonium sulphate in the form of ammonium sulphate solution (ASS). This 

valuable by-product has the potential to be sold as a fertilizer and contribute as a possible secondary income for 

BGP owner. Alternatively, ASS could be used for standardization of nitrogen content in the concentrated LD. 

Condensation of the rest of the water vapour takes place right after the scrubber. Produced water should reach the 

required quality for discharge.  

 
Figure 3: Considered evaporation systems for the liquid digestate treatment. ASS = Ammonium sulphate solution 

 

Systems (B) and (C) need to deal with the liquid ammonia-water solution that is produced during condensation in 

the VE. In the ES (B), stripping with the subsequent absorption of ammonia in sulphuric acid is considered. This 

system was studied by (Melse and Verdoes, 2005). Increase in temperature and pH (e.g. with sodium hydroxide) 

of the solution are favourable for ammonia release during the stripping process, hence the heat consumption of this 

system could be higher in comparison with systems (A) and (C). If there is enough waste heat available, this 

disadvantage does not apply. 

A different approach for ammonia recovery is proposed in the system (C). The ammonia-water solution with 

decreased pH (using e.g. sulphuric acid) is treated with the reverse osmosis. Separated water could be eligible for 

discharge. The retentate (low concentrated ASS) could be subsequently thickened back in the VE, or directly stored 

for further use. This system was referred to by Bamelis et al. (2015). 

 

2.3 Scope of Study 

This paper and its results are valid only for a given set of BGPs which comply with the following assumptions: 

a) Prior to entering ES, the digestate is treated by a suitable mechanical separator (e.g. screw press, decanter 

centrifuge), thus the LD is free of large solid particles and fibrous material. 

b) There is no extra heat available from external sources. If so, it is not considered.  

c) There are no legal restrictions on the proposed digestate processing and its subsequent utilization as a fertilizer. 

d) There is no further processing of products and associated extra revenues from these activities (e.g. drying and 

pelletizing of concentrated LD, advanced methods for nutrient recovery). 
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e) The storage of concentrated LD, its transportation and application on a field are technically feasible with current 

machinery and equipment, there is no need for further investments in this regard. 

f) Costs associated with increased safety requirements for the storage of auxiliary chemicals are negligible. 

g) The technological layout and process flows of investigated BGPs are in compliance with Fig. 4. 

 

 

 
Figure 4: Technological layout and basic process flow diagram of the considered biogas plant. The “X” denominates 
process units and operations whose economy will be affected by the integration of suitable evaporation system. 

 

2.4 Techno-economic model  
The techno-economic model considers only those process units and operations, whose economy will be affected 

by the integration of ES. These units and operations are marked in Figure 4 and their influence on costs and 

revenues is described in more detail in the following paragraphs. The techno-economic model was built on the basis 

of the presented mathematical relations, using MS Excel 2013 and VBA programming language. The model is 

steady state, analytical and is governed by energy and mass balance throughout the BGP. 

 

2.4.1 Payback period 

Simple payback period (𝑃𝑃) was selected as the main criterion for the feasibility evaluation. The zeroth year of the 

payback period is defined as the exact time of digestate treatment technology being commissioned in the BGP. The 

payback period is dependent on investment costs and a change in the cash flow (∆𝑅𝐸𝑉 − ∆𝐶𝑇𝑆), where the change 

is a direct result of the integration of an ES. Payback period was calculated in accordance with Eq. (1).  𝑃𝑃 = 𝐼𝑁𝑉/(∆𝑅𝐸𝑉 − ∆𝐶𝑇𝑆) (1) 

The overall change in revenues (Eq. (2)) is represented by the change in revenue from electricity sale (∆𝑅𝐸𝑉𝑒𝑙𝑠𝑎𝑙𝑒), 

change in revenue from the sale of concentrated LD (∆𝑅𝐸𝑉𝑐𝑜𝑛𝑐𝑠𝑎𝑙𝑒) and by newly acquired revenue from ASS sale 

(𝑅𝐸𝑉𝑎𝑠𝑠𝑠𝑎𝑙𝑒). The overall change in costs (Eq. (3)) is represented by the change in costs for LD transport (∆𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛) 

and by costs connected with the newly integrated ES, i.e. costs for chemicals consumption (𝐶𝑇𝑆𝑒𝑣𝑎𝑝𝑐ℎ𝑒𝑚) and 

maintenance of the ES (𝐶𝑇𝑆𝑒𝑣𝑎𝑝𝑚𝑛𝑡 ). ∆𝑅𝐸𝑉 = ∆𝑅𝐸𝑉𝑒𝑙𝑠𝑎𝑙𝑒 + ∆𝑅𝐸𝑉𝑐𝑜𝑛𝑐𝑠𝑎𝑙𝑒 + 𝑅𝐸𝑉𝑎𝑠𝑠𝑠𝑎𝑙𝑒 (2) ∆𝐶𝑇𝑆 = ∆𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛 + 𝐶𝑇𝑆𝑒𝑣𝑎𝑝𝑐ℎ𝑒𝑚 + 𝐶𝑇𝑆𝑒𝑣𝑎𝑝𝑚𝑛𝑡
 (3) 

 

2.4.2 Change in revenues from electricity sale 

Electric power is the most valuable output of BGPs. Since most feed-in tariffs (also including premium tariffs which 

are driven by market prices) are subsidized, BGPs are trying to maximize their electric output, thus minimizing their 
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internal consumption. The change in revenues from the electricity sale comprises of two parts (Eq. (4)) – change in 

revenue from the net electricity production and optional extra income from the CHP generation. ∆𝑅𝐸𝑉𝑒𝑙𝑠𝑎𝑙𝑒 = 𝑠𝑃𝐸𝑓𝑖𝑡 ∙ 𝑆𝐻 ∙ (∆𝑃𝐶𝑎𝑐𝑒𝑙 + ∆𝑃𝐶𝑎𝑔𝑖𝑡𝑒𝑙 − 𝑃𝐶𝑒𝑣𝑎𝑝𝑒𝑙 ) + 𝑠𝑃𝐸𝑐ℎ𝑝 ∙ 𝑆𝐻 ∙ 𝑃𝑂𝑐𝑜𝑔𝑒𝑙 /1000 (4) 

 

Table 2: Considered variables, condition and limits. 

Input variable Nomenclature Units Min Max Based on 

Electricity feed-in tariff 𝑠𝑃𝐸𝑓𝑖𝑡 EUR kWh-1 0.06 0.25 Pablo-Romero et al. (2017) 

Specific costs for LD 
application 

𝑠𝐶𝑇𝑆𝑙𝑑𝑎𝑝𝑙,𝑣𝑎𝑟
 EUR m-3 1 5 Auburger et al. (2015), Drosg 

et al. (2015), Author’s 
databank* 

Maintenance 
coefficient 

𝑘𝑒𝑣𝑎𝑝𝑚𝑛𝑡  - 0.05 0.15 Author’s databank* 

Specific price of 
chemicals 

𝑠𝑃𝑐ℎ𝑒𝑚 EUR t-1 0 4 Author’s databank* 

Specific costs for LD 
transport 

𝑠𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛,𝑣𝑎𝑟 EUR m-3 2 12 Auburger et al. (2015), Drosg 
et al. (2015), Author’s 
databank* 

Installed electrical 
power output 

𝑃𝑂𝑐𝑜𝑔𝑒𝑙  MW 0.05 3 Scarlat et al. (2018) 

Specific annual 
production of digestate 

𝑠𝑃𝑅𝐴𝑑𝑖𝑔 t y-1 MW-1 10000 30000 CZBA (2014), Author’s 
databank* 

DM concentration in 
digestate 

𝐷𝑀𝑑𝑖𝑔 wt% 4 12 Monlau et al. (2015), Drosg et 
al. (2015), Author’s databank* 

DM concentration in LD 𝐷𝑀𝑙𝑑 wt% 2 8 Møller et al. (2002), Drosg et 
al. (2015), Author’s databank* 

DM concentration in 
concentrate 

𝐷𝑀𝑐𝑜𝑛𝑐 wt% 8 15 Guercini et al. (2014), Drosg et 
al (2015), Author’s databank* 

DM concentration in 
solid fraction 

𝐷𝑀𝑠𝑓 wt% 20 35 Møller et al. (2000), Drosg et 
al (2015) 

Specific thermal power 
consumption of 
evaporation system 

𝑠𝑃𝐶𝑀𝑒𝑣𝑎𝑝𝑡ℎ  kWh t-1 150 500 Cordes (2018), Vondra et al. 
(2018a), Author’s databank* 

Specific electric power 
consumption of 
evaporation system 

𝑠𝑃𝐶𝐸𝑒𝑣𝑎𝑝𝑒𝑙  kWh t-1 8 25 Cordes (2018), Chiumenti et 
al. (2013), Author’s databank* 

Coefficient of heat 
consumption 

𝑘𝑏𝑔𝑝𝑡ℎ  - 0.2 1 Daniel-Gromke et al. (2017), 
Author’s databank 

Specific power 
consumption of air-
cooled chillers 

𝑠𝑃𝐶𝐸𝑎𝑐𝑒𝑙  kW MW-1 5 15 Noel and Fourcroy (2017), 
Author’s databank* 

Change in specific 
power consumption of 
agitators 

∆𝑠𝑃𝐶𝐸𝑎𝑔𝑖𝑡𝑒𝑙  kW MW-1 -3 6 Author’s databank* 

CHP bonus 𝑠𝑃𝐸𝑐ℎ𝑝 EUR kWh-1 0 0.05a) European Commission, 
(2019b) 

Specific production of 
ASS 

𝑠𝑀̇𝑎𝑠𝑠 wt% 0.025 0.035 Maier (2018), Cordes (2018) 

Specific market price 
for ASS 

𝑠𝑃𝑎𝑠𝑠𝑠𝑎𝑙𝑒 EUR t-1 10b) 30b) Maier (2018) 

Specific investment 
costs of a project 

𝑠𝐼𝑁𝑉 EUR y t-1 10 40 Author’s databank* 

Thermal efficiency of 
cogeneration unit 

𝜂𝑐𝑜𝑔𝑡ℎ  % 42c) Author’s databank* 

Electrical efficiency of 
cogeneration unit 

𝜂𝑐𝑜𝑔𝑒𝑙  % 42c) Author’s databank* 

Service hours 𝑆𝐻 h y-1 8760c) Author’s databank* 
Notes: *Author’s databank: Own experience, consultancy with BGP operators and professionals from 2013 to 

2019; a) Only in the “CHP bonus” scenario, otherwise without CHP bonus; b) Not valid in the “No ASS sale” 
scenario; c) Constant variables 

 

The net electricity production will be affected by the power consumption of air-cooled chillers, agitators in storage 

tanks and the ES itself. The most important parameter regarding the electricity sale is the feed-in tariff (𝑠𝑃𝐸𝑓𝑖𝑡) for 

electricity production from biogas, which could differ based on a particular policy or government strategy. Based on 
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the work of Pablo-Romero et al. (2017) we decided to place the value of 𝑠𝑃𝐸𝑓𝑖𝑡 in the range from 0.06 to 0.25 EUR 

kWh-1 (Table 2). 

 

2.4.3 Change in power consumption of air-cooled chillers 

The difference between the cooling performance of air-cooled chillers in the original BGP (𝑃𝐶𝑎𝑐,𝑜𝑟𝑖𝑔𝑡ℎ ) and after the 

ES integration (𝑃𝐶𝑎𝑐,𝑛𝑒𝑤𝑡ℎ ) is equal to the thermal power consumption of the ES (𝑃𝐶𝑒𝑣𝑎𝑝𝑡ℎ ), Eq. (5). This is due to the 

fact that the evaporation technology basically acts as a sink for the waste heat. 𝑃𝐶𝑒𝑣𝑎𝑝𝑡ℎ  is calculated (Eq. (5)) from 

the specific thermal consumption of the ES (𝑠𝑃𝐶𝑀𝑒𝑣𝑎𝑝𝑡ℎ ) and LD flow rate (𝑀̇𝑙𝑑). 𝑠𝑃𝐶𝑀𝑒𝑣𝑎𝑝𝑡ℎ  was estimated from Vondra 

et al. (2018a) to range between 150 and 500 kWh/t. The change in electricity consumption of air-cooled chillers 

(∆𝑃𝐶𝑎𝑐𝑒𝑙 , Eq. (6)) is also influenced by their specific electricity consumption (𝑠𝑃𝐶𝐸𝑎𝑐𝑒𝑙 ), which could vary approx. 

between 5 to 15 W/kWh (Noel and Fourcroy, 2017). 𝑃𝐶𝑒𝑣𝑎𝑝𝑡ℎ = 𝑃𝐶𝑎𝑐,𝑜𝑟𝑖𝑔𝑡ℎ − 𝑃𝐶𝑎𝑐,𝑛𝑒𝑤𝑡ℎ = 𝑠𝑃𝐶𝑀𝑒𝑣𝑎𝑝𝑡ℎ ∙ 𝑀̇𝑙𝑑 (5) 

∆𝑃𝐶𝑎𝑐𝑒𝑙 = 𝑃𝐶𝑎𝑐,𝑜𝑟𝑖𝑔𝑒𝑙 − 𝑃𝐶𝑎𝑐,𝑛𝑒𝑤𝑒𝑙 = 𝑠𝑃𝐶𝐸𝑎𝑐𝑒𝑙 ∙ (𝑃𝐶𝑎𝑐,𝑜𝑟𝑖𝑔𝑡ℎ − 𝑃𝐶𝑎𝑐,𝑛𝑒𝑤𝑡ℎ ) (6) 

It must be added that in most cases, the evaporator itself requires a certain amount of cooling capacity, which could 

be satisfied in different ways (cooling towers, AC chillers, heat recovery etc.). For the purposes of this study, it is 

assumed that power and investment requirements for the cooling capacity are an implicit part of the overall technical 

specification and price of the ES. 

 

2.4.4 Change in power consumption of agitators 

Stored LD requires regular mixing to prevent solids from settling. If the digestate is currently stored in 2 or more 

tanks, it can be expected that after the thickening, fewer tanks will be used for storage and the total consumption 

of agitators will be reduced. If the digestate is stored in one tank only, the remainder after the thickening is stored 

again in this one tank, but consumption of agitators will increase as they will mix a thicker and more viscous 

suspension. Thus we expect that the change in specific power consumption of agitators (∆𝑠𝑃𝐶𝐸𝑎𝑔𝑖𝑡𝑒𝑙 ) could be in a 

range from (-3,0) to 6 W per kW of electricity installed, where the negative value represents option with a single 

storage tank. The change in the power consumption of agitators (∆𝑃𝐶𝑎𝑔𝑖𝑡𝑒𝑙 ) is calculated according to Eq. (7). ∆𝑃𝐶𝑎𝑔𝑖𝑡𝑒𝑙 = ∆𝑠𝑃𝐶𝐸𝑎𝑔𝑖𝑡𝑒𝑙 ∙ 𝑃𝑂𝑐𝑜𝑔𝑒𝑙  (7) 

 

2.4.5 Power consumption of evaporation system 

The overall electricity balance will be negatively influenced by the consumption of ES (𝑃𝐶𝑒𝑣𝑎𝑝𝑒𝑙 ), which is determined 

using Eq. (8). Here the specific electricity consumption (𝑠𝑃𝐶𝐸𝑒𝑣𝑎𝑝𝑒𝑙 ) and LD mass flow rate (𝑀̇𝑙𝑑) are decisive factors. 

Based on works by Vondra et al. (2018a) and Chiumenti et al. (2013) we expect 𝑠𝑃𝐶𝐸𝑒𝑣𝑎𝑝𝑒𝑙  to vary between 8 and 

25 kWh per tonne of LD treated.  𝑃𝐶𝑒𝑣𝑎𝑝𝑒𝑙 = 𝑠𝑃𝐶𝐸𝑒𝑣𝑎𝑝𝑒𝑙 ∙ 𝑀̇𝑙𝑑 (8) 

 

2.4.6 Mass balance 

The production of digestate (𝑀̇𝑑𝑖𝑔) could be estimated from installed power output of a BGP (𝑃𝑂𝑐𝑜𝑔𝑒𝑙 ), number of 

service hours (𝑆𝐻) and specific annual digestate production (𝑠𝑃𝑅𝐴𝑑𝑖𝑔), which is typically in the range from 10,000 

m3 to 30,000 m3 per year and MW of electricity installed according to Eq. (9). 𝑀̇𝑑𝑖𝑔 = (𝑃𝑂𝑐𝑜𝑔𝑒𝑙 ∙ 𝑠𝑃𝑅𝐴𝑑𝑖𝑔)/𝑆𝐻 (9) 

Mass flows during the mechanical separation are governed by Eqs. (10) and (11). The production of LD could differ 

based on the separator type and its setup. It is supposed that the dry DM content in digestate (𝐷𝑀𝑑𝑖𝑔) from wet 

anaerobic digestion could vary between 4 and 12 %, which is within boundaries set by Monlau et al. (2015) and 

Drosg et al. (2015).  𝑀̇𝑑𝑖𝑔 = 𝑀̇𝑙𝑑 ∙ 𝑀̇𝑠𝑓 (10) 𝑀̇𝑑𝑖𝑔 ∙ 𝐷𝑀𝑑𝑖𝑔 = 𝑀̇𝑙𝑑 ∙ 𝐷𝑀𝑙𝑑 + 𝑀̇𝑠𝑓 ∙ 𝐷𝑀𝑠𝑓 (11) 

Production of the concentrated LD (𝑀̇𝑐𝑜𝑛𝑐) in the ES is governed by Eq. (12) under the assumption that all the DM 

stays in the concentrate. The final DM concentration (𝐷𝑀𝑐𝑜𝑛𝑐) is an input provided by the technology manufacturer. 

We suppose 𝐷𝑀𝑐𝑜𝑛𝑐 between 8 and 15 % as more concentrated DM would require demanding types of evaporators 
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with stirrers. Production of fresh water (𝑀̇𝑓𝑤) could be calculated using Eq. (13). Mass flow rates of applied 

chemicals are neglected. 𝑀̇𝑙𝑑 ∙ 𝐷𝑀𝑙𝑑 = 𝑀̇𝑐𝑜𝑛𝑐 ∙ 𝐷𝑀𝑐𝑜𝑛𝑐 (12) 𝑀̇𝑓𝑤 = 𝑀̇𝑙𝑑 − 𝑀̇𝑐𝑜𝑛𝑐 − 𝑀̇𝑎𝑠𝑠 (13) 

 

The density of digestate and its fractions were estimated using Eq. (14), where the result is solely dependent on 

the DM content (𝐷𝑀) of a particular stream: 𝜌𝑑𝑖𝑔 = 4.81 ∙ 𝐷𝑀 + 1026.2 (14) 

Hence the volumetric flow rate of digestate (𝑉̇𝑑𝑖𝑔) and any of its fractions (𝑉̇𝑙𝑑 , 𝑉̇𝑐𝑜𝑛𝑐) can be calculated using Eq. (15): 𝑉̇𝑑𝑖𝑔 = 𝑀̇𝑑𝑖𝑔/𝜌𝑑𝑖𝑔 (15) 

 

2.4.7 Change in revenues from the sale of concentrated LD: 

Thickening of the LD increases its price as the final product contains almost the same amount of nutrients but in a 

much smaller volume. It is assumed that the increase in the price of the LD is directly proportional to the change in 

its volume (𝑉̇𝑙𝑑 − 𝑉̇𝑐𝑜𝑛𝑐) as the change of volume is directly proportional to the saving of application (spreading) 

costs. This could be beneficial both for the external end user of the fertilizer or for the plant operator himself, if he 

is the one who utilizes the LD for the fertilization of soil. Change in revenues (∆𝑅𝐸𝑉𝑐𝑜𝑛𝑐𝑠𝑎𝑙𝑒) is determined using Eq. (16), 

where 𝑠𝐶𝑇𝑆𝑙𝑑𝑎𝑝𝑙,𝑣𝑎𝑟
 stays for specific variable costs for the application of LD and are expected to range from 1 to 5 

EUR/t.  ∆𝑅𝐸𝑉𝑐𝑜𝑛𝑐𝑠𝑎𝑙𝑒 = 𝑠𝐶𝑇𝑆𝑙𝑑𝑎𝑝𝑙,𝑣𝑎𝑟 ∙ 𝑆𝐻 ∙ (𝑉̇𝑙𝑑 − 𝑉̇𝑐𝑜𝑛𝑐) (16) 

 

2.4.8 Revenues from the ammonium sulphate solution (ASS) sale: 

The production of ASS will vary with the type of process unit (scrubber, stripper, reverse osmosis) responsible for 

the reaction between sulfuric acid and ammonia (NH3) or ammonium (NH4
+). Although the operation itself could be 

different, the overall mass flow rate of ASS produced will change only slightly, since the general requirement for 

ammonia removal is the same and is mainly driven by the terminal concentration of ammonia in the separated fresh 

water. The specific mass flow rate of ASS (𝑠𝑀̇𝑎𝑠𝑠) will be provided by technology supplier and is estimated between 

25 and 35 kg/t of LD. The revenue from ASS sale (𝑅𝐸𝑉𝑎𝑠𝑠𝑠𝑎𝑙𝑒) could be calculated using Eq. (17). The market price 

for ASS (𝑠𝑃𝑎𝑠𝑠𝑠𝑎𝑙𝑒) may vary throughout the EU and will be influenced by demand and purchasing power of local 

companies. 𝑅𝐸𝑉𝑎𝑠𝑠𝑠𝑎𝑙𝑒 = 𝑠𝑃𝑎𝑠𝑠𝑠𝑎𝑙𝑒 ∙ 𝑠𝑀̇𝑎𝑠𝑠 ∙ 𝑀̇𝑙𝑑 ∙ 𝑆𝐻/100 (17) 

 

2.4.9 Change in costs for LD transportation 

The volume reduction of LD in comparison with the original situation will affect transportation costs. Overall transport 

costs reduction (∆𝐶𝑇𝑆𝑐𝑜𝑛𝑐𝑡𝑟𝑎𝑛, Eq. (18)) will be proportional to the difference between the volumetric flow rate of LD 

after the thickening process (𝑉̇𝑐𝑜𝑛𝑐) and the original one (𝑉̇𝑙𝑑). Total savings related to LD transport are influenced 

by specific variable transportation costs (𝑠𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛,𝑣𝑎𝑟), which are strongly related to average transport distance. 

Since the transport distance can exceed 100 km in certain areas (North-West Germany), we may expect high 

fluctuation in 𝑠𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛,𝑣𝑎𝑟 and therefore also in ∆𝐶𝑇𝑆𝑐𝑜𝑛𝑐𝑡𝑟𝑎𝑛.  ∆𝐶𝑇𝑆𝑐𝑜𝑛𝑐𝑡𝑟𝑎𝑛 = 𝑠𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛,𝑣𝑎𝑟 ∙ 𝑆𝐻 ∙ (𝑉̇𝑐𝑜𝑛𝑐 − 𝑉̇𝑙𝑑) (18) 

 

2.4.10 Costs for chemicals consumption 

To reach a required quality of products using any type of proposed ES, utilization of certain chemicals is a must. 

Sulphuric acid is the cheapest solution (nitric acid as a more expensive option) for the ammonia recovery in ESs.  

Intensive foaming is typical for the evaporation of the LD, hence an antifoaming agent could be another chemical 

input consumed in the process. Specially modified evaporators are capable of zero AFA consumption, but higher 

investment or operational costs (e.g. for mechanical foam disruption) must be considered. 

The overall consumption of chemicals could vary significantly based on the particular system configuration. 

To evaluate overall costs for chemicals consumption (𝐶𝑇𝑆𝑒𝑣𝑎𝑝𝑐ℎ𝑒𝑚) according to Eq. (19), a technology supplier must 

provide information about the expected specific price of chemicals (𝑠𝑃𝑐ℎ𝑒𝑚) per tonne of treated LD. This study 

assumes 𝑠𝑃𝑐ℎ𝑒𝑚 to reach up to 4 EUR/t. 
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 𝐶𝑇𝑆𝑒𝑣𝑎𝑝𝑐ℎ𝑒𝑚 = 𝑠𝑃𝑐ℎ𝑒𝑚 ∙ 𝑀̇𝑙𝑑 ∙ 𝑆𝐻 (19) 

 

2.4.11 Costs for technology maintenance 

As any other process unit, even an ES will require maintenance throughout its lifetime. It will mainly require regular 

washout of its components, especially heat transfer surfaces and pumps, which could suffer from clogging and 

fouling. Occasional professional service or replacement of damaged components should also be expected. LD is 

an organic solution with high viscosity and significant content of DM and it is quite difficult to handle. Annual costs 

for technology maintenance (𝐶𝑇𝑆𝑒𝑣𝑎𝑝𝑚𝑛𝑡 ) could be estimated as a percentage from total investment costs (𝐼𝑁𝑉) and in 

the Eq. (20) are expressed by the maintenance coefficient (𝑘𝑒𝑣𝑎𝑝𝑚𝑛𝑡 ), which is estimated to range between 0.05 to 

0.15. 𝐶𝑇𝑆𝑒𝑣𝑎𝑝𝑚𝑛𝑡 = 𝑘𝑒𝑣𝑎𝑝𝑚𝑛𝑡 ∙ 𝐼𝑁𝑉 (20) 

 

2.4.12 Investment costs 

For purposes of this study, total investment costs (𝐼𝑁𝑉 of a project are calculated from specific investment costs 

(𝑠𝐼𝑁𝑉) per tonne of processed LD. This approach allows comparison of BGPs with different capacities, which would 

vary significantly in terms of total investment costs. Eq. (21) describes the calculation: 𝐼𝑁𝑉 = 𝑠𝐼𝑁𝑉 ∙ 𝑀̇𝑙𝑑 (21) 

 

2.4.13 Thermal energy consumption 

For the thickening project to be successful, it is necessary to utilize only as much heat, as it is available in the BGP 

in a form of cost-free waste heat. Thermal energy is the main source of energy for the evaporation process. Any 

requirement for extra thermal energy production would significantly reduce the feasibility of the project, most 

probably it would make it unacceptable. In this study, the feasibility of the project considers the scenarios in which 

the evaporation system does not consume more than available amount of heat (this is considered as infeasible). 

This condition is described by Eq. (22), where 𝑃𝐶𝑏𝑔𝑝𝑡ℎ  refers to own heat consumption by the BGP. 𝑃𝐶𝑏𝑔𝑝𝑡ℎ  is 

determined in accordance with Eq. (23) and is dependent on the coefficient of heat consumption (𝑘𝑏𝑔𝑝𝑡ℎ ). In BGPs 

the heat is utilized for the digestion process, eventually for drying processes or heating of social buildings, stables, 

attached industrial or commercial premises etc (Daniel-Gromke et al., 2017). In certain cases 𝑘𝑏𝑔𝑝𝑡ℎ  could reach up 

to 1, i.e. there is no available waste heat and evaporation project is rated as infeasible.  𝑃𝐶𝑒𝑣𝑎𝑝𝑡ℎ ≤ 𝑃𝑂𝑐𝑜𝑔𝑡ℎ − 𝑃𝐶𝑏𝑔𝑝𝑡ℎ  (22) 

𝑃𝐶𝑏𝑔𝑝𝑡ℎ = 𝑘𝑏𝑔𝑝𝑡ℎ ∙ 𝑃𝑂𝑐𝑜𝑔𝑡ℎ  (23) 

Thermal power output of the cogeneration unit was determined using Eq. (24), where 𝜂𝑐𝑜𝑔𝑡ℎ  and 𝜂𝑐𝑜𝑔𝑒𝑙  are constants, 

both equal to 42 %.  𝑃𝑂𝑐𝑜𝑔𝑡ℎ = 𝑃𝑂𝑐𝑜𝑔𝑒𝑙 /𝜂𝑐𝑜𝑔𝑒𝑙 ∙ 𝜂𝑐𝑜𝑔𝑡ℎ  (24) 

2.5 Datasets generation and analysis 
As introduced earlier, there are two main outputs. Firstly, a support for decision making in a form of a decision tree, 

which was generated using a “no rules-based” dataset (Chapter 2.5.1). Secondly, exploratory data analysis was 

carried out to provide comprehensive information about feasibility of the system integration. “Rules-based” datasets 
were used (Chapter 2.5.2) for that purpose. 

To the authors’ knowledge, there is no sufficiently extensive database of parameters of existing BGPs which could 

be used for the aforementioned analyses. So, to reproduce variability of real operational parameters, a stochastic 

approach was deployed to simulate datasets using the Monte-Carlo (MC) method together with the techno-

economic model presented in Chapter 2.4. Each dataset is obtained by 20,000 simulation runs with randomly 

generated values of the independent variables. Each combination of variables represents the operational 

parameters of one particular BGP. We call these combinations as “samples”. The aim of the subsequent data 

analysis was to identify successful combinations of samples that are favourable for the economy of the project. 

Feasibility of the samples is tested using three criteria: consumed heat is lesser or equal to available heat, cash 

flow is positive and payback period is below certain level (3 or 5 years for “no rules-based”, 15 years for “rules-

based datasets”). The samples, which do not meet these requirements, are not feasible. But they are not excluded 
from the results. They just represent the set of solutions which are not acceptable for BGP. 
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2.5.1 “No rules-based” dataset 
For the decision analysis, it is necessary to have all combinations of values of the independent variables since PP 

is investigated as a function. The full decision space for the implementation of ES is generated by MC simulations 

of the rigorous techno-economic model. In the MC simulation, each point in the domain space is assigned an equal 

probability to give a non-bias decision space. We categorized this generated data set under “no rule-based” dataset 

and assigned the name “Base case 1” to this scenario. The parameters of the uniform distribution, minimum and 

maximum value, were estimated according to data found in literature or according to the authors’ experience or 
consultancies with technology suppliers and BGP operators (specified in the Table 2). 

 

The tools used for the decision analysis are the Statistica package and development in Python 3.7. We extended 

development based-on conventional development libraries such as sklearn, matplotlib, scikit-optimize, dtreeviz, 

pyplotplus. The decision analysis aims to select important variables from a well-trained artificial neural network, 

then using them to train a decision tree classifier.  

The decision tree classifier functions to separate sub-solution spaces of fast payback period (0-3 years) and medium 

payback period (3-5 years) from the full decision space. This approach is expected to give solutions that are more 

reliable and robust, as the optimality is not presented as a “point”, but as a solution space in the tree’s leaf node. 
The tree is pruned and validated with an alternative set of testing data. Bayesian optimization is also carried out to 

efficiently tune the hyper-parameters of the decision tree, ensuring no overfitting and high validation performance 

(see Figure 5). 

Using 20,000 data points from Monte Carlo simulations, important significant variables were selected by using a 

simple artificial neural network with the automated search algorithm. The artificial neural network architecture was 

searched between 10 to 25 hidden layers and variable activation functions including Identity, Logistics, Hyperbolic 

Tangent and Exponential functions. Sensitivity analysis was carried out for each variable by turning off the 

respective variables in the neural network and measure the error in payback period prediction. If the shut-off variable 

causes a high error in prediction, it is higher in importance. The importance factor is shown in Eq. (25): 𝐼(𝑥𝑘) =  ∑|𝑦 − 𝑦′(𝑥𝑛)|        𝑤ℎ𝑒𝑟𝑒 ∀𝑛 ∈ 𝑁, k ∉  𝑁 (25) 

The decision tree classifier was trained with a best split greedy approach by minimizing entropy at each resulting 

node. The entropy of the node is correlated with the probability of classes within the classification group (see 

Eq. (26)). This ensures that the information gain is maximized when moving down the tree. We also trained our 

decision tree with 20,000 Monte Carlo simulation data, while using a separate 20,000 Monte Carlo simulation points 

for validation. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑗  𝑙𝑜𝑔2 𝑝𝑗𝑗  (26) 

A simple pruning algorithm was used to eliminate repeated classifications of the same class. Nevertheless, the 

pseudo-code for the algorithm is shown in Table 3 for easier understanding. 

 

Table 3: Algorithm for decision tree pruning 

    Algorithm 1 Basic pseudo-code for decision tree pruning 

1: Repeat 

2:      For each leaf nodes in decision tree do                              • Get the leaf nodes of tree 

3:          Get parent of leaf node                                        • Check the decision of the parent of tree node 

4:          If classification of parent == classification of leaf node         • Check if there are trivial leaf nodes 

5:              Remove all child of parent with classification==parent          • Remove trivial leaf nodes 

6:              Update leaf nodes            • Update the new leaf nodes after previous are removed 

7: Until all classification of leaf nodes != classification of parent     • Repeat until no more trivial leaf nodes 
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Figure 5: Procedure for full decision space analysis 

 

The effects of this pruning algorithm allow the tree to have a reduced number of nodes while maintaining the same 

level of accuracy within the decision tree. This can be visualized in Figure 6, where two leaf nodes of the same 

classification were effectively pruned to form a tree with reduced branches but same classification accuracy. 

 

 
Figure 6: Visual decision tree pruning illustration 

 

The hyper-parameters for training the decision tree classifier are the maximum depth of the tree (Max Depth), 

minimum samples to activate further splitting (Min Sample Split), the minimum weight fraction of leaf node samples 

with respect to input samples (Min Weight Fraction) and minimum impurity decrease. We have carefully selected 

logical limits of the hyper-parameter optimization problem by trial and error to provide faster convergence of the 

optimization algorithm. The limits for hyper-parameter optimization can be found in Table 4: 
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Table 4: Limits for hyper-parameters in the decision tree 

Hyper-parameters Minimum Limit Maximum Limit 

Max Depth 3 50 

Min Sample Split 10 40 

Min Weight Fraction 0 0.001 

Min Impurity Decrease 0 0.001 
  

Gaussian process Bayesian optimization was used for the hyper-parameter optimization. The kernel that was used 

is the Matern kernel with 𝑣 =5/2 and small 𝛼0 (1e-6) was according to Eq. (27): 𝐶𝑣(𝑑) =  ∑(𝑥, 𝑥′) =  𝛼0 21−𝑣Γ(𝑣)0 (√2𝑣 ‖𝑥 − 𝑥′‖)𝑣 𝐾𝑣 (√2𝑣 ‖𝑥 − 𝑥′‖) (27) 

Where  𝐾𝑣 is the modified Bessel function and Γ is the gamma function. The kernel serves as the prior of the function 

of tree accuracy with respect to hyper-parameters. The posterior distribution of the function is then estimated using 

all available data, and the maximal point is estimated and measured. This process repeats iteratively until 

convergence. 

 

2.5.2 “Rules-based” datasets 

The “rules-based” datasets consists of three scenarios with different sets of generated data. The “Base case 2” acts 
as a reference scenario for the “rules-based” datasets. The “No ASS sale” scenario examines the impact of the 
marketability of an ammonium sulphate solution. The “CHP bonus” scenario analysis the effect of bonuses for CHP 

production (Chapter 2.4.2). 

 

In contrast with decision analysis (Chapter 2.5.1), the MC simulation mode used for generation of “rules-based” 
datasets requires data which reflects the real operational conditions. For this case, simply including unrealistic 

combinations would lead to biased results. That is why some rules towards realistic combinations were introduced. 

The objective of these rules is to modify the probability distribution or the functional dependency of the variables so 

that it gives a better representation of the real situation. However, there is still some fluctuation along this 

dependency determined by the uniform distribution. The rules are described in more detail below and are visualized 

in Figure 7. Variables which are strictly independent are generated from the same uniform distribution used in the 

case of the decision analysis.  

 
Figure 7: Matrix for Monte Carlo simulation limits of the “rules-based“ scenarios, h) is not valid for the “No ASS 

sale“ scenario 
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The first of the rules considers the fact that in some cases, the application costs may be zero. In these cases, known 

to us from the Czech Republic, the fertilizer is collected by local farms free of charge. We estimate the chance for 

zero application costs 10 % (Figure 7a). Otherwise, this cost is between 1 and 5 EUR/m3. 

 

Certain BGPs do not have any costs related to LD transport outside the plant itself. This situation is typical when 

there is some kind of barter exchange between closely located farmers (who provide biomass substrate for free or 

with discount) and BGP, which processes the biomass and provides a valuable natural fertilizer. Such a BGP may 

not have any agricultural production at all, hence the cost-free collection of LD by local farmers is highly appreciated. 

We suppose 5 % of BGPs to fulfil this scenario (𝑠𝐶𝑇𝑆𝑙𝑑𝑎𝑝𝑙,𝑣𝑎𝑟
= 0 EUR/m3). If the transport cost is non-zero another 

rule is applied. Since BGPs with high installed capacity (high LD production) need a larger area of land for discharge 

LD, we may expect that also their average transport distance will be higher. Hence we set a rule for all “rules-based” 
scenarios, which generates higher 𝑠𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛,𝑣𝑎𝑟for high capacity BGPs (Figure 7b). For instance, if 𝑀̇𝑙𝑑 = 0.025 t/h 

the value of 𝑠𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛,𝑣𝑎𝑟 can be generated from the range between 2 and 12 EUR/m3. If 𝑀̇𝑙𝑑 = 9.95 t/h the value of 𝑠𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛,𝑣𝑎𝑟 can be generated from the range between 7 and 12 EUR/m3. 

 

A rule of high 𝐷𝑀𝑑𝑖𝑔 – low 𝑠𝑃𝑅𝐴𝑑𝑖𝑔 and low 𝐷𝑀𝑑𝑖𝑔 – high 𝑠𝑃𝑅𝐴𝑑𝑖𝑔 was applied (Figure 7c) since high water content 

results in high volumes of digestate (Drosg et al., 2015). DM in LD (𝐷𝑀𝑙𝑑) is estimated to be between 2 and 8 % 

with respect to Møller et al. (2002), Drosg et al. (2015) and own experience and is restricted to be always less than 𝐷𝑀𝑑𝑖𝑔 according to Figure 7d. 

 

ES should provide reasonably higher DM content in a concentrate compared to LD. To guarantee reasonable 

difference between 𝐷𝑀𝑐𝑜𝑛𝑐 and 𝐷𝑀𝑙𝑑 the rule depicted in Figure 7e is introduced so the difference lesser than 4 % 

is impossible. 

 

With the increase in thermal efficiency of the ES (𝑠𝑃𝐶𝑀𝑒𝑣𝑎𝑝𝑡ℎ ), we can expect high specific investment costs (𝑠𝐼𝑁𝑉) 

as a result of more intensive heat recovery and increased requirements for heat transfer area. This rule for “rule-

based” scenarios is applied according to Figure 7f. 

 

Since the 𝑠𝑃𝐶𝐸𝑒𝑣𝑎𝑝𝑒𝑙  is often declining with the increase of volume reduction (Vondra et al., 2018a), i.e. with high 

freshwater production, a restriction is acquired as a part of the “rules-based” scenarios (Figure 7g). 

 

For the “No ASS sale” scenario we assume that no ASS is sold. In this way, we demonstrate the influence of N 
recovery and marketability on the project feasibility. For the remaining scenarios, we still assume 25% probability 

that no ASS is sold (i.e. 𝑠𝑀̇𝑎𝑠𝑠 = 0). However, if ASS is successfully sold its value is between 0.025 and 0.035 EUR/t 

(Figure 7h). 

 

Since high capacity projects are generally favourable for specific investment costs, we assume for the “rules-based” 
scenarios that 𝑠𝐼𝑁𝑉 will decrease with the mass flow rate of LD (Figure 7i).  

 

The CHP bonus can be used to support BGP operation and motivate operators to usefully utilize waste heat at the 

same time. It is up to authorities what is considered as useful utilization. In this study, it is assumed that ES 

represents useful utilization. There may be many strategies for the CHP bonus application. For instance, only the 

amount of the net electricity production corresponding to the usefully utilized heat is subsidized. Or, if more than 50 

% of the heat is usefully utilized the whole net electricity production is subsidized, etc. It is not possible to consider 

all possible strategies in the model. 

 

Therefore, in order to simplify it, the whole net electricity production is subsidized in the “CHP bonus” scenario. 

However, the value of the CHP bonus is influenced by the feed-in-tariff and the heat utilization prior to ES integration. 

It is assumed that the higher the feed-in-tariff the lower the CHP bonus because high support by a government is 

already provided by high feed-in-tariff. Further, it is assumed that the higher heat utilization the lower the CHP bonus 

because those operators who currently utilize high amount of heat already have (probably) CHP bonus virtually 

included in the feed-in-tariff. The model for CHP bonus is depicted in Figure 8. It is assumed that BGP with the 

current heat consumption higher than 80 % of the total production already has the CHP bonus included in the feed-

in-tariff even when its value is only 0.06 EUR/kWh. On the other hand, if BGP has the heat utilization lower than 

40 % of the total production and the feed-in-tariff lesser than 0.2025 it gets the CHP bonus and its value depends 

on the precise value of the feed-in-tariff. The highest CHP bonus of 0.05 EUR/kWh was inspired by the support 

scheme in Finland (European Commission, 2019b). In this study, the CHP bonus could be claimed only in the “CHP 
bonus” scenario. 
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Figure 8: Monte Carlo simulation limit for the CHP bonus variable 

 

3. Results and discussion 

3.1 Base case 1 (“no rules-based" dataset) 
Using the dataset from the Monte Carlo simulation, a neural network was trained to predict the payback period of 

the implementation of evaporation systems given the conditions and criteria. The automated neural network 

architectural search found a configuration of MLP 17-10-1 (exp-exp), where variables with insignificant variance 

were automatically ignored. The simple artificial neural network validated with 0.996 accuracy (see Figure 9a) while 

showing the importance value of each variable by sensitivity analysis (see Figure 9b). There are two “knee points” 
within the importance plots, one being after the 4th variable (from bottom) and another after the 9th variable. The 

drastic change of gradients in these “knee points” signifies that those are the threshold for variable screening. In 
this work, we choose the first 4 variables instead of 9 variables considering the complexity and user experience for 

the decision maker. The four most significant variables are the specific investment cost per LD ( 𝑠𝐼𝑁𝑉), the specific cost for concentrated LD transport (𝑠𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛,𝑣𝑎𝑟), DM concentration in LD (𝐷𝑀𝑙𝑑), and the specific 

price of chemicals (𝑠𝑃𝑐ℎ𝑒𝑚). These variables are used to train the decision tree classifier. 

  
(a)                                                                                                  (b) 

Figure 9: (a) Neural network expected validation result against actual result (b) Importance of variables in scree 

plot 

 

Hyper-parameter optimization was implemented for training the decision tree classifier to achieve high validation 

accuracy. Using Bayesian optimization, the maximum validation error was found in 5 iterations. The algorithm was 

further iterated for 25 steps and the validation error remains unchanged (Figure 10). This shows that the tree 

generated has at least an epsilon-optimal hyper-parameter setting to achieve high validation performance. The tree 

was able to achieve 98.14% of validation error in a stochastic environment. 
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Figure 10: Maximum validation accuracy and number of iterations by Bayesian optimization 

 
The full decision tree diagram can be found in the Appendix A. Statistically, there is more than 95% chance of 

getting infeasible economics by evaluating the full decision space and their outcomes when implementing the ES. 

This reflects that the economics for treating digestate in the European Union is particularly difficult and generally 

unfavourable as of now. Successful biogas projects require significant effort from both policy and management 

(Gebrezgabher et al., 2010). Searching for a good heuristic for stakeholders to implement such evaporation system 

is absurdly difficult and can be described as “searching for a needle in a haystack”. The main management effort 
of such project is to market the recovered ASS, while CHP incentives are provided by governments (European 

Commission, 2018) to encourage such efforts. The effect of these important but inadequate efforts will be 

comprehensively analysed in Section 3.2. Nevertheless, by screening through variables with the decision tree, we 

can essentially improve this situation to benefit the decision maker. This is computed by the decision tree classifier 

to separate the full decision space into subspace that are representative of fast PP (0-3 years), average PP (3-5 

years) and infeasible implementation. The decision tree classifier can elegantly classify such datasets by only using 

sequence of univariate inequality constraints (see Table 4). The simplicity of using such univariable inequality 

constraints as a heuristic for decision making is highly effective and convenient for stakeholders. Selecting two of 

the highest probability pathways for fastest payback (0-3 years), a branch of the tree diagram is generated and 

shown in Figure 11. 

 

Figure 11:  Branch of decision tree that indicates interesting pathways for fast payback period 

An interesting pathway that was generated is shown in Figure 11. The tree suggests that there is a compelling 

opportunity of between 0-3 years payback with 80% probability. This can be achieved by having specific investment 

costs per LD below 12.90 EUR/t, DM concentration in LD below 2.23 wt%, specific cost for LD transport and specific 

price of chemicals over 8.31 EUR/m3 and below 1.79 EUR/t respectively.  
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An alternative pathway can also be identified in Figure 11, where there is a 64.2% probability of achieving 0-3 years 

payback. This can be achieved by having similar a specific investment costs as the previous pathway, maintaining 

the specific price of chemicals between 2.07-2.44 EUR/t while having specific cost for LD transportation and DM 

concentration in LD below 5.72 EUR/m3 and 2.6 wt% respectively. Although there is a range for the specific price 

of chemicals, decision makers should only consider the upper limit, as lower chemical prices give better economic 

feasibility. Technically, the lower boundary of 𝑠𝑃𝑐ℎ𝑒𝑚 gives confinement of the subspace so that the probability of 

success can be qualitatively assessed. The criteria for each evaporation implementation decision pathway is 

tabulated in Table 5 for a visualized comparison. 

 

Table 5: Criteria and reward for pathways 

 Solutions Pathway 1 Pathway 2 

Criteria Specific investment cost per tonne of liquid 
digestate (EUR/t) <12.90 

Specific cost for liquid digestate transport 
(EUR/m3) >8.31 

Dry matter concentration in liquid digestate 
(wt%) < 2.23 

Specific price of chemicals (EUR/t) <1.79 

Specific investment cost per tonne of liquid 
digestate (EUR/t) <12.90 

Specific cost for liquid digestate transport 
(EUR/m3>5.72 

Dry matter concentration in liquid digestate 
(wt%) < 2.6 

2.07< Specific price of chemicals (EUR/t) <2.44 

Payback 0-3 years payback with 80% probability 0-3 years payback with 64.2% 

  

To achieve short PP within an ES implementation project, specific investment cost must be generally lower than a 

threshold of 12.90 EUR/t. Having a higher specific cost for concentrated LD transport improves the stability of the 

project as the probability of success improves. The implementation of ES is also more economically favourable for 

low DM content of LD and specific price of chemicals below 1.79 and 2.44 EUR/t respectively. Low DM content (< 

2.23%, <2.6% respectively) could be achieved by acquiring mechanical separator with high separation efficiency 

(decanter centrifuge, screw press with fine sieve). The specific price for chemicals depends on the amount of 

ammonia that must be removed during the thickening process. Avoiding a nitrogen-rich substrates (e.g. poultry 

manure, grass silage) and requiring efficient management of chemical dosage in ES could be considered as 

beneficial steps for achieving short PP. 

 

Using transportation distance estimation from Ghafoori et al. (2007), we estimate that the minimum truck transport 

distance for pathway 1 is 31.94 km and pathway 2 is 18.7 km. These minimum transportation distance acts as a 

reference for decision makers if the specific cost for LD transport is unknown. Vilanova Plana and Noche (2016) 

discussed that the mode of transportation and storage time also affects the specific transportation costs, and it is 

recommended that such considerations are made by decision makers. 

 

A probabilistic result was presented in the decision tree, we perform further analysis on the best pathway (Pathway 

1) to show the nature and causes of success and failure within the class. In order to study the micro-behaviour of 

variables within the class of the pathway, the respective solution space has been plotted as contour plots in 

Figure 12. 

  
(a)                                                                                         (b) 

Figure 12: Solution space of pathway 1 considering (a) specific transportation costs of LD and specific 

investment costs per tonne of LD (b) specific price of chemicals and DM concentration in LD 
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The solution space for Pathway 1 is plotted in Figure 12, there is an obvious multi-dimensional saddle. The decision 

tree has successfully found a solution space where there is a stable multi-dimensional local minima. This saddle 

can be found in Figure 12a (where there is a light blue gap) and Figure 12b (where there is a dark blue gap). For 

both plots, the contours are smooth and move towards high PP towards the edges of the solution space. This shows 

that making decisions that are bounded within this solution space has a smooth and resilient outcome and do not 

cause sudden infeasibility due to dynamic changes. This attribute of the pathway is critically important for real-world 

implementation, as it gives allowance for slight error during actual project implementation. Pathway 2, on the other 

hand, only has a 64.2% of having a fast PP (see Table 5) which is not robust. Although Pathway 2 can potentially 

be a “high-risk high-reward” decision option, we highly recommend making decisions that follow Pathway 1 as it is 
much more stable (as presented by the solution space contour plots). 

 

3.2 “Rules-based" datasets 
Figure 13 shows the distribution of PP for all “rules-based” scenarios. Note that only PP from 0 to 15 years is 
assumed to be feasible. They represent approx. 2.7% and 6.7% of all samples generated in “Base case 2” and 

“CHP bonus” scenarios respectively. Long PP, negative cash flow or lack of available heat for evaporation are 

denoted as infeasible. Obviously, there is a dramatic increase of feasible scenarios in case of “CHP bonus”. This is 

valid for short PP (< 5 years) in particular. Clearly, CHP bonus introduction significantly supports a digestate 

integration into BGP. In comparison with the “Base case 2” scenario, there is an increase of feasible samples by 

251%. Missing market with ASS (“No ASS sale” scenario) does not influence PP significantly. There is a decrease 

of feasible simulations by 16% against the “Base case 2”. This result suggests that ASS marketing is not necessarily 

a decisive factor for the LD processing project. To be more impactful, the LD treatment must be capable of producing 

more valuable products or exploit more fertilizer or otherwise marketable substances. 

 

Figure 13:  Overall difference in payback period occurrence with different scenarios 

In the following part, the distribution of individual independent variables is discussed together with the impact of 

each scenario. The histograms are shown for PP from 0 to 5 years as it is the most attractive range for decision 

makers. Moreover, the same range was used for classification in the decision tree design. 

Specific transport costs (𝑠𝐶𝑇𝑆𝑙𝑑𝑡𝑟𝑎𝑛,𝑣𝑎𝑟) is one of the most important variables. CHP bonus decreases its importance 

(Figure 14); however, it remains quite big - 26 % of feasible samples has a value higher than 11 EUR/m3. For “Base 
case 2” and “No ASS sale”, the values higher than 11 EUR/m3 are dominant with more than 60 % of feasible 

samples. Clearly, without CHP bonus, the LD processing is valuable mainly in regions where high transportation 

cost due to longer distances is expected, e.g. regions with high density of agriculture production, with a high 

geographical density of BGPs or regions with legal restrictions. 
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(a)                                                       (b)                                                         (c) 

Figure 14:  Distribution of specific LD transportation price in the successful scenario of (a) „Base case 2“ (b) „No 
ASS sale“ (c) „CHP bonus“ incentives 

Another variable with interesting results is the installed power output of a BGP ( 𝑃𝑂𝑐𝑜𝑔𝑒𝑙 ), which basically describes 

its capacity. BGP with higher installed electricity output have also high digestate production and therefore lower 𝑠𝐼𝑁𝑉 (see rules – Figure 7). At the same time, it is likely that transport cost is higher because the amount of LD is 

higher and has to be transported between longer distances. Since the average installed capacity in EU is around 

0.56 MW (Deremince and Königsberger, 2017), the simulated results (Figure 15) has shown that there is approx. a 

3 times lower chance of a successful implementation of evaporation system into the current industrial settings in 

comparison with BGPs with installed capacity higher than 2.5 MW. On the other hand, it is obvious that due to 

economies of scale BGP with high capacities (> 1.0 MW) have higher chance of successful implementation - only 

20% of BGPs under 1 MW were able to succeed within the feasible samples in the “Base case 2”. Thus the LD 

thickening project in an average BGP in the EU will probably be hardly feasible. Centralization of digestate treatment 

for small (< 1.0 MW) neighbouring BGPs could be advantageous in this regard. Nevertheless, referring Figure 15c, 

the aforementioned difficult project implementation can be improved with increased CHP bonus which allows 

smaller capacity BGP to be more successful. 

(a)                                                         (b)                                                           (c) 

Figure 15:  Distribution of installed electric power output in the successful scenario of (a) „Base case 2“ (b) „No 
ASS sale“ (c) „CHP bonus“ incentives  

Furthermore, the distribution of the values of 𝑠𝑃𝑅𝐴𝑑𝑖𝑔 was investigated (see Figure 16). Once again, the effect of 

increased CHP incentives has a large impact on the distribution. The explanation is as follows, the higher 𝑠𝑃𝑅𝐴𝑑𝑖𝑔 

the lower 𝐷𝑀𝑑𝑖𝑔and therefore more water need to be evaporated. This results in heat demand increase. The 

samples with high 𝑠𝑃𝑅𝐴𝑑𝑖𝑔 (especially those with > 20 000 t y-1 MW-1) can easily become infeasible due to lack of 

available heat compared to the samples with low 𝑠𝑃𝑅𝐴𝑑𝑖𝑔. Evidently, we identify that the number of observations is 

decreasing with increasing 𝑠𝑃𝑅𝐴𝑑𝑖𝑔. This nature is not observable in case of “Base case 2” and “No ASS sale” 
scenarios. The reason is that CHP bonus makes feasible even those BGPs with low potential of LD volume 

reduction (high 𝐷𝑀𝑑𝑖𝑔). So, BGPs with low 𝑠𝑃𝑅𝐴𝑑𝑖𝑔 (high 𝐷𝑀𝑑𝑖𝑔) are more prone to be infeasible in case of “Base 
case 2” and “No ASS sale” while they are more feasible in case of “CHP bonus”.  
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(a)                                                         (b)                                                           (c) 

Figure 16:  Distribution of specific production of digestate in the successful scenario of (a) „Base case 2“ (b) „No 
ASS sale“ (c) „CHP bonus“ incentives  

Figure 17 shows the distribution of 𝐷𝑀𝑙𝑑. Obviously, more efficient mechanical separation (less DM in LD) 

significantly increases the probability towards a feasible solution. Nearly 90 % of feasible samples has 𝐷𝑀𝑙𝑑 up to 

4.5 wt%. CHP bonus decreases the significance of this variable, but it remains important. Low 𝐷𝑀𝑙𝑑 enables 

significant volume reduction in the ES thus contributes to high savings in transport and spreading. For BGPs with 

high DM content (> 4.5 wt%) in LD it could be beneficial to accordingly adjust the operation of their mechanical 

separator, e.g. using a finer screen or increasing the resistance force in case of screw press separator. 

 

(a)                                                         (b)                                                           (c) 

Figure 17:  Distribution of DM concentration in LD in successful scenario of (a) „Base case 2“ (b) „No ASS sale“ 
(c) „CHP bonus“ incentives  

Electricity feed-in tariffs (𝑠𝑃𝐸𝑓𝑖𝑡) play an important role in terms of return on investment. In the “Base case 2” and 
“No ASS sale” scenarios around 50% of successful samples lie below the value of 0.12 EUR/kWh (Figure 18). This 

suggests that high incentives for electricity production do not promote projects on LD treatment as the power 

consumption of newly acquired technologies is too costly for BGP operators. Since high feed-in tariffs 

(> 0.1075 EUR/kWh) are penalized in the “CHP bonus” scenario (see Figure 8), the feasibility of samples with low 

value of 𝑠𝑃𝐸𝑓𝑖𝑡 is even more prevalent in this scenario (Figure 18c). 

 

(a)                                                         (b)                                                           (c) 

Figure 18:  Distribution of specific price for electricity (feed-in tariffs) in successful scenario of (a) „Base case 2“ 
(b) “No ASS sale“ (c) „CHP bonus“ incentives  

The other variables’ histograms can be found in the Appendix B, but their distributions are briefly commented in the 

following part. Majority of the feasible samples (about 90 %) has 𝑠𝐶𝑇𝑆𝑙𝑑𝑎𝑝𝑙,𝑣𝑎𝑟  higher than 2 EUR/m3 and, at the same 
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time, the higher 𝑠𝐶𝑇𝑆𝑙𝑑𝑎𝑝𝑙,𝑣𝑎𝑟   the more feasible samples (Figure B.1). However, when CHP bonus is introduced, the 

distribution of the feasible samples becomes uniform. So, the importance of this variable is decreased by CHP. It 

is also the case of 𝑘𝑒𝑣𝑎𝑝𝑚𝑛𝑡  (Figure B.2). The only difference is that the higher value (up to 0.15) the lesser feasible 

samples. 𝑠𝑃𝑐ℎ𝑒𝑚 (Figure B.3) is very similar to 𝑘𝑒𝑣𝑎𝑝𝑚𝑛𝑡  following the trend the higher value (up to 4 EUR/t) the lesser 

feasible samples. All these variables have one feature in common – CHP bonus significantly decreases their impact. 

On the other hand, the following discussion of results includes the variables with small sensitivity to the introduction 

of CHP bonus. 𝐷𝑀𝑑𝑖𝑔 (Figure B.4) seems to be normally distributed along the most frequent value, which is 8 wt%, 

so no impact is observed. This is also valid for 𝑠𝑃𝐶𝑀𝑒𝑣𝑎𝑝𝑡ℎ  (Figure B.5) where the most frequent value is about 

300 kWh/t. In any case, the availability of a sufficient amount of heat with regard to LD production and ES thermal 

efficiency is a prerequisite for the success of the project. As far as 𝐷𝑀𝑐𝑜𝑛𝑐 is concerned, it follows the rule the higher 

content (up to 15 wt%) the more feasible samples (Figure B.6). 𝐷𝑀𝑠𝑓 (Figure B.7) has rather uniform distribution 

within the range from 20 to 35 wt% and its importance is negligible. In the case of 𝑘𝑏𝑔𝑝𝑡ℎ  (Figure B.8), it holds that 

the higher value (up to 1) the lesser feasible samples. This is an expected result as the lack of available heat makes 

a sample infeasible. 𝑠𝑃𝐶𝐸𝑎𝑐𝑒𝑙  has an almost uniform distribution and negligible effect (Figure B.9). ∆𝑠𝑃𝐶𝐸𝑎𝑔𝑖𝑡𝑒𝑙  has the 

same nature (Figure B.10). 𝑠𝑀̇𝑎𝑠𝑠 (Figure B.11) distribution is influenced by the “No ASS sale” scenario. Naturally, 
there are more feasible samples when 𝑠𝑀̇𝑎𝑠𝑠 is higher (up to 0.035 wt%) because the product can be sold. It is 

distributed in the opposite way for the other two scenarios. 𝑠𝑃𝑎𝑠𝑠𝑠𝑎𝑙𝑒 (Figure B.12) is only relevant for “Base case 2” 
and “CHP bonus” scenarios and is almost uniformly distributed with small effect. Specific investment cost 𝑠𝐼𝑁𝑉 

(Figure B.13) is normally distributed among the most frequent value of 25 EUR t-1 in the “CHP bonus” scenario. 

However, it is slightly biased towards lower values (down to 10 EUR/t). In the “Base case 2” and “No ASS sale” 
scenarios, around 93% and 97% of successful samples respectively lie below the value of 30 EUR per tonne, which 

makes this value a significant threshold. 

4. Conclusion 

Advancement in digestate treatment systems is the next step towards creating a circular economy. This paper 

recommends the utilization of vacuum evaporator systems as they are robust and effective. Nevertheless, the 

decision in implementing evaporator systems within existing biogas facilities and infrastructure is non-

straightforward. Stakeholders are required to make decisions considering multiple dimensions of varying factors 

that will affect the plant economics. A novel techno-economic analysis tool was developed for assessing scenarios 

of the economic feasibility of such retrofitting of evaporator systems. Monte Carlo simulations resulted in a high 

percentage of infeasible solutions (more than 95% probability), which suggests that project feasibility is highly 

sensitive to operational parameters and BGPs have a low randomized probability of being economically justified 

when investing into the thickening technology. Performing critical variable selection on a trained artificial neural 

network, four of the most influential variables were identified as the specific investment cost per LD, specific cost 

for LD transport, DM concentration in LD and specific price of consumed chemicals. A novel decision tree was 

utilized to search for a sets of decision that would yield reliable and fast the payback period. Stakeholders can also 

conveniently utilize the decision tree as it provides decision-making heuristic in the form of sequential univariate 

inequality. Two feasible pathways were suggested by the decision tree to achieve a fast payback period (below 3 

years). Analysing the solution space, one of the pathways gave a resilient and stable solution with 0-3 year payback 

period and probability of 80%, while the other pathway gave a “high-risk high-reward” solution with 0-3 year payback 

period and probability of 64.2%. These pathways can be easily achieved by planning the technical implementation 

and financial investment into such project carefully.  

Statistical evaluation of the impact of each scenario for rules-based datasets was also investigated. It showed that 

only about 2.5% and 2% of samples are feasible with PP up to 5 years (the most attractive) for “Base case 2” and 
“No ASS sale” scenario. On the other hand, it is about 10% for “CHP bonus” scenario. Detailed analysis of the 
distribution of independent variables was also carried out. It revealed several main conclusions: 

● high transport cost (> 8 EUR m-3) is almost the necessary condition without CHP bonus,  

● neighbouring small-scale BGPs should implement centralized treatment, which has lower specific 

investment/maintenance cost, 

● even BGPs with low potential for reduction of LD volume (DM concentration in LD > 4.5 wt%) have short 

PP when CHP bonus is introduced; generally, the introduction of CHP bonus has a strongly positive effect 

(increase of feasible projects by 251%); 

● efficient mechanical separation (DM concentration in LD < 4.5 wt%) has a very positive impact on PP, 

● high feed-in tariffs (> 0.12 EUR/kWh) have a negative impact on the project’s feasibility, 
● ASS production and sale have slightly positive effect on PP, but in most cases not the decisive effect. 

The results of this work are published in hopes to aid the decision making for the implementation of evaporation 

systems, thus reducing untreated LD residues within the biogas industry. The future work will be focused on 

extending the model by the process of anaerobic digestion and including more aspects related to the specific 

composition of the digestate. Also, a more detailed calculation of other separation processes will be implemented. 
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Nomenclature 𝐶𝑇𝑆 Costs, EUR 𝑎𝑔𝑖𝑡 Agitators in storage tanks 𝐷𝑀 Dry matter content, wt% 𝑎𝑝𝑙 Field application 𝐼𝑁𝑉 Investment costs, EUR 𝑎𝑠𝑠 Ammonium Sulphate solution 𝑘 Coefficient, - 𝑏𝑔𝑝 Biogas plant 𝑀̇ Mass flow rate, kg h-1 𝑐ℎ𝑒𝑚 Chemicals 𝑃𝐶 Power consumption, kW 𝑐ℎ𝑝 Combined heat and power 𝑃𝑂 Power output, MW 𝑐𝑜𝑛𝑐 Concentrate 𝑃𝑃 Payback period, y 𝑐𝑜𝑔 Cogeneration unit 𝑅𝐸𝑉 Revenues, EUR 𝑑𝑖𝑔 Digestate 𝑆𝐻 Service hours, h y-1 𝑒𝑙 Electric power 𝑠𝐶𝑇𝑆 Specific costs, EUR m-3 𝑒𝑣𝑎𝑝 Evaporation technology 𝑠𝐼𝑁𝑉 Specific investment costs, EUR t-1 𝑓𝑖𝑡 Feed-in tariff 𝑠𝑀̇ Specific mass flow rate, wt% 𝑓𝑤 Fresh water 𝑠𝑃 Specific price, EUR t-1 𝑙𝑑 Liquid digestate 𝑠𝑃𝐶𝐸 Specific power consumption, kW MW-1 𝑚𝑛𝑡 Technology maintenance 𝑠𝑃𝐶𝑀 Specific power consumption, kWh t-1 𝑛𝑒𝑤 New scenario (with 𝑒𝑣𝑎𝑝) 𝑠𝑃𝐸 Specific price of electricity, EUR kWh-1 𝑜𝑟𝑖𝑔 Original scenario (without 𝑒𝑣𝑎𝑝) 𝑠𝑃𝑅𝐴 Specific production annual, t y-1 MW-1 𝑠𝑎𝑙𝑒 Sale of product 𝑉̇ Volumetric flow rate, m3 h-1 𝑠𝑓 Solid fraction 𝜂 Efficiency, - 𝑠𝑡𝑟𝑔 Storage 𝜌 Density, kg m-3 𝑡ℎ Thermal power 

Indices 𝑡𝑟𝑎𝑛 Transportation 𝑎𝑐 Air-cooled chillers 𝑣𝑎𝑟 Variable (costs) 
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Appendix 

A. Full Decision Tree Diagram (Print Horizontally) 

 

Figure A.1: Part 1 of the full decision tree classifier 
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Figure A.2: Part 2 of the full decision tree classifier 
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Figure A.3: Part 3 of the full decision tree classifier 
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Figure A.4: Part 4 of the full decision tree classifier 

 
Figure A.5: Part 5 of the full decision tree classifier 
 

B. Histograms for the “rules-based” datasets 

 

(a)                                                         (b)                                                           (c) 

Figure B.1:  Distribution of specific costs for LD application (spreading) in successful scenario of (a) “Base case 
2” (b) “No ASS sale” (c) “CHP bonus” incentives 

 

(a)                                                         (b)                                                           (c) 

Figure B.2:  Distribution of values of the maintenance coefficient in successful scenario of (a) “Base case 2” (b) 
“No ASS sale” (c) “CHP bonus” incentives   
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(a)                                                         (b)                                                           (c) 

Figure B.3:  Distribution of the specific price of chemicals in successful scenario of (a) “Base case 2” (b) “No ASS 
sale” (c) “CHP bonus” incentives  

 

(a)                                                         (b)                                                           (c) 

Figure B.4:  Distribution of dry matter concentration in digestate in successful scenario of (a) “Base case 2” (b) 
“No ASS sale” (c) “CHP bonus” incentives  

 

(a)                                                         (b)                                                           (c) 

Figure B.5:  Distribution of specific thermal energy consumption of an evaporation system in successful scenario 

of (a) “Base case 2” (b) “No ASS sale” (c) “CHP bonus” incentives  

 

(a)                                                         (b)                                                           (c) 

Figure B.6:  Distribution of dry matter concentration in concentrated (thickened) LD in successful scenario of (a) 

“Base case 2” (b) “No ASS sale” (c) “CHP bonus” incentives  
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(a)                                                         (b)                                                           (c) 

Figure B.7:  Distribution of dry matter concentration in solid fraction of digestate in successful scenario of (a) 

“Base case 2” (b) “No ASS sale” (c) “CHP bonus” incentives  

 

(a)                                                         (b)                                                           (c) 

Figure B.8:  Distribution of the coefficient of heat consumption in successful scenario of (a) “Base case 2” (b) “No 
ASS sale” (c) “CHP bonus” incentives  

 

(a)                                                         (b)                                                           (c) 

Figure B.9:  Distribution of specific electricity consumption of air-cooled chillers in successful scenario of (a) 

“Base case 2” (b) “No ASS sale” (c) “CHP bonus” incentives  

 

(a)                                                         (b)                                                           (c) 

Figure B.10:  Distribution of the change in specific electricity consumption of agitators in successful scenario of 

(a) “Base case 2” (b) “No ASS sale” (c) “CHP bonus” incentives  
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(a)                                                         (b)                                                           (c) 

Figure B.11:  Distribution of specific production of ammonium sulphate solution in successful scenario of (a) 

“Base case 2” (b) “No ASS sale” (c) “CHP bonus” incentives  

 

(a)                                                         (b)                                                           (c) 

Figure B.12:  Distribution of specific market price for ammonium sulphate solution in successful scenario of (a) 

“Base case 2” (b) “No ASS sale”- not relevant (c) “CHP bonus” incentives  

 

(a)                                                         (b)                                                           (c) 

Figure B.13:  Distribution of specific investment cost for an evaporation system successful scenario of (a) “Base 
case 2” (b) “No ASS sale” (c) “CHP bonus” incentives  

 


