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Abstract  

This paper investigates the fragmentation of the EU innovation system in the field of renewable energy 

sources (RES) by estimating the intensity and direction of knowledge spillovers over the years 1985-2010. 

We modify the original double exponential knowledge diffusion model proposed by Caballero and Jaffe 

(1993) to provide information on the degree of integration of EU countries’ RES knowledge bases and to 

assess how citation patterns changed over time. We show that EU RES inventors have increasingly built “on the shoulders of the other EU giants”, intensifying their citations to other member countries and decreasing 

those to domestic inventors. Furthermore, the EU strengthened its position as source of RES knowledge for 

the US. Finally, we show that this pattern is peculiar to RES, with other traditional (i.e. fossil-based) energy 

technologies and other radically new technologies behaving differently. We provide suggestive, but 

convincing evidence that such decrease in fragmentation around the turn of the century emerged as a result 

of the EU increased support for RES taking mainly the form of demand-pull policies. 
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1. Introduction 

Renewable energy technologies (RES) have been at the top of EU and member states agendas since at least 

the end of the 1980s for compelling economic and environmental reasons. Over the years, they have been 

promoted as a way to diversify energy supply and lower dependence from fossil fuel imports (The Council of 

the European Communities, 1986; EC, 2000), to reduce environmental and health pressure (HEAL, 2013) 

and to create new jobs and skills in progressive sectors with high growth potential (EC, 1997; EC, 2006a). 

Recently, member countries committed to the transition towards a resilient Energy Union with a 

forward‑looking, stringent climate policy, capable of delivering long-term climate and energy targets. In the 

EU, promoting renewable energy is seen as a way to support sustainable development while boosting 

Europe's competitiveness and export potential, obtaining a comparative advantage vis-à-vis other top 

innovators such as the US and Japan and fostering the EU role in international relations (EEA, 2012; EC, 

2014; EC, 2015a).1  

At the end of the 1990s, a boost to RES came from the 1997 White Paper on renewable sources (EC, 1997). 

The EC specifically called for a Strategy and Action Plan to support renewable energy sources in light of the 

strategic importance of the energy sector, of the implementation of the Kyoto Protocol, of increased 

commitments to greenhouse gas emission reductions, and of the heterogeneous level of development and 

deployment in the member countries.2 According to the Commission, a coordinated and comprehensive 

approach was necessary to bring value added to national initiatives,3 increasing the overall impact both in 

the development and deployment of RES. In the following years, the EU implemented several demand-pull 

interventions aimed at creating a large and strong internal market for RES technologies.4 Among the key 

legislative and regulatory frameworks were the Directives establishing national targets for renewable 

energy production from individual member states,5 and the 2005 EU Emission Trading System to curb 

carbon emissions. These demand-pull policies marked a significant shift in the promotion of renewable 

energy technologies, with member states acting in a much more coordinated way and with the EU steering 

the development of a community policy (EC, 2006b). Yet, in 2013, fossil fuels still accounted for more than 

80 percent of the EU's GIEC (EEA, 2016). Indeed, much remains to be done to further support the energy 

transition, especially in the development of frontier carbon-free technologies (IEA, 2015b). 

A major concern in this respect is the fragmentation of the EU innovation system (EC, 2010; Fisher et al., 

2009; LeSage et al., 2007). Similarly to the arguments supporting the creation of a single market, an 

integrated EU innovation system was promoted as a way for EU countries to benefit from their neighbors. 

Specifically, more integrated research efforts would give rise to a virtuous circle, reducing the duplication of 

research efforts and allowing each country to learn and benefit from the knowledge of other members. 

Conversely, as noted in the EC Green Paper on Innovation (EC, 2006), a disparate and fragmented research 

and development effort translates into an “insufficient capacity to innovate, to launch new products and 

                                                           
1 This is testified also by the signing and ratification of the Treaty of Paris in 2017. 
2 The share of renewable energies in gross inland energy consumption varied between less than 1% in the UK to over 25% in 

Sweden (see Table 1, EC 1997). 
3 See IEA (2015c) for a list of policies at the national level. 
4 As explained in Cantner et al. (2016), technology push policy measures are those measures which directly affect inventive and 

innovative activities in renewable energy sources. These include for instance direct public R&D investments, as well as subsidies to 

research. Conversely, demand-pull instruments affect innovative activities indirectly by creating demand for cleaner technologies. 

These include for instance feed-in tariffs (FIT), or taxes on emissions. Finally, systemic policies are those specifically meant to 

provide support for collaboration and knowledge transfer, such as cooperative R&D programs, clusters or infrastructure provisions. 
5 Indicative targets were adopted under Directive 2001/77/EC. Although the EU was not meant to strictly enforce these targets, the 

European Commission monitored the progress of the member states and could, if necessary, propose mandatory targets for those 

who missed their goals. Later, Directive 2009/28/EC set mandatory targets for member states. See also IEA (2015c) for a list of other 

policies at the EU level.  

https://en.wikipedia.org/wiki/European_Commission
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services, to market them rapidly on world markets and, finally, to react rapidly to changes in demand” (EC, 

1997).   

In the specific case of renewable energy technologies, several analyses demonstrate that the introduction of 

demand-pull measures provided incentives to RES innovation and deployment (Corsatea, 2014; Borghesi et 

al., 2015; Cantner et al., 2016; Nicolli and Vona, 2016; Noailly and Shestalova, 2017). However, 

fragmentation remains one of the most crucial concerns, potentially delaying (or, in the worst scenario, 

impeding) the achievement of the ambitious EU climate targets (EC, 2007; EC, 2015b). For instance, in 2006 

the EC called for the establishment of a EU Strategic Energy Technology Plan, recognizing past efforts in RES 

research and development, but still painting a picture of a “scattered, fragmented and sub-critical” RES 
innovation space, which needed to focus on integrating and coordinating Community and national research 

and innovation programmes and budgets under the aegis of agreed EU-level goals (EC, 2006b). Thus, a less 

fragmented EU RES innovation system is believed to be instrumental to exploiting the federating role that 

the European Union can play in the field of energy and to meet the challenge of developing a world-class 

portfolio of affordable, competitive, clean, efficient and low-carbon technologies while creating stable and 

predictable conditions for industry (EC, 2006b). Along similar lines, in a later communication the European 

Commission argues that “the fragmentation, multiple non-aligned research strategies and sub-critical capacities that remain a prevailing characteristic of the EU research base” are critical factors constraining EU firms’ innovative capability (EC 2007). 

The concern of European policy makers is in line with the view of several theoretical (e.g. De Bondt et al., 

1992; De Bondt, 1996; Levin and Reiss, 1988) and empirical (e.g. Cassiman and Veugelers, 2006; Mancusi, 

2008; Peri, 2005; Verdolini e Galeotti, 2011) studies supporting the argument that a fragmented knowledge 

space hinders knowledge flows and, consequently, spillovers in the geographical space, thus suppressing 

opportunities for further innovations and hindering the movement towards the technological frontier. A central tenet of this approach is that firms’ and countries’ innovative output is driven not only by own R&D 
efforts, but also by the assimilation of external knowledge, which in turn crucially depends on the absorptive 

capacity of the recipient. Since this is determined by the recipient’s own research efforts (Cohen and 

Levinthal, 1989), a higher intensity of knowledge flows translates into higher benefits when coupled with 

own research efforts. Contrary to this well-accepted view, some contributions rise the concern that 

increased cross-country knowledge flows might lead to some countries free-riding on foreign research, with 

a negative impact on innovation (see e.g. Garrone and Grilli, 2010; Grafstrom, 2017). Such line of reasoning 

emphasizes the disincentive effect of imperfect appropriability, but is supported by relatively little empirical 

evidence.6 Although our paper focuses on knowledge flows and not directly on knowledge spillovers, which 

are the (positive or negative) effects of knowledge flows on innovation output, our evidence, coupled with 

the innovation performance of the EU in RES technologies, is in line with the prevailing view, and hence with 

policy concerns, on the detrimental role of fragmentation. 

This paper thus contributes to the literature by investigating the fragmentation of the EU innovation system 

in the field of renewable energy sources. This crucial aspect of renewable energy innovation dynamics has 

not received attention to date. Understanding how knowledge flows among EU countries and between the 

EU and other top innovators have evolved over time is important because it can shed light on the 

effectiveness of past actions and policy support to promote RES development and the integration of the RES 

innovation space in the EU as well as drive future policies in this respect.  

                                                           
6 This approach has found little support also on the theory side. For example, Park (1998) investigates whether in the presence of 

international spillovers governments would free-ride on foreign research and thus conduct less R&D. His model interestingly 

accounts for absorptive capacity and finds that governments will not follow this path. 
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We analyse the intensity and direction of intangible knowledge flows over the years 1985-2010 using 

information on patent applications and citations at the European Patent Office (EPO). Our focus is on the 

three main innovating regions of the world: the US, Japan and the EU15, which together account for roughly 

87 percent of innovation in this field in our sample. In line with a rich literature on similar subjects, we 

follow the paper trail left by within-country and cross-country patent citations, using citation frequencies to 

explore the patterns of knowledge flows within the EU and between the EU and other top innovators. We 

modify the original double exponential knowledge diffusion model of Caballero and Jaffe (1993) and Jaffe 

and Trajtenberg (1999) to provide information on the degree of integration of EU countries’ innovation 
efforts and to assess how citation patterns changed over time.  

We show that indeed EU RES inventors have increasingly built “on the shoulders of the other EU giants”, 

intensifying their citations to other member countries and decreasing those to domestic inventors. We show 

that these effects are not driven by Germany, the EU top innovator, nor are they simply the result of 

increased collaboration in patenting or of an increase in patent quality. Furthermore, we find that the EU 

strengthened its position as source of RES knowledge for the US. We also compare RES with other relevant 

technologies in order to gain evidence on whether the observed patterns are shared by other technology 

fields. We start by considering fossil-based energy technologies. Only a few contributions in the literature 

study both RES and other types of energy generation (Dechezleprêtre et al., 2013; Dechezleprêtre et al. 

2014; Verdolini and Bosetti, 2017; Verdolini et al., 2018), but they address research questions that are 

different from the one we focus on. We then compare RES with a set of emerging technologies (3D, IT, 

Biotechnologies and Robot technologies), as in Dechezleprêtre et al. (2014), to assess if our results are 

specific to RES or common to booming technologies at an early stage of development. We show that the 

pattern of knowledge flows and its evolution in time is peculiar to RES, with traditional (i.e. fossil-based) 

energy technologies and other new technologies behaving in a completely different way.  

Our result support the claim that the EU reduced the fragmentation of the innovation space specifically in 

the field of RES over the sample period. Our analysis thus presents suggestive, but convincing evidence that 

the reduction in fragmentation was brought about by the strong support of the EU to climate mitigation and 

renewable energy technology development vis-à-vis the laxer effort put forward by the US and Japan in this 

respect. We conclude by highlighting any scope for further integration.  

The rest of the paper is organized as follows. Section 2 presents our proxy for knowledge spillovers along 

with a brief literature review on the topic. Section 3 describes our sample and provides descriptive evidence 

of the recent surge in renewable energy innovation in the EU and of changes in the patterns of knowledge 

flows. Section 4 describes in detail the empirical model we use to corroborate such evidence and the 

empirical hypotheses we test. Section 5 presents main results and Section 6 focuses on robustness checks. 

Finally, Section 7 concludes and presents some policy implications. 

2.  Knowledge flows and integration 

Knowledge flows may occur through different channels. They may be embodied into goods or people, or 

rather they can be disembodied. Indeed, most of the literature on knowledge flows has focused on the latter.7 

Our analysis also focuses on disembodied knowledge transfer and employs patent citations as indicators of 

knowledge flows in RES technologies. This approach has a long tradition in the literature and itself relies on 

                                                           
7 External accessible disembodied knowledge has been found to have a significant positive effect on TFP (Lee, 2006) and on local 

innovation production (Mancusi, 2008) and there is evidence that such effect might be even stronger than that of embodied 

knowledge (Drivas et al., 2016).  
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the use of patent data to assess the innovative effort of firms, sectors and countries. Patents are indeed the 

only available indirect evidence of innovative activity offering a detailed breakdown by technology for a 

large number of countries and for long time series. Furthermore, patent documents include references to 

previous patents (citations), providing information on the sources of knowledge that were relevant for the 

conception of the new invention. Although citations are widely employed in the literature, it should be 

mentioned that there are alternative indicators of disembodied knowledge flows. For instance, knowledge 

transfer can be traced also by considering the size and structure of co-inventor networks (e.g. Cantner et al., 

2016) or university-industry research collaborations (e.g. Balconi et al., 2004).  

Relying on patent and citation data to proxy for innovation and knowledge flows, respectively, has some 

shortcomings, but also significant advantages.8 In particular, Jaffe et al. (1993) argue that patent citations 

can be interpreted as "bits" of previous knowledge that were important for developing the new knowledge 

contained in the citing patent. Although citations can at best capture flows of codifiable (vs. tacit) knowledge, 

they still provide insights on how knowledge may diffuse within and across geographical regions and 

technological fields (see e.g. Mancusi, 2008), and how the resulting patterns may change over time. This has 

been confirmed using data from the US Patent Office (USPTO) in Jaffe et al. (1998), but also (and importantly 

for our analysis) using data from the European Patent Office (EPO) in Duguet and MacGarvie (2005) and 

Bacchiocchi and Montobbio (2010).  

Early econometric studies used patent citations to study the factors enhancing or hindering knowledge 

flows, with special attention to the role of geographical distance and boundaries, and to compare local 

(national) with international knowledge diffusion. These studies conclude that geographical distance, 

national borders, language and institutional distance reduce the intensity of knowledge flows (Bottazzi and 

Peri 2003; Peri, 2005; Maurseth and Verspagen, 2002). Furthermore, knowledge flows are more intense and 

effective when occurring within rather than across technological fields (Jaffe and Trajtenberg, 1999; Hu and 

Jaffe, 2003; Mancusi, 2008; Hu, 2009). 

Some other studies focused instead on the direction of cross-country knowledge diffusion. Among these, in 

particular, Hu and Jaffe (2003) examine North-South patterns of knowledge diffusion from the US and Japan, 

on the one side, to Korea and Taiwan, on the other side. Hu (2009) estimates the citation intensity between 

East Asian countries, Japan and the US. His findings of a tight net of cross-country flows within East Asia are 

interpreted as a measure of integration of the innovation systems within that area and thus support the 

hypothesis of an increasing regionalization of knowledge diffusion within East Asia.9 

Most of the studies cited above were largely motivated by the growth and convergence effects associated 

with knowledge flows and their spillover effects. Indeed, a wide literature has maintained that the diffusion 

of knowledge generates positive externalities because knowledge flows increase the productivity of R&D. 

The positive externality arises due to complementarities in R&D efforts by firms and countries, which is 

associated with the notion of absorptive capacity (Cohen and Levinthal, 1989; Aghion and Jaravel, 2015), 

namely the idea that knowledge created by competitors can be exploited only through own R&D. Thus, 

knowledge spillovers may increase equilibrium R&D investment.10 An alternative and somewhat more 

traditional view attaches little importance to absorptive capacity and emphasizes that knowledge spillovers 

reduce incentives to invest in R&D due to the inability to fully appropriate its returns, thus leading to 

underinvestment in own R&D. 

                                                           
8 See Griliches (1990) and Jaffe et al. (1993) for an extensive discussion on this point. 
9 Another interesting paper is that by Wu and Mathews (2012), who investigate knowledge flows from advanced countries (US, Japan 

and Europe) to follower countries (Taiwan, Korea and China) in the solar photovoltaic industry.  
10

 See Antonelli and Colombelli (2017) on this point. 



 
(c) This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/6 

This is a pre-print. The published article is available at https://doi.org/10.1016/j.respol.2018.07.007 

 

This second view has been of particular concern in recent studies on the renewable energy sector (Jaffe et al. 

2005; Popp, 2005; Grafstrom, 2017), where underinvestment would hamper the ability to achieve the 

necessary carbon emissions reductions needed to address climate change. In particular, with reference to 

the European Union, the paper by Grafstrom (2017) rises the concern that increased cross-country 

knowledge flows might induce some countries to free-ride on foreign research, with a negative impact on 

innovation, but finds limited empirical support to this hypothesis. By contrast, the view of a positive impact 

of spillovers on innovative output discussed above finds support in a large number of studies associating 

knowledge flows with higher innovation output in a broad variety of sectors, including RES technologies.11  

Given the existing empirical evidence, the concerns about the high degree of fragmentation of the EU 

innovation system (Fisher et al., 2009, LeSage et al., 2007) and the call for a higher integration in the RES 

knowledge bases of EU countries clearly reside on the widely-shared view that increasing the intensity of 

knowledge flows across EU states can broaden and deepen their technological base, leading to opportunities 

for further innovations and possibly to a movement towards the technological frontier. However, to our 

knowledge, there are no studies dealing directly with the fragmentation of the EU renewable energy 

innovation system and its changes over time.12  

To fill this gap in the literature, we look for evidence on the degree of integration of national knowledge 

bases across the EU, while still accounting for knowledge flows between the EU and other technological 

leaders (Japan and the US). We estimate the probability of citation within and between EU15 countries, US 

and Japan in the clean energy sector as a measure of the intensity of knowledge flows across countries. 

Similarly to Hu (2009), we design the model so that we can interpret the results for the EU as providing 

information on the degree of integration of EU countries’ innovation efforts. Also, following Popp (2006), we 
modify the original double exponential model to assess how citation patterns changed over time.  

3. Data and descriptive evidence 

We use data on patent applications from the PATSTAT-CRIOS database.13 In particular, we focus on patent 

applications at the European Patent Office (EPO) in RES technologies (hydro, solar, wind, biomass, 

geothermal, ocean, and waste), which we identify using IPC codes, as proposed by Johnstone et al. (2010).14 

We consider applications by inventors15 residing in the EU15,16 US and Japan over the years 1985 to 2010. 

Each patent is assigned to a year depending on its priority date, i.e. the date closest to the innovation.  

                                                           
11 Verdolini and Galeotti (2011), for example, provide evidence that spillovers between countries have a significant positive impact 

on subsequent innovation in this field.  
12 Cantner et al. (2016) studies the effect of different policy instruments on the size and structure of co-inventor networks based on 

patent data, but does not distinguish between foreign and domestic inventors. 
13 CRIOS is a research center at Bocconi University where a large database on European patents has been created and is constantly 

maintained. This database, known as PATSTAT-CRIOS, contains information on patents applied for at the European Patent Office 

(EPO), from 1977 to 2012. Within this data base one may find: 1) patent data, such as the patent's publication number, its 

priority/application date, and main/secondary technological class, i.e. the IPC (International Patent Classification) code; 2) applicant 

(most often a firm or an institution) name and address, 3) inventor name and address, and, for each patent document, 4) all citations 

made to all prior EPO patents cited by the document itself. 
14 The correspondence between RES technologies and IPC codes is reported in Appendix A1. 
15 Patents are assigned to the inventor’s country rather than the assignee’s country as customarily done in the patent literature, in 

order to attribute the patent to the location where the innovation has indeed been developed. Nevertheless note that, since our 

countries are all well developed countries, this has no implications for our analysis as patent counts by inventor country and by 

assignee country are almost identical (see also Sung et al., 2014). 
16 The choice to focus on EU15 countries is mainly driven by the very low count of RES patents in other EU countries. Note, however, 

that this does not represent a limitation of our analysis because EU15 RES patents represent 99 percent of EU27 RES patents over 

our sample period: should we include the additional 1 percent of patents in our regression analysis, they would contribute extremely 

little to the identification of parameters of interest. Therefore, we decided to focus on the largest set of European countries where 
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Table 1: Descriptive Statistics 

  Patents Forward Citations/patent Backward Citations/patent 

Country 1985-2010 pre-2000 post-2000 1985-2010 pre-2000 post-2000 1985-2010 pre-2000 post-2000 

EU15 14,263 2,888 11,375 0.76 0.78 0.76 0.82 0.43 0.92 

JP 4,169 980 3,189 0.97 1.39 0.85 0.90 0.71 0.96 

US 4,730 1,464 3,266 1.24 1.18 1.27 1.14 0.63 1.37 

Total 23,162 5,332 17,830 0.90 1.00 0.87 0.90 0.54 1.01 

 

 

Overall, our sample includes 23,162 patent applications, 62 percent of which belong to EU15 inventors while 

the US and Japan account for 20 and 18 percent, respectively (see Table 1). The particularly high number of 

EU15 patents relative to US and Japanese patents in our sample is due to two main reasons. First, since we 

are using EPO patent data, our statistics reflect a home bias effect in favor of European countries at the 

EPO.17 This problem, which has to be kept in mind when looking at the descriptive statistics shown in Table 

1 and Figure 1, will be fully addressed and controlled for in our empirical estimation.18 Second, around 50 

percent of EU15 innovation in RES over the whole sample period is accounted for by Germany, which has 

historically been a top innovator. We return on this last point in Section 4. 

RES EPO patents by the US, Japan and EU15 are characterized by an upward trend, the turn of the century 

was marked by a considerable increase in the growth rate of patent applications in all three geographical 

areas (see Figure 1). However, EU15 RES patents increased at a particularly high rate: while they accounted 

for 53% in 1985, their share was up to 67% by 2010. In absolute terms, EU15 innovation at the end of our 

sample period is roughly four times that of the US and that of Japan (see Table 1). This acceleration in EU15 

RES innovation came about close after 1997, the year of the adoption of the Kyoto Protocol19 and of the 

release of the European Commission White Paper on renewable sources. As discussed in the introduction, 

the turn of the century marked a period of increased commitment of the EU to decarbonize its energy sector, 

providing a strong stimulus for renewable energy generation and calling for significant investment in RES 

electricity production. In addition to promoting the deployment of RES, the strong EU commitment also 

resulted in significant incentives to innovation, which increased in the member countries.  

                                                                                                                                                                                                            

most of the innovation effort and results actually occur. Furthermore, this is also the set of EU member countries as of 1995 and until 

2004. Given our aim to find suggestive evidence of the role of EU environmental policy commitment on knowledge integration after 

2000, limiting the analysis to EU15 countries also seems appropriate. 
17 A similar pattern also emerges in Johnstone et al. (2010) where Germany, followed by US and Japan, exhibits the highest number 

of patents and a surge in patenting activity after 1997 (see Figure 2, p. 141). This is admittedly due to some extent to the presence of 

home bias when using EPO applications. The same effect is highlighted in OECD (2012) pp. 23-24. 
18 Note that the issue of home country bias is common in studies which rely on patent as a proxy of innovation. For instance, many 

studies use statistics on the USPTO, which also represent patents by US inventors much more frequently than patents from inventors 

from other countries.  
19 The Kyoto Protocol was adopted in 1997 (although it subsequently entered into force only on February 16, 2005).  
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Fig. 1. Index of RES technologies patenting, EU15, US and Japan, 2000=100.  

Focusing on pure patent counts only provides partial insights into innovation dynamics. For example, the 

higher growth rate of European applications in RES technologies with respect to the two most 

technologically advanced countries does not necessarily imply a movement of the EU towards the 

technological frontier. As pointed out in a rich literature (see for instance Griliches, 1990), patent statistics 

are only an imperfect proxy of innovation, and do not necessarily inform on the quality of inventions. Indeed, 

further insights on patent quality can be gained by looking at the average number of patent citations a RES 

patent receives from subsequent RES patents (so-called forward citations), which is reported in Table 1.20 

Forward citations are often taken as an indicator of patent quality/relevance.21 In this respect, note that US 

RES patents receive more citations than patents from the EU15 and Japan, on average, which is indeed not 

surprising, as the US is historically the frontier innovator. Furthermore, note that while the average number 

of forward citations received by US and EU15 patents before 2000 is very similar to those received after 

2000, the average number of forward citations received by Japan decreases in the second sub-period, 

possibly indicating an overall worsening of the quality of Japanese RES innovation. 

We then focus on citations made by RES patents to previous RES patents (the so-called backward citations). 

As discussed in Section 2, backward citations are a widely used indicator of knowledge flows between a 

source (the cited patent) and a destination (the citing patent). We therefore use information on backward 

citations to trace knowledge flows across our three geographical areas of interest. Furthermore, as we are 

interested in exploring the extent to which EU countries source knowledge from themselves or from other 

EU members, we consider separately national citations (citing and cited patent belonging to the same EU15 

country) and citations to other EU15 countries (citing and cited patent belonging to distinct EU15 countries). 

                                                           
20 To provide comparison between citations received by older as opposed to younger patents, we calculate the statistics on forward 

citation per patent limiting our attention to citations received within 4 years from first application, which captures the majority of 

citations received by each patent (Jaffe and Trajtenberg, 1999). Note that in our econometric model controls for the citation lag, as 

discussed in Section 4.  
21 While measuring the quality of the innovation output is certainly a complicated matter, forward patent citations have been often 

used in the literature to this end. Indeed, forward citations (i.e. the citation that a patent receives from following patents) provide an 

indication that subsequent innovation was building on the knowledge embodied in the original patent. Hence, the higher the number 

of forward citations a patent receives, the more its knowledge content has spurred further knowledge developments, which 

implicitly suggests the original patent represents a significant inventive step with respect to existing knowledge (Harhoff et al., 

2003). Note that we exclude self-citations (i.e. citations to previous patents held by the same applicant firm) from counts of forward citations, as they might reflect a deepening of firms’ innovation along their current technological trajectories rather than quality. 
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As customary in this type of studies, self-citations (i.e. citations to previous patents held by the same 

applicant firm) are excluded from the dataset in order to capture only true knowledge flows.22   

Table 1 shows that, over the whole sample period, US inventors seem to be those relying more on previous 

knowledge: average backward citation per patent for the US is 1.14, which is roughly 39 percent (27 

percent) more than EU15 (Japanese) patents. Table 2 also presents the percentage distribution of backward 

citations across the different citing and cited geographical areas in the pre-2000 and post-2000 periods.23 

These raw citations shares offer a preliminary indication that the direction of RES knowledge flows changed 

between the two periods, pointing to a strengthening of the EU as a source of knowledge both for domestic 

and foreign innovators. Specifically, three distinct patterns emerge. First, over the two periods the 

percentage of citations across distinct EU15 countries (otherEU) increased considerably. Second, the 

percentage of US national citations decreased, while the percentage of citations from the US to EU15 

countries increased. Third, Japan seems to rely more on its own knowledge during the second period, but the 

share of citations to EU15 patents did not decrease significantly. 

All in all, the descriptive evidence presented in this Section points to a more prominent role of EU countries 

as source of knowledge for other EU member states, and thus to a strengthening of knowledge flows within 

the EU space. This could suggest a reduction in the fragmentation of the EU RES innovation system. 

However, any conclusion drawn from simply comparing raw citation shares may be misleading because 

these shares suffer from theoretical and actual biases. First, citations shares are determined by both the 

citation frequency (i.e. the probability of a patent from the citing country citing a patent from the cited 

country) and the overall level of patenting. Second, citations are always subject to truncation bias. As 

Brahmbahatt and Hu (2009) emphasize, raw citation shares inform on the gross flow of knowledge between 

two countries, but say little about the intensity of knowledge relationships. In order to examine that, citation 

frequencies need to be properly modeled. In the next section we detail our empirical strategy, which is 

designed to specifically address this concern and control for the confounding factors cited above. 

 

Table 2 Percentage distribution of citations, pre-2000 and post-2000. 

RENEWABLE TECHNOLOGIES 

 
pre-2000    post-2000 

Cited 

country   EU15 JP US   
Cited 

country   EU15 JP US 

      Nat otherEU             Nat otherEU     

Citing 

country EU15 0.33 0.25 0.10 0.32   
Citing 

country EU15 0.32 0.44 0.10 0.14 

    JP 0.27 0.29 0.44       JP 0.26 0.61 0.13 

    US 0.34 0.12 0.54       US 0.41 0.17 0.42 

Note: the percentages in the table refer to the share of citations from citing country patents to cited countries patents (row sums are 

equal to 1). See footnote 22. 

Finally, a small fraction of patents in our sample (about 8%) are assigned to inventors from more than one 

country. Since we are interested in citation frequencies as a measure of the link between country pairs, we 

                                                           
22 As discussed by Jaffe et al. (1993), self-citations cannot be regarded as a trail of knowledge flows.  
23 The shares compare the backward citations of patents filed before 2000 with the backward citations of patents filed after 2000 in 

the following way: the numerator is the count of citations made by patents filed by inventors in region i=US, JP, EU15 between 1987 

and 1997 (resp., 2000 and 2010) to patents of region j=US, JP, EU15, EUnat, EUotherEU filed between the years 1987 and 1990 (resp., 

2000 and 2003). The denominator is the total number of citations made by region i over the same period (resp., 1987-1997 and 

2000-2010). We fix the citing patent window and the cited patent window while computing the statistics as a way to provide 

comparable statistics across the two periods. 
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retain such patents in our sample to account for every possible connection between countries. However, 

note that the number of patents with inventors from different EU countries increase from 4 to 8 percent of 

EU patents in our sample (Table 3). This indeed raises doubts on whether the strengthening of knowledge flows between EU15 countries since 2000 may be due to “multiple-country” patenting. By contrast, note that 

the share of patents invented jointly by one or more US residents and one or more EU15 residents decreased 

from 20 percent of the total US patents before 2000 to 17 percent since 2000. This seems to suggest that the higher intensity of citation from US patents to EU15 patents cannot be explained by changes in “multiple-country” patents of the two regions. If anything, this last piece of evidence may indicate that the US sources 

more knowledge from the EU15 notwithstanding a corresponding decrease in cross-country patenting in our 

sample. 

 

Table 3 RES patents with more than one inventor from different countries. 

 

RES TECHNOLOGIES 

  
pre-2000 post-2000 

  

co-patenting EU15-EU15 on total EU15 patents 0.04 0.08 

co-patenting EU15-US on total US patents 0.20 0.17 

co-patenting EU15-JP on total JP patents 0.00 0.03 

Note: the values in the first row are computed as the mean, over each period, of the shares of RES patents with more than 
one inventor from different EU15 countries on total EU15 RES patenting. In the second (third) row there are the means, over 
each period, of the shares of RES patents with at least one inventor from US (JP) and one from EU15 countries on total US 
(JP) RES patenting. 

4. Empirical framework and hypotheses  

As discussed in the previous sections, our aim is to assess if the degree of fragmentation in the knowledge 

base of the European RES innovation system is high and whether a decrease in such fragmentation can be 

detected contextually with the increased EU support for RES in the form of demand-pull policies around  the 

turn of the century. We do that by studying changes in the intensity of RES knowledge flows across the 

countries of interest through a double exponential knowledge diffusion model, proposed by Caballero and 

Jaffe (1993) and further developed by Jaffe and Trajtenberg (1996 and 1999). 

The model describes the random process underlying the generation of citations and allows estimating 

parameters of the diffusion process while controlling for variations over time in the propensity to cite. The 

model is thus designed to address truncation bias, a key feature of patent citations, which originates from 

the lower likelihood of citation of recent cohorts of patents with respect to older ones. More precisely, the 

knowledge diffusion process is modelled as follows: 𝑝𝑖𝑇𝑗𝑡 = 𝛼(𝑖, 𝑇, 𝑗, 𝑡) exp[−𝛽1(𝑇 − 𝑡)] (1 − exp[−𝛽2(𝑇 − 𝑡)])                                         (1) 

The dependent variable 𝑝𝑖𝑇𝑗𝑡  is the expected frequency of citations, i.e. the likelihood that a patent from 

country i first applied in year T cites a patent from country j first applied in year t. It is calculated in the 

sample as the following ratio: 

𝑝𝑖𝑇𝑗𝑡 = 𝐶𝑖𝑇𝑗𝑡(𝑁𝑖𝑇 )(𝑁𝑗𝑡 ) 
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where 𝐶𝑖𝑇𝑗𝑡 is the count of citations by country 𝑖’s patents with priority date 𝑇 to country 𝑗’s patents with 
priority date 𝑡, and (𝑁𝑖𝑇) and (𝑁𝑗𝑡) are respectively the number of potentially citing patents from i at time T 

and potentially cited patents from j at time t.24 Citation frequencies are interpreted as an estimate of the 

probability that a randomly drawn patent in the citing group will cite a randomly drawn patent in the cited 

group.25  

The expected frequency of citations is modelled as a combination of two exponential processes, one for the 

diffusion of knowledge and the other one for its obsolescence. Parameters 𝛽1 and 𝛽2 represent the rate of 

obsolescence and diffusion, respectively, and both exponential processes depend on the citation lag (𝑇 − 𝑡).  

In this framework, each 𝛼 is a shift parameter that depends on the attributes of both citing and cited patents: 

a higher 𝛼 means a higher probability of citation at all lags. We allow this proportionality factor to vary with 

the following attributes: citing year, cited year, and all possible combinations of citing and cited country 

pairs, i.e. 𝛼(𝑖, 𝑇, 𝑗, 𝑡) = 𝛼𝑇𝛼𝑡𝛼𝑖𝑗 . Our main interest lies on 𝛼𝑖𝑗: a higher 𝛼𝑖𝑗  means a higher probability of 

citation from i to j at all lags. Hence our estimated equation is: 𝑝𝑖𝑇𝑗𝑡 = 𝛼𝑇𝛼𝑡𝛼𝑖𝑗 exp[−𝛽1(𝑇 − 𝑡)] (1 − exp[−𝛽2(𝑇 − 𝑡)]) , 𝑖, 𝑗 = 𝐸𝑈15, 𝑈𝑆, 𝐽𝑃                        (2) 

In this type of models, the null hypothesis of no fixed effect corresponds to parameter values of unity rather 

than zero for 𝛼𝑖𝑗  (as well as for 𝛼𝑇 and 𝛼𝑡). For each fixed effect, a group is omitted from estimation, i.e. its 

multiplicative parameter is constrained to unity. Thus the parameter values have to be interpreted relative 

to the base group. In our regressions, the base group for country pairs fixed effects (𝛼𝑖𝑗) is “US citing US”,26 

that is 𝛼𝑈𝑆,𝑈𝑆 = 1. This means that if, for example, 𝛼𝐸𝑈15,𝑈𝑆 = 0.8, then a random EU15 patent is 20 percent 

less likely to cite a US patent than is a random US patent.  

When focusing on citations within the EU15, we can distinguish between national citations (i.e. citations 

from any EU15 patent to patents from the same country) vs. international citations (i.e. citations from any 

EU15 patent to patents from a different EU15 country). Our parameter 𝛼𝐸𝑈15,𝐸𝑈15, which indicates the ceteris 

paribus propensity of EU15 patents to cite other EU15 patents, can then be split into two parameters: 𝛼𝐸𝑈15,𝑛𝑎𝑡, which captures the average intensity of national citations within the EU15, and 𝛼𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈, 

which captures the average citation intensity between any EU15 country and all other EU15 members. 

If fragmentation in the knowledge base of the European RES innovation system is indeed high, we should 

then observe a lower average propensity of European patents to source from local (European) knowledge 

compared to the US (i.e. the technological leader), coupled with an average higher propensity of each 

European country, itself off the technological frontier, to source from its own knowledge rather than from 

the knowledge base of its neighbors. This leads to our first hypothesis: 

Hypothesis 1: 

Fragmentation of knowledge bases within EU is high compared to the technological leader:  𝛼𝐸𝑈15,𝐸𝑈15 < 𝛼𝑈𝑆,𝑈𝑆 = 1 and 𝛼𝐸𝑈,𝑛𝑎𝑡 ≥ 𝛼𝐸𝑈,𝑜𝑡ℎ𝑒𝑟𝐸𝑈 

                                                           
24 The set of all RES patents, with or without citations, assigned to each country group in a given year alternatively represents the set of “potentially citing” patents or the set of “potentially cited” patents, according to the placement of the country (citing or cited) in 

the unit of observation. 
25 Citation frequencies clearly abstract from the total number of applications by country i and country j, thus the relatively high 

number of patent applications from European countries that we have in our sample, and that is a common feature of studies based 

on patents from a unique patent office, does not affect our estimates. 
26 The base group for citing year fixed effects (𝛼𝑇) is 1985-1986 and for cited year fixed effects (𝛼𝑡) is 1985-1989. 
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In order to verify if fragmentation decreases after year 2000, we modify model (2) to take into account 

changes in citation patterns over the sample period by allowing our shift parameters to change starting from 

2000. We thus estimate the following equation: 𝑝𝑖𝑇𝑗𝑡 = 𝛼𝑇𝛼𝑡𝛼𝑖𝑗 [1 + 𝜙𝑖𝑗 ∗ 𝐷2000𝑐𝑖𝑡𝑖𝑛𝑔]exp[−𝛽1(𝑇 − 𝑡)] (1 − exp[−𝛽2(𝑇 − 𝑡)]) + 𝜀𝑖𝑇𝑗𝑡             (3) 

where 𝐷2000𝑐𝑖𝑡𝑖𝑛𝑔
 is a dummy variable that takes the value of 1 when the citing patent’s priority date is 2000 or 

later and i, j = US, JP, EU15. This approach follows the one proposed in Popp (2006).  

Our parameters of interest are now both 𝛼𝑖𝑗  and 𝜙𝑖𝑗 . The fixed effect 𝛼𝑖𝑗  indicates the relative likelihood that 

the average patent from country 𝑖 cites a patent from country j, while 𝜙𝑖𝑗 captures the additional likelihood 

of citation between a pair of countries for citing patents with priority date 2000 or later. Note that, similarly 

to what discussed above for the 𝛼𝑖𝑗 , also in the case of the 𝜙𝑖𝑗 parameter one group is omitted from 

estimation, i.e. its multiplicative parameter is constrained, in this case, to zero. Thus 𝜙𝑖𝑗 parameter values 

have to be interpreted relative to the base group, which is again “US citing US” (𝜙𝑈𝑆,𝑈𝑆=0). 

If country i is increasingly taking advantage of technologies developed in country j we should observe higher 

citation rates from i to j and interpret it as greater flow of knowledge from country j to country i in the 

second period. Hence, we can formulate our second hypothesis: 

Hypothesis 2:  

Reliance of each European country on the knowledge base of other European countries increases after 2000: 𝜙𝐸𝑈15,𝑛𝑎𝑡 ≤ 0 and   𝜙𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈 > 0 

Note that, if confirmed, hypothesis 2 does not yet necessarily suggest higher integration in the European RES 

innovation system. A first reason for this is that any changes in the post-2000 propensity to cite other EU 

countries may be driven solely by Germany, which, as explained in Section 3, accounts for 50 percent of the 

RES innovation in the EU15. Any aggregate trends such as the ones discussed so far could indeed be the 

result of Germany being a technological leader and thus a relevant source and an intensive user of foreign 

knowledge. Integration across the European RES technology space would instead imply an increasing 

intensity of knowledge flows across the remaining EU15 countries. We thus formulate the following 

Hypothesis 3:  

Reliance of each European country other than Germany on the knowledge base of other European countries 

(again excluding Germany) increases after 2000: 𝜙𝐸𝑈14,𝑛𝑎𝑡 ≤ 0 , 𝜙𝐸𝑈14,𝑜𝑡ℎ𝑒𝑟𝐸𝑈 > 0 

where EU14 refers to the group of EU15 countries, but Germany. We obtain such coefficients from equation 

(3) where i, j = US, JP, DE, EU14.  

A second reason why hypothesis 2 may not necessarily indicate higher integration of the European RES 

innovation system is that the result on increased intensity of knowledge flows may simply mirror an 

increase in collaborative patenting between any two EU15 countries, which would increase the number of 

cross-border citations merely due to increased collaboration. As already mentioned in Section 3, roughly 8% of RES patents in our sample are “multiple-country” patents as a consequence of having inventors from 
different countries. This could be the case because each inventor innovates by building on previous 

knowledge, which is largely domestic. An increase in “multiple-country” patents over time could then 
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naturally give rise to more cross-country citations, as the cooperating inventors cite each other’s previous 
knowledge.27 

Integration across the European RES technology space would imply an increasing intensity of cross-country 

citations beyond what would simply originate from increasing cross-country co-patenting. We thus 

formulate the following  

Hypothesis 4:  

Reliance of each European country on the knowledge base of other European countries increases after 2000 

beyond what results from direct cross-country collaborations:  𝜙𝐸𝑈15,𝑛𝑎𝑡𝑛𝑜_𝑐𝑜𝑙𝑙 ≤ 0 and 𝜙𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈𝑛𝑜_𝑐𝑜𝑙𝑙 > 0 

where coefficients are estimated from equation (3) after dropping from our sample all patents which are the 

results of cooperation between two or more countries. 

Lastly, a third reason why hypothesis 2 may not necessarily indicate higher integration of the European RES 

innovation system is that a greater propensity to source from the neighbors’ knowledge in Europe after 
2000 could just originate from an increase in the quality of European research output rather than a reduced 

fragmentation of the RES knowledge base in the EU. Put it differently, our bilateral coefficients (𝛼𝑖𝑗) and 

shifters (𝜙𝑖𝑗) result from attributes of both the citing and cited patents: the propensity of the citing patent to 

cite (use) external knowledge and the quality of the knowledge embedded in the cited patent. Quite likely, 

the two effects operate together. We then further modify our model to account for this and estimate: piTjt = αTαtαij [1 + ϕij𝑐𝑖𝑡𝑒𝑑 ∗ 𝐷2000𝑐𝑖𝑡𝑒𝑑][1 + ϕij𝑐𝑖𝑡𝑖𝑛𝑔 ∗ 𝐷2000𝑐𝑖𝑡𝑖𝑛𝑔]exp[−β1(T − t)] (1 − exp[−β2(T − t)]) + εiTjt             (4) 

where D2000𝑐𝑖𝑡𝑒𝑑 is a dummy variable equal to 1 if the cited patent has priority date after 2000. The implicit 

assumption in model (3) was that ϕ𝑖𝑗𝑐𝑖𝑡𝑒𝑑 = 0, ∀i, j, that is model (3) abstracts from changes in the propensity 

to being cited (which is a function of the quality of the knowledge embedded in the cited patents).  

If a positive shift in the propensity of a random EU15 patent to cite a random patent from a different EU15 

country (𝜙𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈 > 0) in model (3) just results from an increase in the quality of EU patents after 2000, 

then it should be that 𝜙𝐸𝑈,𝑜𝑡ℎ𝑒𝑟𝐸𝑈𝑐𝑖𝑡𝑒𝑑 > 0  and  𝜙𝐸𝑈,𝑜𝑡ℎ𝑒𝑟𝐸𝑈𝑐𝑖𝑡𝑖𝑛𝑔 = 0. If instead after 2000 there is an increase in the 

propensity of EU patents to cite other EU patents beyond any hypothetical increase in their quality, then the 

positive and significant sign of ϕ𝐸𝑈,𝑜𝑡ℎ𝑒𝑟𝐸𝑈𝑐𝑖𝑡𝑖𝑛𝑔
 should survive in the model. We can then formulate: 

Hypothesis 5:  

After 2000, integration of knowledge bases within EU increases, ceteris paribus: ϕ𝐸𝑈,𝑜𝑡ℎ𝑒𝑟𝐸𝑈𝑐𝑖𝑡𝑖𝑛𝑔 > 0 

As customary in this type of models, the citing year fixed effects (𝛼𝑇) and the cited year fixed effects (𝛼𝑡) are 

grouped into 2-year and 5-year intervals, respectively (see Jaffe and Trajtenberg, 1999; Popp, 2006; 

Bacchiocchi and Montobbio, 2010). We estimate equations (2), (3) and (4) by non-linear least squares. Since 

the model is heteroskedastic (the dependent variable is an empirical frequency), we weight each 

                                                           
27 This does not include self-citations, rather citations to other domestic patents which are part of each inventor’s knowledge stock. 
As already mentioned, self-citations are excluded from this analysis, as customary in the literature. 
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observation by the reciprocal of the estimated variance √(𝑁𝑖𝑇)(𝑁𝑗𝑡) (Jaffe and Trajtenberg, 1999; Popp, 

2006; Bacchiocchi and Montobbio, 2010).  

5. Results 

The full set of results relative to the estimation of Equations (2), (3) and (4) on our sample of RES patents 

are reported in Appendix B. The tables therein show the parameters 𝛼𝑖𝑗  and 𝜙𝑖𝑗, as well as estimates of 𝛽1 

and 𝛽2 for comparison with the existing literature.28 In all specifications, estimates for 𝛽1 are in line with 

previous works, while those for 𝛽2 are larger than those obtained in other studies using USPTO data, but 

consistent with the results in Pillu and Koleda (2011), who use EPO data. 

Henceforth we focus our attention on presenting the estimates of 𝛼𝑖𝑗  and 𝜙𝑖𝑗 which are more directly linked 

to each of the hypotheses stated in Section 4. Importantly, recall from the previous Section that each 𝛼𝑖𝑗 has 

to be interpreted as the relative probability of citation between country i and country j, as compared to the 

probability that a US inventor cites a US inventor (𝛼𝑈𝑆,𝑈𝑆 = 1), while 𝜙𝑖𝑗 indicates if the probability of 

citation between any couple of countries has changed starting from 2000, as compared with that of the USA 

(𝜙𝑈𝑆,𝑈𝑆 = 0).  

Table 4 presents estimates of the likelihood of citation between any couple of countries (𝛼𝑖𝑗) over the full 

sample period, i.e. assuming 𝜙𝑖𝑗 = 0, as in Equation (2).29 Model (1) does not distinguish between EU 

citations to national patents and citations made to patents from other members of the EU, while model (2) 

estimates separate effects for national (𝛼𝐸𝑈15,𝑛𝑎𝑡) vs. international (𝛼𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈) citations. As stated in 

Hypothesis 1, comparing these coefficients provides insights on the geographical localization of EU RES 

knowledge flows over the whole period and thus allows to characterize the degree of fragmentation of the 

EU15 RES innovation space.  

These first two models provide support for Hypothesis 1, namely that the fragmentation of the European 

RES innovation system is indeed high. On the one hand, knowledge flows within the EU15 are weaker than in 

the US and Japan. Specifically, inventors from any of the EU15 countries are 38 percent as likely to cite 

another inventor from a EU15 country as compared to a US inventor citing another domestic patent 

(𝛼𝐸𝑈15,𝐸𝑈15 = 0.38). The corresponding likelihood for domestic citations of a Japanese inventor is 81 percent 

(𝛼𝐽𝑃,𝐽𝑃 = 0.81).30 Second, any EU15 member is almost twice as likely to cite itself as opposed to citing any 

other EU member or the US. Indeed, in model (2) 𝛼𝐸𝑈15,𝑛𝑎𝑡 = 0.58, while 𝛼𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈 = 0.3 and 𝛼𝐸𝑈15,𝑈𝑆 =0.28, the last two coefficients suggesting that EU15 inventors are basically as likely to benefit from spillovers 

from the US as they are to benefit from spillovers from other EU countries. By contrast, the US relies more on 

domestic knowledge as compared to the other countries in the sample, but it also builds more on the 

shoulders of the foreign giants. 

In addition, to suggesting a high fragmentation of the EU RES innovation system, our results also show that 

the likelihood of a EU15 patent to be a source of knowledge for a foreign inventor is lower than that of a US 

or Japanese patent. In particular, the US seems to benefit relatively more from knowledge produced in Japan 

                                                           
28 Since the set of 𝛼, 𝜙 and 𝛽 parameters is quite large, the tables do not report estimates for the coefficients of the cited and citing 

time dummies. Complete regression results are available upon request. 
29 Thes results are presented in Table B.1, columns 1 and 2. 
30 The high values of the bilateral coefficients αij when i=j=US or i=j=JP are in line with previous findings (see e.g. Jaffe and 

Trajtenberg, 1999; Bacchiocchi and Montobbio, 2010). 
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than in the EU: the likelihood of a US patent citing a Japanese one is 47 percent, while that of citing a EU 

patent is 31 percent. Along the same lines, a Japanese patent is 26 percent as likely to cite a US patent, but 

only 14 percent as likely to cite a EU15 patent.  

Finally, note that the Japanese RES innovation space emerges as extremely self-referenced. The likelihood of 

a Japanese patent citing previous domestic innovation is almost as high as that of the US. In addition, we find 

a very low likelihood of Japanese patents citing previous patents by either US or EU15 inventors.  

  

 

 

 

 

Table 4 Regression Results, Hypothesis 1. 

  MODEL 1 

  Citing country 

Cited country US EU15 JP 

US 
1 0.279*** 0.262*** 

  (0.013) (0.014) 

EU15 

0.315*** 0.384*** 0.140*** 

(0.013) (0.013) (0.007) 

      

JP 
0.470*** 0.170*** 0.814*** 

(0.027) (0.008) (0.038) 

        

  MODEL 2 

  Citing country 

Cited country US EU15 JP 

US 
1 0.280*** 0.264*** 

  (0.013) (0.014) 

EU15 
0.314***   0.140*** 

(0.013)   (0.007) 

EU15 (national) 
  0.582***   

  (0.022)   

EU15   (other EU) 
  0.299***   

  (0.011)   

JP 
0.469*** 0.170*** 0.817*** 

(0.027) (0.008) (0.038) 

Notes: see Models 1 and 2, Table B1, Appendix B for the full set of model results. ***Significant at 1% level; **Significant at 5% level; 

*Significant at 10% level. Recall that  H0 on the parameter 𝛼𝑖𝑗 is 𝛼𝑖𝑗 = 1, while H0 on the parameter 𝜙𝑖𝑗  is 𝜙𝑖𝑗 = 1. 
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Table 5 presents estimation results for Equation (3), where we allow the likelihood of citation to differ for 

patents applied for after 2000 (𝜙 coefficients).31 Table 5 confirms the results reported in Table 4 for the pre-

2000 period and highlights two notable changes since 2000, which support our Hypothesis 2. First, as 

regards the EU, the likelihood of domestic citation, which is 65 percent (𝛼𝐸𝑈15,𝑛𝑎𝑡) before 2000, drops to 57 

percent after 2000 (𝛼𝐸𝑈15,𝑛𝑎𝑡 ∗ (1 + 𝜙𝐸𝑈15,𝑛𝑎𝑡 )). Second, the likelihood of citing other EU15 inventors 

increases from 25 percent (𝛼𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈) to 31 percent (𝛼𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟 𝐸𝑈 ∗ (1 + 𝜙𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈)). In growth 

terms, the percentage decrease in the probability of domestic citation was more than compensated by the 

increase in the probability of citation to other EU15 countries (𝜙𝐸𝑈15,𝑛𝑎𝑡 = −0.13; 𝜙𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈 = 0.25). 

Overall, Table 5 supports our hypothesis that the reliance of each European country on the knowledge base 

of other European countries increased after 2000. Also in this case, further insights can be gained. First, 

knowledge flows to EU15 from the US and Japan further decreases since 2000. Specifically, the probability of 

a EU15 inventor citing a US patent drops from 31 percent to less than 27 percent, and the probability of 

citing a Japanese patent goes from 21 percent to a mere 16 percent. Second, the likelihood that EU15 

inventors are a source of knowledge for US inventors goes from 26 percent before 2000 to 33 percent since 

2000. This represents a 25 percent increase since the turn of the century.  

 

Table 5 Regression Results, Hypothesis 2. 

  Citing country 

  αij фij 

Cited country US EU15 JP US EU15 JP 

US 
1 0.314*** 0.264*** 0 -0.135*   

  (0.025) (0.014)   (0.078)   

EU15 
0.264***   0.170*** 0.245**   -0.220*** 

(0.020)   (0.015) (0.104)   (0.079) 

EU15 (national) 
  0.655***     -0.133**   

  (0.044)     (0.065)   

EU15                   

(other EU) 

  0.246***     0.251**   

  (0.019)     (0.101)   

JP 
0.468*** 0.213*** 0.816***   -0.233***   

(0.027) (0.022) (0.039)   (0.086)   

Notes: see Model 5, Table B1, Appendix B for the full set of model results. ***Significant at 1% level; **Significant at 5% level; *Significant 

at 10% level. Recall that  H0 on the parameter 𝛼𝑖𝑗 is 𝛼𝑖𝑗 = 1, while H0 on the parameter 𝜙𝑖𝑗  is 𝜙𝑖𝑗 = 1.  

 

Table 6 presents the result of the estimation of Model (3) when considering Germany separately from other 

EU14 countries (see also Appendix B, Table B.2). We find that, before 2000, an inventor from any EU14 

country was about 2.5 times more likely to cite a national patent compared to US inventors. The 

corresponding likelihood of domestic citation for Germany is 44 percent. This stark difference between 

Germany and other EU14 countries indicates that inventors in most national RES innovation systems in 

Europe predominantly build on local knowledge. Since EU14 countries were less innovative than the US, 

Germany or Japan over this period, the high coefficient associated with national citations for EU14 countries 

                                                           

31 Table B1 in Appendix B shows the 𝜙𝑖𝑗  coefficients estimated considering the EU only as citing country, or only as cited country, or 

as both the citing or the cited country. The different models are estimated to show the robustness of results to changes in the 

specification. Since all results are strongly consistent across specifications, here we report and comment only the full model (column 

5). 
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suggests that overall Europe was far away from the technological frontier. Furthermore, in the first part of 

the sample period, EU14 countries sourced relatively little from abroad, especially from other EU14 

countries. Indeed, the probability that any EU14 inventor cites an innovation from another EU14 country or 

from Germany is lower than that of citing a US inventor (27 and 22 percent as opposed to 46 percent). This, 

taken together with the high coefficient for national citations within the EU14 noted above, is again a strong 

indication that the EU14 innovation system was highly fragmented. 

Since 2000, EU14 countries display trends similar to those highlighted in the EU15 aggregate regressions. On 

the one hand, they show a significant reduction in the probability of domestic citation (as well as that of 

citation to US inventions, the latter being larger than the former). On the other hand, the probability of cross-

country/within EU14 citation increases, as does the probability that a German inventor cites a EU14 patents, 

and the magnitude of these effects are comparable. Furthermore, note that the US appears to be more likely 

to cite EU14 countries but not Germany. All in all, Table 6 confirms that the increasing intensity of 

knowledge flows across European countries in RES technologies after 2000 is not driven by Germany.  

 

 

 

 

Table 6 Regression results, Hypothesis 3. 

  Citing country 

  αij фij 

Cited country US DE EU14 JP US DE EU14 JP 

US 
1 0.193*** 0.462*** 0.264***   0.201* -0.324***   

  (0.017) (0.044) (0.014)   (0.122) (0.074)   

DE 
0.220*** 0.435*** 0.221*** 0.199*** 0,221 -0,008 0,247 -0.307*** 

(0.022) (0.032) (0.027) (0.024) (0.136) (0.081) (0.162) (0.093) 

EU14 
0.307*** 0.247***   0.133*** 0.312** 0.281**   -0,032 

(0.031) (0.024)   (0.017) (0.146) (0.138)   (0.142) 

EU14 

(national) 

    2.449***       -0.222***   

    (0.207)       (0.074)   

EU14                

(other EU) 

    0.273***       0.287**   

    (0.028)       (0.142)   

JP 
0.466*** 0.231*** 0.189*** 0.816***   -0.265*** -0,166   

(0.027) (0.027) (0.027) (0.039)   (0.092) (0.126)   

Notes: see Model 5, Table B2, Appendix B for the full set of model results. ***Significant at 1% level; **Significant at 5% level; *Significant 

at 10% level. Recall that  H0 on the parameter 𝛼𝑖𝑗 is 𝛼𝑖𝑗 = 1, while H0 on the parameter 𝜙𝑖𝑗  is 𝜙𝑖𝑗 = 1. 

 

We now move to considering if our results are simply driven by an increase in multi-country patenting. To 

do this, we drop all patents with “multiple-country” inventors and re-estimate Equation (3) on the sample of patents with “single-country” inventors. Results are presented in Table 7 and show that Hypothesis 4 is 

confirmed. 

 

Table 7 Regression results, Hypothesis 4. 
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  Citing country 

  αij фij 

Cited country US EU15 JP US EU15 JP 

US 
1 0.253*** 0.247*** 0 -0,107   

  (0.021) (0.014)   (0.085)   

EU15 
0.237***   0.163*** 0.227**   -0.297*** 

(0.019)   (0.016) (0.110)   (0.077) 

EU15 

(national) 

  0.565***     (0,040)   

  (0.040)     (0.076)   

EU15                 

(other EU) 

  0.202***     0.379***   

  (0.013)     (0.099)   

JP 
0.449*** 0.199*** 0.786***   -0.310***   

(0.026) (0.021) (0.038)   (0.079)   

Notes: see Model 5, Table B3, Appendix B for the full set of model results. ***Significant at 1% level; **Significant at 5% level; *Significant 

at 10% level. Recall that  H0 on the parameter 𝛼𝑖𝑗 is 𝛼𝑖𝑗 = 1, while H0 on the parameter 𝜙𝑖𝑗  is 𝜙𝑖𝑗 = 1. 

 

Finally, Table 8 presents the result of the estimation of Model (4), which includes the additional term [1 + ϕij𝑐𝑖𝑡𝑒𝑑 ∗ 𝐷2000𝑐𝑖𝑡𝑒𝑑] controlling for changes in the quality of post-2000 patents, i.e. in their propensity to be 

cited. Once again, the estimates for the 𝛼𝑖𝑗  parameters are in line with those presented above. The inclusion 

of the terms [1 + ϕijcited ∗ D2000cited] slightly changes the magnitude of the previous estimates for 𝜙𝑖𝑗, which 

have to be compared here to ϕij𝑐𝑖𝑡𝑖𝑛𝑔 . Most importantly for our analysis, the estimated change in the term 𝜙𝐸𝑈15,𝑜𝑡ℎ𝑒𝑟𝐸𝑈 slightly decreases, but maintains its sign and significance (ϕEU,otherEU𝑐𝑖𝑡𝑖𝑛𝑔
=0.19). This suggests that, 

in line with Hypothesis 5, the increase of knowledge flows to EU patents after 2000 is partly due to an 

increase in the quality of EU inventions (ϕ𝑜𝑡ℎ𝑒𝑟𝐸𝑈cited >0), but also effectively captures a lowering of the 

fragmentation in the EU RES knowledge space.  

 

Table 8 Regression results, Hypothesis 5. 

 

Citing country 

  αij фij, citing фij, cited 

Cited country US EU15 JP US EU15 JP US EU15 JP 

US 
1 0.311*** 0.262*** 0 -0.276***   0     

  (0.025) (0.014)   (0.072)         

EU15 
0.262***   0.169*** 0.254**   -0.288*** 0.014   0.203* 

(0.020)   (0.015) (0.111)   (0.080) (0.077)   (0.121) 

EU15 (national) 
  0.649***     -0.243***     0.272***   

  (0.044)     (0.061)     (0.088)   

EU15                   

(other EU) 

  0.244***     0.185*     0.122*   

  (0.019)     (0.101)     (0.074)   

JP 
0.476*** 0.211*** 0.816***   -0.138         

(0.027) (0.022) (0.039)   (0.109)         

Notes: ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level. Recall that  H0 on the parameter 𝛼𝑖𝑗 is 𝛼𝑖𝑗 = 1, 

while H0 on the parameter 𝜙𝑖𝑗  is 𝜙𝑖𝑗 = 1. 
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Note that in this last model, the estimated 𝜙𝐸𝑈15,𝑛𝑎𝑡𝑐𝑖𝑡𝑖𝑛𝑔
 is higher (i.e. less negative) than in the results 

previously presented. This, combined with the positive and significant estimate of 𝜙𝐸𝑈15,𝑛𝑎𝑡𝑐𝑖𝑡𝑒𝑑 , suggests a 

peculiar pattern in EU domestic inventions. Specifically, post-2000 EU patents are relatively less likely to cite 

domestic pre-2000 patents, but relatively more likely to cite post-2000 national patents. This indicates that 

for domestic inventors, post-2000 domestic patents are more useful than pre-2000 national patents. Overall, 

however, the former effect does not offset the latter.  

The patterns of RES knowledge flows and localization discussed so far give rise to the important insight that 

the EU RES innovation space is becoming more integrated, with international citations between EU countries 

becoming more important, and national citations less relevant. This effect is not driven by Germany, nor by 

the increase in multi-country patenting, and is not solely the result of an increase in the quality of EU 

patents. Furthermore, we show that the EU has increased its role as source of knowledge for the US. 

Nevertheless, even accounting for the post-2000 decrease in fragmentation, they also indicate that the RES 

innovation base at the EU level is still considerably more fragmented with respect to the US and Japanese 

systems. Indeed, after 2000 a citation between EU inventors and their fellow national is 49 percent as likely 

as the one between two US nationals, while a citation between an EU inventor and any other non-national EU 

inventor is roughly 29 percent.  

One last concern regarding our results is that these trends in the fragmentation of the EU innovation space 

may not be specific to RES, but rather common to other energy or radically new technologies. If so, this 

would weaken the conjecture of increasing integration being the likely result of intense and consistent 

environmental and energy policy efforts in the EU over the recent past. We address these questions in turn 

in the next section. 32  

6.  Robustness 

We now move to testing whether the results presented for RES technologies are peculiar to this strategic 

field or are common to other radically new technologies. To this end, we re-estimate equation (3) for fossil-

based technologies as well as for other radically-new technologies.  

6.1   Knowledge spillovers in highly efficient fossil-based technologies 

In a first robustness test, we consider the highly efficient fossil energy technologies studied in Lanzi et al. 

(2011). Fossil-based technologies allow producing energy by burning oil, coal or gas in stationary plants.33 

These technologies represent the back-bone of the world energy system: the share of fossil fuel in the global 

energy mix amounted to 81% in 2013 (IEA, 2015a). The use of fossil fuels as main sources of energy is 

indeed the main reason behind rising carbon emissions worldwide. In an effort to reduce both energy 

dependency from fossil-exporting countries (and in particular gas and oil exporters) and anthropogenic 

emissions, countries have promoted two complementary strategies. On the one hand, governments 

promoted the development and deployment of RES, as previously mentioned. On the other hand, they strove 

to increase the efficiency of fossil-based technologies, which also results in lower carbon intensity.  

                                                           
32 As a final robustness check, we also tested the sensitivity of our results to the choice of the cut-off point. We show that all our key 

findings still hold when the end of the first period changes from 1999 to 1997, i.e. the year of the Kyoto Protocol and the Commission 

White Paper on renewable sources. Furthermore, our results hold when considering the EU27 countries as opposed to EU15 

countries. All these regressions are available upon request. 
33 Note therefore that transport technologies are excluded from this sample. 
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While RES represent a long-term and carbon-free strategy but entail drastic changes in the system of energy 

production , highly efficient fossil technologies are a cheap medium-term option to address climate and 

energy security concerns. They significantly reduce emissions per unit of energy in the short-to-medium 

term and, contrary to the case of RES, they do not imply a significant shift in the energy system.34 Their 

short-to-medium-term potential makes them very attractive, and many countries provided significant 

support to their development. This, for instance, was true for the US, partly due to the strength of the fossil 

fuels lobby. This has also been the strategy of Japan since 1973, leading this country to have the lowest rate 

of energy use per unit of produced GDP as compared with other industrialized nations of the world (Takase 

and Suzuki, 2011). 

Hence, in our specific case these technologies represent an interesting comparison to test if the 

developments we described in the previous section are peculiar to RES or, rather, common to other energy 

generation technologies. As in Lanzi et al. (2011),35 the efficient fossil technologies we consider here include 

all the technologies which have significantly improved the efficiency of fossil fuel burning for energy 

production, namely Integrated Gasification Combined Cycle, Improved Burners, Combined Heat and Power, 

and such. For a thorough description of these technologies, please refer to Lanzi et al. (2011). Altogether, our 

sample includes 9,577 patents in fossil-based technologies: 5,641 from EU15, 2,564 from the US and 1,372 

from Japan. Figure C1 in Appendix C shows that patent applications in fossil-fuel technologies have grown at 

a lower pace compared to RES and Table C1 does not display any sign of increasing cross-country citations 

within EU.  

The full set of results of the estimation for efficient fossil technologies are presented in Appendix C, Table C2.  

As shown in columns 1 and 2 of that Table, over the whole sample period, knowledge flows in fossil energy 

technologies within the EU appear weaker than those within the US and within Japan, similarly to what 

found in RES.36 By contrast, international knowledge flows to the EU from US and Japan are higher than in 

the case of RES, and comparable to those received by other inventors. Specifically, overall EU15 countries 

are as likely to cite a US patent as a Japanese inventor, and roughly as likely to cite a Japanese patent as a US 

inventor.  

 

Table 9 Regression Results: Efficient Fossil-based Technologies. 

  Citing country 

  αij фij 

Cited 

country US EU15 JP US EU15 JP 

US 
1 0.334*** 0.358*** 0 0.081   

  (0.025) (0.033)   (0.109)   

EU15 
0.345***   0.242*** -0.212***   -0.242** 

(0.028)   (0.022) (0.082)   (0.114) 

EU15   0.715***     -0.155**   

                                                           
34 In particular, grid integration of RES is complicated by their variability and by the fact that production is dispersed rather than 

centralized. Building a carbon-free energy system based on RES thus requires significant investment in upgrading the electricity grid, 

as well as in complementary technologies that can compensate for the variability of RES. For a thorough discussion of this issues, see 

Carrara and Marangoni (2016) and Verdolini et al. (2018). 
35 For a thorough description of these technologies, please refer to Lanzi et al. (2011). Furthermore, the list of IPC codes used to 

select patents for fossil-based technologies is provided in Appendix A2. 
36 Indeed, this result is even more pronounced than in RES for Japan, which displays a probability of citing domestic fossil patents at 

least 50 percent above the same probability in the US, indicating that Japan relies even more on domestic knowledge than in the case 

of RES. 
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(national)   (0.047)     (0.070)   

EU15               

(other EU) 

  0.278***     (0.100)   

  (0.018)     (0.078)   

JP 
0.376*** 0.291*** 1.509***   0.173   

(0.027) (0.029) (0.097)   (0.154)   

 
Notes: see Model 5, Table C2,. Appendix C for the full set of model results. ***Significant at 1% level; **Significant at 5% level; *Significant 

at 10% level. Recall that  H0 on the parameter 𝛼𝑖𝑗 is 𝛼𝑖𝑗 = 1, while H0 on the parameter 𝜙𝑖𝑗  is 𝜙𝑖𝑗 = 1. 

 

Focusing on changes in knowledge spillovers patterns since 2000, which are reported in Table 9,37 note that 

national knowledge flows in fossil technologies within EU15 members became less likely, and the decrease is 

roughly comparable to that discussed in the case of RES. However, differently from RES, there is no evidence 

of any increase in cross-country/within EU15 citation intensity for fossil technologies (𝜙𝐸𝑈,𝑜𝑡ℎ𝑒𝑟𝐸𝑈 is both 

negative and not significant in all specifications). Furthermore, since 2000 the likelihood that a US or a 

Japanese inventor cites a EU15 patent decreased by 21 and 24 percent, respectively. All these results show 

striking differences with respect to RES and point, if anything, to a weakening of the EU positioning with 

respect to the technological frontier in fossil energy technologies while showing no sign of higher 

interconnectedness between the national knowledge bases of member states. 

6.2   Knowledge spillovers in radically new technologies. 

We now compare knowledge flows in RES technologies to the patterns characterizing other radically new 

fields. Along the lines of Dechezleprêtre et al. (2014), we identify the following radically new and emerging 

technologies, namely 3D, IT, biotechnologies and robots.38 Our aim is to assess whether the results obtained 

for RES also characterize other technologies at an early stage of development and with high economic 

potential. Some descriptive statistics for these radically new technologies are presented in Appendix D2 in 

order to provide a comparison with our RES technologies along two different aspects: (i) innovation levels, 

growth and localization; (ii) citation changes since 2000.  

These radically new technologies are quite heterogeneous in terms of innovation levels and geographical 

distribution of innovation across the three geographical areas relevant for our analysis. The number of EPO 

applications ranges from 2,889 patents in 3D technologies to 184,345 in IT over the sample period (Table 

D.1 in Appendix D). The EU15 accounts for the majority of patents in each technology, but this, as discussed 

above, is the result of a home-bias associated with the use of EPO patents. In all cases, however, the share of 

EU15 patents in our sample is well below that in RES. Interestingly, all these radically new technologies 

exhibit growth patterns comparable to that of RES, before 2000 (Figure D.1), but since 2000, robot and 3D 

technologies show an increasing trend, just like RES, while biotechnology and IT patents level off.  

Focusing on raw citation frequencies (Table D.2), similarly to RES, 3D technologies show an increase in the 

citations between EU countries and a decrease in national citations; robot technologies and IT patents show 

an increase in both national citations and citations to other EU countries; biotechnologies show an increase 

in national citations and a decrease in citations to other EU patents. In all radically new technologies, the 

fraction of US citations directed to EU patents increases since 2000, particularly so in robot technologies. 

                                                           
37

 Table 9 presents the results of model 5 in Table C2. 
38 See Appendix A3 for a list of relevant IPC used for the selection of patents. It could be argued that nanotechnologies are a clearly 

new and emergent field, which should be included in our comparison. While this is surely the case, we have to exclude it from our 

comparison exercise since the number of nanotechnology patents in our sample is still extremely low and does not allow 

convergence in our econometric model.  
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The descriptive evidence presented above shows that RES shares some features with other radically new 

technologies, but that the overall picture is quite articulated and no common overall pattern emerges. We 

now turn to estimate Equation (3) for each of these new technologies, considering both the specification 

with country-pair coefficients for the entire period and the specification with the 𝜙𝑖𝑗 coefficients for the 

country-pairs in which EU15 is either citing or cited. The results are presented in Table D3.  

As expected, we find evidence of heterogeneity across these technologies in the intensity of citation over the 

entire estimation period, but some important common features emerge. In particular, the highest 

coefficients are those for domestic citations, confirming the strong localization effect widely documented in 

the literature (Jaffe and Trajtenberg, 1999). However, when considering changes in citation patterns since 

2000, none of these technologies replicates the results obtained with RES technologies. In particular, despite 

the previous descriptive evidence, no significant change emerges in the probability of US inventors to cite EU 

inventors, and the probability of EU inventors citing patents from other EU countries remains unchanged 

(3D and Robot technologies) or even decreases (IT and Biotechnologies). These results confirm that the 

patterns we found for RES technologies are peculiar to that technological field and are not shared by other 

emerging technologies with substantial growth prospects. Interestingly, our results complement those of 

Dechezleprêtre et al. (2014), which studied the magnitude of outgoing knowledge spillovers for RES vs 

fossil-based technologies. They find that renewables, although resulting in larger knowledge spillovers than 

fossil-based technologies, are comparable to other new technologies such as those listed above. However 

their analysis does not describe any geographical pattern. 

7. Discussion and Conclusions 

The achievement of deep emission reductions and the promotion of a sustainable energy system are among 

the top priorities of European countries. In this context, innovation in clean technologies is considered a 

cornerstone of any successful decarbonization pathway, as it will allow to lower the cost of alternative 

sources of energy while promoting economic growth and strenghtening the competitiveness of EU firms. A 

major concern in this respect, which has been increasingly voiced in the policy debate, is that the 

fragmentation of the EU innovation system is a major barrier to RES innovation in the EU, under the 

assumption that low knowledge flows across European countries depress opportunities for further 

knowledge creation.  

In this paper we examine patent citation patterns to shed some light on the degree of integration of the EU15 

innovation system in the strategic field of renewable energy technologies and, more generally, on the degree 

of knowledge spillovers between top innovators (the US, Japan and the EU15). We provide two key insights. 

First, the results emerging from our analysis point to some key weaknesses of the EU15 RES innovation 

system, which is shown to be geographically localized and highly fragmented. More specifically, inventors 

from any EU15 country rely more on domestic innovation than on knowledge produced from other EU15 

inventors. Indeed, knowledge flows from fellow EU15 countries are lower as compared to those from the US.  

Second, we show that following the stronger commitment of the EU to promoting RES technologies around 

the turn of the century, the EU RES innovation space has become more integrated, with citations across 

EU15 countries growing in importance, while national citations becoming less relevant. The EU15 has also 

increased its role as source of knowledge for the US, while being less likely to source knowledge from this 

top innovator. Importantly, our robustness checks demonstrate that (i) these results are not driven by 

Germany, but rather by other EU14 countries, that (ii) they capture an increase in knowledge flows which 

goes above and beyond what could be expected by an increase in collaborations and that (iii) they are not 
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merely the result of an increase in the quality of more recent EU RES innovation. Furthermore, by showing 

that the patterns of decreased fragmentation are peculiar to the strategic field of RES and do not apply to 

other technologies which are either from the energy field (efficient fossil-based technologies) or are also 

radically new (3D, robot technologies, IT and biotechnologies), we provide suggestive and convincing 

evidence that higher integration was brought about by an intensification of the EU support for RES. This 

came about at the turn of the century following the signing of the Kyoto Protocol which lead to the 

establishment of the EU-ETS and the implementation of stronger and more coordinated demand-pull 

measures following the 1997 White Paper. Conversely, the other two top innovators in RES technologies 

took a much milder stand towards supporting RES. On the one hand, the US relied mostly on soft measures 

(such as R&D investments and voluntary programs) and focused in particular on improving the energy 

efficiency of fossil-based technologies (Carlarne, 2010; Brewer, 2014). The Japanese energy policy-making 

approach has remained quite stable for decades with energy efficiency as the preferred strategy (Takase and 

Suzuki, 2011; Moe, 2012). 

Yet, our results raise an important challenge for EU member states. If it is accepted that fragmentation of the 

RES innovation space reduces opportunities to fully benefit from the innovation incentives associated with 

environmental policies, then EU policy makers need to recognize that fragmentation has been only 

moderately reduced in the period under investigation. Overall, the EU RES innovation system remains 

significantly more geographically localized than that of the other two top innovators. In this respect, the 

boost to RES support in the form of demand-pull policies was certainly beneficial, but clearly not sufficient.  

Our analysis thus gives rise to two key policy recommendations. First, we highlight the urgency of 

introducing a properly designed policy interventions to specifically promote the integration of the EU RES 

space. This is because addressing the issue of fragmentation in an “indirect” way through demand-pull 

policies clearly not spur knowledge flows across EU countries to the scale needed. Similarly to what argued 

in Cantner et al. (2016), we call for the implementation of a balanced policy mix, which includes not only 

demand-pull policies, but also both technology-push measures providing direct incentives to invest in 

innovative activities, as well as “systemic measures”39 promoting knowledge flows. Note that our results 

complement those presented in Cantner et al. (2016), who focus on collaborations, by suggesting that  a 

balanced policy mix is likely to result not only in more collaboration, but also in unintended and beneficial 

knowledge flows not arising from the direct interaction of inventors. 

In this regard, it has to be pointed out that due to data constraints we are unable to assess the effectiveness 

of the more recent EU efforts in reducing fragmentation. For instance, the Strategic Energy Technology Plan 

(SET-Plan) introduced in 2008 clearly represents a step in the right direction, as do the more recent 

Framework Programmes of the EU, which significantly increased the share of funding for projects focusing 

on RES and sustainable technologies, and particularly of those of collaborative nature or promoting 

integration and coordination across member countries.40 The SET Plan, in particular, was explicitly designed 

to address the fragmentation of the EU RES innovation system, and to facilitate cooperation, technology 

                                                           
39 Cantner et al. (2016) define systemic policy instruments as those specifically meant to , provide support for collaboration and 

knowledge transfer, such as cooperative R&D programs, clusters or infrastructure provisions. 
40 Whilst energy research was a major R&D area in FP1 (1984-87) with a share on total budget of more than 50%, it more than 

halved from 1987 until 2006 (going from about 22% in FP2 to 10% in FP6). Nevertheless, the share of non-nuclear energy R&D 

gained some momentum over the period (with a share of energy FP budget ranging from 10% in FP2 to around 50% in FP5 and 

FP6). This goes hand in hand with an increased relative importance of RES within EU research, ranging from about 0.3 M€ in FP2 to slightly more than 1 M€ in FP6 at constant 2004 prices (Rossetti di Valdalbero, 2010). Bointner et al. (2016) reach similar 

conclusions as to the pattern of RES R&D investments both at the Community level and at the member State level. Note however that 

though the EC put more effort on RES starting from FP6 and FP7, funding for renewables is still low when compared with other 

technologies such as life sciences, new materials or ICT. 
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transfer and knowledge exchange.41 Indeed its implementation included both technology-push measures in 

the form of increase direct investments in RES R&D and innovation, as well as more systemic measures such 

as new European Industrial Initiatives (EIIs) and  the European Research Alliance (EERA) in charge of 

aligning R&D activities of different actors and establishing a joint research framework at the EU level. A 

direct assessment of the ability of the SET-Plan to reduce integration will have to await the availability of 

data.42  

Our analysis also indirectly sheds light on the more general fragmentation of the EU innovation system, 

which goes beyond the strategic field of RES. This  is apparent from the low estimates associated with 

knowledge flows in both fossil and radically new technologies. In light of this evidence, the call for policy 

intervention goes beyond the promotion of knowledge integration in the strategic field of RES. While the 

latter are clearly instrumental in transitioning Europe towards the Energy Union and promoting sustainable 

development, reducing overall fragmentation could significantly contribute to fostering the EU innovation 

performance also in other technological fields.  

As an important caveat, we would like to highlight that our paper is concerned with fragmentation in the 

knowledge space under the explicit assumption, largely discussed in our contribution, that higher 

integration is beneficial for knowledge creation, and that knowledge creation is beneficial for economic 

growth and development. Indeed, this nexus may be not as obvious and direct as it seems. The example of 

China, which gained the largest share in solar panel production worldwide without relying on a strong 

innovation portfolio (at least in the early years) points to the importance of considering also other important 

factors affecting competitiveness, such as input prices and wages.  

We conclude by highlighting to some fruitful avenues of future research. First, given the time coverage of our 

sample, our analysis focuses on the EU15. Understanding whether our results can be generalized to all EU27 

countries would clearly contribute to a better assessment of knowledge flows dynamics. Second, extending 

the analysis to assess the impact of more recent policies on fragmentation would enrich our results. Both 

these efforts can be pursued in the near future, when the availability of more recent patent data will make it 

possible to capture the latest innovation dynamics, including those of the newest EU members. Third, a more 

detailed analysis of knowledge flows across different regions and countries of the EU would clearly enrich 

our results, although it would require a more flexible econometric approach. 

 

  

                                                           
41 As noted in the introduction, the problem of fragmentation of the EU research effort is explicitly recognized in EC Communications 

launching the SET-plan (EC, 2006b; EC, 2007). Around that time, it became clear that the technology-push measures for RES 

implemented in the EU appeared to be affected by scarce alignments of objectives, with research and innovation strategies often 

pursued independently by the different actors and countries. As argued in Rossetti di Valdalbero (2010), this resulted in “a 
governance failure characterized by poor integration and coordination between various levels (regional, national, EU) and by a 

suboptimal allocation of resources”.  
42 Note, however, that the general perceived view is that the 2008 SET-Plan did not live up to the EC expectations in this respect. Indeed, COM(2013)253, p. 7 states that that, “although Member States do share common industrial and research objectives, their 

commitment to the SET Plan is currently suboptimal. Coordinated and/or joint investments between Member States and with the EU 

need to be fostered to leverage private sector investments in support of the EIIs Technology Roadmaps and the EERA Joint Programmes” (EC, 2013).  See also Ruester et al. (2014).   
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Appendix A 

A.1. RES technologies - IPC codes 

Wind 

B60L8/00 Electric propulsion with power supply from force of nature, e.g. wind 

B63H13/00 Effecting propulsion by wind motors driving water-engaging propulsive elements 

F03D1/00-06 Wind motors with rotation axis substantially in wind direction  

F03D11/00-04 Details, components parts, or accessories not provided for in, or of interest apart from,  

 

the other groups of this subclass 

F03D3/00-06 Wind motors with rotation axis substantially at right angle to wind direction 

F03D5/00-06 Other wind motors 

F03D7/00-06 Controlling wind motors 

F03D9/00-02 Adaptation of wind motors for special use 

Solar 

B60K16/00                Arrangements in connection with power supply of propulsion units in vehicles from force  

 

of nature, e.g. sun 

B64G1/44                  Cosmonautic vehicles - Arrangements or adaptations of power supply systems using radiation,  

 

e.g. deployable solar arrays 

E04D13/18 Aspects of roofing for the collection of energy – i.e. Solar panels 

F03G6/00-08 Devices for producing mechanical power from solar energy 

F24J2/00-54 Use of solar heat, e.g. solar heat collectors 

F25B27/00 Machine plant or systems using particular sources of energy – sun 

F26B3/28 Drying solid materials or objects by processes involving the application of heat by radiation - e.g. sun 

H01G9/20                 Light-sensitive device 

H01L25/00-04          Assemblies consisting of a plurality of individual semiconductor or other solid state devices 

H01L31/04-

078      Semiconductor devices sensitive to infra-red radiation, light - adapted as conversion devices 

H02N6/00 Generators in which light radiation is directly converted into electrical energy 

Waste 

C10B53/02              Destructive distillation of cellulose-containing materials 

C10J3/86 Prod. of combustible gases – combined with waste heat boilers 

C10L5/46-48 Solid fuels based on materials of non-material origin – refuse or waste 

F02G5/00-04 Hot gas or combustion – Profiting from waste heat of exhaust gases 

F12K25/14 Plants or engines characterized by use of industrial or other waste gases 

F23G5/46 Incineration of waste – recuperation of heat 

F23G7/10 Incinerators or other apparatus consuming waste – field organic waste 

F25B27/02 Machine plant or systems using particular sources of energy – waste 

H01M8/06 Manufacture of fuel cells – combined with treatment of residues 

Geothermal 

F03G4/00-06 Devices for producing mechanical power from geothermal energy 

F03G7/04 Mechanical-power-producing mechanism -- using pressure differences or thermal differences  

 

occurring in nature 

F24J3/00-08 Other production or use of heat, not derived from combustion - using natural or geothermal heat 
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H02N10/00 Electric motors using thermal effects 

Hydro 

B62D5/06                   Power-assisted or power-driven steering -- using pressurized fluid for most or all the force required  

 

for steering a vehicle 

B62D5/093              Power-assisted or power-driven steering -- Characterized by means for actuating valve -  

 

Telemotor driven by steering wheel movement  

E02B3/00 Engineering work in connection with control or use of streams, rivers, coasts, or other marine sites;  

 

sealings or joints for engineering work in general 

E02B3/02 Stream regulation, e.g. breaking up subaqueous rock, clearing the beds of waterways,  

 

directing the water flow 

E02B9/00-06 Water-power plants 

F01D1/00 Non-positive-displacement machines or engines, e.g. stream turbines 

F02C6/14 Gas-turbine plants having means for storing energy, e.g. for meeting peak loads 

F03B13/08 Machines or engines aggregates in dams or the like; Conduits therefor 

F03B13/10 Submerged units incorporating electric generators or motors 

F03B17/06 Other machines or engines using liquid flow, e.g. of swinging-flap type 

F03B3/00 Machines or engines of reaction type (i.e. hydraulic turbines) 

F03B3/04 Machines or engines of reaction type with substantially axial flow throughout rotors,  

 

e.g. propeller turbine 

H02K7/18 Structural association of electric generators with mechanical driving motors, e.g. with turbines 

Ocean 

E02B9/08                 Tide or wave power plants 

F03B13/12-26 Submerged units incorporating electric generators or motors characterized by using wave or tide energy 

F03B7/00 Water wheels 

F03G7/05 Mechanical-power producing mechanism -- ocean thermal energy conversion 

Biomass 

B01J41/16 Anion exchange - use of materials, cellulose or wood  

C10L1/14 Liquid carbonaceous fuels; Gaseous fuels; Solid fuels 

C10L5/40-44             Solid fuels essentially based on materials of non-mineral origin - animal or vegetables substances  

F02B43/08 Engines operating on gaseous fuels from solid fuel - e.g. wood 

A.2. Efficient fossil-based technologies - IPC codes 

Coal gasification 

C10J3 Production of combustible gases containing carbon monoxide from solid carbonaceous fuels  

Improved burners [all these classes not in combination with B60, B68, F24, F27]  

F23C1 Combustion apparatus specially adapted for combustion of two or more kinds of fuel  

 

simultaneously or alternately, at least one kind of fuel being fluent 

F23C5/24  Combustion apparatus characterized by the arrangement or mounting of burners;  

 

disposition of burners to obtain a loop flame. 

F23C6  Combustion apparatus characterized by the combination of two or more combustion  

 

chambers (using fluent fuel) 

F23B10 Combustion apparatus characterized by the combination of two or more combustion  
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chambers (using only fluent fuel) 

F23B30 Combustion apparatus with driven means for agitating the burning fuel; combustion apparatus  

 

with driven means for advancing the burning fuel through the combustion chamber 

F23B70 Combustion apparatus characterized by means for returning solid combustion residues to the  

 

combustion chamber 

F23B80 Combustion apparatus characterized by means creating a distinct flow path for flue gases or for  

 

non-combusted gases given off by the fuel 

F23D1 Burners for combustion of pulverulent fuel 

F23D7 Burners in which drops of liquid fuel impinge on a surface 

F23D17 Burners for combustion simultaneously or alternatively of gaseous or liquid or pulverulent fuel 

Fluidized bed combustion 

B01J8/20-22 Chemical or physical processes in general, conducted in the presence of fluids and solid  

 

particles; apparatus for such processes; with liquid as a fluidizing medium   

B01J8/24-30 Chemical or physical processes in general, conducted in the presence of fluids and solid  

 

particles; apparatus for such processes; according to “fluidized-bed” technique 

F27B15 Fluidized-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion 

F23C10 Apparatus in which combustion takes place in a fluidized bed of fuel or other particles 

Improved boilers for steam generation 

F22B31 Modifications of boiler construction, or of tube systems, dependent on installation of  

 

combustion apparatus; arrangements or dispositions of combustion apparatus 

F22B33/14-

16 Steam generation plants, e.g. comprising steam boilers of different types in mutual association;  

 

combinations of low- and high-pressure boilers 

Improved steam engines 

F01K3 Plants characterized by the use of steam or heat accumulators, or intermediate steam heaters,  

 

Therein 

F01K5 Plants characterized by use of means for storing steam in an alkali to increase steam pressure,  

 

e.g. of Honigmann or Koenemann type 

F01K23 Plants characterized by more than one engine delivering power external to the plant, the  

 

engines being driven by different fluids 

Superheaters 

F22G Steam superheating characterized by heating method 

Improved gas turbines 

F02C7/08-

105 Features, component parts, details or accessories; heating air supply before combustion, 

 

 e.g. by exhaust gases 

F02C7/12-

143 Features, component parts, details or accessories; cooling of plants 

F02C7/30 Features, component parts, details or accessories; preventing corrosion in gas-swept spaces 

Combined cycles  

F01K23/02-

10 Plants characterized by more than one engine delivering power external to the plant, the  

 

engines being driven by different fluids; the engine cycles being thermally coupled 

F02C3/20-36 Gas turbine plants characterized by the use of combustion products as the working fluid; 

 

using special fuel, oxidant or dilution fluid to generate combustion products 

F02C6/10-12 Plural gas-turbine plants; combinations of gas-turbine plants with other apparatus; supplying  
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working fluid to a user , e.g. a chemical process, which returns working fluid to a turbine of the plant 

Improved compressed-ignition engines [all these classes not in combination with B60, B68, F24, F27]  

F02B1/12-

14 Engines characterized by fuel-air mixture compression; with compression ignition 

F02B3/06-

10  Engines characterized by air compression and subsequent fuel addition; with compression ignition 

F02B7 Engines characterized by the fuel-air charge being ignited by compression ignition of an  

 

additional fuel 

F02B11 Engines characterized by both fuel-air mixture compression and air compression, or characterized by   

 

both positive ignition and compression ignition, e.g. in different cylinders 

F02B13/02-

04  Engines characterized by the introduction of liquid fuel into cylinders by use of auxiliary fluid;  

 

compression ignition engines using air or gas for blowing fuel into  compressed air in cylinder 

F02B49 Methods of operating air-compressing compression-ignition engines involving introduction of small  

 

quantities of fuel in the form of a fine mist into the air in the engine’s intake 

Cogeneration 

F01K17/06  Use of steam or condensate extracted or exhausted from steam engine plant; returning energy of  

 

steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel of plant 

F01K27 Plants for converting heat or fluid energy into mechanical energy  

F02C6/18 Plural gas-turbine plants; combinations of gas-turbine plants with other apparatus; using the waste  

 

heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants 

F02G5 Profiting from waste heat of combustion engines 

F25B27/02 Machines, plant, or systems using waste heat, e.g. from internal-combustion engines 

A.3. Radically new technologies - IPC codes 

3D 

H04N/13 Stereoscopic television systems 

IT 

G06 Computing; Calculating; Counting 

G10L Speech analysis of synthesis; Speech recognition; Speech or voice processing; Speech or audio 

 

coding or decoding 

G11C Static stores 

(not G06Q) 

Data processing systems ot methods; Specially adapted for administrative, commercial, financial, 

managerial, supervisory or forecasting purposes; Systems or methods specially adapted for 

administrative, commercial, financial, mnagerial, supervisory or forecasting purposes, not otherwise 

provided for 

Biotechs 

C07G Compounds of unknown constitution 

C07K Peptides 

C12M Apparatus for enzymology or microbiology 

C12N Micro-organisms or enzymes; composition thereof 

C12P Fermentation or Enzyme-using processes to synthesise a desired chemical compound or  

 
composition ot to separate optical isomers from a racemic mixture 
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C12Q Measuring or testing processes involving enzymes or micro-organisms; 

 
Compositions or test papers therefor; processes of preparing such compositions; 

 
Condition responsive control in microbiological or enzymological processes 

C12R Processes using micro-organisms 

(not A61K) Preparation for medical, dental or toilet purposes 

Robot 

B82 Programme-controlled manipulators 
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Appendix B: Detailed regression results 

 

 
Table B1  Regression Results: RES. 

  (1) (2) (3) (4) (5) 

  

    

  

Citing/cited country pairs (αi,j) (a) 

    

  

US citing US 1 1 1 1 1 

  NA NA NA NA NA 

EU15 citing EU15 0.384*** 

   

  

  (0.013) 

   

  

EU15 citing EU15 (national) 

 

0.582*** 0.661*** 0.647*** 0.655*** 

  

 

(0.022) (0.045) (0.043) (0.044) 

EU15 citing other EU15  

 

0.299*** 0.249*** 0.243*** 0.246*** 

  

 

(0.011) (0.019) (0.018) (0.019) 

EU15 citing US 0.279*** 0.280*** 0.317*** 0.281*** 0.314*** 

  (0.013) (0.013) (0.025) (0.013) (0.025) 

EU15 citing JP 0.170*** 0.170*** 0.215*** 0.171*** 0.213*** 

  (0.008) (0.008) (0.022) (0.008) (0.022) 

US citing EU15 0.315*** 0.314*** 0.314*** 0.261*** 0.264*** 

  (0.013) (0.013) (0.013) (0.020) (0.020) 

US citing JP 0.470*** 0.469*** 0.468*** 0.469*** 0.468*** 

  (0.027) (0.027) (0.027) (0.027) (0.027) 

JP citing EU15 0.140*** 0.140*** 0.139*** 0.169*** 0.170*** 

  (0.007) (0.007) (0.007) (0.015) (0.015) 

JP citing US 0.262*** 0.264*** 0.263*** 0.264*** 0.264*** 

  (0.014) (0.014) (0.014) (0.014) (0.014) 

JP citing JP 0.814*** 0.817*** 0.813*** 0.819*** 0.816*** 

  (0.038) (0.038) (0.039) (0.039) (0.039) 

  

    

  

Citing pattern differences since 2000 (фij) (b) 

   

  

US citing US 

  

0 0 0 

  

  

NA NA NA 

EU15 citing EU15 (national) 

  

-0.145** -0.118* -0.133** 

  

  

(0.063) (0.065) (0.065) 

EU15 citing other EU15  

  

0.233** 0.272*** 0.251** 

  

  

(0.098) (0.101) (0.101) 

EU15 citing US 

  

-0.147* 

 

-0.135* 

  

  

(0.077) 

 

(0.078) 

EU15 citing JP 

  

-0.244*** 

 

-0.233*** 

  

  

(0.084) 

 

(0.086) 

US citing EU15 

   

0.267** 0.245** 

  

   

(0.104) (0.104) 

JP citing EU15 

   

-0.207*** -0.220*** 

  

   

(0.079) (0.079) 

  

    

  Decay (β1) (b) 0.263*** 0.264*** 0.263*** 0.263*** 0.263*** 

  (0.010) (0.009) (0.009) (0.009) (0.009) Diffusion (β2) (b) 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

N° of obs. 3,159 3,510 3,510 3,510 3,510 
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 Notes:  a) H0 is parameter = 1; (b) H0 is parameter = 0. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level. 

Table B2 Regression results: RES with EU14 versus Germany. 

  (1) (2) (3) (4) (5) 

  

    

  

Citing/cited country pairs (αi,j) (a) 

    

  

US citing US 1 1 1 1 1 

  NA NA NA NA NA 

EU14 citing EU14 0.550*** 

   

  

  (0.022) 

   

  

EU14 citing EU14 (national) 

 

2.020*** 2.479*** 2.411*** 2.449*** 

  

 

(0.097) (0.209) (0.203) (0.207) 

EU14 citing other EU14 

 

0.344*** 0.277*** 0.269*** 0.273*** 

  

 

(0.015) (0.029) (0.028) (0.028) 

EU14 citing DE 0.268*** 0.270*** 0.224*** 0.218*** 0.221*** 

  (0.012) (0.012) (0.028) (0.027) (0.027) 

EU14 citing US 0.339*** 0.343*** 0.467*** 0.342*** 0.462*** 

  (0.018) (0.018) (0.045) (0.018) (0.044) 

EU14 citing JP 0.162*** 0.163*** 0.192*** 0.163*** 0.189*** 

  (0.009) (0.009) (0.027) (0.009) (0.027) 

DE citing DE 0.432*** 0.435*** 0.441*** 0.429*** 0.435*** 

  (0.017) (0.017) (0.033) (0.032) (0.032) 

DE citing EU14 0.304*** 0.306*** 0.250*** 0.244*** 0.247*** 

  (0.014) (0.014) (0.025) (0.024) (0.024) 

DE citing US 0.224*** 0.224*** 0.195*** 0.224*** 0.193*** 

  (0.011) (0.011) (0.018) (0.011) (0.017) 

DE citing JP 0.179*** 0.180*** 0.233*** 0.179*** 0.231*** 

  (0.009) (0.009) (0.027) (0.009) (0.027) 

US citing EU14 0.380*** 0.381*** 0.381*** 0.302*** 0.307*** 

  (0.018) (0.018) (0.018) (0.031) (0.031) 

US citing DE 0.259*** 0.259*** 0.258*** 0.217*** 0.220*** 

  (0.012) (0.012) (0.012) (0.022) (0.022) 

US citing JP 0.470*** 0.468*** 0.465*** 0.468*** 0.466*** 

  (0.027) (0.027) (0.027) (0.027) (0.027) 

JP citing EU14 0.130*** 0.130*** 0.129*** 0.131*** 0.133*** 

  (0.008) (0.008) (0.008) (0.017) (0.017) 

JP citing DE 0.149*** 0.150*** 0.149*** 0.196*** 0.199*** 

  (0.009) (0.009) (0.009) (0.024) (0.024) 

JP citing US 0.263*** 0.265*** 0.263*** 0.265*** 0.264*** 

  (0.014) (0.014) (0.014) (0.014) (0.014) 

JP citing JP 0.816*** 0.821*** 0.813*** 0.820*** 0.816*** 

  (0.039) (0.039) (0.039) (0.039) (0.039) 

Citing pattern differences since 2000  (фij) (b) 

   

  

US citing US 

  

0 0 0 

  

  

NA NA NA 

EU14 citing EU14 (national) 

  

-0.237*** -0.204*** -0.222*** 

  

  

(0.072) (0.075) (0.074) 
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EU14 citing other EU14  

  

0.264* 0.318** 0.287** 

  

  

(0.138) (0.145) (0.142) 

EU14 citing DE 

  

0.224 0.276* 0.247 

  

  

(0.158) (0.165) (0.162) 

EU14 citing US 

  

-0.335*** 

 

-0.324*** 

  

  

(0.072) 

 

(0.074) 

EU14 citing JP 

  

-0.181 

 

-0.166 

  

  

(0.124) 

 

(0.126) 

DE citing DE 

  

-0.026 0.016 -0.008 

  

  

(0.078) (0.082) (0.081) 

DE citing EU14 

  

0.259* 0.309** 0.281** 

  

  

(0.134) (0.139) (0.138) 

DE citing US 

  

0.181 

 

0.201* 

  

  

(0.119) 

 

(0.122) 

DE citing JP 

  

-0.278*** 

 

-0.265*** 

  

  

(0.090) 

 

(0.092) 

US citing EU14 

   

0.343** 0.312** 

  

   

(0.148) (0.146) 

US citing DE 

   

0.251* 0.221 

  

   

(0.138) (0.136) 

JP citing EU14 

   

-0.011 -0.032 

  

   

(0.145) (0.142) 

JP citing DE 

   

-0.292*** -0.307*** 

  

   

(0.095) (0.093) 

  

    

  Decay (β1) (b) 0.263*** 0.270*** 0.270*** 0.270*** 0.270*** 

  (0.009) (0.010) (0.010) (0.010) (0.010) Diffusion (β2) (b) 0.001*** 0.000*** 0.000*** 0.000*** 0.000*** 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

N° of obs. 5,616 5,967 5,967 5,967 5,967 

Notes:  a) H0 is parameter = 1; (b) H0 is parameter = 0. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level 
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Table B3 Regression Results: Single inventor RES patents. 

  (1) (2) (3) (4) 

  

   

  

Citing/cited country pairs (αi,j) (a) 

   

  

US citing US 1 1 1 1 

  NA NA NA NA 

EU15 citing EU15 (national) 0.545*** 0.569*** 0.560*** 0.565*** 

  (0.022) (0.040) (0.040) (0.040) 

EU15 citing EU15 (international) 0.266*** 0.203*** 0.200*** 0.202*** 

  (0.010) (0.013) (0.013) (0.013) 

EU15 citing US 0.231*** 0.254*** 0.232*** 0.253*** 

  (0.012) (0.021) (0.012) (0.021) 

EU15 citing JP 0.144*** 0.200*** 0.145*** 0.199*** 

  (0.007) (0.021) (0.007) (0.021) 

US citing EU15 0.278*** 0.278*** 0.235*** 0.237*** 

  (0.012) (0.012) (0.019) (0.019) 

US citing JP 0.448*** 0.448*** 0.450*** 0.449*** 

  (0.026) (0.026) (0.026) (0.026) 

JP citing EU15 0.123*** 0.123*** 0.162*** 0.163*** 

  (0.007) (0.007) (0.016) (0.016) 

JP citing US 0.247*** 0.247*** 0.248*** 0.247*** 

  (0.014) (0.014) (0.014) (0.014) 

JP citing JP 0.784*** 0.784*** 0.788*** 0.786*** 

  (0.038) (0.038) (0.038) (0.038) 

  

   

  

Citing pattern differences since 2000 (фij) (b) 

   

  

US citing US 

 

0 0 0 

  

 

NA NA NA 

EU15 citing EU15 (national) 

 

-0.049 -0.028 -0.040 

  

 

(0.074) (0.076) (0.076) 

EU15 citing other EU15  

 

0.365*** 0.396*** 0.379*** 

  

 

(0.096) (0.098) (0.099) 

EU15 citing US 

 

-0.116 

 

-0.107 

  

 

(0.084) 

 

(0.085) 

EU15 citing JP 

 

-0.317*** 

 

-0.310*** 

  

 

(0.078) 

 

(0.079) 

US citing EU15 

  

0.243** 0.227** 

  

  

(0.110) (0.110) 

JP citing EU15 

  

-0.288*** -0.297*** 

  

  

(0.077) (0.077) 

     Decay (β1) (b) 0.263*** 0.263*** 0.263*** 0.263*** 

  (0.010) (0.010) (0.010) (0.010) Diffusion (β2) (b) 0.001*** 0.001*** 0.001*** 0.001*** 

  (0.0001) (0.0001) (0.0001) (0.0001) 
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N° of obs. 3,510 3,510 3,510 3,510 

Notes:  a) H0 is parameter = 1; (b) H0 is parameter = 0. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level 

Appendix C: Highly efficient fossil-based technologies 
 

Table C.1 Percentage distribution of citations, pre-2000 and post-2000. 

HIGHLY EFFICIENT FOSSIL-BASED TECHNOLOGIES 

   pre-2000      post-2000 

Cited country   EU15 JP US   Cited country   EU15 JP US 

      Nat otherEU             Nat otherEU     

Citing country EU15 0.30 0.32 0.13 0.25   Citing country EU15 0.25 0.29 0.19 0.27 

    JP 0.39 0.48 0.13       JP 0.24 0.60 0.16 

    US 0.41 0.12 0.47       US 0.29 0.14 0.57 

                

 

 

 

 

Fig. C1 Index of patenting: RES vs highly efficient fossil-based technologies, EU15, US and Japan, 2000=100.  
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Table C2 Regression Results: Efficient Fossil-based Technologies. 

  (1) (2) (3) (4) (5) 

      
  

Citing/cited country pairs (αi,j) (a)           

US citing US 1 1 1 1 1 

  NA NA NA NA NA 

EU15 citing EU15 0.370***         

  (0.016)         

EU15 citing EU15 (national)   0.654*** 0.707*** 0.720*** 0.715*** 

    (0.031) (0.046) (0.047) (0.047) 

EU15 citing other EU15    0.263*** 0.274*** 0.279*** 0.278*** 

    (0.013) (0.018) (0.018) (0.018) 

EU15 citing US 0.350*** 0.350*** 0.330*** 0.348*** 0.334*** 

  (0.019) (0.020) (0.025) (0.019) (0.025) 

EU15 citing JP 0.323*** 0.324*** 0.288*** 0.322*** 0.291*** 

  (0.023) (0.023) (0.029) (0.023) (0.029) 

US citing EU15 0.311*** 0.311*** 0.310*** 0.348*** 0.345*** 

  (0.018) (0.018) (0.018) (0.027) (0.028) 

US citing JP 0.377*** 0.376*** 0.376*** 0.375*** 0.376*** 

  (0.027) (0.027) (0.027) (0.027) (0.027) 

JP citing EU15 0.217*** 0.217*** 0.217*** 0.243*** 0.242*** 

  (0.016) (0.016) (0.016) (0.022) (0.022) 

JP citing US 0.359*** 0.358*** 0.358*** 0.358*** 0.358*** 

  (0.033) (0.033) (0.033) (0.033) (0.033) 

JP citing JP 1.507*** 1.513*** 1.512*** 1.507*** 1.509*** 

  (0.096) (0.097) (0.097) (0.096) (0.097) 

Citing pattern differences since 2000  (фij) (b) 

   

  

US citing US 

  

0 0 0 

  

  

NA NA NA 

EU15 citing EU15 (national)     -0.133* -0.168** -0.155** 

      (0.070) (0.066) (0.070) 

EU15 citing other EU15      -0.076 -0.115 -0.100 

      (0.078) (0.074) (0.078) 

EU15 citing US     0.109   0.081 

      (0.110)   (0.109) 

EU15 citing JP     0.201   0.173 

      (0.156)   (0.154) 

US citing EU15       -0.224*** -0.212*** 

        (0.078) (0.082) 

JP citing EU15       -0.253** -0.242** 

        (0.110) (0.114) 

            Decay (β1) (b) 0.278*** 0.283*** 0.283*** 0.283*** 0.283*** 

  (0.016) (0.016) (0.016) (0.016) (0.016) Diffusion (β2) (b) 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
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N° of obs. 3,159 3,510 3,510 3,510 3,510 

Notes:  a) H0 is parameter = 1; (b) H0 is parameter = 0. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level 

 

Appendix D: Radically new technologies 
 

Table D1 Patent applications 

Country 3D IT Biotech Robot 

EU15 1,142 69,075 44,164 1,723 

JP 1,023 40,716 10,761 910 

US 724 74,554 34,687 580 

Total 2,889 184,345 89,612 3,213 

 

Table D2 Percentage distribution of citations, 1987-1997 and 2000-2010. 

3D TECHNOLOGIES 

   pre-2000      post-2000 

Cited country   EU15 JP US   Cited country   EU15 JP US 

      Nat otherEU             Nat otherEU     

Citing country EU15 0.26 0.21 0.22 0.31   Citing country EU15 0.21 0.40 0.24 0.15 

    JP 0.29 0.37 0.34       JP 0.33 0.59 0.08 

    US 0.39 0.17 0.44       US 0.48 0.31 0.21 

               
IT 

   pre-2000      post-2000 

Cited country   EU15 JP US   Cited country   EU15 JP US 

      Nat otherEU             Nat otherEU     

Citing country EU15 0.13 0.20 0.22 0.45   Citing country EU15 0.16 0.26 0.14 0.44 

    JP 0.15 0.43 0.42       JP 0.19 0.46 0.35 

    US 0.13 0.19 0.68       US 0.23 0.12 0.65 

               
BIOTECHNOLOGIES 

   pre-2000      post-2000 

Cited country   EU15 JP US   Cited country   EU15 JP US 

      Nat otherEU             Nat otherEU     

Citing country EU15 0.17 0.31 0.07 0.45   Citing country EU15 0.25 0.28 0.05 0.42 

    JP 0.15 0.43 0.42       JP 0.21 0.45 0.34 

    US 0.13 0.19 0.68       US 0.28 0.05 0.67 

               

               
ROBOT TECHNOLOGIES 

   pre-2000      post-2000 

Cited country   EU15 JP US   Cited country   EU15 JP US 

      Nat otherEU             Nat otherEU     
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Citing country EU15 0.16 0.16 0.39 0.29   Citing country EU15 0.27 0.28 0.27 0.18 

    JP 0.10 0.67 0.23       JP 0.17 0.68 0.15 

    US 0.16 0.31 0.53       US 0.36 0.29 0.35 

Table D3 Regression Results: Radically New Technologies. 

  3D IT BIOTECH ROBOT 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Citing/cited country pairs 

(αi,j) (a) 
                

US citing US 1 1 1 1 1 1 1 1 

  NA NA NA NA NA NA NA NA 

EU15 citing EU15 (national) 2.851*** 3.160*** 0.731*** 0.959*** 0.760*** 1.055*** 0.463*** 0.487*** 

  (0.468) (0.635) (0.022) (0.037) (0.025) (0.057) (0.050) (0.092) 

EU15 citing other EU15  1.007*** 0.874*** 0.301*** 0.377*** 0.254*** 0.343*** 0.222*** 0.178*** 

  (0.138) (0.145) (0.007) (0.010) (0.008) (0.016) (0.023) (0.029) 

EU15 citing US 0.657*** 0.627*** 0.405*** 0.430*** 0.374*** 0.439*** 0.263*** 0.294*** 

  (0.097) (0.113) (0.007) (0.010) (0.011) (0.021) (0.030) (0.044) 

EU15 citing JP 0.929*** 0.981*** 0.235*** 0.285*** 0.155*** 0.183*** 0.275*** 0.236*** 

  (0.151) (0.233) (0.006) (0.008) (0.005) (0.009) (0.029) (0.036) 

US citing EU15 0.733*** 0.651*** 0.321*** 0.320*** 0.356*** 0.371*** 0.209*** 0.182*** 

  (0.105) (0.121) (0.006) (0.008) (0.009) (0.015) (0.028) (0.037) 

US citing JP 0.773*** 0.767*** 0.324*** 0.324*** 0.221*** 0.223*** 0.400*** 0.400*** 

  (0.124) (0.122) (0.008) (0.008) (0.006) (0.006) (0.054) (0.054) 

JP citing EU15 0.751*** 0.757*** 0.229*** 0.263*** 0.170*** 0.222*** 0.154*** 0.162*** 

  (0.112) (0.144) (0.006) (0.009) (0.005) (0.011) (0.019) (0.030) 

JP citing US 0.771*** 0.766*** 0.406*** 0.405*** 0.274*** 0.273*** 0.292*** 0.292*** 

  (0.118) (0.117) (0.009) (0.009) (0.008) (0.008) (0.037) (0.037) 

JP citing JP 1.756*** 1.740*** 0.643*** 0.645*** 0.723*** 0.729*** 0.796*** 0.794*** 

  (0.241) (0.238) (0.017) (0.017) (0.027) (0.027) (0.081) (0.080) 

  

 

  

  

    

 

  

Citing pattern differences since 2000  (фij) (b) 

  

    

 

  

US citing US 

 

0 

 

0   0 

 

0 

  

 

NA 

 

NA   NA 

 

NA 

EU15 citing EU15 (national) 

 

-0.232 

 

-0.382***   -0.373*** 

 

-0.0553 

  

 

(0.172) 

 

(0.030)   (0.039) 

 

(0.174) 

EU15 citing EU15 

(international) 

 

0.288 

 

-0.325***   -0.351*** 

 

0.340 

  

 

(0.221) 

 

(0.022)   (0.035) 

 

(0.217) 

EU15 citing US 

 

0.124 

 

-0.111***   -0.212*** 

 

-0.151 

  

 

(0.210) 

 

(0.028)   (0.044) 

 

(0.138) 

EU15 citing JP 

 

-0.119 

 

-0.340***   -0.228*** 

 

0.257 

  

 

(0.203) 

 

(0.024)   (0.050) 

 

(0.189) 

US citing EU15 

 

0.286 

 

-0.001   -0.064 

 

0.310 

  

 

(0.241) 

 

(0.031)   (0.047) 

 

(0.283) 

JP citing EU15 

 

-0.038 

 

-0.251***   -0.341*** 

 

-0.0773 

  

 

(0.190) 

 

(0.032)   (0.040) 

 

(0.187) 

         Decay (β1) (b) 0.236*** 0.238*** 0.260*** 0.259*** 0.160*** 0.160*** 0.273*** 0.272*** 
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  (0.025) (0.026) (0.006) (0.006) (0.009) (0.009) (0.022) (0.022) Diffusion (β2) (b) 0.006 0.006 0.0002*** 0.0002*** 0.0006*** 0.0006*** 0.002** 0.002** 

  (0.006) (0.006) (0.0000) (0.0000) (0.0000) (0.0000) (0.0009) (0.0008) 

N° of obs. 3,430 3,430 3,510 3,510 3,510 3,510 3,510 3,510 

Notes:  a) H0 is parameter = 1; (b) H0 is parameter = 0. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level 

 

 

Fig. D.1 Index of patenting: RES vs other new technologies, EU15, US and Japan, 2000=100 
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